
Local Decodability of the Burrows-Wheeler Transform

Sandip Sinha
Columbia University

sandip@cs.columbia.edu

Omri Weinstein
Columbia University
omri@cs.columbia.edu

Abstract

The Burrows-Wheeler Transform (BWT) is among the most influential discoveries in text
compression and DNA storage. It is a reversible preprocessing step that rearranges an n-letter
string into runs of identical characters (by exploiting context regularities), resulting in highly
compressible strings, and is the basis for the ubiquitous bzip program. Alas, the decoding pro-
cess of BWT is inherently sequential and requires Ω(n) time even to retrieve a single character.

We study the succinct data structure problem of locally decoding short substrings of a given
text under its compressed BWT, i.e., with small redundancy r over the Move-To-Front based
(bzip) compression. The celebrated BWT-based FM-index (FOCS ’00), and other related
literature, gravitate toward a tradeoff of r = Õ(n/

√
t) bits, when a single character is to be

decoded in O(t) time. We give a near-quadratic improvement r = Õ(n · lg t/t). As a by-product,
we obtain an exponential (in t) improvement on the redundancy of the FM-index for counting
pattern-matches on compressed text. In the interesting regime where the text compresses to
n1−o(1) bits, these results provide an exp(t) overall space reduction. For the local decoding
problem, we also prove an Ω(n/t2) cell-probe lower bound for “symmetric” data structures.

We achieve our main result by designing a compressed Rank (partial-sums) data structure
over BWT. The key component is a locally-decodable Move-to-Front (MTF) code: with only
O(1) extra bits per block of length nΩ(1), the decoding time of a single character can be decreased
from Ω(n) to O(lg n). This result is of independent interest in algorithmic information theory.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 141 (2018)

1 Introduction

Exploiting text regularities for data compression is an enterprise that received a tremendous amount
of attention in the past several decades, driven by large-scale digital storage. Motivated by this
question, in 1994 Burrows and Wheeler [6] proposed a preprocessing step that ‘tends’ to rearrange
strings into more ‘compressible form’: Given x ∈ Σn, generate the n × n matrix whose rows
are all cyclic shifts of x, sort these rows lexicographically, and output the last column L of the
matrix. The string L is called the Burrows-Wheeler Transform (BWT) of x. Note that L is
a permutation of the original string x, as each row of the sorted matrix is still a unique cyclic
shift. The main observation is that, in the permuted string L, characters with identical context1

appear consecutively, hence if individual characters in the original text x tend to be predicted by a
reasonably small context (e.g., as in English texts), then the string L := BWT(x) will exhibit local
similarity, namely, identical symbols will tend to recur at close vicinity. (For more elaboration on
the properties of BWT and the role it plays in bioinformatics and information retrieval, we refer
the reader to [1] and references therein). This property suggests a natural way to compress L, using
a relative recency coding method, whereby each symbol in L is replaced by the number of distinct
symbols that appeared since its last occurrence. Indeed, since in L symbols have local similarity,
i.e., tend to recur at close vicinity, we expect the output string to consist mainly of small integers
(and in particular, 0-runs) and hence much cheaper to encode. This relative encoding, known as
the Move-to-Front transform [3], followed by run-length coding of 0-runs and an arithmetic coding
stage (henceforth denoted RLX(L)), forms the basis for the bzip2 program [35]. The RLX (“bzip”)
compression benchmark was justified both theoretically and empirically [9, 19, 23], where among
other properties, it was shown to approximately converge to any finite-order empirical entropy Hk

(see Section 2.2.2 for the formal definitions and comparative analysis against other compressors).
The most remarkable property of the Burrows-Wheeler transform is that it is invertible. The

crux of the decoding process is the fact that the transform preserves the order of occurrences (a.k.a
rank) of any given character in both the first column and last column (L) of the BWT matrix. This
crucial fact facilitates an iterative decoding process, whereby, given the decoded position of xi+1

in L, one can decode the previous character xi using O(|Σ|) Rank2 queries to L (see Section 2.1.1
below for the formal decoding algorithm). Alas, this decoding process is inherently sequential, and
therefore requires Ω(n) time to decode even a single coordinate of x [20,24]. In fact, no sub-linear
decoding algorithm for xi is known even if L is stored in uncompressed form.

This is an obvious drawback of the Burrows-Wheeler transform, as many storage applications,
such as genetic sequencing and alignment, need local searching capabilities inside the compressed
database [29]. For example, if x1, x2, . . . , xm ∈ Σn is a collection of m separate files with very similar
contexts, e.g., DNA sequences, then we expect |RLX(Lx1◦x2◦...◦xm)| �

∑m
j=1 |RLX(Lxj)|, but jointly

compressing the files would have the drawback that, when the application needs to retrieve only a
single file xj , it will need to spend Ω(n ·m) I/Os (instead of O(n)) to invert BWT(x1 ◦x2 ◦ . . .◦xm).
The main question we address in this paper is, whether small additive space redundancy (over the
compressed BWT string (|RLX(BWT(x))|) can be used to speed up the decoding time of a single
character (or a short substring) of the original text, in the word-RAM model :

Problem 1. What is the least amount of space redundancy r = r(t) needed beyond the
compressed BWT(x) string, so that each coordinate xi can be decoded in time t ?

Since |RLX(BWT(x))| approaches any finite-order empirical entropy Hk(x) (see Section 2.2.2),

1The k-context of a character xi in x is the k consecutive characters that precede it.
2The Rank of a character xi ∈ x is the number of occurrences of identical symbols in x that precede it :

Rank(x, i) := |{j ≤ i : xj = xi}|. See also Section 2.

1

this data structure problem can be viewed as the succinct dictionary3 problem under infinite-
order entropy space benchmark. A long line of work has been devoted to succinct dictionaries in
the context-free regime, i.e., when the information theoretic space benchmark is the zeroth-order
empirical entropy H0(x) :=

∑
c∈Σ nc lg n

nc
of marginal frequencies (e.g., [17, 30, 31] to mention a

few). However, as discussed below, much less is known about the best possible trade-off under
higher order entropy benchmarks which take context (i.e., correlation between xi’s) into account.

A related but incomparable data structure problem to Problem 1, is that of compressed pattern-
matching in strings, a.k.a full-text indexing, where the goal is to succinctly represent a text in
compressed form as before, so that all occ(p) occurrences of a pattern p ∈ Σ` in x can be reported, or
more modestly, counted, in near-optimal timeO(`+occ(p)). The celebrated BWT-based compressed
text index of Ferragina and Manzini [13], commonly known as the FM-index, achieves the latter
task using |RLX(L)|+O(n/ lg n) bits of space4, and despite a long line of subsequent developments
in the field, remains one of the most prominent tools in pattern matching for bioinformatics and
text applications (see [29] and references therein). The core of the FM-index is a compressed data
structure that computes Rank queries over the (compressed) BWT string L in constant time and
redundancy r = O(n/ lg n) bits, and more generally, in time t′ and redundancy r = Θ̃(n/t′). Their
data structure, combined with simple “marking index”5 of the BWT permutation on blocks of
length t, yields a solution to Problem 1 with overall redundancy Õ (n/t+ n/t′) and time O(t · t′)
(as simulating each sequential step of the BWT decoder requires O(1) rank queries, and there are t
coordinates per block). In other words, if the desired decoding time of a coordinate is t, [13] gives
redundancy r = Õ(n/

√
t) over RLX. In fact, even for randomized succinct dictionaries approaching

Hk(x) bits of space, the best known trade-off is r = Θ(1/
√
t): Dutta et al. [8] gave a randomized

data structure with space (1 + ε)H̃k(x),6 and expected decoding time Θ(1/ε2) to retrieve each xi.
Our first main result is a near-quadratic improvement over this trade-off for Problem 1:

Theorem 1 (Local Decoding of BWT, Informal). For any t and any string x ∈ Σn, there is a

succinct data structure that stores |RLX(BWT(x))| + Õ
(
n lg t
t

)
+ n0.9 bits of space, so that each

coordinate xi can be retrieved in O(t) time, in the word-RAM model with word size w = Θ(lg n).

Our data structure directly implies that a contiguous substring of size ` of x can be decoded
in time O(t+ `) without increasing the space redundancy. It is noteworthy that achieving a linear
trade-off as above between time and redundancy with respect to zeroth order entropy (H0(x)) is
trivial, by dividing x into n/t blocks of length t, and compressing each block using Huffman (or
arithmetic) codes, as this solution would lose at most 1 bit per block. However, this solution
fails miserably with respect to higher-order entropy benchmarks Hk (in fact, even against H1),
since in the presence of contexts, the loss in compressing each block separately can be arbitrarily
large (e.g., H0

(
(ab)n/2

)
= n but H1

(
(ab)n/2

)
= lg n). This example illustrates the qualitative

difference between the Dictionary problem in the independent vs. correlated setting. In fact,
we prove a complementary cell-probe lower bound of r ≥ Ω(n/t2) on Problem 1 for “symmetric”
data structures, which further decode the dispositions of any xi in L = BWT(x) and vice versa, in
time O(t) (see Theorem 3.2 below). While removing this (natural) restriction remains an interesting
open question, this result provides a significant first step in understanding the cell-probe complexity
of Problem 1, more on this below.

Our second main result, which is a by-product of our central data structure, is an exponential
improvement (in t) on the redundancy of the FM-index for compressed pattern-matching counting:

3For a string x ∈ Σn and an index i ∈ [n], Dictionary(x, i) returns xi, the ith character in x.
4For reporting queries, [13] requires significantly larger space |RLX(L)| · lgε n+O(n/ lg1−ε n) for some ε ∈ (0, 1).
5I.e., recording shortcut pointers to the location of xi in L for every block i ∈ [j · t], j ∈ [n/t], see Section 3.
6Here, H̃k denotes the Lempel-Ziv [41] codeword |LZ78(x)| (up to o(n) additive terms), hence limn→∞ H̃k/n = Hk.

2

Theorem 2. There is a small constant δ > 0 such that for any x ∈ Σn and any t ≤ δ lg n, there is
a compressed index using |RLX(BWT(x))|+ n lg n/2t + n1−Ωδ(1) bits of space, counting the number
of occurrences of any pattern p ∈ Σ` in time O (t`+ occ(p)) time.

To the best of our knowledge, Theorem 2 provides the first compressed text index for pattern-
matching counting queries, that can provably go below the Ω̃(n/ lg n) space barrier while maintain-
ing near-optimal query time. In particular, it implies that at the modest increase of query time by a
O(lg lg n) factor, any n/poly lg n redundancy is achievable. In the interesting setting of compressed
pattern-matching, where the text compresses to n1−o(1) bits (e.g., Hk(x) = n/ lgO(1) n), this re-
sult provides an exponential (in t) overall (i.e., multiplicative) space reduction over the FM-index.
Compressed string-matching in the the o(1) per-bit entropy regime was advocated in the seminal
work of Farach and Thorup, see [10] and references therein. For reporting queries, we obtain a
quadratic improvement over the FM-index, similar to Theorem 1 (see Section 6).

The main ingredient of both Theorem 1 and 2 is a new succinct data structure for computing
Rank queries over the compressed BWT string L = BWT(x), with exponentially small redundancy
r ≈ n/2t with respect to |RLX(L)| (see Theorem 3.1 below). Our data structure builds upon and
is inspired by the work of Pǎtraşcu [31], who showed a similar exponential trade-off for the Rank
problem, with respect to the zeroth order entropy H0(L), i.e., in the context-free setting. In that
sense, our work can be viewed as a certain higher-order entropy analogue of [31].

The most challenging part of our data structure is dealing with the Move-to-Front (MTF)
encoding of L. This adaptive coding method comes at a substantial price: decoding the ith character
from its encoding MTF(x)i requires the decoder to know the current “state” Si ∈ S|Σ| of the encoder,
namely, the precise order of recently occurring symbols, which itself depends on the entire history
x<i. This feature of the MTF transform, that the codebook itself is dynamic, is a qualitative
difference from other compression schemes such as Huffman coding or (non-adaptive) arithmetic
codes, in which the codebook is fixed. In fact, in that sense the MTF transform is conceptually
closer to the BWT transform itself than to Huffman or arithmetic codes, since in both transforms,
decoding the ith character is a sequential function of the decoded values of previous characters.
Fortunately, it turns out that MTF has a certain local property that can be leveraged during
preprocessing time, leading to the following key result:

Theorem 3 (Locally-decodable MTF, Informal). For any string x ∈ Σn, there is a succinct data
structure that encodes x using at most H0(MTF(x)) + n

(lg(n)/t)t
+n0.9 bits of space, such that xi can

be decoded in time O(t). Moreover, it supports Rank queries with the same parameters.

The additive n0.9 term stems from the storage space of certain look-up tables, which are shared
across n/r blocks of size r = (lg(n)/t)t. Hence these tables occupy o(1) bits per block in an
amortized sense. Theorem 3 therefore has the surprising corollary that, with only O(1) bits of
redundancy per block (even with respect to the MTF code followed by arithmetic coding), decoding
time can be reduced from Ω(n) to O(lg n).

Techniques. Our techniques are substantially different from those used in previous compressed
text indexing literature, and in particular from the work of [13]. At a high-level, our main result
uses a combination of succinct Predecessor search (under some appropriate encoding) along with
ad-hoc design of two “labeled” B-tree data structures, known as augmented aB-trees (see Section 2.3
below). We then use a theorem of Pǎtraşcu [31] to compress these aB-trees, resulting in succinct
representations while preserving the query time. Our main tree structure relies on a new local
preprocessing step of the MTF codeword, which in turn facilitates a binary-search algorithm for

3

the dynamic MTF codebook (stack state). We show that this algorithm can be ‘embedded’ as
a (compressed) augmented aB-tree. Our cell-probe lower bound (Theorem 3.2) relies on a new
“entropy polarization” lemma for BWT permutations, combined with a ‘nonuniform’ adaptation
of Golynski’s cell-elimination technique for the succinct permutations problem [16].

1.1 Related Work

A large body of work has been devoted to succinct data structures efficiently supporting Rank/Select
and (easier) Dictionary queries under zeroth-order empirical entropy, i.e., using H0(x)+o(n) bits
of space. In this “context-free” regime, early results showed a near-linear r = Õ(n/t) trade-off be-
tween time and redundancy (e.g., [5,17,30]), and this was shown by Miltersen [26] to be optimal for
systematic7 data structures. This line of work culminated with a surprising result of Pǎtraşcu [31],
who showed that an exponential trade-off between time and redundancy can be achieved using
non-systematic data structures in the word-RAM model, supporting all the aforementioned oper-
ations in query time O(t) and s ≈ H0(x) + O

(
n/(lg(n)/t)t

)
bits of space. For Rank/Select,

this trade-off was shown to be optimal in the cell-probe model with word-size w = Θ(lg n) [33],
while for Dictionary (and Membership) queries, the problem is still open [7, 37, 38]. There are
known string-matching data structures, based on context-free grammar compression (e.g., LZ or
SLPs [4]), that achieve logarithmic query time for Dictionary queries, at the price of linear (but
not succinct) space in the compressed codeword [4, 8]. However, these data structures have an
O(n/ lg n) additive space term, regardless of the compressed codeword, which becomes dominant
in the o(1) per-bit entropy regime, the interesting setting for this paper (see [10] for elaboration).

The problem of compressed pattern matching has been an active field of research for over four
decades, since the works of McCreight [25] and Manber and Myers [22], who introduced suffix trees
and suffix arrays. Ferragina and Manzini [13] were the first to achieve a compressed text index (with
respect to higher-order entropy Hk), supporting pattern-matching counting and reporting queries in
sublinear (o(n)) space and essentially optimal query time. Their BWT-based data structure, known
as the FM-index, is still widely used in both theory and practice, and its applications in genomics
go well beyond the scope of this paper [36]. Subsequent works, e.g. [10,18,34], designed compressed
text indices under other entropy-coding space benchmarks, such as Lempel-Ziv compression, but
to the best of our knowledge, all of them again require Ω(n/ lg n) bits of space, even when the text
itself compresses to o(n/ lg n) bits. We remark that for systematic data structures, linear trade-off
(r = Θ̃(n/t)) is the best possible for counting pattern-matches [15, 16], hence Theorem 2 provides
an exponential separation between systematic and non-systematic data structures for this problem.
For a more complete state of affairs on compressed text indexing, we refer the reader to [13,29].

Another related problem to our work is the succinct permutations problem [16,28,39,40], where
the goal is to succinctly represent a permutation π ∈ Sn using lg n! + r bits of space, supporting
evaluation (π(i)) and possibly inverse (π−1(i)) queries in time t and q respectively. For the latter
problem, an essentially tight trade-off r = Θ(n lg n/tq) is known in the regime t, q ∈ Θ̃(lg n) [16,28].

Organization. We start with some necessary background and preliminaries in Section 2. Section
3 provides a high-level technical overview of our main results. Sections 4,5 contain our main data
structure and proofs of Theorems 1,2 and 3. Section 6 describes application to improved pattern-
matching (reporting) queries. In Section 7 we prove the cell-probe lower bound (Theorem 3.2).

7Systematic data structures are forced to store the raw input database x, followed by an r-bit additional index.

4

2 Background and Preliminaries

For an n-letter string x ∈ Σn, let nc be the number of occurrences, i.e., the frequency, of the symbol
c ∈ Σ in x. For 1 ≤ i < j ≤ n, let x[i : j] denote the substring (xi, xi+1, · · · , xj). For convenience,
we use the shorthand x<i to denote the prefix (x1, x2, · · · , xi−1). The kth context of a character xi
in x is the substring of length k that precedes it. A run in a string x is a maximal substring of
repetitions of the same symbol. For a compression algorithm A, we denote by |A(x)| the output
size in bits. The zeroth order empirical entropy of the string x is H0(x) :=

∑
c∈Σ nc lg n

nc
(all

logarithms throughout the paper are base-2, where by standard convention, 0 lg 0 = 0). It holds
that 0 ≤ H0(x) ≤ n lg |Σ|. For a substring y ∈ Σk, let yx denote the concatenated string consisting
of the single characters following all occurrences of y in x. The kth order empirical entropy of x
is defined as Hk(x) :=

∑
y∈Σk H0(yx). This prior-free measure intuitively captures “conditional”

entropies of characters in correlated strings with bounded context, and is a lower bound on the
compression size |A(x)| of any k-local compressor A, i.e., any compressor that encodes each symbol
with a code that only depends on the symbol itself and on the k immediately preceding symbols;
for elaboration see [23]. For all k ≥ 0, we have Hk+1(x) ≤ Hk(x). Note that the space benchmark
Hk can be significantly smaller than H0. For example, for x = (ab)n/2, H0(x) = n but Hk(x) = 0
for any k ≥ 1 (assuming the length n is known in advance; Hk(x) ≤ lg n otherwise). For a random
variable X ∼ µ, H(X) denotes the Shannon entropy of X. Throughout the paper, we assume the
original alphabet size is |Σ| = O(1).

Succinct data structures. We work in the word-RAM model of word-length w = Θ(lg n), in
which arithmetic and shift operations on memory words requireO(1) time. A succinct data structure
for an input x ∈ Σn is a data structure that stores a small additive space overhead r = o(n) beyond
the “information-theoretic minimum” space h(x) required to represent x, while supporting queries
efficiently. In the “prior-free” setting, h(x) is usually defined in terms of empirical entropy Hk(x).
The space overhead r is called the redundancy, and is measured in bits.

2.1 The Burrows-Wheeler Transform

Given a string x ∈ Σn, the Burrows-Wheeler Transform of x, denoted BWT(x), is defined by the
following process. We append a unique end-of-string symbol ‘$’, which is lexicographically smaller
than any character in Σ, to x to get x$ (without this technicality, invertibility is only up to cyclic
shifts). We place all n+ 1 cyclic shifts of the string x$ as the rows of an (n+ 1)× (n+ 1) matrix,

denoted by M̂. Then we sort the rows of M̂ in lexicographic order. The sorted matrix, denoted
M, is henceforth called the “BWT matrix” of x. Finally, we output L ∈ (Σ ∪ {$})n+1, the last
column of the BWT matrix M. We henceforth use the shorthand L := BWT(x).

We observe that every column in M is a permutation of x$. Let F and L be the first and last
column ofM respectively. See an example in Figure 2.1 below. For ease of notation, we shall refer
to x$ as x, denote its length by n, and include $ in Σ.

2.1.1 Decoding BWT and the “LF Mapping”

While not obvious at first glance, BWT is an invertible transformation. An important first obser-
vation for this fact is that the first column F of the BWT matrix M is actually known “for free”
(as long as the frequencies of each symbol are stored, using negligible O(|Σ| lg n) additive space),
since M is sorted lexicographically (See Figure 2.1). To see why this is useful, we first introduce
the following central definition:

5

mississippi$
ississippi$m
ssissippi$mi
sissippi$mis
issippi$miss
ssippi$missi
sippi$missis
ippi$mississ
ppi$mississi
pi$mississip
i$mississipp
$mississippi

=⇒

F L

$ mississipp i
i $mississip p
i ppi$missis s
i ssippi$mis s
i ssissippi$ m

m ississippi $
p i$mississi p
p pi$mississ i
s ippi$missi s
s issippi$mi s
s sippi$miss i
s sissippi$m i

Figure 1: Burrows-Wheeler Transform for the string x =“mississippi”, with the unsorted matrix
M̂ on the left and the sorted matrixM on the right. The output is L = BWT(x) =“ipssm$pissii”.

Definition 1 (Rank of a character). Let y ∈ Σn. For any c ∈ Σ, i ∈ [n], rky(c, i) denotes the
number of occurrences of the symbol c in the ith prefix y≤i = y[1 : i].

Note that rkL(c, n) = nc, recalling that nc is the frequency of c in x. We define the Last-to-First
(LF) column mapping πLF : [n] 7→ [n] by setting πLF (i) = j if the character Li is located at Fj , i.e.,
Li is the first character in the jth row of the BWT matrixM. We note that πLF is a permutation.

An indispensable feature of BWT, the LF Mapping Property, states that for any character
c ∈ Σ, the occurrences of c in the first column F and last column L follow the same order. In other
words, the permutation πLF preserves the ordering among all occurrences of c.

Fact 1 (LF Property). For i ∈ [n], c ∈ Σ, we have rkL(c, i) = rkF (c, πLF (i)) = πLF (i)−
∑

c′<c nc.

The second equality follows directly from the fact that the first column F is sorted lexicograph-
ically by construction, while the first equality also requires the fact that L is sorted by its right
context. The formal argument can be found in Section A of the Appendix. The LF Mapping
Property leads to the following lemma, which is the heart of the BWT decoding algorithm:

Lemma 1. Fix a data structure D that returns rkL(c, i) for given i ∈ [n], c ∈ Σ. Let j ∈ [n]. If
we know the position i of xj in L, then we can compute (even without knowing j) the character
xj = Li, and (if j ≥ 2) the position i′ of xj−1 in L, with O(|Σ|) calls to D.

Proof. Given the position i ∈ L of xj , the character Li = xj can be decoded via 2|Σ| rank queries
on L, by computing rkL(c, i) − rkL(c, i − 1) ∀ c ∈ Σ, which is nonzero only for c∗ := xj . Now,
given the rank rkL(c∗, i) of xj in L, the LF-property (Fact 1) allows us to translate it to the index
i′ := πLF (i) of xj in F. As such, Fi′ = xj . But this means that Li′ = xj−1, as every row of M is a
cyclic shift of x (i.e., in each row, L and F contain consecutive characters of x).

The decoding argument asserts that a Rank data structure over L allows us to “move back”
one character in x. Note thatthe decoding algorithm implied by Lemma 1 is inherently sequential:
decoding a single character xn−i of x requires O(|Σ| · i) calls to D, hence Ω(n) worst-case time.

6

2.2 Compressing BWT

2.2.1 Move-to-Front encoding (MTF)

As mentioned in the introduction, when reasonably short contexts tend to predict a character in
the input text x, the BWT string L = BWT(x) will exhibit local similarity, i.e, identical symbols
will tend to recur at close vicinity. As such, we expect the integer string MTF(L) to contain many
small integers. This motivates the following relative encoding of L:

The Move-to-Front transform (Bentley et al. 1986 [3]) replaces each character of L with the
number of distinct characters seen since its previous occurrence. Formally, the encoder maintains
a list, called the MTF-stack, initialized with all characters c ∈ Σ ordered alphabetically. To encode
the ith character, the encoder outputs its Rank in the current stack Si−1 ∈ S|Σ| (with the character
at the top of Si−1 having Rank 0), and moves c = Li to the top of the stack, generating Si. At
any instant, the MTF-stack contains the characters ordered by recency of occurrence. Denote the
output of this sequential algorithm by m(L) := MTF(L) = (m1,m2, . . . ,mn) ∈ {0, 1, · · · , |Σ| − 1}n.

A few remarks are in order: First, note that runs of identical characters in L are transformed
into runs of 0s (except the first character in the run) in the resulting string m(L). Second, at each
position i ∈ [n], the corresponding MTF-stack Si defines a unique permutation πi ∈ S|Σ| on [|Σ|].

2.2.2 The RLX compression benchmark

Based on the MTF transform and following the original paper of Burrows and Wheeler [6], [13,23]
analyzed the following compression algorithm8 to encode L = BWT(x), henceforth denoted RLX(L):

1. Encode L using the Move-to-Front transform to produce MTF(L).

2. Denote by Lruns the concatenation of substrings of MTF(L) corresponding to runs of 0s, and
by MTF(L−runs) := [n] \ Lruns the remaining coordinates. Encode all 0-runs in Lruns using
Run-Length encoding, where each run is replaced by its length (encoded using a prefix-free
code), and denote the output by RLE (Lruns).

3. Encode the remaining (non-runs) symbols in MTF(L−runs) using a 0-order entropy code9 (e.g.,
Huffman or Arithmetic coding), to obtain the final bit stream RLX(L) (suitably modified to
be prefix-free over the alphabet comprising non-zero MTF symbols and run-length symbols).

See illustration in Figure 2. For justification of the RLX space benchmark and comparison to
other compressors, we refer the reader to Section B of the Appendix.

x = “b a n n a n a a a”.
MTF(x) = (1, 1, 13, 0, 1, 1, 1, 0, 0).
RLX(x) = (1, 1, 13, 1′, 1, 1, 1, 2′).

Figure 2: Move-to-Front (MTF) and RLX Encoding for the string x = “bannanaaa”. Run-Length
Encoding (RLE) symbols in RLX(x) are shown in blue and with ′ attached. The final prefix-free
code is not shown. Note that the three occurrences of ‘n’ get assigned 3 distinct MTF symbols.

By a slight abuse of notation, the output length of the algorithm10 is

|RLX(L)| = |RLE(Lruns)|+ dH0(MTF(L−runs))e. (1)
8Excluding the final arithmetic coding step.
9A 0-order encoder assigns a unique bit string to each symbol independent of its context, such that we can decode

the concatenation of these bit strings.
10up to prefix-free coding overheads.

7

2.3 Augmented B-Trees [31]

Central to our data structure is the notion of “augmented B-trees”, or aB-trees for short. Let
B ≥ 2, t ∈ N, and let A ∈ Σr be an array of length r := Bt. An aB-tree T over A is a B-ary tree of
depth t, with leaves corresponding to elements of A. Each node v ∈ T is augmented with a value
ϕv from an alphabet Φ. This value ϕv must be a function of the subarray of A corresponding to
the leaves of the subtree Tv rooted at v. In particular, the value of a leaf must be a function of its
array element, and the value of an internal node must be a function of the values of its B children.

The query algorithm starts at the root and traverses down the tree along a path which can be
adaptive. Whenever it visits a node, it reads all the values of its B children and recurses to one of
them, until it reaches a leaf node and returns the answer. We ensure the query algorithm spends
O(1) time per node, by packing all the augmented values of the children in a single word.

For a given aB-tree T and value ϕ ∈ Φ, let N (r, φ) be the number of possible arrays A ∈ Σr such
that the root is labeled with ϕ. A reasonable information-theoretic space benchmark for this data
structure, conditioned on the root value ϕ, is therefore lgN (n, ϕ). Pǎtraşcu proved the following
remarkable result, which allows to compress any aB-tree, while preserving its query time :

Theorem 4 (Compressing aB-trees, [31]). Let B = O
(

w
lg(r+|Φ|)

)
. We can store an aB-tree of

size r with root value ϕ using lgN (n, ϕ) + 2 bits. The query time is O(lgB r) = O(t), assuming
precomputed look-up tables of O

(
|Σ|+ |Φ|B+1 +B · |Φ|B

)
words, which only depend on r,B and

the aB-tree query algorithm.

The proof idea is to use recursion in order to encode the root value ϕr, followed by an encoding
of the augmented values ϕv of every child of the root, “conditioned” on ϕr, and so on, without
losing (almost) any entropy (recursive encoding is needed to achieve this, since N (r, φr) may not
be a power of 2). Theorem 4 allows us to represent any aB-tree with a redundancy of merely 2
bits (over the zeroth-order empirical entropy of the leaves). Since the extra look-up tables do not
depend on the array A, in our application, we use a similar trick as in [31] and divide the original
array of length n into blocks of length r = Bt, building an aB-tree over each block. We then invoke
Theorem 4 separately on each tree, adding a certain auxiliary data structure that aggregates query
answers across blocks so as to answer the query on the original array (for further details, see [31]).
Beyond facilitating the desired query time, this application renders the extra space occupied by
the look-up tables in Theorem 4 inconsequential, as they can be shared across blocks. We remark
that this “splitting” trick of [31] only applies when the augmented values ϕ are composable, in the
sense that ϕ(A ◦ B) = f (ϕ(A), ϕ(B)), where A ◦ B is the concatenation of the arrays A,B. The
aB-trees we design shall use augmented vector values which are (component-wise) composable.

3 Technical Overview

Both Theorem 1 and Theorem 2 follow from the next result, which is the centerpiece of this work:

Theorem 3.1. There exists a small constant δ > 0 such that for any x ∈ Σn and t ≤ δ lg n, there
is a succinct data structure Drk that supports Rank queries on L = BWT(x) in time O(t′), using
at most |RLX(L)|+ n lg n/2t

′
+ n1−Ω(1) bits of space, in the w = Θ(lg n) word-RAM model.

Theorem 2 is a direct corollary of Theorem 3.1, as it turns out that counting the number of
occurrences of a given pattern p ∈ Σ` in x, amounts to O(`) successive Rank queries on L (see [13]).

To see how Theorem 1 follows from Theorem 3.1, consider the following data structure for
locally-decoding a coordinate xi of x in time t: Let t′ < t be a parameter to be determined shortly.

8

Let Drk be the data structure supporting rank queries on L in time O(t′). We divide x into
dn/T e blocks of size T := O(t/t′), and store, for each ending index j of a block, the position in
L corresponding to xj . In other words, we simply record “shortcuts” of the BWT transform after
every block of size T . Given an index i ∈ [n], the data structure first computes the endpoint
j :=

⌈
i
T

⌉
T of the block to which i belongs, reads from memory the position of xj in L, and then

simulates (j−i) ≤ T = O(t/t′) sequential steps of the LF-mapping decoding algorithm from Section
2.1.1, to decode xi. By Lemma 1, each step requires O(|Σ|) Rank queries on L, each of which can
be done using Drk in O(t′) time, hence the overall running time is O(T · t′) = O(t). To balance the
redundancy terms, observe that the overall space of our data structure (up to O(nε) terms) is

s = |RLX(L)|+ n lg n

2t′
+
n lg n

T
. (2)

Thus, setting t′ = Θ(lg t), leads to overall redundancy r = O
(
n lgn lg t

t

)
= Õ

(
n lg t
t

)
, as claimed in

Theorem 1. Next, we provide a high-level overview of the proof of Theorem 3.1.

3.1 Proof Overview of Theorem 3.1

Recall (Section 2.2), that the RLX compression of L = BWT(x) can be summarized as :

|RLX(L)| = |RLE(Lruns)|+ dH0(MTF(L−runs))e.

Since RLX compresses the two parts Lruns and L−runs using two conceptually different encodings
(RLE and MTF, respectively), it makes sense to design a Rank data structure for each part sepa-
rately (along with an efficient mapping for combining the two answers to compute the overall rank
of a character in L). This modular approach simplifies the presentation and, more importantly,
enables us to achieve a significantly better redundancy for Theorem 3 (i.e., n/(lg n/t)t instead of
n/2t), but is slightly suboptimal in terms of space (by an Ω(|RLX(L)|) additive term). In the actual
proof, we show how the two data structures below can be “merged” to avoid this overhead.

A Rank data structure over RLE(Lruns). Our first goal is to design a compressed data structure
DRLE that reports, for each symbol c ∈ Σ and index i ∈ [n], the number of occurrences of c in L[1 : i]
that are contained in Lruns, i.e., the number of consecutive 0’s in MTF (L)[1 : i] that correspond to
runs of c. Since RLX represents this substring by “contracting” each run into a singleton (denoting
its length), solving this problem succinctly essentially entails a Predecessor search11 on the universe
[n] with κ = κ(L) “keys”, where κ denotes the number of runs in L. Alas, under the standard
representation of this input, as a κ-sparse string in {0, 1}n, Predecessor search clearly requires at
least lg

(
n
κ

)
bits of space [31,32], which could be� |RLX(L)| (for example, when all but a single 0-run

are of constant length and separation, which is an oblivious feature to the previous representation).
To adhere to the RLE space benchmark, we use a more suitable alternative representation of Lruns.

To this end, suppose for simplicity of exposition, that L consists entirely of runs (i.e., L = Lruns),
and that the character c ∈ Σ corresponding to each 0-run is known at query time (this will be
handled in the integrated data structure in Section 5). For i ∈ [κ], let `i ∈ [n] denote the length
of the ith run, and let L′ = (`1, `2, . . . , `κ) ∈ [n]κ be the string that encodes the run lengths. Note
that RLX spends precisely

∑
i lg `i bits to encode this part (ignoring prefix-coding issues).

To compute rkLruns(c, i), we design an adaptive augmented aB-tree, that essentially implements
a predecessor search over the new representation L′ of Lruns: We first construct a B-tree T over

11For a set of keys S ⊂ U with |S| = κ, Predecessor(i, S) returns max{x ∈ S | x ≤ i}.

9

the array L′ ∈ [n]κ, and augment each intermediate node v of the tree with the (vector-valued)
function ϕRLE(v) := (ϕc`(v))c∈Σ ∈ [n]|Σ| , where ϕc`(v) counts the total sum

∑
j∈Tv `j of run-lengths

in the subtree of v, corresponding to runs of c. Given an index i ∈ [n] and character c ∈ Σ, the
query algorithm iteratively examines the labels of all B children of a node v ∈ T starting from the
root, and recurses to the rightmost child u of v for which

∑
c ϕ

c
`(u) ≤ i (i.e., to the subtree that

contains the interval `j to which i belongs), collecting the sum of ϕc`(u)’s along the query path.
To ensure query time O(t′), we break up the array as in [31] into sub-arrays each of size Bt′

(for B = Θ(1)), and build the aforementioned tree over each sub-array (this is possible since the
augmented vector ϕRLE is a (component-wise) composable function). To ensure the desired space
bound for representing T , we further augment each node v with a “zeroth-order entropy” constraint
ϕ0(v), counting the sum of marginal empirical entropies nvc lg(nc/n)12 of the elements in the subtree
Tv (which can be done recursively due to additivity of ϕ0 w.r.t v’s). A standard packing argument
then ensures N (2κ, ϕ) ≤ 2ϕ0(v) . 2H0(v), as desired. We then invoke Theorem 4 to compress T
to H0(L′) + O

(
n lgn

Bt
′

)
bits, yielding exponentially small redundancy (up to n1−ε additive terms).

This ensures that the total space (in bits) occupied by DRLE is essentially

H0(L′) +O

(
n lg n

Bt′

)
≤ |RLE(Lruns)|+O

(
n lg n

Bt′

)
.

The actual proof is slightly more involved, since the merged data structure needs to handle
characters from both Lruns and MTF (L−runs) simultaneously, hence it must efficiently distinguish
between 0-runs corresponding to different symbols. Another issue is that Theorem 4 of [31] is only
useful for truly sub-linear alphabet sizes, whereas (L′)i ∈ [n], hence in the actual proof we must
also split long runs into chunks of length ≤ nε . A simple application of the log-sum inequality
ensures this truncation does not increase space by more than an Õ(n1−ε) additive term.

A Rank data structure over MTF(L−runs). The more challenging task is computing rkL−runs(c, i),
i.e., the frequency of c in L[1 : i] contained in the substring MTF(L−runs), which is obtained by
applying the MTF transform to L and deleting all 0-runs (see Figure 2). Note that the mapping
from i ∈ L to its corresponding index i′ ∈ MTF(L−runs) amounts to subtracting all runs before i.
This operation can be performed using a single partial-sum query to our integrated data structure
(in Section 5), which collects the sum of ϕc`(u)’s over all c ∈ Σ along the query path.

As discussed in the introduction, the adaptive nature of the MTF encoding has the major
drawback that decoding the jth symbol MTF(L−runs)j , let alone computing its rank, requires
knowing the corresponding MTF stack state Sj−1 ∈ S|Σ| (i.e., the precise order of recently occurring

symbols), which itself depends on the entire history L−runs<j . A straightforward solution is to store
the MTF stack state after every block of length t′ (where t′ is the desired query time), much like
the “marking” solution for decoding BWT, yielding a linear search for the stack-state Sj from the
nearest block, and thus a linear time-space tradeoff.

To speed up the search for the local stack-state, we observe the following key property of
the MTF transform: Let MTF(x) := (m1,m2, . . . ,mn) be the MTF transform of x ∈ Σn (see
Figure 2 for illustration). Let I = [i, j] be any sub-interval of [n], and denote by Si−1, Sj ∈ S|Σ|
the corresponding stack-states at the start and endpoints of I. Now, consider the permutation
πI := IdΣ 7→ Ŝj , obtained by simulating the MTF decoder on (mi, . . . ,mj) starting from the
identity state IdΣ, i.e., “restarting” the MTF decoding algorithm but running it on the encoded
substring (MTF(x)i, . . . ,MTF(x)j), arriving at some final state (Ŝj) at the end of I (note that this

12For c ∈ Σ and node v, nvc denotes the frequency of c in the sub-array rooted at v.

10

process is well-defined). Then the true stack-state Sj satisfies: Sj = πI ◦Si−1. The crucial point is
that πI is independent of the (true) stack state Si−1, i.e., it is a local function of MTF(x)I only.

We show that this “decomposition” property of the MTF transform (Proposition 1), facili-
tates a binary search for the local stack-state Sj−1 (rather than linear-searching) with very little
space overhead, as follows: At preprocessing time, we build an augmented B-tree over the array
MTF(x1, . . . , xn), where each intermediate node v is augmented with the permutation πv ∈ S|Σ|
corresponding to its subtree MTF(Iv), obtained by “restarting” the MTF decoder to the identity
state IdΣ, and simulating the MTF decoder from start to end of Iv, as described above. Note that
this procedure is well defined, and that the aforementioned observation is crucially used here, as the
definition of aB-trees requires each augmented value of an intermediate node to be a local function
of its own subtree. At query time, the query algorithm traverses the root-to-leaf(j) path, composing
the corresponding (possibly inverse) permutations between the stack-states along the path, depend-
ing on whether it recurses to a right or left subtree. We show this process ensures that when the
query algorithm reaches the leaf MTF(x)j , it possesses the correct stack-state Sj−1, and hence can
correctly decode xj . While this algorithm supports only “local decoding” (Dictionary) queries,
with an extra simple trick, the above property in fact facilitates a similar aB-tree supporting Rank
queries under the MTF encoding (see Section 4).

Once again, in order to impose the desired space bound (≈ H0(MTF(L−runs))) and to enable
arbitrary query time t′, we augment the nodes of the tree with an additional zeroth-order entropy
constraint, and break up the array into sub-arrays of size Θ(Bt′), this time for B ≈ lgn

t′ . Compress-
ing each tree using Theorem 4, and adding an auxiliary data structure to aggregate query answers
across sub-arrays, completes this part and establishes Theorem 3.

3.2 Lower Bound Overview

We prove the following cell-probe lower bound for a somewhat stronger version of Problem 1, which
requires the data structure to efficiently decode both forward and inverse dispositions of the induced
BWT permutation between X and L := BWT(X) (we note that both the FM-Index and our data
structure from Theorem 1 satisfy this natural requirement13, and elaborate on it in Section 7):

Theorem 3.2. Let X ∈R {0, 1}n and let ΠX ∈ Sn be the induced BWT permutation from indices
in L := BWT(X) to indices in X. Then, any data structure that computes ΠX(i) and Π−1

X (j) for
every i, j ∈ [n] in time t, q respectively, such that t · q ≤ δ lg n/ lg lgn (for some constant δ > 0), in
the cell-probe model with word size w = Θ(lg n), must use n+ Ω (n/tq) bits of space in expectation.

We stress that Theorem 3.2 is more general, as our proof can yield nontrivial lower bounds
against general (non-product) distributions µ on Σn with “sufficient block-wise independence”,
though a lower bound against uniform strings is in some sense stronger, as it states that the above
redundancy cannot be avoided even if ΠX is stored in uncompressed form (see also Section 7).

Our proof of Theorem 3.2 is based on a “nonuniform” variation of the “cell-elimination” tech-
nique of [16], who used it to prove a lower bound of r ≥ Ω(n lg n/tq) on the space redundancy of
any data structure for the succinct permutations problem Permsn. In this problem, the goal is
to represent a random permutation Π ∈R Sn succinctly using lg n! + o(n lg n) bits of space, sup-
porting forward and inverse evaluation queries in query times t, q respectively, as above. Alas, this
compression argument crucially requires that

t, q ≤ O
(

H(Π)

n · lg lgn

)
. (3)

13I.e., for these data structures, we can achieve q = O(t) by increasing the redundancy r by a mere factor of 2.

11

When Π is a uniformly random permutation, i.e., H(Π) ≈ n lg n, this condition implies that the
lower bound holds for t, q ≤ O(lg n/ lg lg n). In contrast, the BWT permutation of X can have at
most n lg |Σ| = O(n) bits of entropy for constant-size alphabets (as ΠX is determined by X itself),
hence condition (3) does not yield any lower bound whatsoever for our problem.

To circumvent this obstacle, we prove an “entropy polarization” lemma for BWT: It turns out
that for a random string X, while an average coordinate ΠX(i) indeed carries only O(1) bits of
entropy, the entropy distribution has huge variance. In fact, we show that for any ε > Ω̃(1/ lg n),
there is a subset I of only (1 − ε) n

lgn coordinates in [n], whose total entropy is H(ΠX(I)) ≥
(1−O(ε))n, i.e., this small set of coordinates has maximal entropy (≈ lg n bits each), and essentially
determines the entire BWT permutation14. This lemma (Lemma 3) is reminiscent of wringing
lemmas in information theory [2], and may be a BWT property of independent interest in other
applications.

The intuition behind the proof is simple: Consider dividing X into s := n
C lgn disjoint blocks

of size C lg n each, and let I := {Ii, . . . , Is} ⊂ [n] denote the set of first coordinates in each block
respectively. Since X is random, each of the s blocks is an independent random (C lg n)-bit string,
hence for a large constant C, with overwhelming probability these substrings will be distinct, and
intuitively, conditioned on this likely event, their lexicographic ordering remains random, hence the
BWT locations of these indices alone must recover this random ordering, which is worth Ω(s lg s) =
Ω(n) bits of information. However, the birthday paradox requires that C > 2 to avoid collisions, in
which case the above argument can only show that a small constant fraction (< 0.5n) of the total
entropy can be “extracted” from this small set, while the remaining n − o(n) coordinates possess
most of the entropy. This fact completely dooms the subsequent “cell-elimination” argument, since
these Ω(n) remaining coordinates cause the load (average number of queries) on each w-bit cell to
become prohibitively large (> w ≈ lg n), trivializing the compression process (see Theorem 7).

Nevertheless, setting C = (1 + ε), the number of “colliding” blocks (i.e., non-distinct substrings
of length (1 + ε) lg n) is still only Õ(n1−ε) � εn/ lg n with very high probability. Moreover, we
show that conditioned on this high-probability event E , the lexicographic ordering among the
remaining distinct ≈ (1 − 2ε) n

lgn blocks remains random. (For uniform n-bit strings, we show
that conditioning on E preserves exact uniformity of the ordering, by symmetry of E w.r.t block-
permutation, but more generally, we note that for any prior distribution, conditioning on E does
not “distort” the original distribution by more than ≈

√
lg(1/Pr[E]) = o(1) in statistical distance,

hence this argument can be generalized to nonuniform strings). Since, conditioned on E , the BWT
mapping on I determines the lexicographic ordering of the blocks, the data processing inequality
(DPI) implies that the entropy of ΠX(I) is at least ≈ (1− 2ε) n

lgn · lg
n

lgn ≥ (1− 3ε)n, as claimed.
Applying the “entropy polarization” lemma with ε = O(lg lg n/ lg n), we then show how to

adapt [16]’s cell-elimination argument to nonuniform permutations, replacing ‘unpopular’ cells with
an efficient encoding of the partial bijection ΠX(I) induced on (forward and inverse) queries ∈
I probing these cells. The polarization lemma then ensures that the remaining map of ΠX on
Ī = [n] \ I can be encoded directly using H(ΠX(Ī)| I,ΠX(I)) ≤ O(εn) = O(n lg lgn/ lg n) bits,
which will be dominated by the redundancy we obtain from the compression argument (so long as
tq . lg n/ lg lgn), thereby completing the proof.

4 A Locally Decodable MTF Code and Rank Data Structure

In this section, we prove the following theorem, which is a more formal version of Theorem 3.

14Note that here we view ΠX as a mapping from X to L = BWT(X) and not the other way around, but this is
just for the sake of simplicity of exposition and looking at Π−1

X is of course equivalent.

12

Theorem 5. For any string x ∈ Σn with |Σ| = O(1), there is a succinct data structure that encodes
x using at most

H0(MTF(x)) + n
/(lg n

max(t, lg lgn)

)t
+ n1−Ω(1)

bits of space, supporting Rank and Dictionary queries in time O(t), in the word-RAM model
with word size w = Θ(lg n).

Setup and Notation. Let the alphabet Σ = {c1, c2, · · · , c|Σ|}, where c1 < c2 < · · · < c|Σ|
according to the lexicographical ordering on Σ. Let S = (a1, a2, · · · , a|Σ|) denote the MTF stack
with a1 at the top and a|Σ| at the bottom. For j ∈ [|Σ|], let S[j] denote the character at position
j in S, starting from the top. Fix a string x = (x1, x2, · · · , xn) ∈ Σn. Let m = MTF(x) =
(m1,m2, · · · ,mn) ∈ {0, 1, · · · , |Σ| − 1}n be the Move-to-Front (MTF) encoding of x, with the
initial MTF stack S0 :=

(
c1, c2, · · · , c|Σ|

)
.

Given a MTF stack S = (a1, a2, · · · , a|Σ|) and a permutation π ∈ S|Σ|, let S′ = π ◦ S be the
stack such that S′[π(j)] = S[j] = aj for all j ∈ [|Σ|]. We also associate with S the permutation
π(S) which converts the initial stack S0 to S, i.e., S = π(S) ◦ S0. In this sense, we say that S0

corresponds to the identity permutation Id|Σ| on [|Σ|], as S0[j] = cj for all j ∈ [|Σ|]. For i ∈ [n], let
Si be the stack induced by simulating the MTF decoder on m[1 : i], starting from S0. Equivalently,
Si is the stack induced by MTF(x[1 : i]), i.e., the stack just after encoding the first i characters
of x, starting from S0. For 0 ≤ i < j ≤ n, let πi,j ∈ S|Σ| be the unique permutation induced by
simulating the MTF decoder on m[i+ 1 : j], starting from Si.

4.1 Properties of MTF Encoding

The following proposition shows that for any 0 ≤ i < j ≤ n, the permutation πi,j is a local function
of m[i + 1 : j]. So, these permutations πi,j are valid augmented values for an aB-tree built over
m = MTF(x), without reference to the true MTF stacks Si and Sj .

Proposition 1. Fix 0 ≤ i < j ≤ n, and let Si, Sj and πi,j ∈ S|Σ| be as defined above. Then πi,j is
independent of Si and Sj, given m[i + 1 : j]. Hence, we can generate πi,j by simulating the MTF
decoding algorithm on m[i+ 1 : j], starting from the identity stack S0.

Proof. We prove this proposition by induction on j − i. Consider the base case, when j − i = 1.
Then by definition of a single MTF step, we have

πi,i+1(k) =


k + 1 if k ≤ mi+1

1 if k = mi+1 + 1

k if k > mi+1 + 1

(4)

Clearly, πi,i+1 is independent of Si and Si+1 given mi+1. This proves the base case.
Now, suppose the claim is true for all i, j such that j − i = k ∈ N, and let i, j be such that

j − i = k + 1. Then by the induction hypothesis, πi,j−1 is independent of Si and Sj−1 given
m[i + 1 : j − 1]. Moreover, πj−1,j is independent of Sj−1 and Sj given mj . Due to the sequential
nature of the MTF encoding, we clearly have

πi,j = πj−1,j ◦ πi,j−1

As both the permutations πj−1,j and πi,j−1 are independent of stacks Si, Sj−1, Sj given m[i+ 1 : j],
the same must be true for πi,j .

13

The following expression captures the evolution of the MTF stack, for all 0 ≤ i < j ≤ n:

Sj = πi,j ◦ Si (5)

We can also “reverse” the steps of the MTF encoding. For fixed 0 ≤ i < j ≤ n, if we are given
the final stack Sj and the permutation πi,j , we can recover the initial stack Si by inverting πi,j :

Si = π−1
i,j ◦ Sj

4.2 Locally Decodable MTF Code

We first describe the construction of a single aB-tree over the entire MTF encoding m = MTF(x) ∈
{0, 1, · · · , |Σ| − 1}n, which supports “local decoding” (Dictionary) queries. Let B ≥ 2 be the
branching factor. Each node v will be augmented with a permutation ϕπ(v) ∈ Φπ = S|Σ|. For
i ∈ [n], the leaf node v corresponding to mi is augmented with the permutation ϕπ(v) = πi−1,i.
Let v be an internal node with its children being v1, v2, · · · , vB in order from left to right. Then v
is augmented with the composition of permutations of its children, i.e.,

ϕπ(v) = ϕπ(vB) ◦ ϕπ(vB−1) ◦ · · · ◦ ϕπ(v1). (6)

It is easy to observe that a node v whose subtree Tv is built over the sub-array m[i + 1 : j] is
augmented with the value ϕπ(v) = πi,j . Now, Proposition 1 ensures that this is a legitimate
definition of an aB-tree, because the value of a leaf is a function of its array element, and the value
of an internal node is a function of the values of its B children.

The query algorithm maintains a MTF stack S, which is initialized to the identity stack S0 at
the beginning of the array. Let i ∈ [n] be the query index. The algorithm traverses down the tree,
updating S at each level. It maintains the invariant that whenever it visits a node v whose sub-tree
encompasses m[j+1 : k], it updates S to the true stack Sj just before the beginning of m[j+1 : k].

We describe how to maintain this invariant recursively. The base case is the root (at depth
d = 0) whose subtree contains the entire array m. So, the query algorithm initializes S = S0, which
corresponds to the true initial MTF stack. Now, let v be a node at depth d whose sub-tree Tv
encompasses m[j + 1 : k]. Suppose the query algorithm has visited v, and S is the true MTF stack
Sj . By assumption, j+ 1 ≤ i ≤ k. Let v1, v2, · · · , vB be the children of v in order from left to right,
and let vβ∗ be the child of v whose sub-tree includes i. Then we update S as follows:

S ← ϕπ(vβ∗−1) ◦ ϕπ(vβ∗−2) ◦ · · · ◦ ϕπ(v1) ◦ S. (7)

The above procedure explains the update rule which maintains the invariant at a node at depth
d + 1, assuming the invariant was maintained at a node at depth d. Thus, the proof that the
invariant is maintained follows by induction on d.

Eventually, the algorithm reaches the leaf node corresponding to mi. At this point, the MTF
stack S is the true stack Si−1. Hence, it reports xi = S[mi]. The running time is t = O(lgB n).

For the sake of simplicity, we have stated the update rule 7 purely in terms of forward compo-
sitions of permutations πi,j . In practice, if β∗ > B/2, one can equivalently update S by starting
from ϕv ◦ S and composing the inverse permutations ϕ−1

π (vβ) for β ≥ β∗:

S ← ϕ−1
π (vβ∗) ◦ ϕ−1

π (vβ∗+1) ◦ · · · ◦ ϕ−1
π (vβ) ◦ ϕπ(v) ◦ S.

However, since all permutations ϕπ(vβ), β ∈ [B] are stored in a word, both update rules take O(1)
time, and so the query time remains unaltered. Henceforth, we will continue to state the update
rules in terms of forward compositions.

14

4.3 Extension to Rank Queries (over MTF)

The aB-tree T above only supports “local decoding” (Dictionary) queries over m = MTF(x),
while our application requires answering Rank queries (over MTF(L−runs)). We now show how
the above aB-tree can indeed be extended, via an extra simple observation, to support Rank
queries under the MTF encoding.

Let v be a node in the aB-tree T , whose subtree Tv is built over the sub-array m[i + 1 : j].
We would like to augment v with a vector ϕ̃rk(v) = (ϕ̃rk(v, cσ))σ∈[|Σ|] ∈ {0, 1, · · · , n}|Σ|, such that
ϕ̃rk(v, cσ) is the frequency of the character cσ ∈ Σ in x[i + 1 : j]. However, as T is built over
m = MTF(x), and two occurrences of the same character c ∈ Σ can be assigned distinct symbols
in the MTF encoding, these augmented values are not consistent with the definition of an aB-tree.

To resolve this difficulty, we again use the fact that the permutation πi,j depends only on the
sub-array m[i + 1 : j]. Recall that S0 =

(
c1, c2, · · · , c|Σ|

)
corresponds to the identity permutation

Id|Σ|. For a node v, let ϕrk(v) := (ϕrk(v, σ))σ∈[|Σ|], where ϕrk(v, σ) is the frequency of cσ in the
sub-array rooted at v, assuming the MTF stack at the beginning of this sub-array is S0. For a leaf
node v at i ∈ [n], we have ϕrk(v, σ) = 1 if mi = σ − 1, and 0 otherwise.

Now, let v be an internal node with children v1, v2, · · · , vB. Fix a character cσ ∈ Σ. In general,
the MTF stack at the beginning of the sub-array rooted at Tv will be different from the MTF
stack at the beginning of the sub-array Tvβ rooted at each child vβ, β > 1. So, in order to express
ϕrk(v, σ) in terms of the values of its children, we need to add the entry of the vector ϕrk(vβ)
which corresponds to cσ, for each β ∈ [B]. We do this using the permutations ϕπ(vβ), β ∈ [B]. For
β ∈ [B], the true MTF stack at the beginning of the sub-array rooted at vβ, assuming the MTF
stack at the beginning of the sub-array rooted at v is S0, is given by Equation 7. So, we have

ϕrk(v, σ) =
B∑
β=1

ϕrk(vβ, ϕπ(vβ−1) ◦ ϕπ(vβ−2) ◦ · · · ◦ ϕπ(v1)(σ)) (8)

Let Φrk = {0, 1, · · · , n}|Σ|. We augment each node v with ϕrk(v) ∈ Φrk. As we also encode the
permutation ϕπ(v), the value at each internal node is a function of the values of its children, and
hence this is a legitimate aB-tree.

The query algorithm, given (cσ, i) ∈ Σ× [n], initializes a rank counter rk = 0, and traverses the
same root-to-leaf path as before. Fix an internal node v, with children v1, v2, · · · , vB, in its path.
Let β∗ ∈ [B] be such that the sub-array rooted at vβ∗ contains the index i. The algorithm updates
rk as follows:

rk ← rk +

β∗−1∑
β=1

ϕrk(vβ, ϕπ(vβ−1) ◦ ϕπ(vβ−2) ◦ · · · ◦ ϕπ(v1)(σ)) (9)

Then it recurses to vβ∗ and performs this step until it reaches the leaf and returns rkx(cσ, i).

4.4 Compressing the MTF aB-tree

We now describe how to compress the aB-tree T defined above, using Theorem 4, to support Rank
(and hence Dictionary) queries under the MTF (followed by arithmetic) encoding, with respect
to the desired space bound H0(MTF(x)). Let O(t) be the desired query time. Choose B ≥ 2 such
that B lgB = ε lgn

max(t|Σ|,lg lgn) for some small ε > 0. Let r = Bt. We divide m into n/r sub-arrays
A1, A2, · · · , An/r of size r and build an aB-tree over each sub-array. We show how to support
Dictionary and Rank queries within each sub-array in time O(lgB r) = O(t).

For each j ∈ [n/r], we store the true MTF stack at the beginning of the sub-array Aj , the
frequency of each character c ∈ Σ in the prefix x[1 : (j − 1)r], and its index in memory.

15

Given a Dictionary query with index i ∈ [n], the query algorithm determines the sub-array
Aj (j = di/re) containing i, initializes S to the MTF stack S(j−1)r just before Aj , and performs
the query algorithm described in Section 4.2 on the aB-tree over Aj , with query index i− (j − 1)r.

Similarly, given a Rank query (cσ, i) ∈ Σ×[n], the query algorithm determines the sub-array Aj
containing i, reads r′ := rkx(cσ, (j− 1)r), the rank of cσ in the prefix x[1 : (j− 1)r], and builds the
permutation π∗ = π0,(j−1)r corresponding to the MTF stack S(j−1)r. Then, it performs the query
algorithm described in Section 4.3 on the aB-tree over Aj , with query

(
cπ∗(σ), i− (j − 1)r

)
∈ Σ×[r].

Finally, it adds r′ to this answer and returns the sum.
For a MTF character σ ∈ {0, 1, · · · , |Σ|−1}, let fσ be the frequency of σ in m. Following [31], we

define a measure of “entropy per character”. For σ ∈ {0, 1, · · · , |Σ|−1}, we encode each occurrence
of σ in m using lg n

fσ
bits, rounded up to the nearest multiple of 1/r. We impose a zeroth-order

entropy constraint by augmenting each node v with an additional augmented value ϕ0(v), which is
the sum of the entropy of the symbols in its subtree. Then we have

H0(m) =

|Σ|−1∑
σ=0

fσ lg
n

fσ
=

n∑
i=1

lg
n

fmi
=

n/r∑
j=1

∑
i∈Aj

lg
n

fmi
=

n/r∑
j=1

H0(Aj),

where H0(Aj) is the sum of entropy of the symbols in Aj . Note that the assigned entropy lg n
fσ

of
each occurrence of a character σ is a function of its frequency in the entire array (not in Aj).

Let Φ0 be the alphabet of these values. As the entropy of each occurrence of a character
can attain one of O(r lg n) values and the subtree of each node has at most r leaves, we have
|Φ0| = O(r2 lg n).

Thus, for each node v, we encode the vector of values ϕ(v) = (ϕπ(v), ϕrk(v), ϕ0(v)). Now, for a
given value of ϕ = (ϕπ, ϕrk, ϕ0), the number of arrays A of length r with H0(A) = ϕ0 is at most 2ϕ0

by a packing argument. So, we have N (r, ϕ) ≤ N (r, ϕ0) ≤ 2ϕ0 , and hence we can apply Theorem 4
to store an aB-tree of size r, having value ϕ = (ϕπ, ϕrk, ϕ0) at the root, using ϕ0 +2 bits. Summing
this space bound over all n/r sub-arrays Aj , we get that the space required to store the aB-trees is

at most
∑n/r

j=1 (H0(Aj) + 2) = H0(m) + 2n/r bits.
The additional space required to store the true MTF stack and the rank of each character c ∈ Σ

at the beginning of each sub-array Aj , j ∈ [n/r], is at most n
r (|Σ| lg n+ |Σ| lg |Σ|).

Now we analyze the space required for the look-up tables. We have the alphabet size |Φ| =
|Φπ| · |Φrk| · |Φ0| ≤ O(|Σ|! · (r+ 1)|Σ| · r2 lg n) with r = Bt. So the look-up tables occupy (in words)

O
(
|Φ|B+1 +B · |Φ|B

)
= 2O(B|Σ| lg |Σ|+t|Σ|·B lgB+B lg lgn) = 2O(ε lgn) = nO(ε),

where the penultimate equality follows by considering the value of B in two cases:

• If t|Σ| > lg lg n, then B lgB = ε lgn
t|Σ| . So, t|Σ| ·B lgB = ε lg n, and B lg lgn ≤ B · t|Σ| ≤ ε lg n.

• Otherwise, B lgB = ε lgn
lg lgn . So, B lg lgn ≤ ε lg n, and t|Σ| ·B lgB ≤ B lgB · lg lgn = ε lg n.

This space usage is negligible for small enough constant ε > 0. However, as B ≥ 2, the minimum
redundancy is (ignoring polylog(n)) terms

O
(
|Φ|3

)
= O|Σ|

(
r3(|Σ|+2)

)
= O|Σ|

(
r3|Σ|+6

)
So, the redundancy is O

(
n
r + r3|Σ|+6

)
. We balance the terms to get that the redundancy is

O
(
max

{
n
r , n

1−1/(3|Σ|+7)
})

. We use the assumption that |Σ| = O(1), and adjust t by a constant

16

factor, to get that the overall space requirement is

s = H0(m) + n
/(lg n

max(t, lg lg n)

)t
+ n1−Ω(1).

This concludes the proof of Theorem 5.

5 Succinct Rank Data Structure over RLX

In this section, we prove Theorem 3.1, which is restated below:

Theorem 3.1. There exists a small constant δ > 0 such that for any x ∈ Σn and t ≤ δ lg n, there
is a succinct data structure Drk that supports Rank queries on L = BWT(x) in time O(t′), using
at most |RLX(L)|+ n lg n/2t

′
+ n1−Ω(1) bits of space, in the w = Θ(lg n) word-RAM model.

Setup and Notation. Recall that L = BWT(x) ∈ Σn. Let m = MTF(L). Then m is a
string of length n over the MTF alphabet {0,1,2, · · · , |Σ| − 1} (boldface symbols indicate MTF
characters). Let m̄ be the string obtained from m by replacing each run of 0’s with a single
character which represents its length. Thus, m̄ is a string of length N̄ ≤ n over the expanded
alphabet Σ̄ := [|Σ| − 1] ∪ [n], where [|Σ| − 1] := {1,2, · · · , |Σ| − 1}. The information-theoretic
minimum space required to encode m̄ using a zeroth order prefix-free code is

H0(m̄) =
∑
σ∈Σ̄

fσ lg
N̄

fσ
,

where fσ is the frequency of σ in m̄, for all σ ∈ Σ̄. Consider any code which converts x to
m = MTF(L) using BWT followed by MTF encoding, and then compresses m using Run-length
Encoding of 0-runs followed by prefix-free coding over the expanded alphabet Σ̄ = [|Σ| − 1] ∪ [n].
This code requires at least H0(m̄) bits of space. In particular, we have |RLX(L)| ≥ H0(m̄) by
definition of the RLX encoding.

We will build an aB-tree over a slightly modified encoding of m̄, which is quite similar to the
one defined in Section 4 but is succinct with respect to H0(m̄) (and hence with respect to |RLX(L)|).

Let ε ∈ (0, 1) be a small constant. We divide each run of 0’s of length `j > nε in m into
⌈ `j
nε

⌉
runs

of length at most nε each. We then replace each run of 0’s by a single character which represents
its length. Thus, we get a new string m′ of length N ≤ n over the alphabet Σ′ := [|Σ| − 1] ∪ [nε].
This is done to minimize the space required for the additional look-up tables accompanying the
aB-trees which is defined later. The following lemma ensures that this step increases the space
usage of the aB-trees by at most an Õ

(
n1−ε) additive term.

Lemma 2. Let m̄ and m′ be as defined above. Then

H0

(
m′
)
≤ H0 (m̄) +O

(
n1−ε lg n

)
.

Intuitively, this lemma holds because the process of division of large runs introduces at most
n1−ε additional symbols in m′ as compared to m̄. Moreover, the relative frequency of any character
σ ∈ Σ′ only changes slightly, which allows us to bound the difference in the contribution of σ to
H0(m̄) and H0(m′). We postpone the formal proof of this lemma to Section 5.4.

17

5.1 Succinct aB-tree over m′, and additional data structures

Fix the branching factor B ≥ 2 to be constant, and let O(t′) be the desired query time. Let r = Bt′ .
We divide m′ into N/r sub-arrays A′1, A

′
2, · · ·A′N/r of length r, and build an aB-tree over each sub-

array. We augment each node v with a value ϕ(v) = (ϕπ(v), ϕrk(v), ϕ0(v)), where ϕπ(v) ∈ S|Σ|,
ϕrk(v) = (ϕrk(v, σ))σ∈[`] ∈ {0, 1, · · · , nε r}|Σ|, and ϕ0(v) ∈ [0, r lgN]. These augmented values have
the same meaning as in Section 4. We define these values formally below.

For each node v, we would like ϕπ(v) ∈ S|Σ| to be the permutation induced by the MTF encoding
on the sub-array of m′ (which corresponds to a contiguous sub-array of MTF(L)) over which the
subtree Tv is built. Similarly, we would like ϕrk(v, σ) to be the frequency of cσ in the sub-array
rooted at v, assuming the MTF stack at the beginning of this sub-array is S0 = (c1, c2, · · · , c|Σ|).

First, we define the augmented values at leaf nodes. Let v be a leaf node corresponding to
m′i ∈ Σ′ for some i ∈ [N]. If m′i is a MTF symbol, i.e., m′i ∈ [|Σ| − 1], then we set ϕπ(v) and
ϕrk(v) exactly as defined in Section 4. In particular, we define ϕrk(v, σ

∗) = 1 for σ∗ = m′i + 1, and
ϕrk(v, σ) = 0 for all σ 6= σ∗. If m′i corresponds to a run of 0’s of length `j in MTF(L), then we
define ϕπ(v) = Id|Σ| to be the identity permutation, ϕrk(v, 1) = `j , and ϕrk(v, σ) = 0 for all σ > 1.
Here, we use the fact that the MTF stack does not change within a run of 0’s.

We now define the values ϕπ(v) and ϕrk(v) at each internal node v recursively in terms of the
values at its B children v1, v2, · · · , vB, as given by Equations 6 and 8 respectively.

Finally, we specify the entropy constraint ϕ0. Recall that for σ ∈ Σ′ = [|Σ| − 1] ∪ [nε], fσ
denotes the frequency of σ in m′. For each σ ∈ Σ′, we encode each occurrence of σ in m′ using lg N

fσ
bits, rounded up to the nearest multiple of 1/r. We impose a zeroth-order entropy constraint by
augmenting each node v with ϕ0(v), the sum of the entropy of the symbols in its subtree. By the
same arguments as in Section 4.4, the space occupied by the aB-trees is at most H0(m′) + 2N/r.

Additionally, we store the following information, for each j ∈ [N/r]:

• The true MTF stack S(j−1)r at the beginning of the sub-array A′j .

• The frequency of each character c ∈ Σ in the prefix m′[1 : (j − 1)r] =
(
A′1, · · · , A′j−1

)
.

• The index ij ∈ [n] of the character in m corresponding to the first character m′(j−1)r+1 of A′j
(if m′(j−1)r+1 represents a run in m, then we store the starting index of the run), and its index

in memory. Let T = {ij ∈ [n] | j ∈ [N/r]} be the set of indices.

We also store the map h : T → [N/r], given by h(ij) = j for all j ∈ [N/r]. Finally, we build a
predecessor data structure Dpred over T . As there are at most N

r ≤
n
r keys from a universe of size

n, there exists a data structure which can answer predecessor queries in time O(t′) using space
n
r · r

Ω(1/t′) ·O(lg n) = O
(
n lgn

BΘ(t′)

)
bits (for details, see [32]).

5.2 Query algorithm

Let the query be (c, i) ∈ Σ× [n].

• Compute i′ = Dpred(i) ∈ T , and index j = h(i′) ∈ [n/r] of the corresponding sub-array in m′.

• Define and initialize the following variables:

– An MTF stack S, initialized to S(j−1)r, the true stack just before A′j , as well as the
corresponding permutation π∗ = π0,(j−1)r.

– A rank counter rk, initialized to the frequency of c in the prefix m′[1 : (j − 1)r].

18

– A partial sum counter PS, initialized to i′ − 1. At any point, let v be the last node
visited by the query algorithm. Then PS records the index in m corresponding to the
left-most node in the sub-array rooted at v (for a run, we store its starting index).

• Start from the root node of the aB-tree built over A′j and recursively perform the following
for each node v (with children v1, v2, · · · , vB) in the path (adaptively defined below), until a
leaf node is reached:

– Let β∗ ∈ [B] be the largest index such that PS +
∑β∗−1

β=1

∑|Σ|
σ=1 ϕrk(vβ, cσ) ≤ i.

– Update S and rk as specified by 7 and 9 respectively, with σ replaced by π∗(σ).

– Set PS ← PS +
∑β∗−1

β=1

∑|Σ|
σ=1 ϕrk(vβ, cσ).

– Recurse to vβ∗ .

• Let m′k be the character at the leaf node. If m′k represents a run of 0’s, set c′ = S[1], the
character at the top of the stack S. Otherwise, set c′ = S[m′k + 1].

• If c′ = c, set rk ← rk + (i− PS).

• Return rk.

Now we analyze the query time. The initial predecessor query and computation of sub-array index
j requires O(t′) time. Then, the algorithm spends O(1) time per node in the aB-tree, which has
depth t′. Hence, the overall query time is O(t′).

5.3 Space Analysis

Recall that we encoded an approximation of zeroth-order entropy constraint ϕ0 as an augmented
value in the aB-tree. Using Lemma 2 and arguments similar to those in Section 4.4, we have that
the aB-trees occupy at most H0 (m̄) + 2n

r + Õ(n1−ε) bits. The additional data structures require

O
(
n lgn·|Σ|

r

)
bits of space.

Now we analyze the space required for the look-up tables. Let Φ = (Φπ,Φrk,Φ0), where Φπ, Φrk

and Φ0 are the alphabets over which the augmented values ϕπ, ϕrk and ϕ0 are defined respectively.

Then |Φ| = |Φπ| · |Φrk| · |Φ0| ≤ O
(
|Σ|! · (nε · r)|Σ| · r2 lg n

)
= O|Σ|

(
nε·|Σ| ·Bt′(|Σ|+2) · lg n

)
, as r =

Bt′ . So the look-up tables occupy (in words)

O
(
|Φ|B+1 +B · |Φ|B

)
= O|Σ|

(
nε·|Σ|(B+1) ·B(B+1)t′(|Σ|+2) · lgB+1 n

)
= nO(ε),

as B = Θ(1) and t′ ≤ δ lg n for a small constant δ > 0. So, the look-up tables occupy negligible
space for small enough ε > 0. Thus, the overall space required (in bits) is at most

H0(m̄) +
n lg n · |Σ|

2Ω(t′)
+ n1−Ω(1).

As |Σ| = O(1) and |RLX(L)| ≥ H0(m̄), we can adjust t′ by a constant factor to obtain Theorem 3.1.

19

5.4 Proof of Lemma 2

Proof. We assume m contains at least one run of 0’s of length exceeding nε, since H0(m′) = H0(m̄)
otherwise. Let κ and κ′ be the number of characters representing 0-runs in m̄ and m′ respectively.
Let n′ be the number of non-zero MTF characters in m′ (or m̄). Then N = n′+κ′, and N̄ = n′+κ.

For i ∈ [n], let gi be the number of runs of length i in m̄. For i ∈ [nε], let g̃i be the additional
number of runs of length i introduced in m′ through this transformation. Let κsm be the number
of characters representing runs of length at most nε in m̄.

The following facts are immediate:

nε∑
i=1

gi = κsm ≤ κ. (10)

nε∑
i=1

(gi + g̃i) = κ′ ≤ κsm + 2n1−ε ≤ κ+ 2n1−ε. (11)

We use these facts along with the Log-Sum Inequality to prove the lemma below.

H0

(
m′
)
−H0 (m̄)

=
∑

σ∈[|Σ|−1]

fσ lg
n′ + κ′

fσ
+

nε∑
i=1

(gi + g̃i) lg
n′ + κ′

gi + g̃i
−

∑
σ∈[|Σ|−1]

fσ lg
n′ + κ

fσ
−

n∑
i=1

gi lg
n′ + κ

gi

≤
∑

σ∈[|Σ|−1]

fσ lg
n′ + κ′

n′ + κ
+

nε∑
i=1

gi lg
n′ + κ′

n′ + κ
+

nε∑
i=1

g̃i lg
n′ + κ′

gi + g̃i

≤ (n′ + κ) lg
n′ + κ′

n′ + κ
+

nε∑
i=1

g̃i lg

∑nε

i=1 n
′ + κ′∑nε

i=1 (gi + g̃i)
(Log-Sum Inequality)

≤ (n′ + κ) lg

(
1 +

2n1−ε

n′ + κ

)
+ (κ′ − κsm) lg

nε(n′ + κ′)

κ′
(
∑nε

i=1 g̃i = κ′ − κsm)

≤ 2n1−ε [lg(e) +O(lg n)] (lg2(1 + x) ≤ x lg2(e), n′ + κ′ ≤ n, κ′ ≥ 1)

= O
(
n1−ε lg n

)
.

The last two inequalities above follow from 10 and 11.

6 Reporting pattern occurrences

In this section, we prove the existence of a succinct data structure for reporting the positions of
occurrences of a given pattern in a string. For x ∈ Σn and a pattern p ∈ Σ`, let occ(p) be the
number of occurrences of p as a contiguous substring of x.

Theorem 6. Fix a string x ∈ Σn. For any t, there is a succinct data structure that, given a pattern
p ∈ Σ`, reports the starting positions of the occ(p) occurrences of p in x in time O(t ·occ(p)+` · lg t),
using at most

|RLX(BWT(x))|+O

(
n lg n lg t

t

)
+ n1−Ω(1)

bits of space, in the w = Θ(lg n) word-RAM model.

For reporting queries, this is a quadratic improvement over the FM-Index [13].

20

Proof. Let t′, t̃ < t be parameters to be determined shortly. Let Drk be the data structure given by
Theorem 3.1 which supports Rank queries on L in time O(t′). We divide the original string x into

dn/T e blocks of size T := O
(

t
t′+t̃

)
. Let S = {(j−1)T + 1 | j ∈ [n/T]} be the set of starting indices

of blocks. Let FS be the set of indices in the first column F of the BWT Matrix M corresponding
to indices in S. We store the map h : FS 7→ S. Moreover, we store a membership data structure on
[n], which given a query i ∈ [n], answers Yes iff i ∈ FS . This can be done using the data structure
in [31] which answers Rank queries over {0, 1}n15 in time O(t̃) using space (in bits)

lg

(
n

n/T

)
+

n(
lg n/t̃

)t̃ + Õ
(
n3/4

)
≤ n

T
lg(eT) +

n(
lg n/t̃

)t̃ + Õ
(
n3/4

)
. (

(
n
k

)
≤
(
en
k

)k
)

Our algorithm will follow the high-level approach to reporting pattern occurrences given in [13],
replacing each component data structure with the corresponding succinct data structure described
above. We first use Drk to count the number of occurrences occ(p) with O(` · |Σ|) Rank queries on
L, which requires O(` t′) time. We observe that the algorithm for counting occurrences specified
in [13] actually provides a contiguous set of rows [R : R+ occ(p)− 1] ⊂ [n] in the Burrows-Wheeler
matrix M which are prefixed by p. For each i ∈ [R : R + occ(p) − 1], the algorithm starts from i
and performs α ≤ T iterations of the LF-mapping algorithm16 from Section 2.1.1, until it reaches
an index i′ ∈ FS (which is verified using the membership data structure). Then it reports h(i′)+α.
By Lemma 1, each step requires O(|Σ|) Rank queries on L, each of which can be done using Drk in
O(t′) time, hence the overall running time of the reporting phase is O(T ·(t′+t̃)·occ(p)) = O(t·occ(p))
by definition of T . We can assume T ≤ t = o(n), because otherwise we can decompress the entire
string x in time O(n) = O(t). So eT = o(n), and the total space required (in bits) is at most

|RLX(BWT(x))|+ n lg n

2t′
+

n

(lg n/t̃)t̃
+
n

T
lg n+ n1−Ω(1).

In order to balance the redundancy terms in the above expression, we set t′ = Θ(lg T) . Using
the fact that t̃ ≤ t′ if the first two redundancy terms are equal, we get t = O(T ·(t̃+t′)) = O(T lg T),
so T = O(t/ lg t). Thus, we get a succinct data structure for reporting the starting positions of the
occ(p) occurrences of a pattern p ∈ Σ` in x in time O(t · occ(p) + ` · lg t), using at most

|RLX(BWT(x))|+O

(
n lg n lg t

t

)
+ n1−Ω(1)

bits of space. This concludes the proof of Theorem 6.

7 Lower Bound for Symmetric Data Structures

In this section, we prove a cell-probe lower bound on the redundancy of any succinct data structure
that locally decodes the BWT permutation Πx : BWT(x) 7→ x, induced by a uniformly random
n-bit string x ∈ {0, 1}n. While it is somewhat unnatural to consider uniformly random (context-
free) strings in BWT applications, we stress that our lower bound is more general and can yield
nontrivial lower bounds for non-product distribution µ on {0, 1}n which satisfy the premise of our
“Entropy-Polarization” Lemma 3 below, possibly with weaker parameters (we prove this lemma
for the uniform distribution, but the proof can be generalized to distributions with “sufficient
block-wise independence”).

15The bit-string y is the indicator vector of FS . For i ∈ [n], we have i ∈ FS iff rky(1, i) 6= rky(1, i− 1).
16Note that the LF Mapping algorithm can equivalently be considered to be jumps in the first column F .

21

The lower bound we prove below applies to a somewhat stronger problem than Problem 1, in
which the data structure must decode both forward and inverse evaluations (Πx(i),Π−1

x (j)) of the
induced BWT permutation. The requirement that the data structure recovers Π−1

x (j), i.e., the
position of xj in L, when decoding xj , is very natural (and, when decoding the entire input x, is
in fact without loss of generality). The “symmetry” assumption, namely, the implicit assumption
that any such data structure must also efficiently compute forward queries Πx(i) mapping positions
of i ∈ L to their corresponding index j ∈ X, is less obvious, but is also a natural assumption given
the sequential nature of the BWT decoding process (LF property, Lemma 1). Indeed, both the
FM-index [13] and our data structure from Theorem 1 are essentially symmetric.17 We shall prove
Theorem 3.2, restated below:

Theorem 3.2. Let X ∈R {0, 1}n and let ΠX ∈ Sn be the induced BWT permutation from indices
in L := BWT(X) to indices in X. Then, any data structure that computes ΠX(i) and Π−1

X (j) for
every i, j ∈ [n] in time t, q respectively, such that t · q ≤ δ lg n/ lg lgn (for some constant δ > 0), in
the cell-probe model with word size w = Θ(lg n), must use n+ Ω (n/tq) bits of space in expectation.

When q = Θ(t), our result implies that obtaining an r � n/t2 trade-off for Problem 1 is generally
impossible, hence Theorem 3.2 provides an initial step in the lower bound study of Problem 1.

The data structure problem in Theorem 3.2 is a variant of the succinct permutations problem
Perms [16, 28], in which the goal is to represent a random permutation Π ∈R Sn succinctly using
lg n! + o(n lg n) bits of space, supporting both forward and inverse evaluation queries (Π(i) and
Π−1(i)), in query times t, q respectively. Golynski [16] proved a lower bound of r ≥ Ω(n lg n/tq) on
the space redundancy of any such data structure, which applies whenever

t, q ≤ O
(

H(Π)

n · lg lgn

)
. (12)

When Π ∈R Sn is a uniformly random permutation, (12) implies that the bound holds for t, q ≤
O(lg n/ lg lg n). However, in the setting of Theorem 3.2, this result does not yield any lower bound,
since in our setting H(ΠX) ≤ n (as the BWT permutation of X is determined by X itself), hence
(12) gives a trivial condition on the query times t, q. More precisely, the fact that H(ΠX) ≤ n
implies that an average query i ∈ [n] only reveals 1

n

∑n
i=1H (ΠX(i) |ΠX(i− 1), . . . ,ΠX(1)) = O(1)

bits of information on X, in sharp contrast to a uniformly random permutation, where an average
query reveals ≈ lg n bits. This crucial issue completely dooms the cell-elimination argument in [16],
hence it fails to prove anything for Theorem 3.2.

In order to circumvent this problem, we first show that a variant of [16]’s argument in fact
yields the following generalized lower bound on the Perms problem, which applies to arbitrary
(i.e., nonuniform) random permutations Π ∼ µ, as long as there is a restricted subset of queries
S ⊆ [n] with large enough entropy:

Theorem 7 (Cell-Probe Lower Bound for Nonuniform Perms, essentially [16] Lemma 3.1). Let
Π ∼ µ be a permutation chosen according to some distribution µ over Sn. Suppose that there exists
a subset of coordinates S = S(Π) ⊆ [n], |S| = γ, and α > 0, ε ≤ 1/2 such that H(ΠS |S,Π(S)) =
γ · α ≥ (1 − ε)Hµ(Π) bits. Then any 0-error succinct data structure for Permsn under µ, in the
cell-probe model with word size w, with respective query times t, q satisfying

t, q ≤ min

{
2w/5,

1

32
· α

lgw

}
and tq ≤ δmin

(
α2

w lg(en/γ)
,
α

2εw

)
17Indeed, we can achieve q = O(t) by increasing the redundancy r by at most a factor of 2, for storing an additional

“marking index” for the reverse permutation, see the first paragraph of Section 3.

22

for some constant δ > 0, must use s ≥ Hµ(Π) + r bits of space in expectation, where

r = Ω

(
α2 · γ
w · tq

)
.

Here, ΠS := (Π(Si1),Π(Si2), . . . ,Π(Sis)) denotes the projection of Π to S, i.e., the ordered set
(vector) of evaluations of Π on S, while Π(S) denotes the image of Π under S (the unordered set),
and Hµ(Z) is the Shannon entropy of Z ∼ µ.

Theorem 7 implies that in order to prove a nontrivial bound in Theorem 3.2, it is enough
to prove that the BWT-induced permutation ΠX when applied on random X, has a (relatively)
small subset of coordinates with near-maximal entropy (even though on average it is constant).
Indeed, we prove the following key lemma about the entropy distribution of the BWT permutation
on random strings. Informally, it states that when X is random, while the average entropy of a
coordinate (query) of ΠX is indeed only Hµ(ΠX(i)|ΠX(< i)) = O(1), this random variable has a
lot of variance: A small subset (∼ n/ lg n) of coordinates have very high (∼ lg n) entropy, whereas
the rest of the coordinates have o(1) entropy on average. This is the content of the next lemma:

Lemma 3 (Entropy Polarization of the BWT Permutation). Let X ∈R {0, 1}n, and µ be the
distribution on Sn induced by BWT on X. For any ε ≥ Ω(lg lgn/ lg n), with probability at least 1−
Õ
(
n−(1−ε/3)

)
, there exists a set S ⊂ [n] of size |S| = (1−O(ε))n/ lg n, such that Hµ(ΠS |S,Π(S)) ≥

n(1− ε).

We first prove Theorem 3.2, assuming Theorem 7 and Lemma 3. We set ε = O(lg lg n/ lg n).
Let S ⊂ [n] be the set of size γ = |S| = (1 − O(ε))n/ lg n obtained from Lemma 3. We invoke
Theorem 7 with the set S, α = (1 − O(ε)) lg n, and µ being the distribution on Sn induced by
BWT on X ∈R {0, 1}n. As BWT is an invertible transformation on {0, 1}n and X is a uniformly
random bit-string, ΠX must be a uniformly random permutation over a subset of Sn of size 2n. So,
Hµ(Π) = n.

Let D be any 0-error data structure that computes ΠX(i) and Π−1
X (j) for every i, j ∈ [n] in time

t, q such that t q ≤ δ lg n/ lg lg n for small enough δ > 0. Then it is easy to see that with probability
at least 1− Õ

(
n−(1−ε)), the conditions of Theorem 7 are satisfied, and we get that D must use

s ≥
(

1− Õ
(
n−(1−ε/3)

))
(Hµ(Π) + r) = n+ r − Õ

(
nε/3

)
= n+ r − o(r)

bits of space in expectation, where

r ≥ Ω

(
α2 · γ
w · tq

)
= Ω

(
n

tq

)
.

This concludes the proof of Theorem 3.2. Now we prove the Entropy Polarization Lemma 3, and
then prove Theorem 7.

7.1 Proof of Lemma 3

Let X ∈R {0, 1}n, and L = BWT(X). Let ΠX : L → X denote the BWT-permutation between
indices of X (i.e., [n]) and L. For convenience, we henceforth think of ΠX as the permutation
between X and the first column F of the BWT matrix M of X, i.e., ΠX : F → X. Note that
these permutations are equivalent up to a fixed rotation. We also denote ΠX by Π, dropping the
subscript X.

23

Recall that for any subset of coordinates S ⊆ [n], Π(S) denotes the image (unordered set of
coordinates) of S in F under Π, and ΠS denotes the ordered set (i.e., the projection of Π to S).

Let ` = (1 + ε) lg n, s̃ := [bn/`c]. For i ∈ [s̃], let Yi = X[(i− 1)`+ 1 : i`] be the ith block of X
of length `. Let Ji be the index of the row in the BWT matrix M which starts with Yi; note that
F [Ji] is the first character in Yi. Let S̃ = {Ji | i ∈ [s̃]}. So |S̃| = s̃ = n/((1 + ε) lg n).

We first show the existence of a large subset of blocks Yi which are pairwise distinct, with high
probability. The BWT ordering among the rows Ji corresponding to the cyclic shifts starting with
these blocks is consistent with the (unique) lexicographical ordering among the blocks themselves.
We then show that the lexicographical ordering among these blocks is uniform. As this ordering
is determined by the BWT permutation restricted to the corresponding rows Ji, the permutation
restricted to these rows Ji itself must have high entropy.

For 1 ≤ i < j ≤ s̃, we say that there is a “collision” between blocks Yi and Yj if Yi = Yj ,
and define Zi,j ∈ {0, 1} to be the indicator of this event. Let Z =

∑
1≤i<j≤s̃ Zij be the number of

collisions that occur among the disjoint blocks of length `.

Claim 1. Let E be the event that the number of collisions Z ≤ n1−ε/ lg2 n. Then Pr[E] ≥
1− Õ

(
n−(1−ε)).

Proof. Fix 1 ≤ i < j ≤ s̃. Then Yi and Yj are disjoint substrings of X of length ` = (1 + ε) lg n. As
X is a uniformly random string of length n, we have that Yi and Yj are independent and uniformly
random strings of length `. So,

E[Zij] = Pr[Yi = Yj] = 2−` = n−(1+ε).

By linearity of expectation and the fact that s̃ ≤ n/ lg n, we have

E[Z] =
∑

1≤i<j≤s̃
E[Zij] =

(
s̃

2

)
1

n1+ε
≤ n1−ε

2 lg2 n
.

Fix 1 ≤ i < j ≤ s̃. As Zij is an indicator random variable, we have

Var[Zij] = Pr[Yi = Yj](1−Pr[Yi = Yj]) ≤ Pr[Yi = Yj].

It is easy to see that the random variables Zij are pairwise independent. So, we have

Var[Z] =
∑

1≤i<j≤s̃
Var[Zij] ≤

∑
1≤i<j≤s̃

Pr[Yi = Yj] = E[Z].

By Chebyshev’s inequality and the fact that E[Z] ≥ n1−ε

4 lg2 n
, we have

Pr

[
Z >

n1−ε

lg2 n

]
≤ Pr[|Z − E[Z]| > E[Z]] ≤ Var[Z]

E[Z]2
≤ 1

E[Z]
≤ 4 lg2 n

n1−ε .

For the remainder of this proof, we assume that the event E holds. Let T = {i ∈ [s̃] |Yi 6=
Yj ∀ j 6= i} be the set of indices of blocks Yi which do not collide with any other block. Let s = |T |,
and S = {Ji ∈ [n] | i ∈ T} ⊂ S̃ be the corresponding set of indices Ji. As E holds, we have

|S| = s ≥ s̃− 2Z ≥ n

(1 + ε) lg n
− 2n1−ε

lg2 n
≥ n

(1 + 2ε) lg n
≥ n(1− 2ε)

lg n
.

24

Now, given E and T , we define an ordering among the blocks Yi, i ∈ T . For j ∈ [s], we define
Lj = i∗ ∈ [s] if Yi∗ is the jth smallest string (lexicographically) among Yi, i ∈ T . Finally, let
L = (L1, · · · , Ls). By abuse of notation, we can identify L with a permutation on s elements.

Note that, given E and T , this order specified by L is consistent with the relative ordering of
the corresponding cyclic shifts of X starting with Yi, i ∈ T , in the BWT MatrixM. More precisely,
we have Lj = i∗ if Ji∗ is the jth smallest row index among S = {Ji | i ∈ T}. However, we define
L’s in this manner to emphasize that it is well-defined without reference to S.

We will use the following fact about conditional entropy multiple times:

Fact 2. Let A,B be random variables in the same probability space. Then H(A|B) ≥ H(A)−H(B).

Proof. The proof is immediate using the chain rule:

H(A) ≤ H(A,B) = H(B) +H(A|B).

The following claim allows us to remove the conditioning on the set Π(S) at the cost of a
negligible loss in entropy.

Claim 2. Let S,Π(S) and ΠS be as defined above. Then Hµ(ΠS |S,Π(S)) ≥ Hµ(ΠS |S) − O(s ·
lg(n/s)).

Proof. We use Fact 2 with A = ΠS |S and B = Π(S) to get that Hµ(ΠS |S,Π(S)) ≥ Hµ(ΠS |S) −
Hµ(Π(S)). Now, as Π(S) is a s-size subset of the set {(i− 1)`+ 1 | i ∈ [s̃]}, we have that

Hµ(Π(S)) ≤ lg

(
s̃

s

)
= O

(
s lg

s̄

s

)
≤ O

(
s lg

n

s

)
.

We will invoke Claim 2 later with s = Θ(n/ lg n). Note that for any ε ≥ Ω(lg lg n/ lg n), we
have that s lg(n/s) ≤ O(s lg lg n) ≤ εn, so the loss in entropy is negligible.

Claim 3. Let S,L,ΠS , E and T be as defined above. Then Hµ(ΠS |S) ≥ H(L|S,E, T).

Proof. It is enough to show that given E and the set S, the permutation ΠS (restricted to S)
determines T and the ordering L among the blocks Yi, i ∈ T . But this is true because, for any
j ∈ S, the index ΠS(j) specifies the position of F [j] in X. In particular (as j ∈ S), it specifies the
block index i such that F [j] is the first character of Yi, i.e., j = Ji. Then T is the set of these block
indices. As this mapping is specified for all indices j ∈ S, the set T and the ordering L on T are
clearly determined by ΠS , given S. So, Hµ(ΠS |S) ≥ Hµ(ΠS |S,E) ≥ H(L|S,E, T).

As described earlier, given E and T , L is well-defined without reference to S. We now combine
the previous claims to reduce the problem of lower-bounding Hµ(ΠS |S,Π(S)) to that of lower-
bounding H(L|E, T), while losing negligible entropy.

Claim 4. Let E, T,L, S,Π(S) and ΠS be as defined above. Then Hµ(ΠS |S,Π(S)) ≥ H(L|E, T)−
O(s · lg lgn).

25

Proof. From Claims 2, 3, Fact 2 and the fact that |Π(S)| = |S| = s = Θ(n/ lg n), we have

Hµ(ΠS |S,Π(S)) ≥ Hµ(ΠS |S)−O
(
s · lg n

s

)
≥ H(L|S,E, T)−O(s · lg lgn)

≥ H(L|E, T)−O(s · lg lg n)

For the last inequality, we apply Fact 2 with A = L|E, T and B = S, and upper bound Hµ(S) by
O(s lg lgn) using the same argument that was used to bound Hµ(Π(S)).

Claim 5. Let E,L, T be as defined above. Then H(L|E, T) = lg(s!) ≥ s lg n−O(s lg lgn).

Proof. For X ∈ {0, 1}n and permutation τ ∈ Ss̃, define Xτ ∈ {0, 1}n to be the string obtained by
shifting the entire ith substring Yi of X to the τ(i)th block, for all i ∈ [s̃]. Formally, Xτ [(τ(i) −
1)`+ 1 : τ(i)`] = X[(i− 1)`+ 1 : i`] = Yi. We observe that X satisfies E if and only if Xτ satisfies
E. This is because E is determined purely by inequalities among pairs of substrings Yi, Yj , which
are kept intact by τ as it permutes entire blocks.

Now, the event E is clearly determined by X. So, for any fixed string x ∈ {0, 1}n, we have

that Pr[E|X = x] is either 0 or 1. This implies that Pr[X = x|E] = Pr[X=x]
Pr[E] if x satisfies E, and

Pr[X = x|E] = 0 otherwise.
Let x be a string which satisfies E. Let τ ∈ Ss̃ be any permutation. Then

Pr[X = x |E] =
Pr[X = x]

Pr[E]
=

Pr[X = xτ]

Pr[E]
= Pr[X = xτ |E].

The second equality follows from the fact that X is uniform and the last equality follows because x
satisfies E if and only if xτ satisfies E. Similarly, for any permutation τ ∈ Ss̃ and any string x that
does not satisfy E, we have Pr[X = x|E] = 0 = Pr[X = xτ |E]. This shows that the conditional
distribution of X, given E, is still uniform over a subset of {0, 1}n of size 2n(1− o(1)).

We show that, given E and any fixed subset T ⊂ [s̃] of size s ≥ n(1 − 2ε)/ lg n such that the
`-length substrings indexed by T are all distinct, all s! orderings L on T are equally likely. As L is
defined with respect to the lexicographical ordering among the blocks Yi, i ∈ T , we only consider
permutations τ ∈ Ss̃ which fix indices outside T , i.e., τ(i) = i for all i ∈ [s̃] \ T . Fix any two
distinct orderings L1,L2 ∈ Ss. For i ∈ {1, 2}, let ΛTi ⊂ {0, 1}n be the set of strings x that satisfy
event E with respect to the set T (i.e., the set of substrings x[(i− 1)`+ 1 : i`]) are distinct for all
i ∈ T), and give rise to the ordering Li on T . We show that |ΛT1 | = |ΛT2 | by exhibiting a bijection
f : ΛT1 → ΛT2 .

Let τ ∈ Ss̃ be the unique permutation which converts L1 to L2, and fixes indices outside T . For
x ∈ ΛT1 , define f(x) = xτ . Then f(x) satisfies E as x satisfies E. Moreover, as x induces the order
L1 on T , f(x) must induce the order L2 on T . Hence, f(x) ∈ ΛT2 . Clearly, this map is one-one.
We observe that the inverse map f−1 : ΛT2 → ΛT1 is given by f−1(x) = xτ

−1
. So, f is a bijection,

and hence |ΛT1 | = |ΛT2 |. But any string in ΛT1 ∪ΛT2 is equally probable under the distribution of X
conditioned on E. So, the probability of the induced ordering L on T being L1 or L2 is equal, i.e.,
Pr[L = L1 |E, T] = Pr[L = L2 |E, T]. As this is true for all pairs of orderings on T , we have that
L is uniform on s! orderings, given E, T . As s = Θ(n/ lg n), we have

H(L|E, T) = lg(s!) ≥ s lg s−O(s) ≥ s lg n−O(s lg lgn).

We conclude the proof of Lemma 3 by combining Claims 4 and 5, and replacing ε by ε/3:

Hµ(ΠS |S,Π(S)) ≥ H(L|E, T)−O(s·lg lgn) ≥ s lg n−O(s·lg lg n) ≥ n(1−2ε)−O(s·lg lgn) ≥ n(1−3ε).

26

7.2 Proof of Theorem 7

Proof. Let Π ∼µ Sn and let S = S(Π) ⊆ [n] be the subset of |S| = γ queries satisfying the
premise of the theorem. Let D be a data structure for Permsn under µ which correctly computes
the (forward and inverse) answers with query times t, q respectively (satisfying the bounds in the
theorem statement), and s = h+ r′ words of space, where h = Hµ(Π)/w and r′ = r/w.

The idea is to adapt Golynski’s argument [16] to the restricted set of “high entropy” queries
(S,Π(S)) and use D in order to efficiently encode the answers of ΠS , while the remaining answers
(ΠS) can be encoded in a standard way using ∼ Hµ(ΠS̄ |S,ΠS) extra bits (as this conditional
entropy is very small by the premise).

To this end, suppose Alice is given Π ∼ µ and S = S(Π). Alice will first use DS to send ΠS ,
along with the sets S,Π(S) ⊂ [n], to Bob. The subsequent encoding argument proceeds in stages,
where in each stage we delete one “unpopular cell” of DS , i.e., a cell which is accessed by few
forward and inverse queries in S,Π(S), and protect some other cells from deletion in future stages.
The number of stages z is set so that at the end, the number of remaining unprotected cells (i.e.,
the number of cells which were not protected nor deleted in any stage) is at least h/2.

Following [16], for any cell l ∈ [h + r′] we let FS(l) and IΠ(S)(l) denote the subset of forward

and inverse queries (in S,Π(S) respectively) which probe l. Fix a stage k. Let CSk denote the
remaining cells at the end of stage k (i.e., the set of undeleted unprotected cells) probed by any
query i ∈ S ∪ Π(S). So |C0| = h+ r′ and |CSz | ≥ h

2 . For a query i ∈ S, let Rk(i) denote the set of
remaining cells at stage k probed by i. The average number of forward queries in S that probe a
particular cell is

1

|CSk |
∑
l∈CSk

|FS(l)| = 1

|CSk |
∑
i∈S
|Rk(i)| ≤

|S| t
|CSk |

=
γ t

|CSk |
.

As such, there are at most |CSk |/3 cells which are probed by at least 3 γ t
|CSk |

forward queries in S. By

an analogous argument, there are at most |CSk |/3 cells which are probed by at least 3 γ q
|CSk |

inverse

queries in Π(S). Hence, we can find a cell dk ∈ CSk which is probed by at most β := 3 γ t
|CSk |

forward

queries in S and β′ := 3 γ q
|CSk |

inverse queries in Π(S). As |CSk | ≥ h/2, we have that β ≤ 6γ th and

β′ ≤ 6γ qh . We delete (the contents of) this cell dk. Let

F ′S(dk) := FS(dk) ∩Π−1(IΠ(S)(dk))

denote the set of forward queries i ∈ S such that both i and the reciprocal j := Π(i) ∈ Π(S) probe
the deleted cell dk (note that F ′S(dk) is well defined even when DS is adaptive, given the input Π).
Define I ′Π(S)(dk) analogously. We say that the queries in F ′S(dk) and I ′Π(S)(dk) are non-recoverable.

Note that, by definition, Π defines a bijection between F ′S(dk) and I ′Π(S), i.e.,

Π(F ′S(dk)) = I ′Π(S)(dk). (13)

In order to “preserve” the information in dk, Alice will send Bob an array Adk of β entries, each
of size lg β′ bits, encoding the bijection ΠF ′S(dk) : F ′S(dk) ←→ I ′Π(S)(dk) so that Bob can recover

the answer to a query pair (i, j) in the event that both i and j = Π(i) access the deleted cell dk.
Let P (dk) :=

⋃
i∈Π(FS(dk))∪Π−1(IΠ(S)(dk))Rk(i) \ {dk} denote the union of all remaining cells probed

by “reciprocal” queries to queries that probe dk, excluding dk itself. To ensure the aforementioned
bijection can be encoded “locally” (i.e., using only β lg β′ bits instead of β lg n), we protect the cells
in P (dk) from any future deletion. This is crucial, as it guarantees that any query is associated
with at most one deleted cell.

27

The number of protected cells is at most |P (dk)| ≤ t|IΠ(S)(dk)| + q|FS(dk)| ≤ tβ′ + qβ ≤
O(γ tq/h), since FS(dk) ∪ IΠ(S)(dk) contains at most |FS(dk)| ≤ β forward queries in S and
|IΠ(S)(dk)| ≤ β′ inverse queries in Π(S). This implies by direct calculation ([16]) that the number

of stages z that can be performed while satisfying |CSz | ≥ h/2, is

z = Θ(h/qβ) = Θ(h/tβ′),

since qβ = tβ′. Note that by (13), sending the bijection array Adk can be done using (at most)
β lg β′ bits, by storing, for each query in F ′S(dk), the corresponding index from I ′Π(S)(dk) (where the

sets are sorted in lexicographical order), since every query is associated with at most one deleted
cell. Let A denote the concatenation of all the arrays {Adk}k∈[z] of deleted cells in the z stages
(occupying at most zβ lg β′ bits), L denote the locations of all deleted cells (which can be sent

using at most lg
(
h+r′

z

)
≤ z lg(O(h)/z) = O(z lg(βq)) bits, assuming r′ = O(h)), and R denote the

contents of remaining cells, which occupy

h+ r′ − z

words. Alice sends Bob M := (A,R,L), along with the explicit sets S,Π(S). Alice also sends Bob
the answers to the forward queries outside S, conditioned on S and the answers ΠS on S, using at
most Hµ(ΠS̄ |S,ΠS) + 1 bits using standard Huffman coding. Let this message be P.

Assume w.l.o.g that t ≤ q, hence β ≤ β′. Recalling that β′ ≤ 6γ qh , the premises of the lemma

q ≤ min

{
2w/5,

1

32
· α

lgw

}
, and h ≥ 1

w
Hµ(ΠS |S,Π(S)) =

γ · α
w

imply that β′ ≤ 6 q γ w
γ α ≤ 6αw

32α lgw < w
5 lgw , hence the total cost of sending A is at most

zβ lg β′ ≤ zβ′ lg β′ ≤ z w

5 lgw
· lgw = zw/5

bits. Since lg q ≤ w/5 by assumption, the cost of sending L is at most z lg(βq) ≤ zw/5 + z lgw +
O(z) = zw/5 + o(zw) bits. Sending the sets S,Π(S) can be done using at most 2|S| lg(en/|S|) =

2γ lg(en/γ) bits. Now, as tq ≤ δ·α2

w lg(en/γ) for small enough δ > 0, we have

zw = Θ

(
hw

qβ

)
≥ Ω

(
h2w

γ t q

)
≥ Ω

(
γ α2

w tq

)
≥ 10γ lg(en/γ).

So, Alice can send S,Π(S) using at most zw/5 bits. Finally, the message P requires (up to 1 bit)

Hµ(ΠS̄ |S,ΠS) ≤ εHµ(Π) ≤ 2εαγ ≤ δ α2 γ

w tq
≤ zw

5

bits in expectation with respect to µ. Thus, together with the cost of R and P, Alice’s total
expected message size is at most (h + r′ − z)w + 4zw/5 bits, or h + r′ − z + 4z/5 = h + r′ − z/5
words (up to o(z) terms). But the minimum expected length of Alice’s message must be h words.
This implies that the redundancy in bits must be at least

r = r′w ≥ Ω(zw)

in expectation, which, on substituting z = Θ(h/qβ), yields the claimed lower bound on r, assuming
Bob can recover Π from Alice’s message, which we argue below.

28

To decode ΠS := {Π(i)}i∈S given S and Alice’s message M , Bob proceeds as follows: He first
fills an empty memory of h + r′ words with the contents of R he receives from Alice, leaving all
deleted cells empty. Let A,A′ denote the forward (resp. inverse) query algorithms of DS (note
that A,A′ are defined for all queries in [n]). Bob simulates the forward query algorithm A(i) on
all forward queries in S and the inverse query algorithm A′(j) on all inverse queries j ∈ Π(S). If a
query i ∈ S fails (i.e., probes some deleted cell) but A′ on some inverse query j ∈ Π(S) does not
fail and returns A′(j) = i, he can infer the answer Π(i) = j. Similarly, he can infer the answer to
an inverse query which fails, if its corresponding forward query does not fail. So, we focus on the
non-recoverable queries in S and Π(S).

If a query i ∈ S fails, he finds the first deleted cell d probed by A(i), and lexicographically
lists all the queries in F ′S(d) for which d is the first deleted cell. Similarly, he lexicographically
lists the set of all inverse queries in I ′Π(S)(d) whose first deleted cell is d. He then uses the array

Ad, which stores the bijection between the non-recoverable forward queries in F ′S(d) and the non-
recoverable inverse queries in I ′Π(S)(d), to answer these non-recoverable forward queries. In an
analogous manner, he answers the non-recoverable inverse queries. Note that we crucially use the
fact that each query accesses at most one deleted cell.

Finally, Bob uses P along with the answers to queries in S and Π(S) to answer all forward
queries in S̄. At this point, since he knows the answers to all forward queries, he can recover Π,
and answer all inverse queries in Π̄(S) as well.

References

[1] Donald Adjeroh, Timothy Bell, and Amar Mukherjee. The Burrows-Wheeler Transform: Data
Compression, Suffix Arrays, and Pattern Matching. Springer Publishing Company, Incorpo-
rated, 1 edition, 2008. 1

[2] Rudolf Ahlswede. An elementary proof of the strong converse theorem for the multiple-access
channel. J. Combinatorics, Information and System Sciences, 1982. 3.2

[3] Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan, and Victor K. Wei. A locally adaptive
data compression scheme. Commun. ACM, 29(4):320–330, April 1986. 1, 2.2.1

[4] Philip Bille, Patrick Hagge Cording, Inge Li GNørtz, Benjamin Sach, Hjalte Wedel VildhNøj,
and SNøren Vind. Fingerprints in compressed strings. 1.1

[5] Andrej Brodnik and J. Ian Munro. Membership in constant time and almost-minimum space.
SIAM J. Comput., 28(5):1627–1640, May 1999. 1.1

[6] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, 1994. 1, 2.2.2

[7] Yevgeniy Dodis, Mihai Patrascu, and Mikkel Thorup. Changing base without losing space. In
Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10, pages
593–602, New York, NY, USA, 2010. ACM. 1.1

[8] Akashnil Dutta, Reut Levi, Dana Ron, and Ronitt Rubinfeld. A simple online competitive
adaptation of lempel-ziv compression with efficient random access support. In Proceedings
of the 2013 Data Compression Conference, DCC ’13, pages 113–122, Washington, DC, USA,
2013. IEEE Computer Society. 1, 1.1

29

[9] Michelle Effros, Karthik Visweswariah, Sanjeev R. Kulkarni, and Sergio Verdu. Universal
lossless source coding with the burrows wheeler transform. IEEE TRANSACTIONS ON IN-
FORMATION THEORY, 48(5):1061–1081, 2002. 1, B

[10] Martin Farach and Mikkel Thorup. String matching in lempel-ziv compressed strings. In
Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing, STOC
’95, pages 703–712, New York, NY, USA, 1995. ACM. 1, 1.1, B

[11] Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The myriad virtues of wavelet
trees. Inf. Comput., 207(8):849–866, August 2009. B

[12] Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, and Marinella Sciortino. Boosting
textual compression in optimal linear time. J. ACM, 52(4):688–713, July 2005. B

[13] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
July 2005. 1, 4, 1, 1.1, 2.2.2, 3, 6, 6, 7, B

[14] Travis Gagie and Giovanni Manzini. Move-to-front, distance coding, and inversion frequencies
revisited. Theoretical Computer Science, 411(31):2925 – 2944, 2010. B

[15] Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data structures.
In In Automata, Languages and Programming, 30th International Colloquium (ICALP 2003,
pages 332–344. Springer-Verlag, 2003. 1.1

[16] Alexander Golynski. Cell probe lower bounds for succinct data structures. In Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New
York, NY, USA, January 4-6, 2009, pages 625–634, 2009. 1, 1.1, 3.2, 3.2, 7, 7, 7, 7.2, 7.2

[17] Alexander Golynski, Roberto Grossi, Ankur Gupta, Rajeev Raman, and S. Srinivasa Rao. On
the size of succinct indices. In Algorithms - ESA 2007, 15th Annual European Symposium,
Eilat, Israel, October 8-10, 2007, Proceedings, pages 371–382, 2007. 1, 1.1

[18] Alexander Golynski, Rajeev Raman, and S. Srinivasa Rao. On the redundancy of succinct data
structures. In Proceedings of the 11th Scandinavian Workshop on Algorithm Theory, SWAT
’08, pages 148–159, Berlin, Heidelberg, 2008. Springer-Verlag. 1.1

[19] Haim Kaplan, Shir Landau, and Elad Verbin. A simpler analysis of burrows–wheeler-based
compression. Theor. Comput. Sci., 387(3):220–235, November 2007. 1, B

[20] Haim Kaplan and Elad Verbin. Most burrows-wheeler based compressors are not optimal.
In Proceedings of the 18th Annual Conference on Combinatorial Pattern Matching, CPM’07,
pages 107–118, Berlin, Heidelberg, 2007. Springer-Verlag. 1, B

[21] S. Rao Kosaraju and Giovanni Manzini. Compression of low entropy strings with lempel–ziv
algorithms. SIAM J. Comput., 29(3):893–911, December 1999. B

[22] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches. In
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’90,
pages 319–327, Philadelphia, PA, USA, 1990. Society for Industrial and Applied Mathematics.
1.1

[23] Giovanni Manzini. An analysis of the burrows-wheeler transform. J. ACM, 48(3):407–430,
May 2001. 1, 2, 2.2.2, B

30

[24] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix array construction
algorithm. Algorithmica, 40(1):33–50, June 2004. 1

[25] Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, April 1976. 1.1

[26] Peter Bro Miltersen. Lower bounds on the size of selection and rank indexes. In Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pages
11–12, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics. 1.1

[27] Alistair Moffat. Implementing the ppm data compression scheme, 1990. B

[28] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and Srinivasa Rao S. Succinct representations
of permutations and functions. Theor. Comput. Sci., 438:74–88, June 2012. 1.1, 7

[29] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv., 39(1),
April 2007. 1, 1.1

[30] Rasmus Pagh. Low redundancy in static dictionaries with constant query time. SIAM J.
Comput., 31(2):353–363, February 2002. 1, 1.1

[31] Mihai Pătraşcu. Succincter. In Proceedings of the 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’08, pages 305–313, Washington, DC, USA, 2008.
IEEE Computer Society. 1, 1, 1, 1.1, 2.3, 4, 2.3, 3.1, 4.4, 6

[32] Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proceed-
ings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC ’06, pages
232–240, New York, NY, USA, 2006. ACM. 3.1, 5.1

[33] Mihai Pătraşcu and Emanuele Viola. Cell-probe lower bounds for succinct partial sums. In
Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’10, pages 117–122, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathe-
matics. 1.1

[34] Kunihiko Sadakane and Roberto Grossi. Squeezing succinct data structures into entropy
bounds. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 1230–1239, 2006.
1.1

[35] Julian Seward. Bzip2. www.bzip.org. 1, B

[36] Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string graph
using the fm-index. Bioinformatics [ISMB], 26(12):367–373, 2010. 1.1

[37] Emanuele Viola. Cell-probe lower bounds for prefix sums. Electronic Colloquium on Compu-
tational Complexity (ECCC), 16:54, 2009. 1.1

[38] Emanuele Viola. Bit-probe lower bounds for succinct data structures. SIAM Journal on
Computing, 41(6):1593–1604, 2012. 1.1

[39] Emanuele Viola. A sampling lower bound for permutations. Electronic Colloquium on Com-
putational Complexity (ECCC), 24:166, 2017. 1.1

31

www.bzip.org

[40] Emanuele Viola. Sampling lower bounds: boolean average-case and permutations. Electronic
Colloquium on Computational Complexity (ECCC), 25:60, 2018. 1.1

[41] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, September 1978. 6, B

A Proof of Fact 1 (LF Mapping Property)

We prove the first equality in Fact 1. The intuition is that the order among distinct occurrences of
a character c in both F and L are decided by the character’s right-context in x, and so they must
be the same.

Proof. Fix c ∈ Σ. Consider any two distinct occurrences of c in x, at positions k1, k2 ∈ [n]
respectively. For α ∈ {1, 2}, let iα, jα ∈ [n] be indices such that the BWT maps x[kα] to position
iα in L and position jα in F , i.e., x[kα] = L[iα] = F [jα] = c. Then it suffices to prove that i1 < i2
if and only if j1 < j2, because the ordering among all occurrences of c is determined by the relative
ordering among all pairs of occurrences of c.

For α ∈ {1, 2}, let yα = x[kα + 1, kα + 2, · · · , n, 1, · · · , kα − 1] denote the right-context of x[kα]
in x, which corresponds to the cyclic shift of x by α positions (and then excluding x[kα]). For
β ∈ [n], letM[β] denote row β of the BWT matrixM. Then it is easy to see thatM[iα] = (yα, c)
and M[jα] = (c, yα), for α ∈ {1, 2}. We write z1 ≺ z2 below to mean that z1 is smaller than z2

according to the lexicographical order on Σ.
Assume i1 < i2. From this assumption and the fact that the rows ofM are sorted lexicograph-

ically, we have (y1, c) ≺ (y2, c). But this implies that y1 ≺ y2 lexicographically, as both strings are
of equal length and end with c. So, we have

M[j1] = (c, y1) ≺ (c, y2) =M[j2].

We conclude that j1 < j2 if i1 < i2. Clearly, the converse also holds. Thus, the relative ordering
between any two occurrences of c is the same in F and L. This concludes the proof of Fact 1.

B The RLX Benchmark and Comparison to Other Compressors

A theoretical justification of the RLX space benchmark was first given by [13, 23], where it was
proved that RLX(BWT(x)) approaches the infinite-order empirical entropy of x (even under the
weaker version of [13] where the final arithmetic coding stage (3) is excluded), namely, that for any
constant k ≥ 0,

|RLX(BWT(x))| ≤ 5 ·Hk(x) +O(lg n).

Several other compression methods were subsequently proposed for compressing BWT(x) (e.g.,
[11, 12,14]), some of which achieving better (essentially optimal) worst-case theoretical guarantees
with respect to Hk(x), albeit at the price of an Ω(n/ lg n) or even Ω(n) additive factor, which
becomes the dominant term in the interesting regime of compressed text indexing [10,21]. The same
caveat holds for other entropy-coding methods such as LZ77, LZ78 and PPMC [27,41,41], confirming
experimental results which demonstrated the superiority of BWT-based text compression [9,19,23].
Indeed, Kaplan et. al [19, 20] observed that, despite failing to converge exactly to Hk, distance-
based and MTF compression of BWT such as RLX tend to outperform other entropy coding methods
(especially in the presence of long-term correlations as in English text). RLX is the basis of the bzip2
program [35]. For further elaboration we refer the reader to [12,23].

32
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

