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Abstract

In 1985, Ben-Or and Linial (Advances in Computing Research ’89) introduced the collective
coin-flipping problem, where n parties communicate via a single broadcast channel and wish
to generate a common random bit in the presence of adaptive Byzantine corruptions. In this
model, the adversary can decide to corrupt a party in the course of the protocol as a function of
the messages seen so far. They showed that the majority protocol, in which each player sends a
random bit and the output is the majority value, tolerates O(

√
n) adaptive corruptions. They

conjectured that this is optimal for such adversaries.
We prove that the majority protocol is optimal (up to a poly-logarithmic factor) among all

protocols in which each party sends a single, possibly long, message.
Previously, such a lower bound was known for protocols in which parties are allowed to send

only a single bit (Lichtenstein, Linial, and Saks, Combinatorica ’89), or for symmetric protocols
(Goldwasser, Kalai, and Park, ICALP ’15).
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1 Introduction

In the collective coin-flipping problem, introduced by Ben-Or and Linial [BL89], a set of n compu-
tationally unbounded parties, each equipped with a private source of randomness, are required to
generate a common random bit. The communication model is the “full information” model [BL89],
where all parties communicate via a single broadcast channel. The goal of the parties is to agree on
a common random bit even in the case that some t = t(n) of the parties are faulty and controlled
by an adversary whose goal is to bias the output of the protocol in some direction. We say that
a protocol Π is resilient (or secure) to t corruptions if for any adversary A that makes at most t
corruptions it holds that

min
{

Pr [Output of A(Π) = 0] ,Pr [Output of A(Π) = 1]
}
≥ Ω(1),

where “Output of A(Π)” is a random variable that corresponds to the output of the protocol Π
when executed in the presence of the adversary A.

The adversary is Byzantine, namely, once it corrupts a party, it completely controls it and can
send arbitrary messages on its behalf. Usually, two types of Byzantine adversaries are considered,
static or adaptive ones. A static adversary is an adversary that chooses which parties to corrupt
ahead of time, before the protocol begins. An adaptive adversary, on the other hand, is allowed
to choose which parties to corrupt adaptively in the course of the protocol as a function of the
messages seen so far. In the case of static adversaries, collective coin-flipping is well studied and
almost matching upper and lower bounds are known; see Section 1.1. However, the case of adaptive
adversaries is much less understood. In this work, we focus on the setting of adaptive adversaries.

In the seminal work of Ben-Or and Linial [BL89], they showed that the majority protocol (in
which each party sends a uniformly random bit and the output of the protocol is the majority of the
bits sent) is resilient to O(

√
n) adaptive corruptions. Moreover, with Ω̃(

√
n) corruptions,1 one can

break the security of this protocol. They conjectured that the majority protocol is optimal : any
collective coin-flipping protocol is resilient to at most O(

√
n) adaptive corruptions, even if parties

send multiple messages, each of which may be long.
The first step towards this conjecture was made by Lichtenstein, Linial, and Saks [LLS89]. They

proved that there is no single-bit and single-turn protocol which is resilient to more than Ω̃(
√
n)

adaptive corruptions. A single-bit protocol is one in which parties’ messages consist of a single bit
(perhaps over multiple rounds), and a single-turn protocol is such that each party speaks at most
once (perhaps with a long message). More recently, Goldwasser, Kalai, and Park [GKP15] proved
another special case of the conjecture: Any symmetric2 single-turn protocol cannot be resilient to
more than Ω̃(

√
n) adaptive corruptions.

Despite significant efforts, more than three decades after posting the conjecture, fully resolving
it remains an intriguing open problem.

Our results. We prove that any n-party collective coin-flipping protocol in which each party
sends a single, possibly long, message cannot be secure against more than t = Ω̃(

√
n) adaptive

corruptions.

1Throughout this work, the notation Ω̃ and Õ suppresses poly-logarithmic factors.
2A symmetric protocol Π is one that is oblivious to the order of its inputs: namely, for any permutation π : [n]→ [n]

of the parties, it holds that Π(r1, . . . , rn) = Π(rπ(1), . . . , rπ(n)).
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Theorem 1. Any n-party single-turn collective coin-flipping protocol is insecure against more than
t = Ω̃(

√
n) adaptive corruptions.

As a warm-up, in Section 3, we recover the result of Lichtenstein et al. [LLS89] for single-bit
single-turn protocols. Whereas the original proof of [LLS89] is based on combinatorial arguments in
extremal set theory, our proof is elementary and uses basic tools from probability theory. A different
yet related variant to our simplification was previously given by Cleve and Impagliazzo [CI93]; see
Section 1.1 below.

1.1 Related Work

The full information model was introduced by Ben Or and Linial [BL89] to study the collective
coin-flipping problem. Since then, this problem was central in the study of distributed protocols.

Static adversaries. The case of static corruptions has been extensively studied since the in-
troduction of the collective coin-flipping problem. The original work of Ben-Or and Linial [BL89]
showed that a polynomial number (i.e., O(n.63)) of corrupted parties can be tolerated. Later, Aj-
tai and Linial [AL93] showed a different protocol that withstands O(n/ log2 n) corruptions. For
single-round single-bit protocols, in which the global coin is obtained by each party contributing
one bit for an n-input predefined Boolean function, Kahn, Kalai and Linial [KKL88] showed that
no protocol is resilient to more than Ω(n/ log n) corruptions. Saks [Sak89] introduced a multi-round
protocol called the “Baton Passing” game3 and showed that it is resilient to O(n/ log n) corrup-
tions. The protocol of Saks was modified by Alon and Naor [AN93] such that it tolerates a constant
fraction of corrupted parties. The optimal resilience of t = (1/2−δ)n for any δ > 0 was obtained by
Boppana and Narayanan [BN96] shortly afterwards. Since then the focus has been on improving
the explicitness of the protocol, the round complexity, and the bias of the output bit. Two of
the most notable results are that of Feige [Fei99] and of Russell, Saks, and Zuckerman [RSZ02].
Feige gave an explicit (log∗ n + O(1/δ))-round protocol that tolerates (1/2 − δ)n corruptions for
any constant δ > 0. Russell, Saks, and Zuckerman proved that any protocol that is secure against
Ω(n) corruptions must either have at least (1/2 − o(1)) · log∗ n rounds, or communicate multiple
bits per round.

Interestingly, many protocols for collective coin-flipping that consist of more than one round
of communication per party, achieve a seemingly stronger goal. In these protocols, first an honest
leader is elected and then it outputs a bit that is taken as the protocol outcome. This approach,
while being useful for the static case, is unsuitable for adaptive adversaries, since the adversary
may always wait for the leader to be elected and then corrupt it.

Adaptive adversaries. The literature on collective coin-flipping with adaptive adversaries is
much more scarce. The best known protocol is the majority one suggested by Ben-Or and Linial [BL89].
Lichtenstein, Linial, and Saks [LLS89] proved that there is no protocol in which each party is al-
lowed to send one bit (in total) which is resilient to more than Ω(

√
n) corruptions. The same lower

bound was shown by Goldwasser, Kalai and Park [GKP15] for any single-turn symmetric protocol
(where each message can be long).

3In this game, each party receiving the baton, passes it to a random party that did not have it yet. The last party
having the baton is the leader, and the leader chooses the random bit to be outputted.
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Dodis [Dod00] proved that through “black-box” reductions from non-adaptive collective coin-
flipping protocols, it is impossible to tolerate significantly more corruptions than the majority
protocol. His definition of “black-box” is rather restricted: It only considers sequential composi-
tion of non-adaptive coin-flipping protocols, followed by a (non-interactive, predefined) function
operating on the coin-flips thus obtained.

Kalai and Komargodski [KK15] showed that for any collective coin-flipping protocol in which
messages are long there is a collective coin-flipping protocol with the same communication pattern,
the same output distribution, the same security guarantees, and where parties send messages of
length ` = polylog(n, d), where d is the number of rounds in the original protocol. In particular, their
transformation guarantees that the resulting protocol is resilient against t adaptive (resp. static)
corruptions as long as the original one is resilient against t adaptive (resp. static) corruptions. The
transformation is non-uniform, that is, they only show that the required protocol exists.

More types of adversaries. En route to resolving the conjecture of Ben-Or and Linial, stronger
types of adversaries were considered.

Cleve and Impagliazzo [CI93] studied re-sampling adaptive adversaries that can decide whether
to intervene in the next message or not after seeing it. More precisely, at the i’th round, the
adversary, after seeing all the messages exchanged in the first i− 1 rounds and the message to be
sent in the current round, can ask to rewind the process back to the beginning of the i’th round and
have the i’th message be re-sampled. They showed that for any protocol whose expected output is
1/2 in an honest execution and in which each party sends just one (possibly long) message, there is
an adversary that corrupts a single party and biases the expectation of the output of the protocol
away from 1/2 by Ω(1/

√
n) in some direction.

More recently, Goldwasser, Kalai, and Park [GKP15] studied an even stronger variant called
strong adaptive adversaries in which the adversary sees all messages sent by honest parties in any
given round and, based on the message content, decide whether to corrupt a party or not (and alter
its message for that same round). Here, a corruption allows the adversary to send any message
on behalf of the party (and not only re-sample it, as in [CI93]). They proved that any one-round
protocol (i.e., all parties talk simultaneously once), in which messages can be arbitrarily long, can
tolerate at most Õ(

√
n) such (strong) adaptive corruptions. They got a similar lower bound in the

standard adaptive corruptions model for symmetric protocols.

Fair Coin-Flipping. There is a rich literature on coin-flipping protocols in settings with dis-
honest majority (and static corruptions), starting from the seminal work of Cleve [Cle86]. In such
protocols, the output of the protocol is a random bit, and the requirement is that even in the
presence of an adversary, the output cannot be skewed towards 0 or towards 1 except with very
small probability.4

Cleve [Cle86] proved that for r-round coin-flipping protocol there exists a (static) adversary
corrupting 1/2 of the parties and efficiently biases the output by Θ(1/r). This lower bound was
shown to be tight in the two-party case by Moran, Naor, and Segev [MNS16] and in the three-party
case (up to a polylog factor) by Haitner and Tsfadia [HT17]. In the general n-party case, as long
as n ≤ log log r, an almost tight upper bound was given by Buchbinder et al. [BHLT17]. When
there are less than (2/3)n corruptions, Beimel et al. [BOO15] have constructed an n-party r-round

4We emphasize that in our work, we only require that the adversary cannot skew the output with probability
1− o(1), whereas in fair protocols the adversary should not skew the output with probability greater than 1/2 + o(1).
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coin-flipping protocol with bias 22k/r, tolerating up to t = (n + k)/2 corrupt parties. Alon and
Omri [AO16] constructed an n-party r-round coin-flipping protocol with bias Õ(22n/r), tolerating
up to t corrupted parties, for constant n and t < 3n/4. Very recently, Beimel et al. [BHMO17] gave
an improved lower bound in the multi-party case: For any n-party r-round coin-flipping protocol
with nk ≥ r for k ∈ N, there exists an adversary corrupting n− 1 parties and biases the output of
the honest party by 1/(

√
r logk r).

1.2 Proof Overview

Since we are in the full information model, we can assume (without loss of generality) that any
collective coin-flipping protocol (in which the parties do not have private inputs except for a perfect
source of randomness), can be transformed into a protocol in which the honest parties’ messages
consist only of uniformly random bits. A sketch of this folklore fact appears in [KK15, Section
4]. Thus, from now on, we assume that each party sends a uniformly random message chosen
independently of the previous messages.

Concretely, we consider protocols in which each party sends a single message of length `, possibly
across n rounds. Such a protocol can be thought of as a complete 2`-ary tree whose leaves are labeled
by 0 and 1, and whose internal nodes are labeled by numbers in [n]. If a node is labeled by i ∈ [n],
then we say that the node is owned by party i. (Without loss of generality, we can assume that
the order in which the parties send messages is fixed in advance). The protocol starts at the root
and at each time step we are at an internal node whose owner samples a random string in {0, 1}`
to determine where the protocol proceeds. The protocol ends once we reach a leaf and the output
of the protocol is the bit b corresponding to the label of that leaf.

Let us start with the simpler case where ` = 1. In this case, we present an attacker that
biases the outcome of any protocol towards 0 with probability 1 − negl(n), while corrupting at
most Õ(

√
n) parties with probability 1 − o(1). (An analogous adversary can bias towards 1 with

similar parameters.) The adversary at any point in time computes its possible gain in the expected
output of the protocol by corrupting the next party (either to 0 or to 1). If the gain is larger than
ε = 1√

n·log2 n
, then the adversary corrupts and sends the maliciously chosen bit (that biases the

output towards 0). A standard application of Azuma’s inequality shows that (with high probability)
the influence of the parties that were not corrupted on the expected output of the protocol is
negligible, as there are at most n of them and the contribution of each of them is at most 1√

n·log2 n
.

Intuitively, this means that only the corrupted parties influence the final output of the protocol and
since the adversary controls these parties, the adversary succeeds in forcing the output to be 0 with
high probability. Moreover, since the adversary gains at least 1√

n·log2 n
in the expected value of the

protocol, with the corruption of each party, and the total gain is at most 1, with high probability
the number of corruptions is at most Õ(

√
n). This gives an alternative (elementary) proof for the

result of [LLS89]. This is formally proved in Section 3.
The proof for the case ` > 1 is more involved. We define two adversaries A0 and A1, where

Ab tries to bias the outcome of the protocol towards b. Here, as opposed to the case ` = 1, only
one of the adversaries will be guaranteed to succeed. For A0, we associate with each node v in the
protocol tree three values (we do the same for A1):

1. αv : The expectation of the outcome of the protocol in the presence of the adversary A0,
given that the protocol is at node v.
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2. c0
v : A bit that is 1 if and only if the adversary A0 corrupts node v.

3. p0
v : A “penalty” value that is proportional to the expected number of corruptions made

by A0 from node v onward.

We set these values inductively from the leaves of the protocol tree to the root. For a leaf
labeled by b ∈ {0, 1}, we set αv = b and c0

v = p0
v = 0.

Going one level up to the parents of the leaves, for each such node we compute the expected α
value if we proceed to a random child, compared with the minimal possible α value over all children
(this corresponds to the maximal gain possible via corruption). If the possible gain by corruption is
larger than ε = 1√

n·log3 n
, the adversary will corrupt v, so we set c0

v = 1, and we update the penalty

value by setting it to be p0
v = ε, to appropriately accommodate for this.

In the next levels, the situation is more complicated as we need to take into account the penalty
values. For example, if there is a strategy for corrupting the next message that will increase our
chance of outputting 0 by much, but has a high penalty (i.e., will require many corruptions in the
future), this move is not always worthwhile for the attacker. So, instead of comparing only the
expected outcome of the protocol, we take into account also the penalty.

For every node v, we define α′v = αv + p0
v, and compare the expected gain versus the best

possible gain with respect to α′v (rather than αv). Namely, we compute the expected α′ value if
we proceed to a random child, and compare it to the minimal possible α′ value of all children. If
this gap is larger than ε, the adversary corrupts v, and thus we set c0

v = 1 and we set the penalty
value p0

v to be p0
v = p0

u + ε, where u is the child that the adversary proceeds to.
The inductive process ends with a triple of values (αroot, c

0
root, p

0
root), corresponding to the root

node and the adversary A0. The penalty value p0
root is equal to ε times the expected number

of corruptions that the adversary A0 makes. The probability that the protocol outputs 0 with
adversary A0 is 1− αroot.

Similarly, we define the adversary A1 and obtain the values (βroot, c
1
root, p

1
root), where the penalty

value p1
root is equal to ε times the expected number of corruptions that the adversary A1 makes,

and the probability that the protocol outputs 1 with adversary A1 is βroot.
It is not possible to prove that both adversaries succeed with high probability (as there are

protocols that can only be biased towards one of the two possible values, with the corruption of
Õ(
√
n) parties). Technically, the problem with using an argument similar to the case ` = 1 is that

we cannot apply Azuma’s inequality as before, because we do not have an upper bound on the
absolute value of each variable.

Nevertheless, we are able to prove that at least one of the two adversaries succeeds with high
probability, while corrupting Õ(

√
n) parties. This argument is more complicated, but the main

idea is to define another “adversary”, “in between” A0 and A1. (In the actual proof we refer to
that adversary as a random walk). The new adversary is defined similarly to A0 and A1, but
instead of minimizing α′v (or maximizing β′v) it tries to minimize β′v − α′v (after they were defined
by the definitions of A0 and A1). Very roughly speaking, since the new adversary is “sandwiched”
between A0 and A1, we are able to apply Azuma’s theorem for the new adversary and to derive
a contradiction. Technically, the contradiction is derived by showing that if α′root is not close to
0 and β′root is not close to 1, then the new adversary gets (with high probability) to a leaf that is
labeled with neither 0 nor 1.

The full proof is the technical heart of the paper and is given in Section 4.
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2 Definitions & Preliminaries

For an integer n ∈ N, we denote by [n] the set {1, . . . , n}. Throughout the paper, we denote by
Π a collective coin-flipping protocol, denote by n ∈ N the number of parties participating in the
protocol, and denote the parties by P1, . . . , Pn. We assume that Π, when executed honestly, outputs
the bit 0 (and similarly for 1) with probability Ω(1).

Communication model. The full information model [BL89] is a synchronous model. Namely,
each protocol consists of rounds in which parties send messages. There exists a global counter
which synchronizes parties in between rounds but they are asynchronous within a round. The
parties communicate via a broadcast channel.

We define two restricted types of protocols: single-bit and single-turn.

Definition 2.1 (Single-bit protocol). We say that a protocol is a single-bit protocol for n parties if
this protocol is executed in rounds such that in each round each party sends a single random bit.

Definition 2.2 (Single-turn protocol). We say that a protocol is a single-turn protocol for n parties
if this protocol is executed in n rounds such that party Pi sends a single (possibly long) message at
round i.

The above two restricted families of protocols can be naturally described by a game tree (of
arity two in the single-bit case and bigger arity in the single-turn case) whose leaves are labeled by
0 and 1, and whose internal nodes (including the root) are labeled by numbers in [n].

Without loss of generality, we restrict our attention to public-coin protocols.

Definition 2.3 (Public-coin protocol). A protocol is public-coin if each honest party broadcasts all
of the randomness he generates (i.e., his “local coin-flips”), and does not send any other messages.

Corruption model. We consider the Byzantine model, where a bound t = t(n) ≤ n is specified,
and the adversary is allowed to corrupt up to t parties. The adversary can see the entire transcript
(i.e., all the messages sent thus far), has full control over all the corrupted parties, and can broadcast
any messages on their behalf. Moreover, the adversary has control over the order of the messages
sent within each round of the protocol (i.e., “rushing”).

Within this model, two main types of adversaries were considered in the literature: static
adversaries, who need to specify the parties they corrupt before the protocol begins, and adaptive
adversaries, who can corrupt the parties adaptively based on the transcript so far. We focus on
adaptive adversaries

Definition 2.4 (Adaptive adversary). Within each round, the adversary chooses parties one-by-
one to send their messages; and he can perform corruptions at any point during this process based
on the messages sent thus far and the protocol specification.

Security. The security of a collective coin-flipping protocol is usually measured by the extent to
which an adversary can, by corrupting a subset of parties, bias the protocol outcome towards his
desired bit.
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Definition 2.5 (ε-security). Fix ε = ε(n) and t = t(n). A coin-flipping protocol Π is ε-secure
against t adaptive corruptions if for all n ∈ N, it holds that for any adaptive adversary A that
corrupts at most t parties,

min
{

Pr [Output of A(Π) = 0] ,Pr [Output of A(Π) = 1]
}
≥ ε(n),

where “Output of A(Π)” is a random variable that corresponds to the output of the protocol Π when
executed in the presence of the adversary A.

We next define a secure protocol as one where an adversary cannot “almost always” get the
outcome he wants.

Definition 2.6 (Security). A coin-flipping protocol is secure against t = t(n) corruptions if it is
ε-secure against t corruptions for some constant ε ∈ (0, 1).

2.1 Azuma’s Inequality

We state Azuma’s inequality which is extensively used in our proofs. This formulation is standard
and can be found, for example, in Alon-Spencer [AS08] and in Dubhashi-Panconesi [DP09].

Theorem 2. Let X1, . . . , XN be random variables, such that for every i ∈ [N ], |Xi| ≤ εi. If for
every i ∈ [N ] it holds that E[Xi | X1, . . . , Xi−1] ≤ 0, then for any s ≥ 0,

Pr

[
N∑
i=1

Xi ≥ s

]
≤ 2 · e

− s2

2
∑N
i=1

ε2
i

Similarly, if for every i ∈ [N ] it holds that E[Xi | X1, . . . , Xi−1] ≥ 0, then for any s ≥ 0,

Pr

[
N∑
i=1

Xi ≤ −s

]
≤ 2 · e

− s2

2
∑N
i=1

ε2
i

3 A Lower Bound for Single-Bit Single-Turn Protocols

In this section, we give a simplified proof for the following theorem, originally proved in [LLS89]

Theorem 3 ([LLS89]). There does not exist a single-bit single-turn collective coin-flipping protocol
that is resilient to more than Ω̃(

√
n) adaptive corruptions.

Proof. Fix any single-bit single-turn collective coin-flipping protocol Π. Consider the binary pro-
tocol tree of depth n corresponding to Π. We construct an adversary A0 that with probability
1− o(1), biases the outcome towards 0 while corrupting at most Õ(

√
n) players.5

For each node v in the protocol tree, we associate a sequence of bits b1, . . . , bi that lead to it
from the root of the tree, and a value αv which stands for the probability that the outcome of
the protocol is 0, when executed honestly starting from the node v. Namely, αv , Pr[Πv = 0],
where Πv is a random variable that corresponds to the output of the protocol Π when executed

5One can analogously construct an adversary A1 that with probability 1 − o(1), biases the outcome towards 1
while corrupting at most Õ(

√
n) players.
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honestly starting from node v. Let p0 , Pr[Πroot = 0] ≥ Θ(1) be the probability that the protocol,
executed honestly from the root, outputs 0. Further, observe that for every leaf v that is labeled
by b ∈ {0, 1}, it holds that αv = 1− b.

Let ε , 1√
n·log2 n

. Given that the protocol is in node v, the adversary A0 computes two values

αmin
v = min{αv0, αv1} and αmax

v = max{αv0, αv1},

where αv0 is the value associated with the left child of v and αv1 is the value associated with the
right child of v. Note that αv = (αv0 + αv1)/2. If αv ≥ αmin

v + ε (or, equivalently, αv ≤ αmax
v − ε),

then the adversary corrupts the party that is associated with node v and sends b ∈ {0, 1} such that
αvb > αvb̄ (where b̄ = 1 − b). Otherwise, if αmax

v − ε < αv < αmin
v + ε, then the adversary A0 does

not corrupt the corresponding party and lets it send a random bit. This completes the description
of the adversary.

We next show that with overwhelming probability over the execution of the protocol with the
adversary A0, the leaf with which the protocol concludes is a leaf that is labeled with 0. In addition,
with overwhelming probability, the number of corruptions along the way is bounded by 1/ε.

Let (b1, . . . , bn) ∈ {0, 1}n be a random variable corresponding to the n bits sent during the exe-
cution of the protocol ΠA0 . Namely, if A0 corrupts the party sending the i’th bit in the protocol Π,
given that the previous i−1 bits sent were (b1, . . . , bi−1), and sends the bit b∗ ∈ {0, 1} on its behalf,
then we set bi = b∗. Otherwise, if A0 does not corrupt this party, then bi is randomly chosen in
{0, 1}. Every prefix of the n bits b1, . . . , bn sent during the course of the protocol, corresponds to a
node v in the protocol tree. Thus, we can write αb1,...,bi for αv, where the vertex v corresponds to
the path b1, . . . , bi from the root to v in the protocol tree. Let δi be a random variable defined as

δi , αb1,...,bi − αb1,...,bi−1
.

Denote by I ⊆ [n] the set of indices in which the adversary A0 corrupts the corresponding party.
It holds that

n∑
i=1

δi =
∑
i∈I

δi +
∑
i/∈I

δi = αb1,...,bn − αroot. (1)

We first argue that with overwhelming probability
∑

i/∈I δi ≤ o(1).

Claim 3.1. Pr
[∣∣∑

i/∈I δi
∣∣ ≥ 1

logn

]
≤ negl(n).

Proof. Define n random variables X1, . . . , Xn as follows: For every i ∈ I we set Xi = 0, and for
every i 6∈ I we define Xi = δi. Note that for every i ∈ [n], it holds that |Xi| ≤ ε and

E[Xi | X1, . . . , Xi−1] = 0.

Thus, by Azuma’s inequality, for any s > 0,

Pr

[∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ s
]
≤ 4 · e−

s2

2nε2 .
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Setting s = ε ·
√
n · log n = 1

logn , we conclude that

Pr

[∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ 1

log n

]
≤ negl(n).

We condition on the event that
∣∣∑

i/∈I δi
∣∣ ≤ 1

logn occurs. Also, recall that αroot = Θ(1). Plugging
these into Equation (1), we get that

αb1,...,bn ≥ αroot +
∑
i∈I

δi −
1

log n
.

By the definition of A0, whenever it corrupts an index i, it causes δi to be positive. Thus,

αb1,...,bn ≥ αroot −
1

log n
.

This implies that αb1,...,bn = 1 since αb1,...,bn ∈ {0, 1} and αroot ≥ Ω(1).
We proceed with the bound on the number of corruptions made by A0. By Equation (1), the

fact that αroot ∈ (0, 1), and that with overwhelming probability
∣∣∑

i/∈I δi
∣∣ ≤ 1

logn and αb1,...,bn = 1,
it holds that (with overwhelming probability)∑

i∈I
δi = αb1,...,bn − αroot −

∑
i/∈I

δi ≤ 1.

Since for each i ∈ I, it holds that δi ≥ ε, the number of corruptions is bounded by 1/ε, as required.

4 A Lower Bound for Single-Turn Protocols

In this section, we prove our lower bound for single-turn collective coin-flipping protocols.

Theorem 4. There does not exist a single-turn collective coin-flipping protocol that is resilient to
more than Ω̃(

√
n) adaptive corruptions.

Proof. Fix any single-turn collective coin-flipping protocol Π. Since we are in the full information
model, we can assume without loss of generality that the protocol is public-coin (see Definition 2.3).
Namely, each player sends a random message from some universe {0, 1}`. We denote L , 2`.

Consider the L-ary protocol tree corresponding to Π. We define two adversaries A0 and A1,
where A0 tries to bias the output towards 0 and A1 tries to bias the output towards 1. We prove
that at least one of these adversaries succeeds with probability 1 − o(1) while corrupting at most√
n · polylog(n) players.

To this end, we associate with each node v in the protocol tree, three pairs of values

(αv, βv), (c0
v, c

1
v), and (p0

v, p
1
v).

Intuitively, αv is the expectation of the outcome of the protocol in the presence of the adversary
A0, given that we are at node v, and βv is the expectation of the outcome of the protocol in the
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presence of the adversary A1, given that we are at node v. The pair (c0
v, c

1
v) is a pair of bits, where

c0
v = 1 if and only if A0 corrupts node v, and c1

v = 1 if and only if A1 corrupts node v.6 The pair
(p0

v, p
1
v) are a pair of “penalty” values . Intuitively, the penalty p0

v (resp. p1
v) is proportional to the

expected number of corruptions the adversary A0 (resp. A1) does, from node v onwards.
The penalty values {p0

v}v∈V , along with the values {αv}v∈V , are used by the adversary A0 to
decide which nodes to corrupt (i.e., for which nodes v to set c0

v = 1). Similarly, the penalty values
{p1

v}v∈V , along with the values {βv}v∈V , are used by the adversary A1 to decide which nodes to
corrupt (i.e., for which nodes v to set c1

v = 1).
Formally, the values (αv, βv), (c0

v, c
1
v), and (p0

v, p
1
v) are defined by induction starting from the

leaves. For any leaf v labeled by 0 we define αv = βv = 0, and for any leaf v labeled by 1 we define
αv = βv = 1. For all leaves v we define c0

v = c1
v = 0 and p0

v = p1
v = 0.

Let k =
√
n · log3 n and let ε = 1

k . For a non-leaf node v, suppose that its L children are
associated with

{(αi, βi)}Li=1 and {(p0
i , p

1
i )}Li=1.

For every i ∈ [L], define

α′i = αi + p0
i and β′i = βi − p1

i .

Let

αavg ,
1

L
·

L∑
i=1

αi , α′avg ,
1

L
·

L∑
i=1

α′i , α′min , min{α′1, . . . , α′L}

and let

βavg ,
1

L
·

L∑
i=1

βi , β′avg ,
1

L
·

L∑
i=1

β′i , β′max = max{β′1, . . . , β′L}

If α′min ≤ α′avg−ε, then set c0
v = 1. In this case, if the protocol arrives at node v, then the adver-

sary A0 corrupts node v and proceeds to its child i∗ with minimal α′; i.e., i∗ = argmini∈child(v){α′i},
and we set αv = αi∗ and p0

v = p0
i∗ + ε. Otherwise, set c0

v = 0. In this case, the adversary A0 does
not corrupt node v, and we set αv = αavg and p0

v = 1
L ·
∑L

i=1 p
0
i . We denote

α′v = αv + p0
v.

Similarly, if β′max ≥ β′avg + ε, then set c1
v = 1. In this case, if the protocol arrives at node v,

then the adversary A1 corrupts node v and proceeds to its child i∗ with maximal β′; i.e., i∗ =
argmaxi∈child(v){β′i}, and we set βv = βi∗ and p1

v = p1
i∗ + ε. Otherwise, set c1

v = 0. In this case, the

adversary A1 does not corrupt node v, and we set βv = βavg and p1
v = 1

L ·
∑L

i=1 p
1
i . We denote

β′v = βv − p1
v.

In what follows, we denote by αroot and βroot the α and β values of the root, respectively.
Similarly, we denote by α′root and β′root the α′ and β′ values of the root, respectively. We denote by
p0
root and p1

root the penalty values of the root.
The following claim follows immediately from the definition of p0

root and p1
root.

6When we say that an adversary corrupts node v we mean that it corrupts the party associated with node v.
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Claim 4.1. For every b ∈ {0, 1}, it holds that

pbroot =
1

k
· E[# of corruptions Ab makes].

In what follows, we denote by ΠA0 the random variable which is the outcome of protocol Π
with adversary A0, and similarly we denote by ΠA1 the random variable which is the outcome of
protocol Π with adversary A1 (in both ΠA0 and ΠA1 the randomness is over the coin tosses of the
honest players). In order to complete the proof of the theorem it suffices to prove the following two
lemmas.

Lemma 4.2. Pr[ΠA0 = 0] = 1− αroot and Pr[ΠA1 = 1] = βroot.

Lemma 4.3. α′root = o(1) or β′root = 1− o(1).

The reason why these two lemmas suffice is that for any node v in the protocol tree (and in
particular for the root), αv ≤ α′v and βv ≥ β′v. Thus, the two lemmas imply that either

Pr[ΠA0 = 0] = 1− o(1) or Pr[ΠA1 = 1] = 1− o(1).

Moreover, by definition, α′root = αroot + p0
root and β′root = βroot − p1

root. Thus, if α′root = o(1) then
Claim 4.1, together with the fact that αroot ≥ 0 (see Lemma 4.2), implies that the adversary A0

is expected to make only o(k) corruptions. By Markov’s inequality A0 makes o(k) corruptions
with probability 1 − o(1). Similarly, if β′root = 1 − o(1) then Claim 4.1, together with the fact
that βroot ≤ 1 (see Lemma 4.2), implies that the adversary A1 is expected to make only o(k)
corruptions. By Markov’s inequality A1 makes o(k) corruptions with probability 1 − o(1). Since
we set k =

√
n · log3 n, this completes the proof.

We proceed with the proof of Lemma 4.2, followed by the proof of Lemma 4.3.

4.1 Proof of Lemma 4.2

We prove the more general statement that for any node v in the protocol tree, the probability that
ΠA0 = 0 (respectively, ΠA1 = 1), conditioned on the event that the protocol arrives at node v, is
1−αv (respectively, βv). To this end, for any node v in the protocol tree, denote by Πv the protocol
execution starting from node v. We prove that for every node v,

Pr[Πv
A0

= 0] = 1− αv and Pr[Πv
A1

= 1] = βv. (2)

The proof is by induction from the leaves to the root. For leaf nodes, Equation (2) holds trivially.
Suppose that Equation (2) holds for nodes at layer d+ 1, and we shall prove that it holds for nodes
at layer d. To this end, fix a node v at layer d, and denote its L (layer d+1) children by u1, . . . , uL.
To be consistent with our previous notation, we denote αi , αui and let αavg = 1

L

∑L
i=1 αi. We

show that Pr[Πv
A0

= 0] = 1− αv and mention that the proof that Pr[Πv
A1

= 1] = βv is analogous.
We distinguish between two cases:

• Case 1: c0v = 0. This case corresponds to the case where A0 does not corrupt node v. In
this case,

Pr[Πv
A0

= 0] =
1

L

L∑
i=1

Pr[Πui
A0

= 0] =
1

L

L∑
i=1

(1− αi) = 1− αavg = 1− αv,

11



where the second equality follows from the induction assumption, and the other equalities
follow from the definition of A0, αavg and αv.

• Case 2: c0v = 1. This case corresponds to the case where A0 corrupts node v. We denote
by i∗ the child with minimal α′. In this case,

Pr[Πv
A0

= 0] = Pr[Π
ui∗
A0

= 0] = (1− αi∗) = 1− αv,

where the second equality follows from our induction assumption, and the other equalities
follow from the definition of A0, and αv.

This completes the proof of the lemma.

4.2 Proof of Lemma 4.3

Suppose towards contradiction that there exists a constant c > 0 such that α′root > c and β′root <
1− c. We prove that at each layer of the circuit there exists a node v for which α′v > c− o(1) and
β′v < 1− c+ o(1). This would imply a contradiction since at each leaf v it holds that either α′v = 0
or β′v = 1.

We define a random walk on the protocol tree from the root to the leaves. Since Π is a single
turn protocol on n players, the protocol tree is of depth n. We denote the nodes on the walk by
v0, v1, . . . , vn, where v0 is the root and vn is a leaf. The random walk is defined as follows:

1. Let V1 be the set of all nodes v such that for every child u ∈ child(v) it holds that∣∣α′u − α′v∣∣ ≤ ε · log n and
∣∣β′u − β′v∣∣ ≤ ε · log n.

If we are at node vi ∈ V1, then vi+1 is a random child of vi.

2. Let V2 be the set of all nodes that are not in V1. If vi ∈ V2, then choose a child vi+1 ∈ child(vi)
that minimizes the value β′u − α′u. Namely, vi+1 = argminu∈child(vi) {β

′
u − α′u}.

Recall that in order to get a contradiction, it suffices to prove that with overwhelming proba-
bility, α′vn ≥ c−o(1) and β′vn ≤ 1− c+o(1). To this end, we define n random variables X1, . . . , Xn,
and n random variables Y1, . . . , Yn, as follows:

Xi+1 = α′vi+1
− α′vi and Yi+1 = β′vi+1

− β′vi .

Notice that

α′vn = α′v0 +

n∑
i=1

Xi and β′vn = β′v0 +

n∑
i=1

Yi.

To get a contradiction it suffices to prove that for any constant t > 0, with overwhelming
probability (over the random walk)

n∑
i=1

Xi ≥ −t and
n∑

i=1

Yi ≤ t. (3)

To this end, we partition the set [n] into two sets I1, I2 ⊆ [n], such that i ∈ Ib if and only if
vi ∈ Vb for b ∈ {0, 1} and i ∈ [n] and where V1 and V2 are the sets defined above. Namely,

I1 = {i : vi ∈ V1} and I2 = {i : vi ∈ V2}.

In order to prove Equation (3), it suffices to prove the following two claims.
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Claim 4.4. For any constant t > 0, with overwhelming probability (over the random walk),∑
i∈I1

Xi ≥ −t and
∑
i∈I1

Yi ≤ t.

Claim 4.5. For any constant t > 0, with overwhelming probability (over the random walk),∑
i∈I2

Xi ≥ −t and
∑
i∈I2

Yi ≤ t. (4)

We start by stating the following claim which we will use in the proofs of Claims 4.4 and 4.5.

Claim 4.6. For every node v in the protocol tree,

α′v ≤ α′avg and β′v ≥ β′avg,

where α′avg denotes the average of the values of {α′u}u∈child{v} over the children of v, and β′avg denotes
the average of the values of {β′u}u∈child{v} over the children of v.

Proof of Claim 4.6. Fix a node v in the protocol tree. We show that α′v ≤ α′avg and note that the
proof that β′v ≥ β′avg is analogous.

If c0
v = 0, then α′v = α′avg and the claim holds. Suppose that c0

v = 1. In this case, α′v = α′min + ε,
where α′min = minu∈child{v}{α′u} is the minimal value of α′ over all the children of v. Also, by
definition, α′min ≤ α′avg − ε. Thus, α′v ≤ α′avg − ε+ ε = α′avg, as desired.

Proof of Claim 4.4. By definition, for every i ∈ I1, |Xi|, |Yi| ≤ ε · log n. Claim 4.6 implies that

E[Xi | X1, . . . , Xi−1] ≥ 0 and E[Yi | Y1, . . . , Yi−1] ≤ 0.

We extend the series of random variables (Xi)i∈I1 and (Yi)i∈I1 , and define two sequences of n
random variables

(X ′1, . . . , X
′
n) and (Y ′1 , . . . , Y

′
n)

such that for every i ∈ [n] it holds that

X ′i =

{
Xi if i ∈ I1

0 otherwise
and Y ′i =

{
Yi if i ∈ I1

0 otherwise.

Note that (by Claim 4.6) it still holds that for every i ∈ [n],

E[X ′i | X ′1, . . . , X ′i−1] ≥ 0 and E[Y ′i | Y ′1 , . . . , Y ′i−1] ≤ 0.

Thus, by Azuma’s inequality (see Theorem 2), for any real s > 0,

Pr

[
n∑

i=1

X ′i ≤ −s

]
≤ 2 · e−

s2

2n(ε·logn)2 and Pr

[
n∑

i=1

Y ′i ≥ s

]
≤ 2 · e−

s2

2n(ε·logn)2 .

By definition
∑

i∈I1 Xi =
∑n

i=1X
′
i and

∑
i∈I1 Yi =

∑n
i=1 Y

′
i and thus

Pr

∑
i∈I1

Xi ≤ −ε ·
√
n · log2 n

 = negl(n) and Pr

∑
i∈I1

Yi ≥ ε ·
√
n · log2 n

 = negl(n).

Since we set ε = 1
k = 1√

n·log3 n
, we have that ε ·

√
n · log2 n = o(1), which completes the proof.
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We proceed with the proof of Claim 4.5. In the proof, we make use of the following two claims.

Claim 4.7. For any node v in the protocol tree and for any u ∈ child(v),

β′u ≤ β′v + ε and α′u ≥ α′v − ε.

Proof. Fix any node v in the protocol tree and fix any child u ∈ child(v). We prove that β′u ≤ β′v+ε.
The proof that α′u ≥ α′v − ε is analogous and thus omitted.

We distinguish between two cases. First, if c1
v = 0, then β′v = β′avg and all the children of v have

β′ which is at most β′avg + ε which implies that β′u ≤ β′v + ε. Second, if c1
v = 1, then β′v = β′max − ε,

where β′max = maxu∈child(v){β′u} is the maximal β′ of all the children of v. This also implies that
β′u ≤ β′v + ε.

Claim 4.8. For every node v in the protocol tree, it holds that β′v ≥ α′v.

Proof. The proof is by induction from the leaves to the root. For any leaf v, it holds that β′v = α′v
by definition, and in particular β′v ≥ α′v. Suppose that β′v ≥ α′v holds for every node v in layer d+1
and we prove that it holds for every node in layer d.

To this end, fix any node v in layer d. Suppose that its L children (in layer d+1) are associated
with values {(α′i, β′i)}Li=1, and denote

α′avg ,
1

L

L∑
i=1

α′i and β′avg ,
1

L

L∑
i=1

β′i.

The induction assumption implies that β′avg ≥ α′avg. This, together with Claim 4.6, implies that

β′v ≥ β′avg ≥ α′avg ≥ α′v,

as desired.

Proof of Claim 4.5. We first show that for every i ∈ I2,

β′vi+1
− α′vi+1

≤
(
β′vi − α

′
vi

)
− ε · (log n− 1). (5)

Fix any vi ∈ V2. By definition of V2, there exists a child u ∈ child(vi) such that∣∣α′u − α′vi∣∣ ≥ ε · log n or
∣∣β′u − β′vi∣∣ ≥ ε · log n.

Claim 4.7 implies that there exists a child u ∈ child(vi) such that

α′u ≥ α′vi + ε · log n or β′u ≤ β′vi − ε · log n.

For concreteness, suppose that α′u ≥ α′vi + ε · log n (the proof for β′u ≤ β′vi − ε · log n is analogous).
Claim 4.7 implies that β′u ≤ β′vi + ε. These two inequalities imply that

β′u − α′u ≤ β′vi + ε− α′vi − ε · log n = (β′vi − α
′
vi)− ε · (log n− 1).

This implies Inequality (5), since vi+1 was chosen to minimize the value of β′vi+1
− α′vi+1

.
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Inequality (5) implies that, with overwhelming probability,

|I2| · ε · (log n− 1) ≤
∑
i∈I2

(
β′vi − α

′
vi

)
−
(
β′vi+1

− α′vi+1

)
≤
∑
i∈I2

(
β′vi − α

′
vi

)
−
(
β′vi+1

− α′vi+1

)
+

∑
i∈II

(
β′vi − α

′
vi

)
−
(
β′vi+1

− α′vi+1

)
+ 1

=
(
β′root − α′root

)
−
(
β′vn − α

′
vn

)
+ 1 ≤ 2, (6)

where the first inequality follows by Equation (5) and summing over all i ∈ I2, the second inequality
follows by Claim 4.4, and the last inequality follows by our assumption that α′root > c and β′root <
1− c together with Claim 4.8.

Note that Claim 4.7 implies that for every i ∈ [n], it holds that Xi ≥ −ε and Yi ≤ ε. This,
together with Equation (6), implies that∑

i∈I2

Xi ≥ −ε · |I2| ≥ −
2

log n− 1
and

∑
i∈I2

Yi ≤ ε · |I2| ≤
2

log n− 1
,

as desired.
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