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Abstract

The Bogolyubov-Ruzsa lemma, in particular the quantitative bounds obtained by
Sanders, plays a central role in obtaining effective bounds for the inverse U3 theorem
for the Gowers norms. Recently, Gowers and Milićević applied a bilinear Bogolyubov-
Ruzsa lemma as part of a proof of the inverse U4 theorem with effective bounds.
The goal of this note is to obtain quantitative bounds for the bilinear Bogolyubov-
Ruzsa lemma which are similar to those obtained by Sanders for the Bogolyubov-Ruzsa
lemma.

We show that if a set A ⊂ Fn × Fn has density α, then after a constant number
of horizontal and vertical sums, the set A would contain a bilinear structure of co-
dimension r = logO(1) α−1. This improves the results of Gowers and Milićević which
obtained similar results with a weaker bound of r = exp(exp(logO(1) α−1)) and by
Bienvenu and Lê which obtained r = exp(exp(exp(logO(1) α−1))).

1 Introduction

One of the key ingredients in the proof of quantitative inverse theorem for Gowers U3 norm
over finite fields, due to Green and Tao [GT08] and Samorodnitsky [Sam07], is an inverse
theorem on the structure of sumsets. More concretely, the tool that gives the best bounds
is the improved Bogolyubov-Ruzsa lemma due to Sanders [San12]. Before introducing it,
we set some common notation. We assume that F = Fp is a prime field where p is a fixed
constant, and suppress the exact dependence on p in the bounds. Given a subset A ⊂ Fn
its density is α = |A|/|F|n. The sumset of A is 2A = A + A = {a + a′ : a, a′ ∈ A} and its
difference set is A− A = {a− a′ : a, a′ ∈ A}.
∗Supported by NSF grant CCF-1614023.
†Supported by NSF grant CCF-1614023.
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Theorem 1.1. ([San12]) Let A ⊂ Fn be a subset of density α. Then there exists a subspace
V ⊂ 2A− 2A of co-dimension O(log4 α−1).

In fact the link between the inverse U3 theorem and inverse sumset theorems is deeper.
It was shown in [GT10, Lov12] that an inverse U3 conjecture with polynomial bounds is
equivalent to the polynomial Freiman-Ruzsa conjecture, one of the central open problems in
additive combinatorics. Given this, one can not help but wonder whether there is a more
general inverse sumset phenomena that would naturally correspond to quantitative inverse
theorems for Uk norms. In a recent breakthrough, Gowers and Milićević [GM17b] showed
that this is indeed the case, at least for the U4 norm. They used a bilinear generalization of
Theorem 1.1 to obtain a quantitative inverse U4 theorem.

To be able to explain this result we need to introduce some notation. Let A ⊂ Fn × Fn.
Define two operators, capturing subtraction on horizontal and vertical fibers as follows:

φh(A) := {(x1 − x2, y) : (x1, y), (x2, y) ∈ A},
φv(A) := {(x, y1 − y2) : (x, y1), (x, y2) ∈ A}.

Given a word w ∈ {h, v}k define φw = φw1 ◦ . . . ◦ φwk
to be their composition. A bilinear

variety B ⊂ Fn × Fn of co-dimension r = r1 + r2 + r3 is a set defined as follows:

B = {(x, y) ∈ V ×W : b1(x, y) = . . . = br3(x, y) = 0},

where V,W ⊂ Fn are subspaces of co-dimension r1, r2, respectively, and b1, . . . , br3 : Fn ×
Fn → F are bilinear forms.

Gowers and Milićević [GM17a] and independently Bienvenu and Lê [BL17] proved the
following, although [BL17] obtained a weaker bound of r = exp(exp(exp(logO(1) α−1))).

Theorem 1.2 ([GM17a, BL17]). Let A ⊂ Fn × Fn be of density α and let w = hhvvhh.
Then there exists a bilinear variety B ⊂ φw(A) of co-dimension r = exp(exp(logO(1) α−1)).

To be fair, it was not Theorem 1.2 directly but a more analytic variant of it that was used
(combined with many other ideas) to prove the inverse U4 theorem in [GM17b]. However,
we will not discuss that analytical variant here.

The purpose of this note is to improve the bound in Theorem 1.2 to r = logO(1) α−1. Our
proof is arguably simpler and is obtained only by invoking Theorem 1.1 a few times, without
doing any extra Fourier analysis. The motivation behind this work — other than obtaining
the right form of bound — is to employ this result in a more algebraic framework to obtain
a modular and simpler proof of an inverse U4 theorem.

One more remark before explaining the result is that Theorem 1.2 generalizes Theorem 1.1
because given a set A ⊂ Fn, one can apply Theorem 1.2 to the set A′ = Fn × A and find
{x} × V ⊂ φw(A′) where x is arbitrary, and V a subspace of co-dimension 3r. This implies
V ⊂ 2A− 2A.

Theorem 1.3 (Main theorem). Let A ⊂ Fn×Fn be of density α and let w = hvvhvvvhh.
Then there exists a bilinear variety B ⊂ φw(A) of co-dimension r = O(log80 α−1).
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Note that the choice of the word w in Theorem 1.3 is w = hvvhvvvhh which is slightly
longer than in Theorem 1.2 being hhvvhh. However, for applications this usually does not
matter and any constant length w would do the job. In fact allowing w to be longer is what
enables us to obtain a result with a stronger bound.

1.1 A robust analog of Theorem 1.3

Going back to the theorem of Sanders, there is a more powerful variant of Theorem 1.1
which guarantees that V enjoys a stronger property rather than just being a subset of
2A − 2A. The stronger property is that every element y ∈ V can be written in many ways
as y = a1 + a2 − a3 − a4, with a1, a2, a3, a4 ∈ A. This stronger property of V has a number
of applications such as obtaining upper bounds for Roth theorem in four variables. We refer
the reader to [SS16] where Theorem 3.2 is similarly obtained from Theorem 1.1 and also for
the noted application.

Theorem 1.4 ([San12, SS16]). Let A ⊂ Fn be a subset of density α. Then there exists a
subspace V ⊂ 2A − 2A of co-dimension O(log4 α−1) such that the following holds. Every
y ∈ V can be expressed as y = a1 + a2 − a3 − a4 with a1, a2, a3, a4 ∈ A in at least αO(1)|F|3n
many ways.

In Section 3 we also prove a statistical analog of Theorem 1.4 by slightly modifying the
proof of Theorem 1.3. To explain it, we need just a bit more notation.

Fix an arbitrary (x, y) ∈ Fn × Fn, and note that (x, y) can be written as (x, y) =
φh((x + x1, y), (x1, y)) for any x1 ∈ Fn. Moreover, for any fixed x1, each of the points
(x + x1, y), (x1, y) can be written as (x + x1, y) = φv((x + x1, y + y1), (x + x1, y1)) and
(x1, y) = φv((x1, y + y2), (x1, y2)) for arbitrary y1, y2 ∈ Fn. So over all, the point (x, y) can
be written using the operation φvh in exactly |Fn|3 many ways, namely, the total number of
two-dimensional parallelograms (x+ x1, y+ y1), (x+ x1, y1), (x1, y+ y2), (x1, y2) where (x, y)
is fixed. We can continue this and consider an arbitrary word w ∈ {h, v}k. Then (x, y) can
be written using the operation φw in exactly |Fn|2k−1 many ways.

Now, we have a set A ⊂ Fn × Fn and fix a word w ∈ {h, v}k. Define φεw(A) to be the
set of all elements (x, y) ∈ Fn × Fn that can be obtained in at least ε|Fn|2k−1 many ways by
applying the operation φw(A).

The following is an extension of Theorem 1.3 similar in spirit to Theorem 1.4.

Theorem 1.5. Let A ⊂ Fn × Fn be of density α and let w = hvvhvvvhh and ε =
exp(−O(log20 α−1)). Then there exists a bilinear variety B ⊂ φεw(A) of co-dimension
r = O(log80 α−1).

As a final comment, we remark that if one keeps track of dependence on the field size in
the proofs, then the bound in Theorem 1.3 and Theorem 1.5 is r = O(log80 α−1 · logO(1) |F|).

Paper organization. We prove Theorem 1.3 in Section 2 and Theorem 1.5 in Section 3.
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2 Proof of Theorem 1.3

We prove Theorem 1.3 in six steps. It corresponds to applying chain of operators φh ◦ φvv ◦
φh ◦ φv ◦ φvv ◦ φhh to A. In the proof, we invoke Theorem 1.1 (or Theorem 1.4, or the
Freiman-Ruzsa theorem which is a corollary of Theorem 1.1), four times in total, in steps
1,2,4, and 5.

We will assume that A ⊂ Fm × Fn, where initially m = n but where throughout the
proof we update m,n independently when we restrict x or y to large subspaces. It also helps
readability, as we will always have that x and related sets or subspaces are in Fm, while y
and related sets or subspace are in Fn.

We use three variables r1, r2, r3 that hold the total number of linear forms on x, linear
forms on y, and bilinear forms on (x, y) that are being fixed throughout the proof, respec-
tively. Initially, r1 = r2 = r3 = 0, but their values will be updated as we go along and at the
end, r = max(r1, r2, r3) will be the codimension of the final bilinear variety.

Step 1. Decompose A =
⋃
y∈Fn Ay × {y} with Ay ⊂ Fm. Define A1 := φhh(A), so that

A1 =
⋃
y∈Fn

(2Ay − 2Ay)× {y}.

Let αy denote the density of Ay. By Theorem 1.1, there exists a linear subspace V ′y ⊂
2Ay − 2Ay of co-dimension O(log4 α−1y ). Let S := {y : αy ≥ α/2}, where by averaging S has

density ≥ α/2. Note that for every y ∈ S the co-dimension of each V ′y is O(log4 α−1). We
have

B1 :=
⋃
y∈S

V ′y × {y} ⊂ A1.

Step 2. Consider A2 := φvv(B
1). It satisfies

A2 =
⋃

y1,y2,y3,y4∈S

(
V ′y1 ∩ V

′
y2
∩ V ′y3 ∩ V

′
y4

)
× {y1 + y2 − y3 − y4}.

By Theorem 1.1, there is a subspace W ′ ⊂ 2S − 2S of co-dimension O(log4 α−1). Note that
the co-dimension of W ′, as well as the co-dimension of each V ′y1 ∩ V

′
y2
∩ V ′y3 ∩ V

′
y4

, is at most

O(log4 α−1). We thus have

B2 :=
⋃
y∈W ′

Vy × {y} ⊂ A2,

where Vy = V ′y1 ∩V
′
y2
∩V ′y3 ∩V

′
y4

for some y1, y2, y3, y4 ∈ S which satisfy y = y1 + y2− y3− y4.
Update r2 := co-dim(W ′), where we restrict y ∈ W ′. To simplify notations, identify

W ′ ∼= Fn−co-dim(W ′) and update n := n− co-dim(W ′). Thus we assume from now that

B2 :=
⋃
y∈Fn

Vy × {y},

where each Vy has co-dimension d = O(log4 α−1).
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Step 3. Consider A3 := φv(B
2). It satisfies

A3 =
⋃

y,z∈Fn

(Vz ∩ Vy+z)× {y}.

Step 4. Consider A4 := φh(A3). It satisfies

A4 =
⋃

y,z,w∈Fn

((Vz ∩ Vy+z) + (Vw ∩ Vy+w))× {y}.

Define Uy := V ⊥y , so that dim(Uy) = d and

A4 =
⋃

y,z,w∈Fn

((Uz + Uy+z) ∩ (Uw + Uy+w))⊥ × {y}.

Next, observe that if (Uz + Uy+z)∩(Uw + Uy+w) = {0} for some z, w, then Fm×{y} ⊂ A4.
If this is true for a typical y, then A4 has constant density in Fm× Fn. Our goal is to get to
that situation by fixing a few linear forms on x and bi-linear forms on (x, y).

The following lemma identifies common structure in the subspaces Uy in the case that for
a typical y, z, w, (Uz + Uy+z)∩(Uw + Uy+w) 6= {0}. We recall that an affine map L : Fn → Fm
is L(y) = My + b where M ∈ Fm×n, b ∈ Fm.

Lemma 2.1. For each y ∈ Fn let Uy ⊂ Fm be a subspace of dimension d. Assume that

Pr
y,z,w∈Fn

[(Uz + Uy+z) ∩ (Uw + Uy+w) 6= {0}] ≥ 1

2
.

Then there exists an affine function L : Fn → Fm such that

Pr
y∈Fn

[L(y) ∈ Uy \ {0}] ≥ exp(−O(d4)).

To prove Lemma 2.1, we use the Freiman-Ruzsa theorem, being a consequence of Theo-
rem 1.1, which we quote below. We refer the reader to [Gre05] for details on how it is derived
from Theorem 1.1.

Theorem 2.2. Let f : Fn → Fm be a function such that

Pr
y,z,w∈Fn

[f(z) + f(y + z) = f(w) + f(y + w)] ≥ α.

Then there exists an affine map L : Fn → Fm so that

Pr
y∈Fn

[f(y) = L(y)] ≥ exp(−O(log4 α−1)).
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Proof of Lemma 2.1. First assume that

Pr
y,z,w∈Fn

[(Uz \ {0}+ Uy+z \ {0}) ∩ (Uw \ {0}+ Uy+w \ {0}) 6= {0}] ≥
1

4
. (1)

Choose f : Fn → Fm by picking f(y) ∈ Uy \ {0} uniformly and independently for each
y ∈ Fn. Then

Pr
y,z,w∈Fn,f

[f(z) + f(y + z) = f(w) + f(y + w)] ≥ 1

4
· |F|−4d.

Fix f where the above bound holds. By Theorem 2.2, there exists an affine function L :
Fn → Fm such that

Pr
y∈Fn

[f(y) = L(y)] ≥ exp(−O(d4)).

This concludes the proof, assuming Equation (1) holds. Otherwise, if Equation (1) does not
hold, then we have

Pr
y,z,w∈Fn

[Uz ∩ (Uw + Uy) 6= {0}] ≥
1

4
.

This implies that either

Pr
y,z,w∈Fn

[(Uz \ {0}) ∩ (Uw \ {0}+ Uy \ {0}) 6= {0}] ≥
1

8

or that

Pr
y,w∈Fn

[(Uz \ {0}) ∩ (Uw \ {0})] ≥
1

8
.

In the first case, choose the most popular w, y and then elements of Uw \ {0}, Uy \ {0} to
obtain a constant map L ≡ b that satisfies the lemma. The second case is similar.

Next, we proceed as follows. As long as

Pr
y,z,w∈Fn

[(Uz + Uy+z) ∩ (Uw + Uy+w) 6= {0}] ≥ 1

2
,

apply Lemma 2.1 to find an affine function L : Fn → Fm. For each y that satisfies L(y) ∈ Uy
replace Uy with U ′y = Uy/ 〈L(y)〉, which is a subspace of co-dimension 1 in Uy. By Lemma 2.1,
this process needs to stop after t = exp(O(d4)) many steps. Let L1, . . . , Lt : Fn → Fm be the
affine maps obtained in this process.

We pause for a moment to introduce one useful notation. Given a set of maps F = {fi :
Fn → Fm, i ∈ [k]} and y ∈ Fn, let F(y) = {f1(y), . . . , fk(y)} ⊂ Fm, and also let F(y) denote
the linear span of F(y).

Using this notation, set F = {L1, . . . , Lt} and note that F(y) is a subspace of dimension
at most t for each y ∈ Fn. For every subspace Uy there is a set Fy ⊂ F with |Fy| ≤ d such
that the final subspace obtained in the process is Uy/Fy(y). This implies that

Pr
y,z,w∈Fn

[ (
Uz/Fz(z) + Uy+z/Fy+z(y + z)

)
∩
(
Uw/Fw(w) + Uy+w/Fy+w(y + w)

)
= {0}

]
≥ 1

2
.
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Consider the most popular quadruple F1,F2,F3,F4 ⊂ F so that

Pr
y,z,w∈Fn

[ (
Uz/F1(z) + Uy+z/F2(y + z)

)
∩
(
Uw/F3(w) + Uy+w/F4(y + w)

)
= {0}

]
≥ 1

2
×
(
t

d

)−4
.

Let L := F1 ∪ F2 ∪ F3 ∪ F4. Recall that t = exp(O(d4)) so that
(
t
d

)
= exp(O(d5)). We have

Pr
y,z,w∈Fn

[
(Uz + Uy+z)∩ (Uw + Uy+w) ⊂ L(z) +L(y+ z) +L(w) +L(y+w)

]
≥ exp(−O(d5)).

By averaging, there is some choice of z, w such that

Pr
y∈Fn

[
(Uz + Uy+z) ∩ (Uw + Uy+w) ⊂ L(z) + L(y + z) + L(w) + L(y + w)

]
≥ exp(−O(d5)).

Recall that each Li is an affine map and that |L| ≤ 4d. Thus, L(z),L(y+z),L(w),L(y+w) ⊂
L(y) +Q where Q ⊂ Fm is a linear subspace of dimension O(d). We thus have

B4 :=
⋃
y∈T

(L(y) +Q)⊥ × {y} ⊂ A4,

where T ⊂ Fn has density exp(−O(d5)).
To simplify the presentation, we would like to assume that the maps in L are linear maps

instead of affine maps, that is, that they do not have a constant term. This can be obtained
by restricting x to the subspace orthogonal to Q and to the constant term in the affine maps
in L. Correspondingly, we update r1 := r1 + dim(Q) + |L| = O(d).

So, from now we assume that L is defined by 4d linear maps, and that

B4 :=
⋃
y∈T

L(y)
⊥ × {y} ⊂ A4,

where T ⊂ Fn has density exp(−O(d5)).

Step 5. Consider A5 := φvv(B
4) so that

A5 =
⋃

y1,y2,y3,y4∈T

(
L(y1)

⊥ ∩ L(y2)
⊥ ∩ L(y3)

⊥ ∩ L(y4)
⊥
)
× {y1 + y2 − y3 − y4}.

By Theorem 1.1 there exists a subspaceW ⊂ 2T−2T with co-dimensionO(d20). However,
this time, this is not enough for us. We need to use Theorem 1.4 instead. The following
equivalent formulation of Theorem 1.4 will be more convenient for us: there is a subspace
W ⊂ Fn of co-dimension O(log4 α−1) such that, for each y ∈ W there is a set Sy ⊂ (Fn)3 of
density αO(1), for which

∀(a1, a2, a3) ∈ Sy : a1, a2, a3, a1 + a2 − a3 − y ∈ A.
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Apply Theorem 1.4 to the set T to obtain the subspace W and the sets Sy. We have

B5 :=
⋃
y∈W

 ⋃
(y1,y2,y3)∈Sy

(
L(y1) + L(y2) + L(y3) + L(y1 + y2 − y3 − y)

)⊥× {y} ⊂ A5.

To simplify the presentation we introduce the notation L(y1, y2, y3) := L(y1)+L(y2)+L(y3).
Next, observe that for any y, y′ ∈ Fn, L(y′)+L(y+y′) ⊂ L(y′)+L(y). Thus we can simplify
the expression of B5 to

B5 =
⋃
y∈W

 ⋃
(y1,y2,y3)∈Sy

(
L(y1, y2, y3) + L(y)

)⊥× {y},
which can be re-written as

B5 =
⋃
y∈W

 ⋃
(y1,y2,y3)∈Sy

L(y1, y2, y3)
⊥ ∩ L(y)

⊥

× {y}.
Step 6. Consider A6 := φh(B5). It satisfies

A6 =
⋃
y∈W


 ⋃

(y1,y2,y3)∈Sy

(y′1,y
′
2,y
′
3)∈Sy

L(y1, y2, y3)
⊥ + L(y′1, y

′
2, y
′
3)
⊥

 ∩ L(y)
⊥

× {y}
In order to complete the proof, we will find a large subspace V such that for every y ∈ W ,

V ⊂
⋃

(y1,y2,y3)∈Sy

(y′1,y
′
2,y
′
3)∈Sy

L(y1, y2, y3)
⊥ + L(y′1, y

′
2, y
′
3)
⊥.

In fact, we will prove something stronger: there is a large subspace V such that for each
y ∈ W , there is a choice of (y1, y2, y3), (y

′
1, y
′
2, y
′
3) ∈ Sy for which

V ⊂ L(y1, y2, y3)
⊥ + L(y′1, y

′
2, y
′
3)
⊥.

The following lemma is key. Given a set L of linear maps from Fn to Fm, let dim(L)
denote the dimension of linear span of L as a vector space over F.

Lemma 2.3. Fix δ > 0. Let L be a set of linear maps from Fn to Fm with dim(L) = k.
Then there is a subspace V ⊂ Fm of co-dimension at most (k + 1)2 log δ−1 such that the
following holds. For every subset S ⊂ Fn of density at least δ, at least half the pairs y, y′ ∈ S
satisfy that

V ⊂ L(y)⊥ + L(y′)⊥.
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Proof. The proof is by induction on dim(L). Consider first the base case of dim(L) = 1.
Take some M ∈ L \ {0}. If rank(M) ≤ log δ−1 + 3, then set V = Im(M)⊥ and notice that
Im(M)⊥ ⊂ L(y)⊥ for any y ∈ Fn. Otherwise do as follows. Fix arbitrary L,L′ ∈ L\{0} and
observe that

Pr
y,y′∈S

[L(y) = L′(y′)] ≤ |F|−(log δ−1+3)δ−1.

By applying the union bound over all pairs of L,L′ ∈ L \ {0}, we obtain that

Pr
y,y′∈S

[
L(y) ∩ L(y′) 6= {0}

]
≤ |F|2|F|−(log δ−1+3)δ−1 ≤ 1

2
.

The claim then holds for V = Fm.
Now suppose dim(L) = k. Again, if there is some M ∈ L \ {0} with rank at most

2k+ log δ−1 + 1, then project every map down to Im(M)⊥. That is, consider the new family
of maps

L′ = {ProjIm(M)⊥L : L ∈ L}.

Note that L′ has dimension k− 1 and so by induction hypothesis, there exists a subspace V ′

of co-dimension at most k2 log δ−1 such that, for at least half the pairs y, y′ ∈ S it holds that

V ′ ⊂ L′(y)⊥ + L′(y′)⊥.

The claim then holds for V = V ′ ∩ Im(M)⊥.
Otherwise, similar to the base case, observe that

Pr
y,y′∈S

[
L(y) ∩ L(y′) 6= {0}

]
≤ |L|2|F|−(2k+log δ−1+1)δ−1 ≤ |F|2k|F|−(2k+log δ−1+1)δ−1 ≤ 1

2
.

In this case the claim holds for V = Fm.

We note that for Theorem 1.3 we only need a weaker form of Lemma 2.3, which states
that at least one pair y, y′ ∈ S exists; however, we would need the stronger version for
Theorem 1.5.

We apply Lemma 2.3 as follows. Define a new family of linear maps L∗ from F3n to Fm
as follows. For each L ∈ L define three linear maps Li, i ∈ {1, 2, 3} by:

Li : (Fn)3 → Fm, Li(y1, y2, y3) = L(yi)

and let
L∗ := {Li : L ∈ L, i ∈ [3]}.

Apply Lemma 2.3 to the family L∗ with δ = exp(−O(d5)) and obtain a subspace V ⊂ Fm
of codimension O(d2 log(exp(−O(d5))) = O(d7) so that, for every Sy ⊂ (Fn)3 with y ∈ W ,
there exist (y1, y2, y3), (y

′
1, y
′
2, y
′
3) ∈ Sy for which

V ⊂ L∗((y1, y2, y3))⊥ + L∗((y′1, y′2, y′3))⊥.
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This directly implies that

V ⊂ L(y1, y2, y3)
⊥ + L(y′1, y

′
2, y
′
3)
⊥.

Define
B6 :=

⋃
y∈W

(
V ∩ L(y)

⊥
)
× {y} ⊂ A6.

Observe that B6 is a bilinear variety defined by co-dim(V ) linear equations on x, co-dim(W )
linear equations on y and |L| bilinear equations on (x, y).

To complete the proof we calculate the quantitative bounds obtained. We have d =
O(log4 α−1) where α was the density of the original set A, and

r1 = O(d) + co-dim(V ) = O(d7),

r2 = O(d) + co-dim(W ) = O(d20),

r3 = |L| = O(d).

Together these give the final bound of r = max(r1, r2, r3) = O(log80 α−1).

3 Proof of Theorem 1.5

In this section we prove Theorem 1.5 by slightly modifying the proof of Theorem 1.3. We
point out the necessary modifications to proof of Theorem 1.3.

Step 1. In this step, we use Theorem 1.4 instead of Theorem 1.1 and directly obtain

B1 ⊂ φε1hh(A) (2)

for ε1 = αO(1).

Step 2. Similarly in this step as well, using Theorem 1.4 instead of Theorem 1.1 gives

B2 ⊂ φε2vv(B
1) (3)

with ε2 = αO(1). To recall, we assume for simplicity of exposition from now on that B2 =⋃
y∈Fn Vy × {y}.

Steps 3 and 4. This step is slightly different than steps 1 and 2. Here, we are not able
to directly produce some set B4 that would satisfy B4 ⊂ φε4hv(B

2). But what we can do is to
apply the remaining operation φhvvhv altogether to B2 and obtain the final bilinear structure
B6 that satisfies what we want, which is

B6 ⊂ φε6hvvhv(B
2) (4)
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for ε6 = exp(−poly logα−1). Combining Equations (2) to (4) gives

B6 ⊂ φεhvvhvvvhh(A)

for ε = exp(−poly logα−1).
We establish Equation (4) in the rest of the proof. Recall that previously we showed that

the following holds: there is a set of affine maps L, with |L| = O(d), such that

Pr
y,w,z∈Fn

[ (
L(z) + L(y + z) + L(w) + L(y + w)

)⊥ ⊂ (V ⊥z ∩ V ⊥y+z)+(V ⊥w ∩ V ⊥y+w) ] ≥ exp(−O(d5))

and consequently

Pr
y,w,z∈Fn

[ (
L(y) + L(z) + L(w)

)⊥ ⊂ (V ⊥z ∩ V ⊥y+z)+
(
V ⊥w ∩ V ⊥y+w

) ]
≥ exp(−O(d5)).

Remember that d = O(log4 α−1). Furthermore, we may assume the maps in L are linear
(instead of affine) after we update r1 := r1 + |L| = O(d).

Then what we did in the proof of Theorem 1.3 was to fix one popular choice of w, z.
However, here we can’t do that, as we need many pairs of w, z. Let T be the set of y’s that
satisfy

Pr
w,z∈Fn

[ (
L(y) + L(z) + L(w)

)⊥ ⊂ (V ⊥z ∩ V ⊥y+z)+
(
V ⊥w ∩ V ⊥y+w

) ]
≥ exp(−O(d5)), (5)

and so T has density exp(−O(d5)). We deduce something stronger from Equation (5) but
we need to introduce some notation first.

For A,B ⊂ Fn let A −η B denote the set of all elements c ∈ A− B that can be written
in at least η|Fn| many ways as c = a− b for a ∈ A, b ∈ B. To use this notation, note that if
A,B are two subspaces of co-dimension k, then A−B = A−η B for η = exp(−O(k)). This
is because every element c ∈ A − B can be written as c = (a + v) − (b + v) where v is an
arbitrary element in the subspace A∩B of codimension at most 2k. So we can improve the
Equation (5) to

Pr
w,z∈Fn

[ (
L(y) + L(z) + L(w)

)⊥ ⊂ (V ⊥z ∩ V ⊥y+z)−η (V ⊥w ∩ V ⊥y+w) ] ≥ exp(−O(d5)), (6)

for η = exp (−O(d))

Step 5. Similar to before, consider the subspace W ⊂ 2T − 2T of co-dimension O(d20)
that is given by Theorem 1.4. This subspace W has the following property: fix arbitrary
y ∈ W . Sample y1, y2, y3 ∈ Fn uniformly and independently, and set y4 = −y + y1 + y2 − y3.
Then with probability at least exp(−O(d5)) we have y1, y2, y3, y4 ∈ T . This means that if
we furthermore sample w1, w2, w3, w4, z1, z2, z3, z4 ∈ Fn uniformly and independently, then,
with probability at least exp(−O(d5)), the following four equations simultaneously hold:(

L(yi) + L(zi) + L(wi)
)⊥ ⊂ (V ⊥zi ∩ V ⊥yi+zi)−η (V ⊥wi

∩ V ⊥yi+wi

)
∀i = 1, . . . , 4.
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By computing the intersection of the left hand sides and the right hand sides we obtain that
with probability at least exp(−O(d5)), it holds that(
L(y) +

3∑
i=1

L(yi) +
4∑
i=1

L(zi) +
4∑
i=1

L(wi)

)⊥
⊂

4⋂
i=1

((
V ⊥zi ∩ V

⊥
yi+zi

)
−η
(
V ⊥wi
∩ V ⊥yi+wi

))
. (7)

For a given y ∈ Fn, s = (y1, y2, y3, w1, w2, w3, w4, z1, z2, z3, z4) ∈ (Fn)11, let

Vy,s =
4⋂
i=1

((
V ⊥zi ∩ V

⊥
yi+zi

)
−η
(
V ⊥wi
∩ V ⊥yi+wi

))
,

where to recall y4 = −y + y1 + y2 − y3. Observe that for any s,⋃
y∈W

Vy,s × {y} ⊂ φvvhv(B
2).

We rewrite Equation (7) more compactly as

Pr
s

[(
L(y) + L(s)

)⊥ ⊂ Vy,s] ≥ exp(−O(d5)), (8)

where we use the notation L(s) =
∑3

i=1 L(yi) +
∑4

i=1 L(zi) +
∑4

i=1 L(wi).

Step 6. Now we consider applying the operation hvvhv altogether to B2. Only the last
operation h remains to be applied, which after doing so, we will find a subspace V ⊂ Fm
of co-dimension O(d7) that satisfies the following: for any y ∈ W , choose s1, s2 ∈ (Fn)11

uniformly and randomly. Then with probability exp(−O(d5)),

V ∩ L(y)⊥ ⊂ Vy,s1 −η Vy,s2 .

where to recall η = exp(−O(d)).
To do so, fix y ∈ W and let Sy be the set of all tuples s =

(y1, y2, y3, w1, w2, w3, w4, z1, z2, z3, z4) ∈ (Fn)11 that satisfy Equation (8). Note that the den-
sity of each Sy is at least exp(−O(d5)). To simplify notation denote s = (s1, . . . , s11). We
call up Lemma 2.3 in a similar way as we did before. Define a family L∗ of linear maps,
containing linear maps Li for each L ∈ L and i = 1, . . . , 11, where

Li : (Fn)11 → Fm, Li(s) = L(si).

Apply Lemma 2.3 to L∗ and density parameter exp(−O(d5)). So, we obtain a subspace
V ⊂ Fm of co-dimension O(d7) such that for each y ∈ W ,

Pr
s1,s2∈Sy

[
V ⊂ L(s1)⊥ + L(s2)⊥

]
≥ 1

2
, (9)
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which implies
Pr

s1,s2∈(Fn)11

[
V ∩ L(y)⊥ ⊂ Vy,s1 −η Vy,s2

]
≥ exp(−O(d5)). (10)

Define the final bilinear structure as

B6 :=
⋃
y∈W

(
V ∩ L(y)

⊥
)
× {y}.

It satisfies
B6 ⊂ φε6hvvhv(B

2)

for ε6 = exp(−O(d5)) and so over all

B6 ⊂ φεhvvhvvvhh(A)

for ε = exp(−O(d5)).
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