
Non-black-box Worst-case to Average-case Reductions within NP

Shuichi Hirahara∗

The University of Tokyo

hirahara@is.s.u-tokyo.ac.jp

February 28, 2019

Abstract

There are significant obstacles to establishing an equivalence between the worst-case and
average-case hardness of NP: Several results suggest that black-box worst-case to average-case
reductions are not likely to be used for reducing any worst-case problem outside coNP to a
distributional NP problem.

This paper overcomes the barrier. We present the first non-black-box worst-case to average-
case reduction from a problem conjectured to be outside coNP to a distributional NP prob-
lem. Specifically, we consider the minimum time-bounded Kolmogorov complexity problem
(MINKT), and prove that there exists a zero-error randomized polynomial-time algorithm ap-
proximating the minimum time-bounded Kolmogorov complexity k within an additive error
Õ(
√
k) if its average-case version admits an errorless heuristic polynomial-time algorithm. We

observe that the approximation version of MINKT is Random 3SAT-hard, and more generally
it is harder than avoiding any polynomial-time computable hitting set generator that extends
its seed of length n by ω̃(

√
n), which provides strong evidence that the approximation problem

is outside coNP and thus our reductions are non-black-box. Our reduction can be derandomized
at the cost of the quality of the approximation. We also show that, given a truth table of size 2n,
approximating the minimum circuit size within a factor of 2(1−ε)n is in BPP for some constant
ε > 0 if and only if its average-case version is easy.

Our results can be seen as a new approach for excluding Heuristica. In particular, proving
NP-hardness of the approximation versions of MINKT or the Minimum Circuit Size Problem
(MCSP) is sufficient for establishing an equivalence between the worst-case and average-case
hardness of NP.

1 Introduction

The security of cryptographic primitives such as public-key cryptosystems is based on some
hardness assumption of NP. Indeed, if P = NP, then essentially all cryptographic primitives can
be broken efficiently. This is intuitively because NP is the complexity class of problems whose Yes
instances have a certificate that is efficiently checkable; in order to build a meaningful cryptographic
primitive, it is required that a legitimate user who has a secret key (i.e., a certificate) must be
verified efficiently. More formally, the existence of a one-way function (OWF) is often considered
as a minimal complexity assumption to build cryptography [IL89]. Roughly speaking, a one-way
function is a function f such that f is easy to compute but no efficient adversary can invert f on

∗Supported by ACT-I, JST and JSPS KAKENHI Grant Numbers JP16J06743.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 138 (2018)

mailto:hirahara@is.s.u-tokyo.ac.jp

average; it is easy to see that any one-way function can be inverted with NP oracles. Thus the
security of cryptographic primitives must be based on intractability of some NP problem, and hence
proving P 6= NP is the first step towards the construction of secure cryptography.

However, there is a huge gap between P 6= NP and the existence of public-key cryptography.
This gap was already discussed in the seminal work of Diffie and Hellman [DH76], which introduced
public-key cryptography. The main problem is that traditional complexity classes such as P and
NP measure the performance of an algorithm with respect to the worst-case input; therefore, the
statement P 6= NP only tells us that there exists some hard input on which a polynomial-time
machine cannot solve some NP problem; however, it does not tell us how to generate such a hard
input efficiently. In contrast, for the purpose of cryptography, we need to efficiently generate a
secret key randomly so that an adversary cannot find the secret key in a reasonable amount of
time. Thus we need to understand the average-case complexity of NP: that is, how much time on
average does it take to compute NP problems on efficiently generated random inputs?

1.1 Impagliazzo’s Five Worlds

In the influential survey on average-case complexity of Impagliazzo [Imp95], the gap between
P 6= NP, average-case complexity of NP, and the existence of cryptographic primitives was clearly
addressed. He explored five possible scenarios that are consistent with our current knowledge on
complexity theory, and named each possible world as follows: Algorithmica (where NP is easy on the
worst-case; e.g., P = NP), Heuristica (where NP is hard on the worst-case, but easy on the average-
case; e.g., P 6= NP and DistNP ⊆ AvgP), Pessiland (where NP is hard on average, but there is no
one-way function), Minicrypt (where a one-way function exists, but no public-key cryptography
exists), and Cryptomania (public-key cryptography exists). The five worlds are classified according
to the four central open questions in complexity theory, and exactly one of the possible worlds
corresponds to our world.

What is known about Impagliazzo’s five worlds? The list of the five worlds is known to be in
“decreasing order” of the power of polynomial-time machines; that is, ∃public-key cryptography⇒
∃ one-way functions ⇒ DistNP 6⊆ AvgP ⇒ P 6= NP. The converse directions of these implications

are central open questions in complexity theory; that is, True
?⇒ P 6= NP

?⇒ DistNP 6⊆ AvgP
?⇒

∃ one-way functions
?⇒ ∃public-key cryptography. By establishing one implication, one possible

world is excluded from Impagliazzo’s five worlds. And if the four implications are proved, it is
concluded that our world is Cryptomania, i.e., computationally-secure public-key cryptography
exists.

Since all of these questions are the central open questions in complexity theory and cryptography,
a lot of work has been done for each open question in order to understand why current proof
techniques are not capable of resolving the questions. For example, in order to resolve P 6= NP (or,
in other words, to exclude Algorithmica from the possible worlds), we need to develop a new proof
technique that overcomes the relativization barrier [BGS75], the algebrization barrier [AW09], and
the natural proof barrier [RR97] simultaneously. Similarly, in order to exclude Heuristica (e.g., P 6=
NP =⇒ DistNP 6⊆ AvgP), we need to develop a new proof technique that overcomes a relativization
barrier [Imp11] and limits of black-box reductions [FF93, BT06b]. The main contribution of this
paper is to overcome the limits of black-box reductions, by presenting the first non-black-box worst-
case to average-case reductions. We achieve this by investigating the complexity of problems of
compressing a given string by certain types of algorithms, namely MCSP and MINKT.

2

Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

DistNP 6⊆ AvgP

P 6= NP

True

GapMINKT 6∈ P

GapMCSP 6∈ BPP

∃ one-way functions

∃ public-key cryptography

?

?

?

?

?

This Work

Figure 1: Impagliazzo’s five worlds and the main contribution of this work. In particular, proving

NP-hardness of GapMINKT (i.e., P 6= NP
?⇒ GapMINKT 6∈ P) is sufficient for excluding Heuristica

(i.e., P 6= NP
?⇒ DistNP 6⊆ AvgP).

1.2 Minimum Circuit Size Problem (MCSP) and Its Variants

The Minimum Circuit Size Problem (MCSP [KC00]) asks for compressing a given input f into
the truth table of a small circuit. More formally, given a function f : {0, 1}n → {0, 1} represented
as its entire truth table of size 2n together with an integer s ∈ N, it asks whether there exists a
circuit of size at most s computing f . Similarly, MINKT (Minimum Kolmogorov Time-bounded
Complexity [Ko91]) asks the minimum program size to output a given string x within a given time
bound t; specifically, given a string x and integers t, s represented in unary, it asks whether there
is a program of size ≤ s that outputs x within t steps. We denote by GapMCSP and GapMINKT
approximation versions of these problems, respectively. (There is another variant called MKTP
[ABK+06, AHK17], which aims at minimizing s+ t, i.e., the program size plus the time it takes to
output x by a random access machine.)

These problems are easily shown to be in NP. However, neither NP-completeness proof nor
evidence against NP-completeness (under weak reducibility notions) has been found so far. This
is despite the fact that MCSP is recognized as a fundamental problem as early as 1950s in the
Soviet Union [Tra84]. Indeed, it is reported in [AKRR11] that Levin delayed his publication on the
NP-completeness of SAT [Lev73] because he wanted to prove a similar result for MCSP. It is thus a
long-standing open problem in complexity theory whether MCSP (or GapMINKT) is NP-complete

or not. The open question is depicted in Figure 1 as the implication “NP 6= P
?⇒ GapMINKT 6∈ P.”1

A fundamental relationship between cryptography and MCSP was discovered in the celebrated
natural proof framework of Razborov and Rudich [RR97], based on which Kabanets and Cai [KC00]
reawakened interest in MCSP. Since then many efforts have been made to understand the complex-
ity of MCSP (e.g., [ABK+06, AHM+08, AKRR11, AD17, MW17, HP15, HW16, CIKK16, OS17,
HS17, AH17, AGvM+18, IKV18, HOS18]). In particular, any one-way function can be inverted
if GapMCSP is in BPP [ABK+06]. This corresponds to the implication “∃ one-way functions ⇒
GapMCSP 6∈ BPP.”

In this paper, we show that worst-case hardness of GapMCSP or GapMINKT implies average-
case hardness of NP. In particular, our results can be seen as a new approach for excluding

1 Note that a problem L is NP-hard under polynomial-time Turing reductions iff NP 6⊆ PR ⇒ L 6∈ PR for every
oracle R. The unrelativized implication NP 6⊆ P⇒ L 6∈ P gives rise to the weakest notion of NP-hardness.

3

Heuristica: Proving NP-completeness of GapMINKT is sufficient for excluding Heuristica, i.e., a
world where P 6= NP and DistNP ⊆ AvgP (see Figure 1). The latter is a central open question in
the theory of average-case complexity, as we review next.

1.3 Average-case Complexity

Average-case complexity, pioneered by Levin [Lev86], aims at analyzing the performance of an
algorithm with respect to random inputs which can be easily generated by an efficient algorithm.
Specifically, a distributional problem (L,D) is a pair of a language L ⊆ {0, 1}∗ and a family of
distributions D = {Dm}m∈N, where m means the size of instances. A family of distributions D is
said to be efficiently samplable if there exists a randomized polynomial-time algorithm that, given
an integer m ∈ N represented in unary, outputs a string distributed according to Dm. DistNP is
the class of distributional problems (L,D) such that L ∈ NP and D is efficiently samplable. The
performance of an algorithm for a distributional problem (L,D) is measured by the average-case
behavior of A on input chosen according to Dm, for each m ∈ N; specifically, for a failure probability
δ : N → [0, 1], AvgδP denotes the class of distributional problems (L,D) that admit an errorless
heuristic polynomial-time algorithm A; that is, A(x) outputs the correct answer L(x) or otherwise a
special failure symbol ⊥ for every input x, and A(x) outputs ⊥ with probability at most δ(m) over
the random choice of x ∼ Dm, for every instance size m ∈ N. We define AvgP :=

⋂
c∈N Avgm−cP.

The reader is referred to the survey of Bogdanov and Trevisan [BT06a] for detailed background on
average-case complexity.

The central open question in this area is whether Heuristica exists. That is, does worst-case
hardness on NP such as NP 6⊆ BPP imply DistNP 6⊆ AvgP? Worst-case to average-case reduc-
tions are known for complexity classes much higher than NP, or specific problems in NP ∩ coNP:
For complexity classes above the polynomial-time hierarchy such as PSPACE and EXP, a gen-
eral technique based on error-correcting codes provides a worst-case to average-case reduction (cf.
[FF93, BFNW93, STV01]).

Problems based on lattices admit worst-case to average-case reductions from some problems
in NP ∩ coNP to distributional NP problems. In a seminal paper of Ajtai [Ajt96], it is shown
that an approximation version of the shortest vector problem of a lattice in Rn admits a worst-
case to average-case reduction. The complexity of approximating the length of a shortest vector
depends greatly on an approximation factor. A worst-case to average-case reduction is known when
an approximation factor is larger than Õ(n) [MR07]. Note that Heuristica does not exist if this
approximation problem is NP-hard; however, this is unlikely because approximating the length of
a shortest vector within a factor of O(

√
n) is in NP ∩ coNP [GG00, AR05]. Some NP-hardness is

known for an approximation factor of nO(1/ log logn) [HR12].

1.4 Barriers for Worst-case to Average-case Reductions within NP

The proof techniques of the previous work mentioned above are (black-box) reductions. Namely,
for a worst-case problem L and a distributional problem (L′,D), we design an efficient algorithm R
such that, given oracle access to an errorless heuristic algorithm T that solves (L′,D), R solves L.
The correctness of a reduction is often established no matter how T is complex – such a reduction
is called black-box in the sense that T is regarded as a (potentially inefficient) black-box oracle, and
we just care about the input-output behavior of T .

4

Such a black-box reduction technique turned out to have a certain limit. Building on Feigen-
baum and Fortnow [FF93], Bogdanov and Trevisan [BT06b] showed that if a language L reduces to
a distributional NP problem via a black-box nonadaptive randomized polynomial-time reduction,
then L ∈ NP/poly∩coNP/poly. Here, the advice “/poly” is mainly used to encode some information
about the distributional problem, and can be removed in some cases such as a reduction to invert-
ing one-way functions [AGGM06, BB15] or avoiding hitting set generators [HW19]. Therefore, in
order to reduce any problem outside NP ∩ coNP to a distributional NP problem, it is likely that a
non-black-box reduction technique is needed.2

Gutfreund, Shaltiel and Ta-Shma [GST07] developed a non-black-box technique to show a worst-
case to “average-case” reduction; however, the notion of “average-case” is different from the usual
one. They showed that, under the assumption that P 6= NP, for every polynomial-time algorithm
A trying to compute SAT, there exists an efficiently samplable distribution DA under which A fails
to compute SAT on average. The hard distribution DA depends on a source code of A, and hence
it is not necessarily true that there exists a fixed distribution under which SAT is hard on average.

In contrast, we consider the following two simple distributions. One is the uniform distribution,
denoted by U , under which an instance x of size m is generated by choosing x ∈R {0, 1}m uniformly
at random. The other is a uniform distribution with auxiliary unary input, denoted by DKT, under
which an instance (x, 1t) of size m is generated by choosing an integer t ∈R {1, . . . ,m} and a string
x ∈R {0, 1}m−t uniformly at random.

2 Overview of Our Results

The main contribution of this paper is to present the first non-black-box worst-case to average-
case reductions from problems conjectured to be outside NP∩ coNP to distributional NP problems.
As a consequence of our reductions, we improve our understanding around Heuristica as shown in
Figure 2.

Recall the notion of time-bounded Kolmogorov complexity: For a string x ∈ {0, 1}∗, the Kol-
mogorov complexity Kt(x) of x within time t is defined as the length of a shortest program M such
that M outputs x within t steps. For example, 0n can be described as “output 0 n times,” which
can be encoded as a binary string of length log n+O(1); thus Kt(0

n) = log n+O(1) for a sufficiently
large t. Kolmogorov complexity enables us to define the notion of randomness for a finite string x.
We say that a string x ∈ {0, 1}∗ is r-random with respect to Kt if Kt(x) ≥ r(|x|), for a function
r : N→ N.

Our main technical result is a search to average-case reduction between the following two prob-
lems. One is a search problem of compressing a given input x into an efficient program of size
Kt(x) + Õ

(√
Kt(x)

)
on input (x, 1t), where Õ hides some polylog(|x|) factor. The other is a dis-

tributional NP problem, denoted by (MINKT[r],DKT), of deciding, on input (x, 1t) sampled from
DKT, whether x is not r-random with respect to Kt.

Theorem 4.21 (Main). Let r : N → N be any function such that for some constant c > 0, for
all large n ∈ N, n − c

√
n log n ≤ r(n) < n. Assume that (MINKT[r],DKT) ∈ Avg1/6mP. Then,

for some function σ(n, s) = s + O
(
(log n)

√
s + (log n)2

)
and some polynomial τ(n, t), there exists

2 Here we implicitly used a popular conjecture that AM = NP [KvM02]. We also mention that an adaptive
black-box reduction could be used to overcome the barriers.

5

DistNP 6⊆ HeurP

DistNP 6⊆ AvgP

P 6= NP

Gapσ,τMINKT 6∈ P

∃HSG

GapεMCSP 6∈ BPP (∀ε > 0)

∃PRG

∃OWF ∃AIOWF

SZK 6⊆ BPP

Theorem 6.7

Corollary 5.3

Corollary 4.23

[HILL99]

[Ost91]

[AH17]

Figure 2: An improved landscape around Heuristica. By “∃HSG”, we mean that there exists an
efficiently computable hitting set generator G = {Gn : {0, 1}s(n) → {0, 1}n}n∈N secure against
either P or BPP, where the seed length s(n) satisfies nΩ(1) ≤ s(n) ≤ n− ω̃(

√
n).

a zero-error randomized polynomial-time algorithm that, on input (x, 1t), outputs a program M of
size |M | ≤ σ(|x|,Kt(x)) such that M outputs x in τ(|x|, t) steps, with high probability.

At a high level, the reason why Theorem 4.21 is non-black-box is that the compressed program
M incorporates an errorless heuristic algorithm T for (MINKT[r],DKT). In particular, M can be
decoded in polynomial time if T ∈ P, but in the other case, M may not be decoded efficiently.

There is a natural decision version associated with the search problem above, denoted by
Gapσ,τMINKT. This is the promise problem of deciding, on input (x, 1t, 1s), whether Kt(x) ≤ s
or Kt′(x) > σ(|x|, s) for t′ = τ(|x|, t). Using Theorem 4.21, we prove the following relationship
between the worst-case problem Gapσ,τMINKT and the complexity of DistNP.

Corollary 4.23. If DistNP ⊆ AvgP then Gapσ,τMINKT ∈ Promise-P for some σ(n, s) = s +
O
(
(log n)

√
s+ (log n)2

)
and some polynomial τ(n, t).

We also establish similar results for MCSP. Specifically, we show that the complexity of the
following two problems is the same with respect to BPP algorithms. One is a promise problem,
denoted by GapεMCSP for a constant ε > 0, of approximating the minimum circuit size within
a factor of 2(1−ε)n on input the truth table of a function f : {0, 1}n → {0, 1}. The other is a
distributional NP problem, denoted by (MCSP[2εn],U) for a constant ε > 0, of deciding whether
the minimum circuit size is at most 2εn given the truth table of a function f : {0, 1}n → {0, 1}
chosen uniformly at random.

Theorem 6.7. The following are equivalent.

1. GapεMCSP ∈ Promise-BPP for some ε > 0.

2. There exists a randomized polynomial-time algorithm solving the search version of GapεMCSP
for some ε > 0.

3. (MCSP[2εn],U) ∈ AvgBPP for some constant ε ∈ (0, 1).

6

4. There exists a BPP-natural property useful against SIZE(2εn) with largeness γ, for some con-
stants ε, γ ∈ (0, 1).

We will observe that a natural property useful against SIZE(2εn) is an adversary for a specific hit-
ting set generatorGint,nε of seed length Õ(nε) (defined as an interpreter of a circuit; see Definition 5.4
and Definition 5.5). In particular, it follows from Theorem 6.7 that GapεMCSP 6∈ Promise-BPP for
every ε > 0 implies the existence of a hitting set generator Gint,nε secure against BPP algorithms
for every ε ∈ (0, 1), as depicted in Figure 2.

Previously, an equivalence between the worst-case and average-case complexity of MCSP with
respect to “feasibly-on-average” algorithms (meaning that the error set of an algorithm is recognized
by some efficient algorithm) was shown under the assumption that one-way functions exist [HS17];
however, the assumption is so strong that the equivalence becomes trivial when the feasibly-on-
average algorithm itself is an efficient algorithm. Independently of our work, Rahul Santhanam
(personal communication) obtained a worst-case to average-case connection for a version of MCSP
called MAveCSP, which asks if there exists a small circuit approximating a given function f .

2.1 Hardness of GapMINKT

We argue that our techniques are inherently non-black-box. If Theorem 4.21 were established
via a nonadaptive black-box worst-case to average-case reduction, then by using the techniques of
Bogdanov and Trevisan [BT06b], we would obtain Gapσ,τMINKT ∈ coNP/poly. This is unlikely, as
we discuss below. (In fact, our non-black-box reductions can be regarded as a nonadaptive reduction
to avoiding a hitting set generator; thus, the advice “/poly” is not indispensable [HW19].)

Unfortunately, basing hardness of MCSP or MINKT on worst-case hardness assumptions is a
very challenging task. The current best worst-case hardness result for MCSP is SZK-hardness,
which is proved by inverting auxiliary-input one-way functions (Allender and Das [AD17]). Here
we say that an auxiliary-input function f(-)(-) is inverted by a randomized algorithm A if, for every
auxiliary input x ∈ {0, 1}∗, A(x, fx(y)) returns an element of f−1

x (fx(y)) with high probability over
the choice of coin flips of A and a string y chosen from the uniform distribution; f is said to be an
auxiliary-input one-way function (AIOWF) if there is no randomized polynomial-time algorithm
that inverts f . It was shown by Ostrovsky [Ost91] that SZK 6⊆ BPP implies the existence of an
auxiliary-input one-way function (see also [Vad06, Theorem 7.5]). Moreover, building on [RR97,
GGM86, HILL99, ABK+06], it was shown in [AH17] that an auxiliary-input one-way function can
be inverted in polynomial time with oracle access to GapεMCSP, for every constant ε > 0. We
summarize these relationships in Figure 2.

The SZK-hardness sketched above cannot be seen as evidence that MCSP 6∈ coNP since SZK ⊆
AM ∩ coAM. There is evidence that the SZK-hardness is the best that one can hope for the
current reduction techniques: A certain (one-query randomized) reduction technique called an
oracle-independent reduction cannot be used to base hardness of MCSP on any problem beyond
AM ∩ coAM [HW16]. Here, a reduction to MCSP is said to be oracle-independent if the reduction
can be generalized to a reduction to MCSPA for every oracle A.

Fortunately, we can still argue hardness of MCSP or MINKT based on average-case hardness
assumptions. Hirahara and Santhanam [HS17] showed that MKTP is Random 3SAT-hard, which
provides evidence that MKTP 6∈ coNP. To prove similar average-case hardness results, we observe
that, given Gapσ,τMINKT as oracle, one can avoid any hitting set generator.

7

Corollary 5.3. Let σ, τ be the parameters as in Theorem 4.21. Any efficiently computable hit-
ting set generator G = {Gn : {0, 1}n−ω̃(

√
n) → {0, 1}n}n∈N is not secure against a polynomial-time

algorithm with oracle access to Gapσ,τMINKT.

This is because any range of an efficiently computable hitting set generator is not random in the
sense of time-bounded Kolmogorov complexity; thus, to test whether x is in the range of G, it
suffices to check whether Kt(x) is small.

One example of hitting set generators conjectured to be secure against nondeterministic algo-
rithms comes from the natural proof framework. Based on some average-case hardness assumption
about the subset sum problem, Rudich [Rud97] conjectured that there is no NP/poly-natural prop-
erty useful against P/poly. In particular, under his conjecture, we have Gapσ,τMINKT 6∈ coNP/poly
(and GapεMCSP 6∈ coNP/poly).

More significantly, we observe that Random 3SAT can be viewed as a hitting set generator
(which extends its seed of length N by Ω(N/ logN) bits) that is conjectured to be secure against
coNP algorithms. Random 3SAT is a widely investigated problem algorithmically (e.g., [Fei02,
FO07, FKO06]). This is the problem of checking the satisfiability of a 3CNF formula randomly
generated by choosing m clauses uniformly at random from all the possible width-3 clauses on n
variables. The best coNP algorithm solving Random 3SAT is the algorithm given by Feige, Kim
and Ofek [FKO06], which works when m > O(n7/5); this is better than the best deterministic
algorithm, which works when m > O(n3/2) [FO07].

We show that if Gapσ,τMINKT ∈ coNP, there is a much better algorithm than [FKO06]: For
any constant ∆ > 1/ log(8/7) ≈ 5.19 and for m := ∆n, Random 3SAT with m clauses can be
solved by a coNP algorithm with probability 1 − 2−Ω(n). Ryan O’Donnell (cf. [HS17, BGSV16])
conjectured that there is no coNP algorithm solving Random 3SAT with m = ∆n clauses for a
sufficiently large constant ∆. Thus under his conjecture, we have Gapσ,τMINKT 6∈ coNP.

2.2 Perspective: An Approach Towards Excluding Heuristica

We propose a research program towards excluding Heuristica through the lens of MCSP or
MINKT. Note that if NP ≤P

T Gapσ,τMINKT then it follows from Corollary 4.23 that Heuristica
does not exist, in the sense that P 6= NP implies DistNP 6⊆ AvgP.

Unfortunately, there are still several obstacles we need to overcome in order for this research
program to be completed. Although our results overcome the limits of black-box reductions, most of
our results do relativize. (One potential exception is Corollary 4.23, where we use a nonrelativizing
proof technique of [BFP05].) And there is a relativization barrier for excluding Heuristica: Impagli-
azzo [Imp11] constructed an oracle A such that DistNPA ⊆ AvgPA and NPA ∩ coNPA 6⊆ PA/poly.
Under the same oracle, it follows from a relativized version of Theorem 4.21 that Gapσ,τMINKTA

is not NPA-hard under PA/poly-Turing reductions. Thus it requires some nonrelativizing technique
to establish NP-hardness of Gapσ,τMINKT even under P/poly-Turing reductions. (Previously, Ko
[Ko91] constructed a relativized world where MINKT is not NP-hard under P-Turing reductions.)

We also mention that there are a number of results (e.g. [KC00, ABK+06, AHK17, MW17,
HW16, HP15, AH17]) showing that proving NP-hardness (under reducibility notions stronger than
P/poly-Turing reductions) of MCSP is extremely difficult or impossible. For example, Murray
and Williams [MW17] showed that MCSP is provably not NP-hard under some sublinear time
reductions; similarly, NP-hardness of GapMCSP under polynomial-time Turing reductions implies
EXP 6= ZPP [HW16].

8

However, few is known for weaker reducibility notions such as NP∩coNP reductions. We suggest
that the following is an interesting research direction.

Open Question 2.1. Prove the following (or explain why it is difficult to resolve): Let σ, τ
be arbitrary parameters as in Theorem 4.21. Gapσ,τMINKT is NP-hard under coNP/poly-Turing

reductions. That is, NP ⊆ coNPA/poly for any oracle A that satisfies the promise of Gapσ,τMINKT.

Note that the choice of reducibility is somewhat subtle: The relativization barrier applies to P/poly
reductions, but it is not known whether a similar barrier applies to coNP/poly reductions. Ko [Ko91]
also speculated that MINKT might be NP-complete under NP∩coNP reductions. We mention that
there are nonrelativizing proof techniques for proving PSPACE-completeness of a space-bounded
version of MINKT under ZPP-Turing reductions and EXP-completeness of an exponential-time
version of MINKT under NP ∩ coNP-Turing reductions (cf. [ABK+06]). In particular, under the
(unlikely) assumption that PSPACE ⊆ P/poly, MCSP is indeed NP-hard under ZPP-Turing reduc-
tions (cf. [IKV18]).

A positive answer to Open Question 2.1 implies the following: If NP 6⊆ coNP/poly, then
DistNP 6⊆ AvgP. This will base the hardness of DistNP on a plausible worst-case assumption
of NP, and in particular, an assumption that the polynomial-time hierarchy does not collapse.
Currently, no worst-case hardness assumption on the polynomial-time hierarchy is known to imply
DistNP 6⊆ AvgP.

2.3 Our Techniques

We outline the proof of Theorem 4.21 below. The basic idea is to make use of the hardness
versus randomness framework based on the Nisan-Wigderson pseudorandom generator [NW94].
Specifically, based on a hard function f , they constructed a pseudorandom generator NWf . The
security of the pseudorandom generator is proved by the following reduction: Given any statistical
test T that distinguishes NWf from the uniform distribution, one can construct a small T -oracle
circuit that approximates f . Such a security proof turns out to be quite fruitful not only for
derandomization [KvM02, IW01, TV07], but also for Trevisan’s extractor [Tre01], investigating
the power of Kolmogorov-random strings [ABK+06], the language compression problem [BLvM05],
and the generic connection between learning and natural proof [CIKK16], to mention a few. Our
proofs are also based on the security proof, and we combine it with a statistical test that can be
constructed from an errorless heuristic algorithm for MINKT.

A Statistical Test for Every Pseudorandom Generator. Specifically, we observe that an er-
rorless heuristic algorithm for (MINKT[r],DKT) implies the existence of a statistical test T that dis-
tinguishes every pseudorandom generator from the uniform distribution. A crucial observation here
is that there are few nonrandom strings (i.e., compressible by a short program); that is, there are
few Yes instances in MINKT[r]. Thus any errorless heuristic algorithm solving (MINKT[r],DKT)
must succeed on a large fraction of No instances. This gives rise to an algorithm T that rejects most
inputs and accepts every Yes instance, and it can be shown that T is a statistical test for any hit-
ting set generator. This observation was inspired by the work of Hirahara and Santhanam [HS17],
which showed the equivalence between natural properties and an errorless heuristic algorithm for
MCSP.

In particular, T distinguishes any candidate pseudorandom generator from the uniform distri-
bution. In what follows, we explain the ideas of constructing a candidate pseudorandom generator

9

Gx based on a given string x ∈ {0, 1}∗, and outline how to convert a statistical test T for Gx into
a short program that describes x. We emphasize that in order to compress x into a short program
using T , it is important that a statistical test T does not depend on a pseudorandom generator Gx.

Converting a Statistical Test to Short Descriptions. Let f be a hard function; then a function
Gf1 defined as Gf1(z) := (z, f(z)) is known to be a secure pseudorandom generator that extends
its seed by one bit. This is shown by using the connection between next-bit unpredictability and
a pseudorandom generator: Let T be a statistical test that distinguishes Gf1(z) from the uniform

distribution, that is, Ez∈R{0,1}`,b∈R{0,1}[T (Gf1(z))−T (z, b)] ≥ ε; Then a randomized T -oracle circuit

P T defined as P T (z) := T (z, b) ⊕ b ⊕ 1 where b ∈R {0, 1} predicts f(z) with probability at least
1
2 + ε. This means that a (1

2 + ε)-fraction of f can be described by a short program with oracle
access to T .

Given a string x which we would like to compress, we regard x of length 2` as the truth table of a
function x : {0, 1}` → {0, 1}. From the argument above, we can convert any statistical test T for Gx1
into a short program that describes a (1

2 + ε)-fraction of x. Using a list-decodable error-correcting

code Enc, we can convert any statistical test T for Gx2 := G
Enc(x)
1 into a short description for x.

Thus it remains to argue that Gx2 can be distinguished by using an errorless heuristic algorithm for
(MINKT[r],DKT).

Note that Gx2 extends its seed by only one bit, which is too small to detect. Thus we extend
the output length of Gx2 by using, e.g., the direct product construction: Define Gx3(z1, · · · , zm) :=
Gx2(z1) · · ·Gx2(zm) for a parameter m ∈ N and (z1, · · · , zm) ∈ ({0, 1}`)m. Since the Kolmogorov
complexity of Gx3(z1, · · · , zm) is approximately less than m` + Kt(x), by measuring Kolmogorov
complexity, Gx3 can be distinguished from the uniform distribution w ∈R {0, 1}m`+m if m`+Kt(x)�
m` + m. Taking m ≈ Kt(x), we can construct a statistical test T that distinguishes Gx3 . By a
standard hybrid argument, the statistical test can be converted into a T -oracle program of size
O(m`) that distinguishes Gx2 (where O(m`) bits are used to specify random bits that maximize the
advantage of T), and thus we obtain a T -oracle program of length O(Kt(x) log |x|) describing x.

In order to reduce the description length, we make use of the Nisan-Wigderson pseudoran-
dom generator [NW94] (and an improved construction of combinatorial designs due to Raz,
Reingold and Vadhan [RRV02]) in the actual construction. Specifically, for a seed z, we gen-
erate m inputs zS1 , · · · , zSm by using a nearly disjoint set family {S1, · · · , Sm}, and define

NWEnc(x)(z) := Enc(x)(zS1) · · ·Enc(x)(zSm), where we identify Enc(x) ∈ {0, 1}2` with a Boolean
function Enc(x) : {0, 1}` → {0, 1}. A standard security proof of the Nisan-Wigderson pseudoran-
dom generator enables us to convert a statistical test T for NWEnc(x) into a T -oracle program of
size Kt(x) + Õ(

√
Kt(x)). (We mention that our analysis and the quality of the approximation is

similar to the work of Buhrman, Lee and van Melkebeek [BLvM05] on the language compression
problem.)

As a consequence, we obtain an efficient algorithm that, on input x, outputs a short T -oracle
program d describing x. Since T can be accepted by some polynomial-time algorithm (that comes
from the errorless heuristic algorithm for (MINKT[r],DKT)), we can describe x by using the de-
scription d and a source code of the algorithm accepting T . This is the crucial part in which our
proof is non-black-box; we need a source code of the errorless heuristic algorithm in order to have
a short description for x. More importantly, in order to prove the correctness of our reductions,
we crucially exploit the fact that the oracle T is in P: The compressed program can be decoded in
polynomial time when T ∈ P, but in the other case, the program may not be decoded efficiently.

10

We note that the algorithm outlined above is a one-sided-error randomized algorithm. However,
using a proof idea of the fact that BPP = ZPP if DistNP ⊆ AvgZPP [Imp95], we can make the
randomized algorithm zero-error. This enables us to establish Theorem 4.21. Our reductions can
be completely derandomized either by using the assumption that DistNP ⊆ AvgP (under which
Buhrman, Fortnow and Pavan [BFP05] constructed a pseudorandom generator), or at the cost of
the quality of the approximation (cf. Theorem 4.24).

2.3.1 Reductions for MCSP

To prove an equivalence between worst-case and average-case hardness of MCSP, there is one
difficulty: An error-correcting code Enc may significantly increase the circuit complexity of f . As a
consequence, for a function f that can be computed by a small circuit, the circuit complexity of the
output of NWEnc(f) is not necessarily small, and thus an errorless heuristic algorithm for MCSP
may not induce a statistical test for NWEnc(f); here, the circuit complexity of a string x refers to
the size of a smallest circuit whose truth table is x. Nevertheless, it is still possible to amplify
the hardness of f while preserving the circuit complexity of f . Indeed, Carmosino, Impagliazzo,
Kabanets, and Kolokolova [CIKK16] established a generic reduction from approximately learning
to natural properties, by using the fact that a natural property is a statistical test for NWAmp(f),
where Amp(f) denotes a hardness amplified version of f . (We remark that Amp(f) can be seen
as a locally encodable and locally decodable error-correcting code [Zim05].) We observe that their
approximately learning is enough to achieve the approximation factor stated in Theorem 6.7. By
combining their results with the equivalence between a natural property and an errorless heuristic
algorithm for MCSP [HS17], we obtain a search to average-case reduction for GapMCSP.

Organization. In Section 3, we review background on Kolmogorov complexity. Then in Section 4,
we give a search to average-case reduction for MINKT and prove Theorem 4.21. In Section 5, we
present evidence against MINKT ∈ coNP. Section 6 is devoted to proving Theorem 6.7.

3 Preliminaries

We introduce several notations used throughout this paper. A set L ⊆ {0, 1}∗ of strings is called
a language. We identify L with its characteristic function L : {0, 1}∗ → {0, 1} such that L(x) = 1 iff
x ∈ L for every x ∈ {0, 1}∗. For an integer n ∈ N, let [n] := {1, . . . , n}. For a language A ⊆ {0, 1}∗
and an integer n ∈ N, let A=n := A ∩ {0, 1}n.

For a finite set D, we indicate by x ∈R D that x is picked uniformly at random from the set D.
For a probability distribution D, we indicate by x ∼ D that x is a random sample from D.

For a function f : {0, 1}` → {0, 1}, the truth table of a function is f(z1) · · · f(z2`), where
z1, . . . , z2` ∈ {0, 1}` are all the strings of length ` in lexicographic order. We will sometimes
identify a function f with its truth table.

Promise Problem. A promise problem is a pair (ΠYes,ΠNo) of languages ΠYes,ΠNo ⊆ {0, 1}∗
such that ΠYes ∩ΠNo = ∅, where ΠYes and ΠNo are regarded as the set of Yes and No instances,
respectively. If ΠYes = {0, 1}∗ \ ΠNo, we identify (ΠYes,ΠNo) with the language ΠYes ⊆ {0, 1}∗.
We say that a language A satisfies the promise of (ΠYes,ΠNo) if ΠYes ⊆ A ⊆ {0, 1}∗ \ΠNo. For a
complexity class C such as ZPP and BPP, we denote by Promise-C the promise version of C.

Circuits. For a Boolean circuit C, we denote by |C| the size of the circuit C; the measure of circuit

11

size (e.g., the number of gates, wires or the description length) is not important for our results; for
concreteness, we assume that the size is measured by the number of gates. We identify a circuit
C on n variables with the function C : {0, 1}n → {0, 1} computed by C. For a Boolean function
f : {0, 1}n → {0, 1}, denote by size(f) the size of a minimum circuit C computing f .

Kolmogorov Complexity. We fix any efficient universal Turing machine U . This is a Turing
machine that takes as input a description of any Turing machine M together with a string x, and
simulates M on input x efficiently. We will only need the following fact.

Fact 3.1 (Universal Turing machine). There exists a polynomial pU such that, for any machine
M , there exists some description dM ∈ {0, 1}∗ of M such that, for every input x ∈ {0, 1}∗, if M(x)
stops in t steps for some t ∈ N then U(dM , x) outputs M(x) within pU (t) steps.

For simplicity of notation, we identify M with its description dM . We sometimes regard pU (t) = t
for simplifying statements of claims. For a string x, its Kolmogorov complexity is the length of a
shortest description for x. Formally:

Definition 3.2 (Time-bounded Kolmogorov complexity). For any oracle A ⊆ {0, 1}∗, any string
x ∈ {0, 1}∗, and any integer t ∈ N, the Kolmogorov complexity of x within time t under the oracle
A is defined as

KA
t (x) := min{ |d| | UA(d) = x in t steps }.

To explain a consequence of the security proof of the Nisan-Wigderson generator, it is convenient
to introduce an approximation version of Kolmogorov complexity.

Definition 3.3 (Approximation version of Time-bounded Kolmogorov complexity). For functions
f, g : {0, 1}` → {0, 1}, define dist(f, g) := Prx∈R{0,1}` [f(x) 6= g(x)]. For a function f : {0, 1}` →
{0, 1}, an integer t ∈ N, and an oracle A ⊆ {0, 1}∗, define KA

t,δ(f) as the minimum length of a

string d such that UA(d) outputs the truth table of some function g of length 2` within t steps and
dist(f, g) ≤ 1/2− δ.

Problems based on Kolmogorov Complexity. MINKT is a problem of asking for the time-
bounded Kolmogorov complexity of x on input x and a time bound t.

Definition 3.4 (Ko [Ko91]). For any oracle A ⊆ {0, 1}∗, define

MINKTA := { (x, 1t, 1s) | KA
t (x) ≤ s }.

It is easy to see that MINKT ∈ NP, by guessing a certificate d of length at most s, and checking
whether U(d) outputs x within t steps. Such a certificate for MINKT will play a crucial role; thus
we formalize it next.

Definition 3.5. For an oracle A ⊆ {0, 1}∗, integers s, t ∈ N, and a string x ∈ {0, 1}∗, a string
d ∈ {0, 1}∗ is called a certificate for KA

t (x) � s if UA(d) outputs x within t steps and |d| ≤ s. A
certificate for KA

t, δ(x) � s is defined in a similar way.

In this terminology, for proving Theorem 4.21, on input (x, 1t), we seek a certificate for

Kt′(x) � Kt(x) +O
(
(log |x|)

√
Kt(x) + (log |x|)2

)
for some t′ = poly(|x|, t). Note here that “�” is just a symbol, and “Kt(x) � s” should be
interpreted as a tuple (x, 1t, 1s), which is an instance of MINKT.

We also define an approximation version of MINKT, parameterized by σ and τ .

12

Definition 3.6 (Approximation version of MINKT). Let σ, τ : N × N → N be any functions such
that σ(n, s) ≥ s and τ(n, t) ≥ t for any n, s, t ∈ N. Gapσ,τMINKT is a promise problem defined as
follows.

• Yes instances: (x, 1t, 1s) such that Kt(x) ≤ s.

• No instances: (x, 1t, 1s) such that Kt′(x) > σ(|x|, s) for t′ := τ(|x|, t).

When σ(n, s) = s and τ(n, t) = t, the promise problem Gapσ,τMINKT coincides with MINKT. It
is also convenient to define the search version of Gapσ,τMINKT.

Definition 3.7 (Search version of Gapσ,τMINKT). For any functions σ, τ as in Definition 3.6, the
search version of Gapσ,τMINKT is defined as follows.

• Inputs: A string x ∈ {0, 1}∗ and an integer t ∈ N represented in unary.

• Output: A certificate for Kt′(x) � σ(|x|,Kt(x)) for any t′ ≥ τ(|x|, t).

A randomized algorithm A is called a zero-error randomized algorithm solving the search version
of Gapσ,τMINKT if, for every x ∈ {0, 1}∗ and t ∈ N, A(x, 1t) outputs a certificate for Kt′(x) �
σ(|x|,Kt(x)) whenever A(x, 1t) 6= ⊥, and A(x, 1t) outputs ⊥ with probability at most 1

2 .

We will show that, if every distributional NP can be solved by some errorless heuristic
polynomial-time algorithm, then the search version of Gapσ,τMINKT can be solved by a zero-
error randomized polynomial-time algorithm for σ(n, s) := s + O

(
(log n)

√
s + (log n)2

)
and some

polynomial τ(n, t). As a corollary, we also obtain Gapσ,τMINKT ∈ Promise-ZPP because of the
following simple fact.

Fact 3.8 (Decision reduces to search). Let σ, τ : N × N → N be any efficiently computable and
nondecreasing functions. If there exists a zero-error randomized polynomial-time algorithm solving
the search version of Gapσ,τMINKT, then Gapσ,τMINKT ∈ Promise-ZPP.

Proof. The main point is that the zero-error randomized search algorithm does not err in the
sense that it outputs an approximately shortest certificate whenever it succeeds. Therefore, given
a zero-error randomized algorithm M solving the search version of Gapσ,τMINKT, the following
algorithm solves the decision version: On input (x, 1t, 1s), run M on input (x, 1t). If M outputs
⊥, then output ⊥ and halt. Otherwise, M outputs some certificate d. Accept iff |d| ≤ σ(|x|, s) and
U(d) outputs x in τ(|x|, t) steps.

We claim the correctness of this algorithm. If (x, 1t, 1s) is a Yes instance of Gapσ,τMINKT,
then we obtain a certificate d for Kt′(x) � σ(|x|,Kt(x)) where t′ := τ(|x|, t) unless M outputs ⊥;
that is, U(d) outputs x in t′ steps, and |d| ≤ σ(|x|,Kt(x)) ≤ σ(|x|, s). Thus the algorithm above
accepts with probability at least 1

2 . If (x, 1t, 1s) is a No instance of Gapσ,τMINKT, then we have
Kt′(x) > σ(|x|, s) for t′ := τ(|x|, t). Thus the algorithm rejects unless M outputs ⊥. �

The following is the crucial lemma in which our proof is non-black-box.

Lemma 3.9. Let T ∈ P. Then there exists some polynomial p such that Kt′(x) ≤ KT
t (x) + O(1)

for any x ∈ {0, 1}∗ and any t, t′ such that t′ ≥ p(t). Moreover, given a certificate for KT
t (x) � s,

one can efficiently find a certificate for Kt′(x) � s+O(1).

13

We will use this lemma for an errorless heuristic polynomial-time algorithm accepting T (in The-
orem 4.21). Thus, the output of our non-black-box reduction will be a certificate for Kt′(x) which
incorporates a source code of the errorless heuristic polynomial-time algorithm.

Proof. Let M0 be a polynomial-time machine that accepts T . Consider the following machine M :
On input d ∈ {0, 1}∗, simulate UT (d) using M0; that is, if U makes a query q to the oracle T , then
run M0 on input q and answer the query q with M0(q). Then M outputs what UT (d) outputs.

Now suppose that UT (d) outputs x in t steps. Then, by the definition, M(d) outputs x in p0(t)
steps for some polynomial p0 (that depends only on the running time of M0); thus, U(M,d) outputs
x in pU (p0(t)) steps, where pU is the slowdown of the universal Turing machine. Hence we obtain
Kt′(x) ≤ KT

t (x) +O(|M |) for t′ ≥ p(t) := pU (p0(t)).
To see the “moreover” part, given a certificate d for KT

t (x) � s, we may simply output (M,d)
as a certificate for Kt′(x) � s+O(|M |). �

4 Worst-Case to Average-Case Reduction for MINKT

In this section, we present an efficient algorithm that outputs a certificate for GapMINKT under
the assumption that DistNP ⊆ AvgP. The proof consists of two parts. In Subsection 4.1, we show
the existence of such an efficient algorithm, assuming that the algorithm is given access to an oracle
that accepts some dense subset of random strings. The existence of such an oracle will be justified
in Subsection 4.2 under the assumption that DistNP ⊆ AvgP.

4.1 Short Certificate Under a Dense Subset of Random Strings

A string x ∈ {0, 1}∗ is said to be random if x does not have a shorter description than itself.
More generally:

Definition 4.1 (r-random). Let r : N→ N be a function. We say that a string x is r-random with
respect to Kt if Kt(x) ≥ r(|x|). Let Rt[r] denote the set of all r-random strings with respect to Kt.

Definition 4.2 (dense). For every m ∈ N and δ ∈ [0, 1], we say that a set A ⊆ {0, 1}m of strings
is δ-dense if Prw∈R{0,1}m [w ∈ A] ≥ δ.

In particular, a set A ⊆ {0, 1}m is called a δ-dense subset of r-random strings Rt[r] if A ⊆ Rt[r]
and |A| ≥ 2mδ.

A dense subset of random strings gives rise to a statistical test distinguishing any pseu-
dorandom generator from the uniform distribution. Indeed, take any efficiently computable
function G : {0, 1}d → {0, 1}m where d . r(m); then any range G(z) of G can be described
by its seed z in polynomial time; hence G(z) is not r-random since Kt(G(z)) . d . r(m);
thus a δ-dense subset T of r-random strings is a statistical test for G with advantage δ, i.e.,∣∣∣Prw∈R{0,1}m [w ∈ T]− Prz∈R{0,1}d [G(z) ∈ T]

∣∣∣ ≥ δ. We will use this fact to distinguish the Nisan-

Wigderson generator from the uniform distribution.
We proceed to define the Nisan-Wigderson generator NWf . Originally, Nisan and Wigder-

son [NW94] defined the notion of design as a family of subsets S1, . . . Sm such that |Si∩Sj | is small
for every distinct i, j ∈ [m]. As observed by Raz, Reingold and Vadhan [RRV02], a weaker notion is

14

sufficient for a security proof of the Nisan-Wigderson generator. However, our situations are differ-
ent from theirs. We thus modify the definition so that it captures the quality of the approximation.

Definition 4.3. For a family S = (S1, . . . , Sm) of `-sized subsets of [d], we say that S is of quality
ρ if, for every i ∈ [m],

i−1∑
j=1

2|Si∩Sj | +m− i+ d ≤ ρ.

For example, if S is a family of m disjoint subsets of size `, then its quality is maxi
∑i−1

j=1 2|Si∩Sj |+
m − i + d ≤ m + m`, since the size of the universe is d = m`. This enables us to obtain an
approximation factor of ` = O(log |x|). In order to achieve better quality, we use the “weak design”
constructed in [RRV02].

Lemma 4.4. Let ρ(m, `, d) := exp(`2/d) · m + d. For any m, `, d ∈ N such that d/` ∈ N, there

exists a ρ-quality family Sm,`,d = (S1, . . . , Sm) ⊆
([d]
`

)
, where ρ = ρ(m, `, d). Moreover, the family

Sm,`,d can be constructed by a deterministic algorithm in time poly(m, d).

Proof. Raz, Reingold and Vadhan [RRV02, Lemma 15] showed how to construct, in time poly(m, d),
a family of subsets S1, . . . , Sm ⊆ [d] of size ` such that

∑i−1
j=1 2|Si∩Sj | ≤ (1+`/d)`·(i−1) ≤ exp(`2/d)·i

for every i ∈ [m]. (The family is constructed by dividing [d] into ` disjoint blocks of size d/`, and, for
each i ∈ [m], choosing one random element out of each block and adding it to Si. The construction
can be derandomized by the method of conditional expectations.) The same family satisfies the
condition that

∑i−1
j=1 2|Si∩Sj | +m− i+ d ≤ exp(`2/d) ·m+ d for every i ∈ [m]. �

For a string z ∈ {0, 1}d and a subset S = {i1 < · · · < i`} ⊆ [d], we denote by zS ∈ {0, 1}` the
string zi1 · · · zi` . We define the Nisan-Wigderson generator based on Sm,`,d. In what follows, we
treat d/` as if it is a variable in order to avoid introducing a new variable.

Definition 4.5 (Nisan-Wigderson generator [NW94]). For a function f : {0, 1}` → {0, 1} and

parameters m, `, d/` ∈ N, we define the Nisan-Wigderson generator NWf
m,d : {0, 1}d → {0, 1}m as

NWf
m,d(z) := f(zS1) · · · f(zSm)

for every z ∈ {0, 1}d, where (S1, . . . , Sm) := Sm,`,d.

Nisan and Wigderson [NW94] showed that if f cannot be approximated by small circuits,

then NWf
m,d is a pseudorandom generator secure against small circuits. The security proof of

the Nisan-Wigderson generator transforms any statistical test for NWf
m,d into a small circuit that

approximately describes f . Moreover, as observed in [IW01], such small circuits can be constructed
efficiently. We now make use of these facts to obtain a short description for f . Our proof is
reminiscent of the proof of Trevisan’s extractor [Tre01], but we need to argue the efficiency.

Lemma 4.6. There exist some polynomial poly and a randomized polynomial-time oracle machine
satisfying the following specification.

15

Inputs: A function f : {0, 1}` → {0, 1} represented as its truth table, parameters m, d/`, δ−1 ∈ N
represented in unary, and oracle access to T ⊆ {0, 1}m.

Promise: We assume that the oracle T is a statistical test for NWf
m,d with advantage δ. That is,∣∣∣∣ Pr

z∈R{0,1}d

[
T (NWf

m,d(z)) = 1
]
− Pr
w∈R{0,1}m

[
T (w) = 1

]∣∣∣∣ ≥ δ. (1)

Output: A certificate for KT
t, δ/2m(f) � ρ(m, `, d) +O(log(md)), for any t ≥ poly(m, d, 2`).

Proof. We first prove KT
t, δ/m(f) ≤ ρ(m, `, d) + O(log(md)). We will then explain how to obtain a

certificate efficiently (with the small loss in the quality δ/m of the approximation).
The first part is proved by a standard hybrid argument as in [NW94]. Without loss of gen-

erality, we may ignore the absolute value of (1); more precisely, let Tb(w) := T (w) ⊕ b for

some b ∈ {0, 1} so that Ez,w
[
Tb(NWf

m,d(z))− Tb(w)
]
≥ δ. For every i ∈ [m], define a hy-

brid distribution Hi := f(zS1) · · · f(zSi) · wi+1 · · ·wm for z ∈R {0, 1}d and w ∈R {0, 1}m. As

H0 and Hm are distributed identically to w ∈R {0, 1}m and NWf
m,d(z) for z ∈R {0, 1}d, respec-

tively, we have E [Tb(Hm)− Tb(H0)] ≥ δ. Pick i ∈R [m] uniformly at random. Then we obtain
Ei [Tb(Hi)− Tb(Hi−1)] ≥ δ/m.

We can exploit this advantage to predict the next bit of the PRG (due to Yao [Yao82]; a nice
exposition can be found in [Vad12, Proposition 7.16]). For each fixed i ∈ [m], c ∈ {0, 1}, w[m]\[i] ∈
{0, 1}m−i, and z[d]\Si ∈ {0, 1}d−`, consider the following circuit P Tb for predicting f : On input x ∈
{0, 1}`, set zSi := x and construct z ∈ {0, 1}d. Output Tb(f(zS1) · · · f(zSi−1) ·c ·wi+1 · · ·wm)⊕c⊕1.
A basic idea here is that if c = f(zSi) (= f(x)) then the input distribution of Tb is identical to Hi

and thus Tb is likely to output 1, in which case we should output c for predicting f . By a simple
calculation, it can be shown that Pr[P Tb(x) = f(x)] ≥ 1

2 + δ
m , where the probability is taken over

all i ∈R [m], c ∈R {0, 1}, w[m]\[i] ∈R {0, 1}m−i, z[d]\Si ∈R {0, 1}d−`, and x ∈R {0, 1}`. In particular,

by averaging, there exists some i, c, w[m]\[i], z[d]\Si such that Prx∈R{0,1}`
[
P Tb(x) = f(x)

]
≥ 1

2 + δ
m .

Therefore, it is sufficient to claim that the circuit P has a small description. Note that the value
of f needed in the computation of P can be hardwired into the circuit using

∑
j<i 2|Si∩Sj | bits.

Given oracle access to T , we can describe the (1
2 + δ

m)-fraction of the truth table of f by specifying
m, `, d, b, c, i, w[m]\[i], z[d]\Si , and the hardwired table of the values of f . This procedure takes time

roughly poly(m, d) + poly(2`) (for computing the design and evaluating the entire truth table of
P Tb). The length of the description is at most

∑
j<i 2|Si∩Sj | + (m − i) + (d − `) + O(log(md)) ≤

exp(`2/d) ·m+ d+O(log(md)). Thus we have KT
t, δ/m(f) ≤ ρ(m, `, d) +O(log(md)).

To find a certificate efficiently, observe that a random choice of (c, i, w[m]\[i], z[d]\Si) is sufficient
in order for the argument above to work. That is, pick c ∈R {0, 1}, i ∈R [m], w[m]\[i] ∈R {0, 1}m−i,
and z[d]\Si ∈R {0, 1}d−`. Then a Markov style argument shows that, with probability at least δ/2m,

we obtain Prx∈R{0,1}`
[
P Tb(x) = f(x)

]
≥ 1

2 + δ
2m . By trying each b ∈ {0, 1} and trying the random

choice O(m/δ) times, we can find at least one certificate for KT
t,δ/2m(f) with high probability. �

We will update Lemma 4.6 by incorporating a list-decodable error-correcting code, so that we
obtain a certificate for KT

t (x) instead of KT
t,δ/2m(f). For our purpose, it is sufficient to use any

standard list-decodable code such as the concatenation of a Reed-Solomon code and an Hadamard
code.

16

Theorem 4.7 (List-decodable error-correcting code; see, e.g., [Sud97, STV01] and [Vad12, Prob-

lem 5.2]). For any n ∈ N and ε > 0, there exist functions Encn,ε : {0, 1}n → {0, 1}2` and

Decn,ε : {0, 1}2
` → ({0, 1}n)L such that

1. ` = O(log(n/ε)), L = poly(1/ε),

2. for every x ∈ {0, 1}n and r ∈ {0, 1}2`, if dist(Encn,ε(x), r) ≤ 1
2−ε then we have x ∈ Decn,ε(r),

and

3. Encn,ε and Decn,ε can be computed in time poly(n, 1/ε).

In what follows, we implicitly regard a string Encn,ε(x) ∈ {0, 1}2` of length 2` as a function on `-bit
inputs.

Corollary 4.8. KT
t′ (x) ≤ KT

t, ε(Encn,ε(x)) + O(log(n/ε)) for any string x ∈ {0, 1}∗ of length n ∈
N, any oracle T , and any t′ ≥ t + poly(n, 1/ε). Moreover, given any x and any certificate for
KT
t, ε(Encn,ε(x)) � s, one can find a certificate for KT

t′ (x) � s+O(log(n/ε)) in time t+ poly(n, 1/ε)
with oracle access to T .

Proof. Consider the following procedure M : Given input d0 ∈ {0, 1}∗ and n, ε−1 ∈ N and index
i ∈ N, output the ith string of Decn,ε(U

T (d0)). By the definition, there exists some description d0 of
length KT

t, ε(Encn,ε(x)) such that UT (d0) outputs some string r within time t and dist(Encn,ε(x), r) ≤
1
2 − ε. Thus there exists an index i ≤ poly(1/ε) such that the ith string of Decn,ε(r) is equal to x.
Hence, we obtain KT

t′ (x) ≤ |d0|+O(log(ni/ε)).
The “moreover” part can be easily seen as follows. Given a target string x and a description d0,

compute Decn,ε(U
T (d0)). Let i be the index of x in the list Decn,ε(U

T (d0)). Output a description
(M,d0, n, ε

−1, i). �

Now we combine Lemma 4.6 and the list-decodable error-correcting code.

Lemma 4.9. There exist some polynomial poly and a randomized polynomial-time oracle machine
satisfying the following specification.

Inputs: A string x ∈ {0, 1}∗ of length n ∈ N, parameters m, d/`, δ−1 ∈ N represented in unary, and
oracle access to T ⊆ {0, 1}m.

Promise: Let ε := δ/2m, and 2` := |Encn,ε(x)|. We assume that T is a statistical test for

NW
Encn,ε(x)
m,d with advantage δ.

Output: A certificate for KT
t (x) � ρ(m, `, d) +O(log(nmd/δ)) for any t ≥ poly(n,m, d, 1/δ).

Proof. Set f := Encn,ε(x) ∈ {0, 1}2` . Then run the algorithm of Lemma 4.6 with inputs f,m, d/`,
δ−1 and oracle access to T . The algorithm outputs a certificate for KT

t0, δ/2m
(Encn,ε(x)) �

ρ(m, `, d) + O(log(md)), where t0 = poly(m, d, 2`). By Corollary 4.8, we may efficiently convert
this certificate to a certificate for KT

t (x) � ρ(m, `, d) +O(log(nmd/ε)), where t ≥ t0 + poly(n, 1/ε).
�

17

As a consequence of Lemma 4.9, for any x ∈ {0, 1}∗ and parameters with d� `2, we may obtain
a certificate of length ρ(m, `, d) ≈ exp(`2/d) ·m + d ≈ m + `2m/d + d given a statistical test for

NW
Encn,ε(x)
m,d . Setting d := `

√
m, we obtain a certificate of length ≈ m + O(`

√
m). We now claim

that m may be set to ≈ Kt(x), by showing that the output of the Nisan-Wigderson generator is
not random in the sense of time-bounded Kolmogorov complexity.

Lemma 4.10. There exists some polynomial poly satisfying the following: For any n, ε−1,m, d/` ∈
N, z ∈ {0, 1}d and x ∈ {0, 1}n (where 2` is the output length of Encn,ε), we have

Kt′(NW
Encn,ε(x)
m,d (z)) ≤ Kt(x) + d+O(log(nmd/ε))

for any t, t′ ∈ N with t′ ≥ t+ poly(n, 1/ε,m, d).

Proof. The output of the Nisan-Wigderson generator can be described by a description d0 of x
(which is of length Kt(x)), and a seed z of length d. More precisely, the following algorithm describes
the output of the NW generator: Inputs consist of parameters n, ε−1,m, d/` ∈ N represented in
binary, a seed z ∈ {0, 1}d, and a string d0 ∈ {0, 1}∗. The algorithm operates as follows. Compute

x := U(d0), f := Encn,ε(x), and the design Sm,`,d. Output NWf
m,d(z).

It is easy to see that the running time of this algorithm is at most t + poly(n, 1/ε,m, d) ≤ t′,
where t denotes the time it takes for U(d0) to output x. The length of the description is at most
|d0|+ |z|+O(log(nmd/ε)) ≤ Kt(x) + d+O(log(nmd/ε)). �

We now assume that an oracle T is a δ-dense subset of r-random strings Rt[r]. By Lemma 4.10,

T is a distinguisher for NW
Encn,ε(x)
m,d if Kt(x) + d . r(m). Thus by Lemma 4.9 we may find a

certificate for KT
t′ (x) - exp(`2/d) · r−1(Kt(x) + d) + d. A formal statement follows.

Theorem 4.11. Let r : N→ N be any function. There exist some polynomial poly and a randomized
polynomial-time oracle machine satisfying the following specification.

Inputs: A string x ∈ {0, 1}∗ of length n ∈ N, parameters t,m, d/`, δ−1 ∈ N represented in unary,
and oracle access to T ⊆ {0, 1}m.

Promise: Let ε := δ/2m, and 2` := |Encn,ε(x)|. Assume that T is a δ-dense subset of Rt1 [r] for
some t1 ≥ t+ poly(n,m, d, 1/δ), and that Kt(x) + d+O(log(nmd/δ)) < r(m).

Output: A certificate for KT
t2(x) � ρ(m, `, d) +O(log(nmd/δ)) for any t2 ≥ poly(n,m, d, 1/δ).

Proof. By Lemma 4.10, we have

Kt1(NW
Encn,ε(x)
m,d (z)) ≤ Kt(x) + d+O(log(nmd/δ)) < r(m)

for any z ∈ {0, 1}d and any t1 ≥ t + poly(n,m, d, 1/δ). Therefore, for any z ∈ {0, 1}d, the output

NW
Encn,ε(x)
m,d (z) is not r-random with respect to Kt1 ; in particular, NW

Encn,ε(x)
m,d (z) 6∈ T . On the

other hand, Prw∈R{0,1}m [w ∈ T] ≥ δ by the assumption. Thus T distinguishes NW
Encn,ε(x)
m,d from

the uniform distribution with advantage at least δ. By running the algorithm of Lemma 4.9 with
input x,m, d/`, δ−1, and oracle access to T , the algorithm outputs a certificate for

KT
t2(x) � ρ(m, `, d) +O(log(nmd/δ))

with high probability, where t2 ≥ poly(n,m, d, 1/δ). �

18

By Theorem 4.11, for r(m) ≈ m, we can set m ≈ Kt(x) + d;3 thus, we can find a certificate of
length ≈ exp(`2/d) · (Kt(x) + d) + d ≈ Kt(x) + `2Kt(x)/d+ 2d+ `2. By setting d := `

√
Kt(x), we

obtain a certificate of length ≈ Kt(x) +O(`
√

Kt(x)) + `2. (Note here that we do not know a priori
the best choice of d as well as Kt(x); however we can try all choices of d.) In the next corollary, we
observe that the same length can be achieved as long as m−O(

√
m logm) ≤ r(m).

Corollary 4.12. Let δ−1 ∈ N be any constant. Let r : N → N be any function such that m −
c
√
m logm ≤ r(m), for some constant c, for all large m ∈ N. There exist some polynomial poly

and a randomized polynomial-time oracle machine satisfying the following specification.

Inputs: A string x ∈ {0, 1}∗ of length n ∈ N, a parameter t ∈ N represented in unary, and oracle
access to T ⊆ {0, 1}∗.

Promise: For all large m ∈ N, we assume that T=m is a δ-dense subset of Rt1 [r] for some t1 ≥
t+ poly(n).

Output: A certificate for KT
t2(x) � Kt(x) +O

(
(log n)

√
Kt(x) + (log n)2

)
for any t2 ≥ poly(n).

Proof. Without loss of generality, we may assume that O(log n) ≤ Kt(x) ≤ n + O(1). Indeed, we
may exhaustively search all the descriptions d0 of length O(log n) and check if U(d0) outputs x
within time t; if such a description is found, we may output d0 as a certificate for Kt(x) � |d0| =
O(log n). Moreover, when Kt(x) ≥ n+O(1), then we may just output a trivial description for x of
length n+O(1). In what follows, we assume O(log n) ≤ Kt(x) ≤ n+O(1).

Here is the algorithm: For every m ∈ {1, . . . , n+O(1)} and every d/` ∈ {1, . . . , n+O(1)}, run
the algorithm of Theorem 4.11 on input x, t,m, d/`, δ−1 and with oracle access to T=m. Output
the shortest description found in this way. (If none is found, output a trivial description for x of
length n+O(1).)

We claim that, on some specific choice of (m, d/`), the algorithm of Theorem 4.11 outputs a
short description. Let ` := log |Encn,δ/2m(x)| = O(log n). We analyze the two cases depending

on whether ` ≤
√

Kt(x) or not. Consider the case when ` ≤
√

Kt(x). Let d/` :=
√

Kt(x) and
m := Kt(x) + d+O(log n) + 4c

√
Kt(x) log Kt(x). Then we have d ≤ Kt(x) and hence m ≤ 4Kt(x).

Thus,

r(m) ≥ m− c
√
m logm

≥ m− 2c
√

Kt(x) log 4Kt(x)

> Kt(x) + d+O(log n),

which means the hypothesis of Theorem 4.11 is satisfied; therefore, with high probability, the
algorithm outputs a description d0 for x such that |d0| ≤ exp(`2/d) · m + d + O(log n). Since
`2/d ≤ 1, the length of the description is

|d0| ≤ (1 + 2`2/d) ·m+ d+O(log n)

≤ (1 + 2`2/d) · (Kt(x) + d) + 3 · (O(log n) + 4c
√

Kt(x) log Kt(x)) + d+O(log n)

≤ Kt(x) +O(`
√

Kt(x) + `2).

3 The extra term d can be removed if the candidate pseudorandom generator is defined as z 7→ (z,NW
Encn,ε(x)

m,d (z)).
However, it does not improve the quality of the approximation significantly.

19

Next, consider the case when ` >
√

Kt(x). In this case, let d/` := ` and m := 4d. Then we have
r(m) ≥ m−c

√
m logm ≥ 3d > Kt(x)+d+O(log n), which confirms the hypothesis of Theorem 4.11.

Thus the algorithm outputs a description for x of length exp(1) ·m+ d+O(log n) = O(`2). �

4.2 Accepting a Dense Subset of Random Strings in Heuristica

Now we justify the hypothesis used in the previous subsection. We show that a dense r-random
string can be accepted by some polynomial-time machine if DistNP ⊆ AvgP. To this end, we define
some specific problem (MINKT[r],DKT) in DistNP. We consider the following distribution on a
pair (x, 1t) of a binary string and a unary string.

Definition 4.13 (Uniform distribution with auxiliary unary input). Define a family of distributions
DKT := {DKT

m }m∈N, where, for each m ∈ N, DKT
m is defined as the output distribution of the

following algorithm: Pick n ∈R [m] and x ∈R {0, 1}n randomly. Output (x, 1m−n).

From this definition, it is obvious that DKT is efficiently samplable: That is, there exists a
randomized polynomial-time machine that, on input 1m ∈ N, outputs a string according to the
distribution DKT

m . Given an input (x, 1t) sampled from DKT, we consider a problem of deciding
whether x is r-nonrandom string with respect to Kt.

Definition 4.14. For a function r : N→ N, define

MINKT[r] := { (x, 1t) | Kt(x) < r(|x|) }.

DistNP is the class of distributional problems (L,D) such that L ∈ NP and D is efficiently
samplable. It is easy to see that MINKT[r] ∈ NP, and thus:

Fact 4.15. (MINKT[r],DKT) ∈ DistNP if r : N→ N is efficiently computable.

Next, we formally define the notion of errorless algorithm solving a distributional problem.

Definition 4.16 (Errorless Heuristic Algorithm; cf. [BT06a]). Let L ⊆ {0, 1}∗ be a language,
D = {Dm}m∈N be a family of distributions, and δ : N → [0, 1]. We say that an algorithm A is an
errorless heuristic algorithm for (L,D) with failure probability δ if

• A(x) outputs either L(x) or the special failure symbol ⊥ for every x ∈ {0, 1}∗, and

• Prx∼Dm [A(x) = ⊥] ≤ δ(m) for every m.

We say that (L,D) ∈ AvgδP if there exists an errorless heuristic deterministic polynomial-time
algorithm for (L,D) with failure probability δ. Define AvgP :=

⋂
c∈N Avgm−cP.

We claim that if (MINKT[r],DKT) is easy on average then a dense subset of r-random strings
can be accepted. For any oracle T ⊆ {0, 1}∗ and any t ∈ N, let Tt denote {x ∈ {0, 1}∗ | (x, 1t) ∈ T }.
The main idea here is that since there are few r-nonrandom strings, an errorless heuristic algorithm
must succeed on a dense subset of r-random strings.

Lemma 4.17. Let r : N → N be any function such that r(n) < n for all large n ∈ N. If
(MINKT[r],DKT) ∈ AvgδP for δ(m) := 1/6m, then there exists a language T ∈ P such that
T=n
t is a 1

3 -dense subset of Rt[r], for all large n ∈ N and every t ∈ N.

20

Proof. Let M be an errorless heuristic deterministic polynomial-time algorithm for
(MINKT[r],DKT). We define T so that T (x, 1t) := 1 if M(x, 1t) = 0; otherwise T (x, 1t) := 0, for
every x ∈ {0, 1}∗ and t ∈ N. By this definition, it is obvious that T ∈ P.

Fix any t ∈ N. We claim that Tt is a subset of r-random strings Rt[r]. Indeed, for any x ∈ Tt,
we have M(x, 1t) = 0. Since M is an errorless heuristic algorithm, we obtain Kt(x) ≥ r(|x|); thus
x ∈ Rt[r].

We now claim that T=n
t is dense, i.e., Prx∈R{0,1}n [x ∈ Tt] ≥ 1

3 for all large n ∈ N. In the next
claim, we prove that M solves MINKT[r] on average even if t is fixed.

Claim 4.18. For all large n ∈ N and any t ∈ N, we have
Prx∈R{0,1}n

[
M(x, 1t) 6= MINKT[r](x, 1t)

]
≤ 1

6 .

Indeed, for m := n+ t, using the definition of errorless heuristic algorithms, we obtain

δ(m) ≥ Pr
(x,1s)∼DKT

m

[M(x, 1s) 6= MINKT[r](x, 1s)]

≥ Pr [|x| = n] · Pr [M(x, 1s) 6= MINKT[r](x, 1s) | |x| = n]

≥ 1

m
· Pr
x∈R{0,1}n

[
M(x, 1t) 6= MINKT[r](x, 1t)

]
,

where in the last inequality we used the fact that, conditioned on the event |x| = n, the distribu-
tion DKT

m is identically distributed to the distribution (x, 1t) where x ∈R {0, 1}n. Thus we have
Prx∈R{0,1}n [M(x, 1t) 6= MINKT[r](x, 1t)] ≤ m · δ(m) ≤ 1

6 . This completes a proof of Claim 4.18.
We claim that M must output 0 on a large fraction of strings, which implies that T is dense.

Indeed, there are few r-nonrandom strings, so M must succeed on a large fraction of random strings.

More precisely, the number of r-nonrandom strings of length n is at most
∑r(n)−1

i=0 2i ≤ 2r(n); thus,
the probability that (x, 1t) ∈ MINKT[r] over the choice of x ∈R {0, 1}n is at most 2r(n)−n ≤ 1

2 , for
all large n ∈ N and every t ∈ N. Therefore, we obtain

Pr
x∈R{0,1}n

[
x ∈ Tt

]
= Pr

x

[
M(x, 1t) = 0 & MINKT[r](x, 1t) = 0

]
= Pr

x

[
M(x, 1t) = MINKT[r](x, 1t)

]
− Pr

x

[
M(x, 1t) = 1 & MINKT[r](x, 1t) = 1

]
≥
(

1− 1

6

)
− 1

2
=

1

3
.

�

We will supply Tt to the algorithm of Corollary 4.12; then the algorithm will output some
certificate under the oracle Tt. The next lemma enables us to convert the certificate to a certificate
under the oracle T .

Lemma 4.19. There exists some polynomial poly such that KT
t3(x) ≤ K

Tt1
t2

(x) + O(log log t1) for
any x ∈ {0, 1}∗, any oracle T ⊆ {0, 1}∗ and any t1, t2, t3 ∈ N such that t1 is a power of 2 and

t3 ≥ poly(t1, t2). Moreover, given t1 ∈ N and a certificate for K
Tt1
t2

(x) � s, one can efficiently find
a certificate for KT

t3(x) � s+O(log log t1).

21

Proof. Consider the following algorithm M with oracle access to T : Given input d0 ∈ {0, 1}∗ and
log t1 ∈ N, simulate and output UTt1 (d0). Here, the oracle Tt1 is simulated as follows: Given query
q to Tt1 , convert it into a query (q, 1t1) to T .

If d0 is a certificate for K
Tt1
t2

(x) � |d0|, then MT (d0, log t1) outputs x in time poly(t1, t2). Thus
(M,d0, log t1) is a certificate for Kt3(x) � |d0|+O(log log t1). �

In order to obtain a zero-error randomized algorithm for GapMINKT, we prove that a
Kolmogorov-random string can be used in order to derandomize randomized algorithms. This
can be proved by using the Nisan-Wigderson generator or the Impagliazzo-Wigderson generator
(cf. [NW94, IW97, KvM02]); however, for our purpose, there is a much simpler construction of a
pseudorandom generator based on Lemma 4.9. (Our construction is similar to the Sudan-Trevisan-
Vadhan pseudorandom generator [STV01].)

Lemma 4.20. For any constant γ > 0, there exist polynomials pt, pn and a constant c ∈ N satisfying
the following: For all large m ∈ N, let t := pt(m), n := pn(m), and w ∈ {0, 1}n be a string such

that Kt(w) ≥ nγ. Then, NW
Encn,ε(w)
m,d is a pseudorandom generator secure against a circuit of size

m, where ε := 1/4m and d := c log(nm); that is,∣∣∣∣ Pr
z∈R{0,1}d

[
T (NW

Encn,ε(w)
m,d (z)) = 1

]
− Pr
u∈R{0,1}m

[
T (u) = 1

]∣∣∣∣ < 1

2
,

for any circuit T of size m.

Proof. Let ` := log |Encn,ε(w)| = O(log(nm)). Let c be large enough so that exp(`2/d) ≤ (nm)γ/2

for all large m ∈ N. By Lemma 4.9, if NW
Encn,ε(w)
m,d is not a pseudorandom generator secure against

some circuit T of size m, then KT
t (w) ≤ exp(`2/d) ·m+ d+O(log(nm)) ≤ (nm)γ/2 ·m+O(logm)

for t := poly(n,m, d). Since the circuit T can be described by a string of length O(m logm), we
obtain Kt(w) ≤ (nm)γ/2 ·m + O(m logm). Thus we have Kt(w) < nγ for some sufficiently large
polynomials n := pn(m) and t := pt(m) ≥ poly(n,m, d), which is a contradiction. �

We arrive at the following search to average-case reduction.

Theorem 4.21. Let r : N → N be any function such that for some constant c > 0, for all large
n ∈ N, n − c

√
n log n ≤ r(n) < n. Assume that (MINKT[r],DKT) ∈ Avg1/6mP. Then, for some

function σ(n, s) = s + O
(
(log n)

√
s + (log n)2

)
and some polynomial τ , there exists a zero-error

randomized polynomial-time algorithm solving the search version of Gapσ,τMINKT.

Proof. We first present a randomized algorithm that may err. By Lemma 4.17, there exists a
language T in P such that T=n

t is a 1
3 -dense subset of Rt[r] for all large n ∈ N and every t ∈ N.

Applying Corollary 4.12 to Tt1 and δ−1 = 3, we obtain a randomized polynomial-time oracle
machine that, on input x of length n ∈ N, 1t, and with oracle access to Tt1 , outputs a certificate

d0 for K
Tt1
t2

(x) � σ(n,Kt(x)) with high probability, for t1 ≥ t + poly(n) and t2 ≥ poly(n). On
input (x, 1t), we fix t1 to the minimum integer such that t1 is a power of 2 and t1 ≥ t + poly(n).
By Lemma 4.19, we can efficiently transform the certificate d0 into a certificate d1 for KT

t3(x) �
σ(n,Kt(x))+O(log log t1), where t3 ≥ poly(t1, t2). Since T is solvable by a deterministic polynomial-
time machine, by Lemma 3.9, we can efficiently transform the certificate d1 into a certificate

22

d2 for Kt4(x) � σ(n,Kt(x)) + O(log log t1), where t4 ≥ poly(t3). Thus we obtain a randomized
polynomial-time algorithm that, on input (x, 1t), outputs a certificate d2 for Kt4(x) � σ(|x|,Kt(x))+
O(log log t1) where t1 = Θ(t+ poly(|x|)) and t4 ≥ τ(|x|, t) for some polynomial τ .

Note that there is an additive term O(log log t1); however, we may assume without loss of
generality that O(log log t1) = O(log n), which can be absorbed into σ(n,Kt(x)). Indeed, otherwise
we have t1 ≥ 2n, and hence t ≥ Ω(2n). In such a case, we can exhaustively search all the description
in time poly(t) = 2O(n), and we can find the shortest description.

Now we make the randomized algorithm zero-error. Let M denote the randomized algorithm
solving the search version of Gapσ,τMINKT. Fix any input (x, 1t). Let k,m, t′ be some large

polynomials in |x| and t that will be chosen later. Pick w ∈R {0, 1}k uniformly at random, and
check if w ∈ T=k

t′ ; note that w is r-random since T=k
t′ is a subset of Rt′ [r]. Since T=n

t′ is dense, we
can find such an r-random string with high probability; if no r-random string is found, then output
⊥ and halt (i.e., the zero-error algorithm fails). Using w as a source of a hard function, we construct

the secure pseudorandom generator NW
Enck,ε(w)
m,d given in Lemma 4.20. Since the seed length of the

pseudorandom generator is O(log(km)), we can enumerate all the seeds z in polynomial time; we

use NW
Enck,ε(w)
m,d (z) ∈ {0, 1}m as the source of randomness of the randomized algorithm M . Output

the shortest description that is found by exhaustively searching all the seeds.
To prove the correctness, we define some statistical test T . Fix any input (x, 1t), and let CM

be a polynomial-size circuit that takes random bits u and simulates the randomized algorithm
M on input (x, 1t) with random bits u. Let s := σ(|x|,Kt(x)), t′′ := τ(|x|, t), and let V be a
polynomial-size circuit that takes a description d0 and accepts iff d0 is a certificate for Kt′′(x) � s.
Define a statistical test T as T (u) := V (CM (u)). Let m be large enough so that |T | ≤ m (for every
choice of s); define k := pn(m) and t′ := pt(m) where pn and pt are polynomials in Lemma 4.20.
Since M finds a certificate with high probability, we have Pru∈R{0,1}m [T (u) = 1] ≥ 1

2 . Thus by

Lemma 4.20, there exists some seed z ∈ {0, 1}d such that CM (NW
Enck,ε(w)
m,d (z)) outputs a certificate

for Kt′′(x) � s, as desired. �

Corollary 4.22. In the following list, we have 1 ⇒ 2 ⇒ 3 ⇒ 4. Moreover, if Promise-ZPP =
Promise-P, then we also have 4⇒ 2.

1. DistNP ⊆ AvgP.

2. (MINKT[r],DKT) ∈ Avg1/6mP for some r : N→ N such that n−O
(√
n log n

)
≤ r(n) < n for

all large n ∈ N.

3. There exists a zero-error randomized polynomial-time algorithm solving the search version of
Gapσ,τMINKT, for some σ(n, s) = s+O

(
(log n)

√
s+ (log n)2

)
and some polynomial τ(n, t).

4. Gapσ,τMINKT ∈ Promise-ZPP for some σ(n, s) = s + O
(
(log n)

√
s + (log n)2

)
and some

polynomial τ(n, t).

Proof. (1⇒ 2) For r(n) := n− 1, we have (MINKT[r],DKT) ∈ DistNP ⊆ AvgP ⊆ Avg1/6mP.
(2⇒ 3) This is exactly equivalent to Theorem 4.21.
(3⇒ 4) This follows from Fact 3.8.
(4 ⇒ 2 if Promise-ZPP = Promise-P) Under the derandomization assumption, we have

Gapσ,τMINKT ∈ Promise-ZPP = Promise-P. Let c be a constant such that σ(n, s) ≤ s +

23

c ·
(
(log n)

√
s + (log n)2

)
for all large n, s ∈ N. We claim that (MINKT[r],DKT) ∈ AvgδP for

r(n) := n− 2c(log n)
√
n and δ(m) := 1/6m.

By the assumption, there exists a deterministic polynomial-time algorithm M that distinguishes
Yes and No instances of Gapσ,τMINKT. Using the algorithm, we define an errorless heuristic
algorithm A solving MINKT[r] as follows: On input (x, 1t), if the input is short, i.e., |x| = O(1),
then check if (x, 1t) ∈ MINKT[r] by an exhaustive search, and output the answer. Otherwise, set
s := r(|x|) and output 0 if M(x, 1t, 1s) rejects; otherwise, output ⊥.

We claim that A is errorless. Since A does not output 1 on inputs of large length, it suffices to
claim that M(x, 1t, 1s) accepts for any (x, 1t) ∈ MINKT[r]. Since Kt(x) < r(|x|) = s, (x, 1t, 1s) is
a Yes instance of Gapσ,τMINKT; thus M(x, 1t, 1s) accepts.

We claim that A succeeds on a large fraction of inputs. Fix any large n ∈ N and any t ∈ N.
For any x ∈ {0, 1}n, A(x, 1t) outputs ⊥ only if (x, 1t, 1r(n)) is not a No instance of Gapσ,τMINKT.
Hence,

Pr
x∈R{0,1}n

[
A(x, 1t) = ⊥

]
≤ Pr

x∈R{0,1}n

[
Kτ(n,t)(x) ≤ σ(n, r(n))

]
≤ 2−n+σ(n,r(n))+1 ≤ 1

6
,

where the last inequality holds for all large n. Thus, for every m ∈ N, we obtain

Pr
(x,1t)∼DKT

m

[
A(x, 1t) = ⊥

]
= E

n∈R[m]

[
Pr

x∈R{0,1}n

[
A(x, 1m−n) = ⊥

]]
≤ 1

6
.

�

Corollary 4.23. If DistNP ⊆ AvgP then Gapσ,τMINKT ∈ Promise-P for some σ(n, s) = s +
O
(
(log n)

√
s+ (log n)2

)
and some polynomial τ(n, t).

Proof. Buhrman, Fortnow and Pavan [BFP05] showed that DistNP ⊆ AvgP implies the existence
of a pseudorandom generator, and in particular, Promise-BPP = Promise-P. Corollary 4.23 imme-
diately follows by combining their result with Corollary 4.22. �

We leave it as an open question to derandomize the search to average-case reduction of Theo-
rem 4.21 without relying on the assumption that DistNP ⊆ AvgP. In the next theorem, we show
that a decision to average-case reduction can be derandomized at the cost of the quality of the ap-
proximation; specifically, the problem of approximating Kt(x) within a factor of nγ for an arbitrary
constant γ > 0 is reducible to (MINKT[r],DKT) via a deterministic reduction.

Theorem 4.24. Let r(n) := n/2. Let γ > 0 be an arbitrary constant, and define σ(n, s) := nγs.
If (MINKT[r],DKT) ∈ Avg1/6mP then Gapσ,τMINKT ∈ Promise-P for some polynomial τ .

Proof. The idea is to exhaustively search all the seeds z of NW
Encn,ε(x)
m,d (z) and compute the ac-

ceptance probability p := Prz∈R{0,1}d
[
T ′(NW

Encn,ε(x)
m,d (z)) = 1

]
deterministically, where T ′ ∈ P is

a dense subset of random strings obtained from Lemma 4.17. Then by Lemma 4.10, p = 0 if x
is not random; conversely, by the security proof of the pseudorandom generator (Lemma 4.9), if
p ≈ 0, then x can be described by a small program, as T ′ is a statistical test for the pseudorandom

generator NW
Encn,ε(x)
m,d . Therefore, p characterizes the Kolmogorov complexity of x. Details follow.

24

We describe a polynomial-time algorithm for computing Gapσ,τMINKT: Let (x, 1t, 1s) be any
instance of Gapσ,τMINKT. Define δ := 1/6 and m := 4s (so that 2s ≤ r(m)). Let c be an arbitrary

constant, and take the parameter d/` := c. Recall that 2` is the length of Encn,ε(x), where ε = δ/2m.
In particular, since the length of a seed z is d = c` = O(log n), one can enumerate all the seeds

z ∈ {0, 1}d in polynomial time. For simplicity of the notation, let G(z) denote NW
Encn,ε(x)
m,d (z). We

will choose a parameter t′ ∈ N later, and define T ′ := T=m
t′ , where T ∈ P is the set of Lemma 4.17.

The algorithm computes p := Prz∈R{0,1}d [T ′(G(z)) = 1] by enumerating all the seeds z, and accepts
if and only if p = 0.

The correctness of this algorithm immediately follows from the next claim.

Claim 4.25.

1. If Kt(x) ≤ s then p = 0.

2. If Kpoly(n,t′)(x) > nO(1/c) · s then p ≥ 1
6 .

To prove Item 1, assume that Kt(x) ≤ s. By Lemma 4.10, for every seed z, we have

Kt′(G(z)) ≤ Kt(x) + d+O(log n) < 2s,

where in the last inequality we used the fact that we may assume without loss of generality that
O(log n) ≤ Kt(x) ≤ n+O(1). In particular, we have Kt′(G(z)) < 2s ≤ r(m) for some t′ = t+poly(n).
Since T=m

t′ is a subset of Rt′ [r], we have G(z) 6∈ T=m
t for every seed z; thus p = 0. This completes

the proof of Item 1.
Next, we prove the contrapositive of Item 2. Suppose that p < 1

6 . Since T=m
t′ is 1

3 -dense,

T=m
t′ distinguishes NW

Encn,ε(x)
m,d from the uniform distribution with advantage 1

3 −
1
6 = 1

6 . Applying

Lemma 4.9, we obtain that K
Tt′
poly(n)(x) ≤ exp(`2/d) ·m+O(log n) ≤ exp(O(log n)/c) · 4s ≤ nO(1/c) ·

s. Since T ∈ P, it follows from Lemma 4.19 and Lemma 3.9 that Kpoly(n,t′)(x) ≤ nO(1/c) · s +

O(log log t′) ≤ nO(1/c) · s. This completes the proof of Item 2.
Since c is an arbitrary constant, by taking c large enough, we obtain an approximation factor

of nγ for an arbitrary constant γ > 0. �

5 Hardness of GapMINKT

In this section, we present evidence against Gapσ,τMINKT ∈ coNP. We start with the definition
of hitting set generator. In contrast to the fact that a secure pseudorandom generator can be used
to derandomize two-sided-error randomized algorithms, a secure hitting set generator can be used
to derandomize one-sided-error randomized algorithms.

Definition 5.1 (Hitting set generators). Let γ : N → [0, 1] be a function. Let G :=
{Gn : {0, 1}s(n) → {0, 1}t(n)}n∈N be a family of functions. A promise problem (ΠYes,ΠNo) is said to
γ-avoid G if for every n ∈ N, Gn(z) ∈ ΠNo for any z ∈ {0, 1}s(n), and Prw∈R{0,1}t(n)

[
w ∈ ΠYes

]
≥

γ(n). G is called a hitting set generator γ-secure against a complexity class C if there is no promise
problem (ΠYes,ΠNo) ∈ C that γ-avoids G.

25

For a hitting set generator, we measure the time complexity with respect to the output length
t(n); that is, we say that a family of functions G := {Gn : {0, 1}s(n) → {0, 1}t(n)}n∈N is efficiently
computable if there exists a polynomial-time algorithm that, given as input z ∈ {0, 1}s(n) and n ∈ N,
computes Gn(z) in time poly(t(n)).

It is easy to see that there is no efficiently computable hitting set generator γ-secure against
coNP for any reasonable choice of γ, by guessing a seed. On the other hand, as we will see, it is
conjectured that there exists a hitting set generator secure against NP. We first claim that there is
no hitting set generator secure against PA for any oracle A satisfying the promise of GapMINKT.
For simplicity, we focus on the case of t(n) = n.

Theorem 5.2. Let σ, τ : N × N → N be any functions such that σ(n, s) ≥ s for any n, s ∈ N.
Let G = {Gn : {0, 1}s(n) → {0, 1}n}n∈N be any family of functions computable in time poly(n),
where s : N→ N is an efficiently computable function. Let γ : N→ [0, 1] be any function such that
σ(n, s(n) +O(log n)) ≤ n− 1 + log(1− γ(n)) for all large n ∈ N. Then, there exists a deterministic
polynomial-time oracle machine M (in fact, a one-query reduction) such that MA γ-avoids G for
any oracle A ⊆ {0, 1}∗ satisfying the promise of Gapσ,τMINKT.

Proof. Since Gn(z) can be described by its seed z ∈ {0, 1}s(n) and an integer n ∈ N in time poly(n),
we have Kt(Gn(z)) ≤ s(n) + O(log n) for every n ∈ N, every z ∈ {0, 1}s(n) and t := poly(n). Let
s′(n) := s(n) +O(log n) denote the upper bound on Kt(Gn(z)).

The algorithm of M is defined as follows: On input x ∈ {0, 1}∗ of length n, accept iff
(x, 1poly(n), 1s

′(n)) 6∈ A.
We claim that MA(Gn(z)) = 0 for any n ∈ N and any z ∈ {0, 1}s(n). Since (Gn(z), 1poly(n), 1s

′(n))
is a Yes instance of Gapσ,τMINKT, we have A(Gn(z), 1poly(n), 1s

′(n)) = 1; hence MA(G(z)) = 0.

On the other hand, we claim that MA(w) = 1 for every n ∈ N and for most w ∈ {0, 1}n.
Note that MA(w) = 1 if (w, 1poly(n), 1s

′(n)) is a No instance of Gapσ,τMINKT; that is, Kt′(w) >
σ(n, s′(n)) for t′ := τ(n, poly(n)). The number of w ∈ {0, 1}n such that Kt′(w) > σ(n, s′(n)) is at
least 2n− 2σ(n,s′(n))+1. Thus, the probability that MA(w) = 1 over the choice of w ∈R {0, 1}n is at
least 1− 2σ(n,s′(n))+1−n ≥ γ(n). �

In particular, for the parameter σ(n, s) := s + O
(
(log n)

√
s + (log n)2

)
of Theorem 4.21,

Gapσ,τMINKT is capable of avoiding any efficiently computable hitting set generator G =

{Gn : {0, 1}s(n) → {0, 1}n}n∈N such that s(n) ≤ n − c
√
n log n for some large constant c > 0.

Corollary 5.3. Let c > 0 be an arbitrary constant. Let σ, τ : N×N→ N be any functions such that
s ≤ σ(n, s) ≤ s+ c

(
(log n)

√
s+ (log n)2

)
for all large n, s ∈ N. If Gapσ,τMINKT ∈ Promise-P then

there is no efficiently computable hitting set generator G = {Gn : {0, 1}s′(n) → {0, 1}n}n∈N γ-secure
against P, where s′ and γ are arbitrary functions satisfying s′(n) ≤ n− 2c

√
n log n+ log(1− γ(n))

for all large n ∈ N.

Proof. We verify that the assumption of Theorem 5.2 is satisfied. Indeed, s′(n) + O(log n) ≤
n− 2c

√
n log n+O(log n) ≤ n for all large n, and therefore,

σ(n, s′(n) +O(log n))

≤ s′(n) +O(log n) + c
(
(log n)

√
n+ (log n)2

)
≤ n− 1 + log(1− γ(n)).

26

�

In what follows, we present specific candidate hitting set generators conjectured to be secure
against NP.

5.1 Natural Properties and Rudich’s Conjecture

Natural properties, introduced by Razborov and Rudich [RR97], can be cast as algorithms
avoiding a specific hitting set generator. The hitting set generator is defined as follows.

Definition 5.4 (Circuit interpreter). Let s : N→ N be a function. Let

Gint,s := {Gint,s
` : {0, 1}O(s(`) log s(`)) → {0, 1}2`}`∈N

denote the family of circuit interpreters Gint,s
` of parameter s, defined as follows: Gint,s

` takes as
input a description zC ∈ {0, 1}O(s(`) log s(`)) of a circuit C of size at most s(`) on ` inputs, and
outputs the truth table of the function computed by C.

Definition 5.5 (Γ-natural property). A promise problem Π is called a natural property useful
against SIZE(s(`)) with largeness γ if Π γ-avoids the circuit interpreter Gint,s of parameter s. If,
in addition, Π ∈ C for a complexity class C, then Π is called a C-natural property.

Rudich [Rud97] conjectured that there is no NP/poly-natural property useful against P/poly. In
our terminology, his conjecture implies that Gint,s is a hitting set generator secure against NP/poly
for any s(`) = `ω(1). Thus his conjecture implies Gapσ,τMINKT 6∈ coNP/poly for a wide range of
parameters σ.

Corollary 5.6. Let s(n) = (log n)ω(1) for n ∈ N. Let σ, τ : N× N→ N be any functions such that
σ(n, s(n) + O(log n)) ≤ n − 2 for any n ∈ N. If Gapσ,τMINKT ∈ coNP/poly, then there is some

NP/poly-natural property useful against P/poly with largeness 1
2 .

Proof. We apply Theorem 5.2 to the circuit interpreter Gint,s′ for s′(`) := s(2`). Then we obtain
an NP/poly algorithm A that 1

2 -avoids Gint,s′ . We claim that A computes a natural property useful
against P/poly in the original sense of Razborov and Rudich [RR97]: The NP/poly constructivity is
obvious because A is an NP/poly algorithm. We also have largeness 1

2 by the definition. It remains
to claim the usefulness against P/poly: Since s′(`) is a super-polynomial in ` ∈ N, the image of

Gint,s′

` is a superset of truth tables of functions computable by P/poly. Hence A does not accept
any truth table computable by P/poly (for all large input length), which means that A is useful
against P/poly. �

5.2 Random 3SAT as a Hitting Set Generator

More significantly, we can also prove that Gapσ,τMINKT ∈ coNP implies that Random 3SAT
is easy for a coNP algorithm. This is due to the fact that Random 3SAT can be seen as another
specific hitting set generator GR3SAT = {GR3SAT

N : {0, 1}N−Ω(N/ logN) → {0, 1}N}N∈N. Random
3SAT is defined as follows.

27

Definition 5.7 (Random 3SAT). Let m : N → N be an efficiently computable function. Let
DR3SAT = {DR3SAT

n }n∈N be a family of the following distributions DR3SAT
n of 3CNF formulas: Let

n be the number of variables, and m = m(n) be the number of clauses. The distribution DR3SAT
n

samples a random n-variable m-clause 3CNF formula ϕ by choosing each clause independently and
uniformly at random from all the possible 23

(
n
3

)
width-3 clauses on n variables. We say that a

promise problem Π = (ΠYes,ΠNo) solves Random 3SAT with probability γ(n) if every satisfiable
formula is in ΠYes and Prϕ∼DR3SAT

n
[ϕ ∈ ΠNo] ≥ γ(n) for every n ∈ N.

The proof idea of Random 3SAT-hardness of MKTP [HS17] is that every satisfiable formula
can be compressed. We describe it in a slightly different way.

Lemma 5.8 ([HS17]). There exists an efficiently computable family of functions

GR3SAT = {GR3SAT
n : {0, 1}n+dm(n) log(7(n3))e → {0, 1}dm(n) log(8(n3))e}n∈N

such that the image of GR3SAT
n contains all the satisfiable n-variable m(n)-clause 3CNF formula.

(Here we regard the output of GR3SAT
n as an encoding of a 3CNF formula.)

Proof. Fix any n ∈ N, and fix any satisfiable n-variable m(n)-clause 3CNF formula ϕ. Let a ∈
{0, 1}n be some satisfying assignment of ϕ. We claim that ϕ can be described by the assignment a

and some auxiliary information d ∈ {0, 1}dm(n) log(7(n3))e. (GR3SAT
n (a, d) is defined as the output of

a description procedure below.)
Indeed, given a satisfying assignment a of ϕ, there are (23 − 1)

(
n
3

)
possible clauses that are

satisfied by a. More specifically, fix any 3 variables of a clause; then there are 7 ways to negate
these variables so that the resulting clause is satisfied by a. (For example, if the assignment a is
{x1 7→ 0, x2 7→ 1, x3 7→ 0}, then x1 ∨ ¬x2 ∨ x3 is the unique clause that is not satisfied by a.)
Therefore, each clause of ϕ can be described with log(7

(
n
3

)
) bits, and hence ϕ can be described

with some auxiliary information d of length m(n) log(7
(
n
3

)
). �

We observe that solving Random 3SAT is essentially equivalent to avoiding GR3SAT.

Proposition 5.9 (Random 3SAT and GR3SAT). Let Π = (ΠYes,ΠNo) be any promise problem and
Π = (ΠNo,ΠYes) be its complement. If Π γ-avoids GR3SAT, then Π solves Random 3SAT with
probability 1− 2(1− γ(n)).

Proof. Let ϕ be any satisfiable formula. By Lemma 5.8, there exists a description (d, a) such that
GR3SAT
n (d, a) = ϕ; since Π avoids GR3SAT, we obtain ϕ ∈ ΠNo. Therefore, the promise problem Π

accepts every satisfiable formula.
Next, we claim that Π rejects most formulas. Let N := m(n) log(8

(
n
3

)
). Since Π γ-avoids

GR3SAT, w ∈ ΠYes holds with probability at least γ(n) over the choice of a string w ∈R {0, 1}dNe.
Let D ⊆ {0, 1}dNe be the set of all the encodings of n-variable m(n)-clause 3CNF formulas. In
particular, |D| = 2N and hence Prw∈R{0,1}dNe [w ∈ D] ≥ 2N−dNe ≥ 1

2 . Now, since

1− γ(n) ≥ Pr
w∈R{0,1}dNe

[w 6∈ ΠYes] ≥ Pr
w∈R{0,1}dNe

[w ∈ D] · Pr
w∈RD

[w 6∈ ΠYes],

we obtain Prw∈RD[w 6∈ ΠYes] ≤ 2(1− γ(n)). �

28

Corollary 5.10 (Random 3SAT-hardness of GapMINKT). Let ∆ be any constant such that ∆ >
1/ log(8/7). Let m(n) = ∆n be the number of clauses. Then, Gapσ,τMINKT is Random 3SAT-hard,
where σ and τ are any functions as in Corollary 5.3. In particular, if Gapσ,τMINKT ∈ coNP, then

there exists a coNP algorithm solving Random 3SAT of m(n) clauses with probability 1 − 2−Ω(n),
where n denotes the number of variables.

Proof. Let N denote the output length of GR3SAT
n , that is, N := dm(n) log(8

(
n
3

)
)e. The seed

length of GR3SAT
n is s(N) := n + dm(n) log(7

(
n
3

)
)e ≤ N − (∆ log(8/7) − 1)n + 1 ≤ N − Ω(n) ≤

N −Ω(N/ logN). Applying Corollary 5.3 to GR3SAT
n and using Proposition 5.9, we obtain Random

3SAT-hardness of Gapσ,τMINKT. �

6 Worst-Case to Average-Case Reduction for MCSP

In this section, we establish a worst-case and average-case equivalence for approximating a
minimum circuit size. We start by introducing the problem.

Definition 6.1 (GapMCSP). For any constant ε ∈ (0, 1], the promise problem GapεMCSP is
defined as follows: The input consists of a function f : {0, 1}n → {0, 1} represented as its truth
table (of length 2n) and an integer s ∈ N. The task is to distinguish the Yes instances (f, s) such
that size(f) ≤ s, and the No instances (f, s) such that size(f) > 2(1−ε)n · s.

When ε = 1, GapεMCSP corresponds to the Minimum Circuit Size Problem (MCSP). There is a
natural search version associated to the promise problem.

Definition 6.2 (Search version of GapMCSP). The search version of GapεMCSP is defined as
follows: On input a function f : {0, 1}n → {0, 1} represented as its truth table, the task is to output
a circuit C such that C computes f and |C| ≤ 2(1−ε)n · size(f).

Fact 6.3 (Decision reduces to search for MCSP). If there exists a randomized polynomial-time
algorithm solving the search version of GapεMCSP, then GapεMCSP ∈ Promise-RP.

Proof Sketch. This is essentially the same with Fact 3.8. On input (f, s), run the search algorithm
on input f to obtain some circuit C. Accept if and only if C computes f and |C| ≤ 2(1−ε)n · s. �

We consider the distributional NP problem of the following problem under the uniform distri-
bution.

Definition 6.4 (Parameterized Minimum Circuit Size Problem). For a function s : N → N, the
Minimum Circuit Size Problem with parameter s, abbreviated as MCSP[s], is the following problem:
Given a function f : {0, 1}n → {0, 1} represented as its truth table, decide whether size(f) ≤ s(n).

Let U := {Un}n∈N be the family of the uniform distributions Un on {0, 1}n, for each n ∈ N. We
next define randomized errorless heuristic algorithms; for simplicity, we focus on the case of the
uniform distribution.

Definition 6.5 (Randomized Errorless Heuristics; cf. [BT06a])). Let (L,U) be a distributional
problem and δ : N→ [0, 1]. A randomized algorithm A is said to be a randomized errorless heuristic
algorithm with failure probability δ for (L,U) if

29

• PrA
[
A(x) 6∈ {L(x),⊥}

]
≤ 1

8 for every x ∈ {0, 1}∗, and

• Prx∼Un
[
PrA[A(x) = ⊥] > 1

8

]
≤ δ(n) for every n ∈ N.

An input x such that PrA[A(x) = ⊥] > 1
8 is called a hard instance for A. We say that (L,U) ∈

AvgδBPP if (L,U) admits a randomized polynomial-time errorless heuristic algorithm with failure
probability δ. Define AvgBPP :=

⋂
c∈N Avgn−cBPP.

Using the insight from [HS17], we show that an errorless heuristic algorithm for MCSP[s] is
essentially equivalent to BPP-natural properties useful against SIZE(s(n)).

Lemma 6.6. Let s : N→ N be any function such that s(n) = o(2n/n) for n ∈ N. Let γ, δ : N→ [0, 1]
be functions.

1. If there exists a BPP-natural property useful against SIZE(s(n)) with largeness γ, then
(MCSP[s],U) ∈ AvgδBPP, where δ(2n) := 1− γ(n) for n ∈ N.

2. If (MCSP[s],U) ∈ AvgδBPP, then there exists a BPP-natural property useful against
SIZE(s(n)) with largeness γ where γ(n) = 1− δ(2n)− 2−2n−1

for n ∈ N.

Proof. First part: Let (ΠYes,ΠNo) be a BPP-natural property, and M be a BPP algorithm solving
(ΠYes,ΠNo) (with error ≤ 1

8). Define a randomized algorithm A as follows: On input f , run M
on input f and reject if M accepts, and output ⊥ otherwise. We claim that A is a randomized
errorless heuristic algorithm for (MCSP[s],U).

We first claim that the fraction of hard instances for A is small. Indeed, f is a hard instance for
A only if PrA[A(f) = ⊥] = PrM [M(f) = 0] > 1

8 , which implies that f 6∈ ΠYes. Thus the fraction
of hard instances f ∈ {0, 1}2n is at most 1− γ(n).

Next, we claim that, for every input f , A outputs a wrong answer for MCSP[s] with probability
at most 1

8 . Since A never accepts, this happens only if M accepts and f ∈ MCSP[s], which implies
that f ∈ ΠNo and hence PrA[A(f) = 0] = PrM [M(f) = 1] ≤ 1

8 .

Second part: Given a randomized errorless heuristic algorithm A for (MCSP[s],U), define a
randomized algorithm M so that M(f) := 0 if A(f) = 1 or A(f) = ⊥; otherwise M(f) := 1. We
claim that M accepts some natural property (ΠYes,ΠNo) with error ≤ 1

4 .
Since A is errorless, for any f ∈ MCSP[s], we have PrM [M(f) = 1] = PrA[A(f) = 0] ≤ 1

8 ;
thus M satisfies the usefulness. To see the largeness, consider any instance f that is not a hard
instance for A. We claim that PrA[A(f) = MCSP[s](f)] ≥ 3

4 : This is because A outputs ⊥
with probability at most 1

8 since f is not hard for A, and moreover A outputs a wrong answer
with probability at most 1

8 . Therefore, M accepts f with probability at least 3
4 if f is not a

hard instance for A and f 6∈ MCSP[s]. The fraction of such instances f ∈ {0, 1}2n is at least
1− δ(2n)− s(n)O(s(n)) · 2−2n ≥ γ(n), for all large n ∈ N. �

We now state the main result of this section.

Theorem 6.7. The following are equivalent.

1. GapεMCSP ∈ Promise-BPP for some ε > 0.

2. (MCSP[2εn],U) ∈ AvgBPP for some ε > 0.

30

3. (MCSP[2εn],U) ∈ AvgδBPP for some constants ε, δ ∈ (0, 1).

4. There exists a BPP-natural property useful against SIZE(2εn) with largeness γ, for some ε ∈
(0, 1) and γ(n) := 1− 2−2n−1

.

5. There exists a BPP-natural property useful against SIZE(2εn) with largeness γ, for some con-
stants ε, γ ∈ (0, 1).

6. There exists a randomized polynomial-time algorithm solving the search version of
GapεMCSP, for some ε > 0.

Proof. (5⇔ 3 and 4⇒ 2) This follows from Lemma 6.6.
(2⇒ 3) Obvious.
(6⇒ 1) This follows from Fact 6.3.
(1 ⇒ 4) Let A be a randomized polynomial-time algorithm solving GapεMCSP. Define A′ as

the following algorithm: On input f : {0, 1}n → {0, 1}, run A on input (f, s) for s := 2εn/2, and
accept iff A rejects. We claim that A′ accepts some natural property useful against SIZE(2εn/2).
Indeed, if size(f) ≤ 2εn/2, then (f, s) is a Yes instance of GapεMCSP, and thus A′(f) rejects with
high probability. Hence A′ satisfies the usefulness. On the other hand, A′ accepts any No instance
(f, s) of GapεMCSP, that is, any (f, s) such that size(f) > 2(1−ε)n · s = 2(1−ε/2)n. Since the fraction

of functions f such that size(f) ≤ 2(1−ε/2)n is at most 2O(n2(1−ε/2)n)−2n ≤ 2−2n/2, A′ satisfies the
largeness of density 1− 2−2n/2.

(5⇒ 6) This is the main technical part, which can be proved by using a generic reduction from
learning to natural properties [CIKK16]. We prove this in the next Theorem 6.8. �

Theorem 6.8. If there exists a BPP-natural property useful against SIZE(2ε0n) with largeness δ0

for some constants ε0, δ0 ∈ (0, 1), then there exists a randomized polynomial-time algorithm solving
the search version of Gapε1MCSP for some ε1 > 0.

For functions f, g : {0, 1}n → {0, 1} and ε ∈ [0, 1], we say that f is ε-close to g if dist(f, g) ≤ ε.
The following is the main result of [CIKK16], which established a generic reduction from learning
an ε-close function to natural properties.

Lemma 6.9 (Carmosino, Impagliazzo, Kabanets, and Kolokolova [CIKK16]). For every ` ≤ n ∈
N, ε > 0, there exists a “black-box generator” G`,n,ε satisfying the following.

• G`,n,ε maps a function f : {0, 1}n → {0, 1} to a function Gf`,n,ε : {0, 1}
m → {0, 1}2` for some

m ∈ N, and

• size(Gf`,n,ε(z)) ≤ poly(n, 1/ε, size(f)) for all z ∈ {0, 1}m, where we regard Gf`,n,ε(z) as a func-
tion on `-bit inputs.

Moreover, there exists a randomized polynomial-time oracle machine (a “reconstruction algo-
rithm”) satisfying the following specification.

Inputs: Oracle access to a function f : {0, 1}n → {0, 1}, parameters n, ε−1, 2` ∈ N represented in
unary, and a circuit D on 2`-bit inputs.

31

Promise: We assume that D is a statistical test for Gf`,n,ε with advantage δ0. That is,∣∣∣∣∣ Pr
z∈R{0,1}m

[
D(Gf`,n,ε(z)) = 1

]
− Pr
w∈R{0,1}2`

[
D(w) = 1

]∣∣∣∣∣ ≥ δ0,

for some universal constant δ0 > 0.

Output: A circuit C that is ε-close to f . (In particular, the size of C is at most poly(n, ε−1, 2`, |D|)).

Proof of Theorem 6.8. Suppose that the truth table of f : {0, 1}n → {0, 1} is given as input. Let
u(`) := 2ε0` denote the usefulness parameter, and let s := size(f).

First, note that any circuit C that is ε-close to f can be converted into a circuit C ′ computing
f exactly such that |C ′| ≤ |C|+ ε ·2n ·n+O(1). Indeed, since there are at most ε2n inputs on which
f and C disagree, we can define a DNF formula ϕ with ε2n terms such that ϕ outputs 1 iff f and
C disagree; then we may define C ′(x) := C(x) ⊕ ϕ(x) so that C ′(x) = f(x) for every x ∈ {0, 1}n.
Therefore, the output of the reconstruction algorithm of Lemma 6.9 can be converted to a circuit
C ′ computing f exactly such that |C ′| ≤ poly(n, 1/ε, 2`, |D|) + ε · 2n · n.

We now construct a statistical test for Gf`,n,ε using a BPP-natural property and Adleman’s trick
[Adl78] (for proving BPP ⊆ P/poly). Let (ΠYes,ΠNo) be a BPP-natural property and M be a BPP
algorithm solving (ΠYes,ΠNo). Fix any ` ∈ N. By a standard error reduction for BPP, we may
assume without loss of generality that the error probability of M is at most 2−2L on any inputs of
length L := 2`. Pick a string r of length poly(`) uniformly at random, and hardwire r into M as
the source of internal randomness. Then, by the union bound, with probability at least 1 − 2−L

over the choice of r, M(·; r) computes some natural property on input length L, i.e., M(w; r) = 1
iff w ∈ ΠYes, for every w ∈ (ΠYes∪ΠNo)=L. By a standard translation from a machine to a circuit,
we convert M(·; r) to a circuit D` of size poly(`).

We claim that D` is a statistical test for Gf`,n,ε if size(Gf`,n,ε(z)) ≤ u(`) for every z. Indeed,

by the usefulness of natural properties, we have Gf`,n,ε(z) ∈ ΠNo; thus D`(G
f
`,n,ε(z)) = 0. On

the other hand, by the largeness of natural properties, we have |(ΠYes)
=L| ≥ δ02L, and thus

Prw∈R{0,1}L [D`(w) = 1] ≥ δ0. Thus D` is a statistical test for Gf`,n,ε.
Here is an algorithm solving the search version of Gapε1MCSP. For every ` ∈ [n] and every

ε−1 ∈ [2n], run the reconstruction algorithm of Lemma 6.9 with inputs f, n, `, 2`, and D`, and
obtain a circuit C approximating f . Convert C to C ′ computing f exactly as explained above.
Output the minimum circuit C ′ computing f found in this way.

It remains to claim that, for some choice of `, ε, the reconstruction algorithm outputs a small
circuit. Let c > 0 be a constant such that Gf`,n,ε(z) ≤ (ns/ε)c and |C ′| ≤ (n2`/ε)c + ε2nn for all

large n, `, ε−1. In order for D` to be a statistical test for Gf`,n,ε, we need (ns/ε)c ≤ u(`) = 2ε0`; thus

we set 2` := (ns/ε)c/ε0 . To make |C ′| small, we set ε := 2−ε1ns where ε1 := (c+ c2/ε0 + 1)−1. Then
we have |C ′| ≤ (n/ε)c(n2ε1n)c

2/ε0 + 2(1−ε1)nns ≤ nO(1)2(1−ε1)ns ≤ 2(1−ε1/2)ns for all large n ∈ N. �

Acknowledgment

We thank Rahul Santhanam for helpful discussion, and thank Eric Allender, Oded Goldreich,
and the anonymous reviewers for helpful comments on manuscripts.

32

References

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef
Ronneburger. Power from Random Strings. SIAM J. Comput., 35(6):1467–1493,
2006.

[AD17] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Com-
put., 256:2–8, 2017.

[Adl78] Leonard M. Adleman. Two Theorems on Random Polynomial Time. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 75–83, 1978.

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing
one-way functions on NP-hardness. In Proceedings of the Symposium on Theory of
Computing (STOC), pages 701–710, 2006.

[AGvM+18] Eric Allender, Joshua Grochow, Dieter van Melkebeek, Andrew Morgan, and Cristo-
pher Moore. Minimum Circuit Size, Graph Isomorphism and Related Problems. SIAM
J. Comput., 47:1339–1372, 2018.

[AH17] Eric Allender and Shuichi Hirahara. New Insights on the (Non-)Hardness of Circuit
Minimization and Related Problems. In Proceedings of the International Symposium
on Mathematical Foundations of Computer Science (MFCS), pages 54:1–54:14, 2017.

[AHK17] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The Minimum Oracle Circuit
Size Problem. Computational Complexity, 26(2):469–496, 2017.

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks.
Minimizing Disjunctive Normal Form Formulas and AC0 Circuits Given a Truth Table.
SIAM J. Comput., 38(1):63–84, 2008.

[Ajt96] Miklós Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract).
In Proceedings of the Symposium on the Theory of Computing (STOC), pages 99–108,
1996.

[AKRR11] Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The perva-
sive reach of resource-bounded Kolmogorov complexity in computational complexity
theory. J. Comput. Syst. Sci., 77(1):14–40, 2011.

[AR05] Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. J. ACM, 52(5):749–
765, 2005.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A New Barrier in Complexity
Theory. TOCT, 1(1):2:1–2:54, 2009.

[BB15] Andrej Bogdanov and Christina Brzuska. On Basing Size-Verifiable One-Way Func-
tions on NP-Hardness. In Proceedings of the Theory of Cryptography Conference
(TCC), pages 1–6, 2015.

33

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP Has Subexpo-
nential Time Simulations Unless EXPTIME has Publishable Proofs. Computational
Complexity, 3:307–318, 1993.

[BFP05] Harry Buhrman, Lance Fortnow, and Aduri Pavan. Some Results on Derandomization.
Theory Comput. Syst., 38(2):211–227, 2005.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP
Question. SIAM J. Comput., 4(4):431–442, 1975.

[BGSV16] Peter Bürgisser, Oded Goldreich, Madhu Sudan, and Salil Vadhan. Complexity The-
ory. Oberwolfach Reports, 12(4):3049–3099, 2016.

[BLvM05] Harry Buhrman, Troy Lee, and Dieter van Melkebeek. Language compression and
pseudorandom generators. Computational Complexity, 14(3):228–255, 2005.

[BT06a] Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. Foundations and
Trends in Theoretical Computer Science, 2(1), 2006.

[BT06b] Andrej Bogdanov and Luca Trevisan. On Worst-Case to Average-Case Reductions for
NP Problems. SIAM J. Comput., 36(4):1119–1159, 2006.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning Algorithms from Natural Proofs. In Proceedings of the Con-
ference on Computational Complexity (CCC), pages 10:1–10:24, 2016.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, 22(6):644–654, 1976.

[Fei02] Uriel Feige. Relations between average case complexity and approximation complexity.
In Proceedings of the Symposium on Theory of Computing (STOC), pages 534–543,
2002.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-Self-Reducibility of Complete Sets.
SIAM J. Comput., 22(5):994–1005, 1993.

[FKO06] Uriel Feige, Jeong Han Kim, and Eran Ofek. Witnesses for non-satisfiability of dense
random 3CNF formulas. In Proceedings of the Symposium on Foundations of Computer
Science (FOCS), pages 497–508, 2006.

[FO07] Uriel Feige and Eran Ofek. Easily refutable subformulas of large random 3CNF for-
mulas. Theory of Computing, 3(1):25–43, 2007.

[GG00] Oded Goldreich and Shafi Goldwasser. On the Limits of Nonapproximability of Lattice
Problems. J. Comput. Syst. Sci., 60(3):540–563, 2000.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[GST07] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP Languages are Hard
on the Worst-Case, Then it is Easy to Find Their Hard Instances. Computational
Complexity, 16(4):412–441, 2007.

34

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A Pseudo-
random Generator from any One-way Function. SIAM J. Comput., 28(4):1364–1396,
1999.

[HOS18] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. NP-hardness of Min-
imum Circuit Size Problem for OR-AND-MOD Circuits. In Proceedings of the Com-
putational Complexity Conference (CCC), pages 5:1–5:31, 2018.

[HP15] John M. Hitchcock and Aduri Pavan. On the NP-Completeness of the Minimum
Circuit Size Problem. In Proceedings of the Conference on Foundation of Software
Technology and Theoretical Computer Science (FSTTCS), pages 236–245, 2015.

[HR12] Ishay Haviv and Oded Regev. Tensor-based Hardness of the Shortest Vector Problem
to within Almost Polynomial Factors. Theory of Computing, 8(1):513–531, 2012.

[HS17] Shuichi Hirahara and Rahul Santhanam. On the Average-Case Complexity of MCSP
and Its Variants. In Proceedings of the Computational Complexity Conference (CCC),
pages 7:1–7:20, 2017.

[HW16] Shuichi Hirahara and Osamu Watanabe. Limits of Minimum Circuit Size Problem as
Oracle. In Proceedings of the Conference on Computational Complexity (CCC), pages
18:1–18:20, 2016.

[HW19] Shuichi Hirahara and Osamu Watanabe. On Nonadaptive Reductions to the Set of
Random Strings and Its Dense Subsets. Manuscript, 2019.

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The Power of Natural
Properties as Oracles. In Proceedings of the Computational Complexity Conference
(CCC), pages 7:1–7:20, 2018.

[IL89] Russell Impagliazzo and Michael Luby. One-way Functions are Essential for Complex-
ity Based Cryptography (Extended Abstract). In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), pages 230–235, 1989.

[Imp95] Russell Impagliazzo. A Personal View of Average-Case Complexity. In Proceedings of
the Structure in Complexity Theory Conference, pages 134–147, 1995.

[Imp11] Russell Impagliazzo. Relativized Separations of Worst-Case and Average-Case Com-
plexities for NP. In Proceedings of the Conference on Computational Complexity
(CCC), pages 104–114, 2011.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E Requires Exponential Circuits:
Derandomizing the XOR Lemma. In Proceedings of the Symposium on the Theory of
Computing (STOC), pages 220–229, 1997.

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs Time: Derandomization
under a Uniform Assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001.

[KC00] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 73–79, 2000.

35

[Ko91] Ker-I Ko. On the Complexity of Learning Minimum Time-Bounded Turing Machines.
SIAM J. Comput., 20(5):962–986, 1991.

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph Nonisomorphism Has Subexpo-
nential Size Proofs Unless the Polynomial-Time Hierarchy Collapses. SIAM J. Com-
put., 31(5):1501–1526, 2002.

[Lev73] Leonid Anatolevich Levin. Universal sequential search problems. Problemy Peredachi
Informatsii, 9(3):115–116, 1973.

[Lev86] Leonid A. Levin. Average Case Complete Problems. SIAM J. Comput., 15(1):285–286,
1986.

[MR07] Daniele Micciancio and Oded Regev. Worst-Case to Average-Case Reductions Based
on Gaussian Measures. SIAM J. Comput., 37(1):267–302, 2007.

[MW17] Cody D. Murray and R. Ryan Williams. On the (Non) NP-Hardness of Computing
Circuit Complexity. Theory of Computing, 13(1):1–22, 2017.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[OS17] Igor Carboni Oliveira and Rahul Santhanam. Conspiracies Between Learning Algo-
rithms, Circuit Lower Bounds, and Pseudorandomness. In Proceedings of the Compu-
tational Complexity Conference (CCC), pages 18:1–18:49, 2017.

[Ost91] Rafail Ostrovsky. One-Way Functions, Hard on Average Problems, and Statistical
Zero-Knowledge Proofs. In Proceedings of the Structure in Complexity Theory Con-
ference, pages 133–138, 1991.

[RR97] Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997.

[RRV02] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the Randomness and
Reducing the Error in Trevisan’s Extractors. J. Comput. Syst. Sci., 65(1):97–128,
2002.

[Rud97] Steven Rudich. Super-bits, Demi-bits, and NP/qpoly-natural Proofs. In Proceedings of
the Randomization and Approximation Techniques in Computer Science (RANDOM),
pages 85–93, 1997.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom Generators without
the XOR Lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[Sud97] Madhu Sudan. Decoding of Reed Solomon Codes beyond the Error-Correction Bound.
J. Complexity, 13(1):180–193, 1997.

[Tra84] Boris A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute-Force
Searches) Algorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984.

36

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879,
2001.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and Average-Case Complexity
Via Uniform Reductions. Computational Complexity, 16(4):331–364, 2007.

[Vad06] Salil P. Vadhan. An Unconditional Study of Computational Zero Knowledge. SIAM
J. Comput., 36(4):1160–1214, 2006.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

[Yao82] Andrew Chi-Chih Yao. Theory and Applications of Trapdoor Functions (Extended
Abstract). In Proceedings of the Symposium on Foundations of Computer Science
(FOCS), pages 80–91, 1982.

[Zim05] Marius Zimand. A List-Decodable Code with Local Encoding and Decoding. In
Proceedings of the 6th ACIS International Conference on Software Engineering, Ar-
tificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2005),
pages 232–237, 2005.

37

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

