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Abstract

We give a pseudorandom generator that fools m-facet polytopes over {0, 1}n with seed length
polylog(m) · log n. The previous best seed length had superlinear dependence on m. An im-
mediate consequence is a deterministic quasipolynomial time algorithm for approximating the
number of solutions to any {0, 1}-integer program.
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1 Introduction

Unconditional derandomization has been a major focus of research in computational complexity
theory for more than thirty years. A significant line of work in this area has been on develop-
ing unconditional pseudorandom generators (PRGs) for various types of Boolean functions. Early
seminal results in this vein focused on Boolean circuits [AW89, Nis91, NW94] and branching pro-
grams [Nis92, INW94, NZ96], but over the past decade or so a new strand of research has emerged
in which the goal is to construct PRGs against halfspaces and various generalizations of halfs-
paces. This work has included a sequence of successively more efficient PRGs against halfspaces
[DGJ+10, KRS12, MZ13, Kan14b, KM15, GKM15], low-degree polynomial threshold functions
[DKN10, Kan11b, Kan11a, MZ13, Kan14b, KR18], and, most relevant to this paper, intersections
of halfspaces [GOWZ10, HKM12, ST17a, CDS18].

Since intersections of m halfspaces correspond to m-facet polytopes, and also to {0, 1}-integer
programs with m constraints, these objects are of fundamental interest in high-dimensional ge-
ometry, optimization, and a range of other areas. A pseudorandom generator that δ-fools in-
tersections of m halfspaces can equivalently be viewed as an explicit discrepancy set for m-facet
polytopes: a small subset of {0, 1}n that δ-approximates the {0, 1}n-volume of every m-facet poly-
tope. (Discrepancy sets are stricter versions of hitting sets, which are only required to intersect
every polytope of volume at least δ.) The problem of constructing a PRG for intersections of m
halfspaces is also a stricter version of the algorithmic problem of deterministically approximating
the number of solutions of a {0, 1}-integer program with m constraints. It is stricter because a
PRG yields an input-oblivious algorithm: the range of a PRG is a single fixed set of points which
gives approximately the right answer for every {0, 1}-integer program. Beyond pseudorandomness,
intersections of halfspaces also play a significant role in other fields such as concrete complex-
ity theory [MP68, BRS95, OS10, She13a, She13b, Kan14a] and computational learning theory
[BK97, KOS04, KS06, KOS08, Vem10, KS11, GKM12, ST17b].

The main result of this paper is a new PRG for intersections of m halfspaces. Its seed length
grows polylogarithmically with m, which is an exponential improvement of the previous best PRG
for this class. Before giving the precise statement of our result, we briefly describe the prior state
of the art for this problem.

1.1 Prior work on PRGs for intersections of halfspaces

A halfspace F (x) = 1[w · x ≤ θ] is said to be τ -regular if |wj | ≤ τ‖w‖2 for all j ∈ [n]; intuitively, a
τ -regular halfspace is one in which no coefficient wj is too large relative to the overall scale of all
the coefficients. Harsha, Klivans, and Meka [HKM12] gave a PRG which δ-fools any intersection of
m many τ -regular halfspaces with seed length poly(logm, 1/δ) · log n, where τ has to be sufficiently
small relative to m and δ (specifically, τ ≤ some poly( δ

logm) is required). While this seed length
has the desirable property of being polylogarithmic in m, due to the regularity requirement this
result cannot be used to fool intersections of even two general halfspaces. We note that there are
very basic halfspaces, such as F (x) = 1[x1 ≤ 1/2], that are highly irregular.

Recently, [ST17a] built on the work of [HKM12] to give a PRG that fools a different subclass
of intersections of halfspaces. They give a PRG that δ-fools any intersection of m many weight-
W halfspaces with seed length poly(logm,W, 1/δ) · polylog n; a halfspace has weight W if it can
be expressed as 1[w · x ≤ θ] where each coefficient wj is an integer of magnitude at most W .
Unfortunately, many n-variable halfspaces require weight polynomially or even exponentially large
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in n; in fact, a counting argument shows that almost all halfspaces require exponentially large
weight. Therefore, the [ST17a] result also cannot be used to fool even two general halfspaces.

In [GOWZ10], Gopalan, O’Donnell, Wu, and Zuckerman gave a PRG that can fool intersec-
tions of m general halfspaces. However, various aspects of their approach each necessitate a seed
length which is at least linear in m, and indeed their overall seed length is O((m log(m/δ) + log n) ·
log(m/δ)).1 So while this PRG is notable for being able to handle intersections of general halfs-
paces, its seed length becomes trivial (greater than n) for intersections of m ≥ n many halfspaces.
(Indeed, this PRG of [GOWZ10] fools arbitrary monotone functions of m general halfspaces, with
intersections (i.e. Ands) being a special case. Due to the generality of this class—which of course
includes every monotone function over {0, 1}m—it can be shown that any PRG has to have at least
linear seed length dependence on m.)

1.1.1 PRGs over Gaussian space

There has also been work on PRGs for functions over Rn endowed with the n-dimensional Gaussian
distribution. Analyses in this setting are often facilitated by the continuous nature of Rn and
rotational invariance of the Gaussian distribution, useful technical properties not afforded by the
standard setting of Boolean space. For halfspaces and polytopes, PRGs over Gaussian space can be
viewed as a first step towards PRGs over Boolean space; as we describe below, Boolean PRGs even
for restricted subclasses of halfspaces and polytopes yield Gaussian PRGs for general halfspaces
and polytopes, but the converse does not hold. We also note that the correspondence between
polytopes and {0, 1}-integer programs is specific to Boolean space, and in particular, Gaussian
PRGs do not yield algorithms for counting solutions to these programs.

For halfspaces, Meka and Zuckerman [MZ13] showed that any PRG for the subclass of O( 1√
n

)-

regular halfspaces over Boolean space yields a PRG for all halfspaces over Gaussian space. Note
that O( 1√

n
)-regular halfspaces are “the most regular” ones; every halfspace is τ -regular for some

τ ∈ [ 1√
n
, 1]. [HKM12] generalized this connection to polytopes: they showed that any PRG for

intersections of m many O((logm)/
√
n)-regular halfspaces over Boolean space yields a PRG for in-

tersections of m many arbitrary halfspaces over Gaussian space. Combining this with their Boolean
PRG for intersections of regular halfspaces discussed above, [HKM12] obtained a Gaussian PRG
for intersections of m halfspaces with seed length poly(logm, 1/δ) · log n. Recent work of [CDS18]
gives a different Gaussian PRG with seed length poly(logm, 1/δ) +O(log n).

The focus of the current work is on PRGs over Boolean space, and the rest of the paper addresses
this (more challenging) setting.

1.2 This work: A PRG for intersections of general halfspaces

Summarizing the prior state of the art on PRGs over Boolean space, there were no PRGs that could
fool intersections of m = n many general halfspaces, and relatedly, the best PRG for intersections of
m ≤ n general halfspaces had a superlinear seed length dependence on m. The PRGs that could fool
intersections of m ≥ n halfspaces imposed technical restrictions on the halfspaces: either regularity
(hence excluding simple halfspaces such as 1[x1 ≤ 1/2]), or small weights (hence excluding almost
all halfspaces). Please refer to Table 1.

1Their seed length improves to O(m log(m/δ) + logn) if m/δ is bounded by any polylog(n).
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Reference Function class Seed length of PRG

[GOWZ10] Monotone functions of m halfspaces
O((m log(m/δ) + log n) · log(m/δ))

O(m log(m/δ) + log n), if m/δ ≤ any polylog(n)

[HKM12] Intersections of m τ -regular halfspaces poly(logm, 1/δ) · log n, if τ ≤ some poly( δ
logm)

[ST17a] Intersections of m weight-W halfspaces poly(logm,W, 1/δ) · polylog n

This work Intersections of m halfspaces poly(logm, 1/δ) · log n

Table 1: PRGs for intersections of halfspaces over {0, 1}n

The main result of this paper is a PRG which fools intersections of m general halfspaces with
a polylogarithmic seed length dependence on m:

Theorem 1.1 (PRG for polytopes). For all n,m ∈ N and δ ∈ (0, 1), there is an explicit pseudo-
random generator with seed length poly(logm, 1/δ) · log n that δ-fools the class of intersections of m
halfspaces over {0, 1}n.

In particular, this PRG fools intersections of quasipoly(n) many halfspaces with seed length
polylog(n), and its seed length remains non-trivial for intersections of exponentially many halfspaces
(exp(nc) where c > 0 is an absolute constant).

An immediate consequence of Theorem 1.1 is a deterministic algorithm that runs in time
npolylog(m) and additively approximates the number of solutions to any n-variable {0, 1}-integer
program with m constraints. Prior to our result, no non-trivial deterministic algorithm (running
in time < 2n) was known even for general {0, 1}-integer programs with m = n constraints. Theo-
rem 1.1 also yields PRGs with comparable seed lengths for intersections of halfspaces over a range
of other domains, such as the n-dimensional hypergrid {0, 1, . . . , N}n and the solid cube [0, 1]n

(details are left to the interested reader).
Our proof of Theorem 1.1 involves several novel extensions of the central technique driving this

line of work, namely Lindeberg-style proofs of probabilistic invariance principles and derandomiza-
tions thereof. We develop these extensions to overcome challenges which arise due to the generality
of our setting; specifically, the fact that we are dealing with intersections of arbitrary halfspaces,
with no restrictions whatsoever on their structure. One of the key new ingredients in our analysis,
which we believe is of independent interest, is a sharp high-dimensional generalization of the classic
Littlewood–Offord anticoncentration inequality [LO43, Erd45] that we establish. We now describe
our proof and the new ideas underlying it in detail.

2 Overview of our proof

2.1 Background: the [HKM12] PRG for regular polytopes

We begin by recalling the arguments of Harsha, Klivans, and Meka [HKM12] for fooling regular
polytopes. At a high level, [HKM12] builds on the work of Meka and Zuckerman [MZ13], which gave
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a versatile and powerful framework for constructing pseudorandom generators from probabilistic
invariance principles; the main technical ingredient underlying the [HKM12] PRG for regular
polytopes is a new invariance principle for such polytopes, which we now describe.

[HKM12]’s invariance principle and the Lindeberg method. At a high level, the [HKM12]
invariance principle for regular polytopes is as follows: given an m-tuple of regular linear forms over
n input variables x = (x1, . . . , xn) (denoted by Ax, where A is an m-by-n matrix), the distribution
(over Rm) of Au, where u ∼ {−1, 1}n is uniform random, is very close to the distribution of Ag,
where g ∼ N (0, 1)n is distributed according to a standard n-dimensional Gaussian. Here closeness
is measured by multidimensional CDF distance; we observe that multidimensional CDF distance
corresponds to test functions of the form 1[Ax ≤ b] where b ∈ Rm, which synchs up precisely
with an intersection of m halfspaces 1[A1x ≤ b1] ∧ · · · ∧ 1[Amx ≤ bm]. To prove this invariance
principle, [HKM12] employs the well-known Lindeberg method (see e.g. Chapter §11 of [O’D14]
and [Tao10]) and proceeds in two main conceptual steps. The first step establishes a version of the
result for smooth test functions, proxies for the actual “hard threshold” test functions 1[Ax ≤ b],
and the second step relates distance with respect to these smooth test functions to multidimensional
CDF distance via Gaussian anticoncentration. We outline each of these two steps below.

The first step is to prove an invariance principle for smooth test functions. Here instead
of measuring the distance between Au and Ag using test functions that are orthant indicators
Ob(v1, . . . , vm) = 1[v ≤ b] (corresponding to multidimensional CDF distance), distance is measured
using a sufficiently smooth mollifier Õb : Rm → [0, 1] of Ob. Such mollifiers, with useful properties
that we now discuss, were proposed and analyzed by Bentkus [Ben90]. In more detail, [HKM12]
prove that the difference between the expectations of Õb(Au) and Õb(Ag) is bounded by a certain
function involving Õb’s derivatives. In fact, as in standard in Lindeberg-style proofs of invari-
ance principles, [HKM12] actually bounds this difference with respect to any smooth test function
Υ : Rm → R in terms of Υ’s derivatives; the only specific property of Bentkus’s mollifier Õb that
is used is that its derivatives are appropriately small. At a high level, the proof of this smooth
invariance principle proceeds by hybridizing from Υ(Au) to Υ(Ag), using the multidimensional
Taylor expansion of Υ to bound the error incurred in each step. (The regularity of the linear forms
is used in a crucial way to control the approximation error that results from truncating the Taylor
expansion at a certain fixed degree.)

The second step is to establish the desired bound on multidimensional CDF distance using
the aforedescribed smooth invariance principle applied to Bentkus’s mollifier. This step relies on a
second key property of Bentkus’s mollifier: Õb agrees with the orthant indicatorOb except on a small
error region near the orthant boundary. With this property in hand, a fairly simple and standard
argument shows that it suffices to bound the anticoncentration of the Gaussian random variable Ag;
intuitively, such anticoncentration establishes that Ag does not place too much probability weight
on the error region where Õb disagrees with Ob. In [HKM12], the required anticoncentration for
Ag follows immediately from a result of Nazarov [Naz03, KOS08] on the Gaussian surface area of
m-facet polytopes.

The [HKM12] PRG via a derandomized invariance principle. Having proved this invariance
principle for regular polytopes, [HKM12] then establish a pseudorandom version by derandomizing
its proof. That is, they argue that their proof in fact establishes multidimensional-CDF-closeness
between Az and Ag, where g ∼ N (0, 1)n is distributed according to a standard Gaussian as before,
but z ∼ {−1, 1}n is the output of a suitable pseudorandom suitable generator G : {−1, 1}r →
{−1, 1}n (rather than uniform random). Combining the “full-randomness” invariance principle
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(establishing closeness between Au and Ag) with this pseudorandom version (establishing closeness
between Az and Ag), it follows from the triangle inequality that Az and Au are close. Recalling
that multidimensional CDF distance corresponds to test functions of the form 1[Ax ≤ b] = 1[A1x ≤
b1] ∧ · · · ∧ 1[Amx ≤ bm], this is precisely equivalent to the claim that G fools the intersection of m
halfspaces with weight matrix A ∈ Rm×n (and an arbitrary vector of thresholds b ∈ Rm).

For later reference, we close this section with an informal description of the [HKM12] generator
(for fooling intersections of m many τ -regular halfspaces):

1. Pseudorandomly hash the n variables into L := poly(1/τ) buckets using an (rhash := 2 logm)-
wise uniform hash function h : [n]→ [L].

2. Independently across buckets, assign values to the variables within each bucket using an
(rbucket := 4 logm)-wise uniform distribution.

We remark that this is the structure of the Meka–Zuckerman generator [MZ13] for fooling a single
regular halfspace, the only difference being that the relevant parameters L, rhash, and rbucket are
larger in [HKM12] than in [MZ13] (naturally so, given that the [HKM12] generator fools intersec-
tions of m regular halfspaces instead of a single one).

Our analysis in this paper can be used to show that the [MZ13] generator, instantiated with
suitable choices of L, rhash, and rbucket, fools intersections of m general halfspaces. However, for
technical reasons (that are not essential for this high-level discussion), this results in a seed length
that is poly(logm, 1/δ, log n). To achieve our seed length of poly(logm, 1/δ) · log n, we slightly
extend the [MZ13] generator in two ways. First, within each bucket the variables are assigned
using an rbucket-wise uniform distribution Xor-ed with an independent draw from a generator that
fools small-width CNF formulas [GMR13]. Second, we Xor the entire resulting n-bit string with
an independent draw from a k-wise independent generator. (See Section 4 for a detailed description
of our PRG.)

2.2 Some key new ingredients in our analysis

A fundamental challenge in extending the [HKM12] PRG result from regular to general polytopes
stems from the fact that an invariance principle simply does not hold for general polytopes Ax ≤
b. Without the regularity requirement on A, it is not true that Au and Ag are close in CDF
distance; indeed, even a single non-regular linear form such as x1 is distributed very differently
under u ∼ {−1, 1}n versus g ∼ N (0, 1)n. This therefore necessitates a significant conceptual
departure from the Meka–Zuckerman framework for constructing pseudorandom generators from
invariance principles: rather than establishing closeness between Au and Az (where z ∼ {−1, 1}n is
the output of a suitable pseudorandom generator) through Ag by means of an invariance principle,
one has to establish closeness between Au and Az “directly” without using invariance.

Somewhat surprisingly, even though an invariance principle does not hold in our setting of
general polytopes, our proof nonetheless proceeds via the Lindeberg method for proving invariance
principles. Following the two main conceptual steps of the method (as outlined in the previous
section), we first prove that Au and Az are close with respect to Bentkus’s smooth mollifiers Õb
for the orthant indicators Ob, and then use this to establish closeness in multidimensional CDF
distance. However, the fact that we are dealing with matrices A ∈ Rm×n whose rows are arbitrary
linear forms (corresponding to the facets of general m-facet polytopes) instead of regular linear
forms poses significant challenges in both steps of the Lindeberg method. We discuss some of these
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challenges, and the new ideas that we employ to overcome them, next. For concreteness we will
discuss these challenges and new ingredients by contrasting our proof with that of [HKM12], but we
remark here that these are in fact qualitative differences between our approach and the Lindeberg
method in general.

Step 1: Fooling Bentkus’s mollifier. Recall that [HKM12] first proves a general invariance
principle establishing closeness in expectation (with a quantitative bound that depends on Υ’s
derivatives) between Υ(Au) and Υ(Ag) for any smooth test function Υ. They then apply this
general invariance principle with Bentkus’s orthant mollifier Õb being the test function, using the
bounds on Õb’s derivatives established in [Ben90] but no other properties of Õb.

In contrast, we do not prove closeness between Au and Az for all smooth test functions;
our argument is carefully tailored to Bentkus’s specific mollifier. In addition to bounds on Õb’s
derivatives, we crucially rely on the specific structure of Õb, in particular, the fact that it is the
product of m univariate functions, one for each coordinate (i.e. Õb(v) =

∏m
i=1 ψbi(vi), where each

ψbi maps R to [0, 1]). A high-level intuition for why such product structure is useful is as follows.
By doing some structural analysis of halfspaces (see Section 5), we can decompose each of our
m halfspaces into a small “head” portion, consisting of at most k variables, and a remaining
“tail” portion which is regular. From this point of view, the difference between regular and general
polytopes is therefore the presence of these size-at-most-k head portions in each of the m halfspaces.
Very roughly speaking, the product structure of Õb allows us to handle these head portions using
pseudorandom generators for small-width CNF formulas [GMR13]. (To see the relevance of CNF
formulas in this context, at least at a conceptual level, observe that a product of {0, 1}-valued
k-juntas is a width-k CNF formula.)

Our proof incorporates these PRGs for CNFs into [HKM12]’s analysis of the regular tail por-
tions. We highlight one interesting aspect of our analysis: In all previous instantiations of the
Lindeberg method that we are aware of, expressions like |E[Υ(v+∆)]−E[Υ(v+∆′)]| are bounded
by considering two Taylor expansions of Υ, both taken around the “common point” v. Lindeberg
method arguments analyze the difference of these Taylor expansions using moment-matching prop-
erties of ∆ and ∆′ and the fact that they are “small” in a certain technical sense, which is directly
related to the regularity assumptions that underlie these invariance principles. In contrast, in our
setting, since we are dealing with arbitrary linear forms rather than regular ones, we end up having
to bound expressions like |E[Υ(v + ∆)]− E[Υ(v′ + ∆′)]|. Note that this involves considering the
Taylor expansions of Υ around two distinct points v and v′, which may be far from each other
— indeed, a priori it is not even clear that |E[Υ(v)] − E[Υ(v′)]| will be small. Because of these
differences from the standard Lindeberg scenario, moment-matching properties of ∆ and ∆′ and
their “smallness” no longer suffice to ensure that the overall expected difference is small. Instead,
as alluded to above, our analysis additionally exploits the product structure of Bentkus’s mollifier
via PRGs for CNFs to bound |E[Υ(v + ∆)]−E[Υ(v′ + ∆′)]| (see Section 8).

Step 2: Anticoncentration. The next step is to pass from closeness of Õb(Au) and Õb(Az) in
expectation, to closeness of Au and Az in multidimensional CDF distance. We recall that in the
analogous step in [HKM12]’s proof, the starting point was closeness in expectation of Õb(Au) and
Õb(Ag), where g ∼ N (0, 1)n is a standard Gaussian (instead of Õb(Az) where z ∼ {−1, 1}n is
pseudorandom). For this reason, it sufficed for [HKM12] to bound the Gaussian anticoncentration
of Ag, and as mentioned, such a bound is an immediate consequence of Nazarov’s bound on the
Gaussian surface area of m-facet polytopes.

In contrast, since the Gaussian distribution does not enter into our arguments at all (by necessity,
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as explained above), we instead have to bound the Boolean anticoncentration of Au where u ∼
{−1, 1}n is uniform random. This task, which is carried out in Section 7, requires significantly more
work; indeed, Boolean anticoncentration formally contains Gaussian anticoncentration as a special
case. At the heart of our arguments for this step is a new Littlewood–Offord-type anticoncentration
inequality for m-facet polytopes, a high-dimensional generalization of the classic Littlewood–Offord
theorem [LO43, Erd45]. We discuss this new theorem, which we believe is of independent interest,
next.

2.2.1 A Littlewood–Offord theorem for polytopes

We first recall the classic Littlewood–Offord anticoncentration inequality.

Theorem 2.1 (Littlewood–Offord). For all θ ∈ R and w ∈ Rn such that |wj | ≥ 1 for all j ∈ [n],

Pr[w · u ∈ (θ − 2, θ ]] = O

(
1√
n

)
,

where u ∼ {−1, 1}n is uniformly random.

Littlewood and Offord [LO43] first proved a bound of O((log n)/
√
n); Erdös [Erd45] subse-

quently sharpened this to O(1/
√
n), which is optimal by considering w = 1n and θ = 0. (We

observe that the question trivializes without the assumption on the magnitudes of w’s coordinates;
for instance, the relevant probability is 1/2 for w = (1, 0, . . . , 0) and θ = 1.)

Theorem 2.1 has the following natural geometric interpretation: the maximum fraction of hy-
percube points that can fall within the “width-2 boundary” of a halfspace 1[w·x ≤ θ] where |wj | ≥ 1
for all j is O(1/

√
n). Given this geometric interpretation, it is natural to seek a generalization from

single halfspaces (i.e. 1-facet polytopes) to m-facet polytopes:

What is the maximum fraction of hypercube points u ∈ {−1, 1}n that can lie within the
“width-2 boundary” of an m-facet polytope Ax ≤ b where |Aij | ≥ 1 for all i and j?

In more detail, we say that u lies within the “width-2 boundary” of the polytope Ax ≤ b provided
Au ≤ b and Ai ·u > bi−2 for some i ∈ [m]; equivalently, u lies in the difference of the two polytopes
Ax ≤ b and Ax ≤ b − 2 · 1m, where 1m denotes the all-1’s vector in Rm. The Littlewood–Offord
theorem (Theorem 2.1), along with a naive union bound, implies a bound of O(m/

√
n); we are not

aware of any improvement of this naive bound prior to our work.
We give an essentially complete answer to this question, with upper and lower bounds that

match up to constant factors. In Section 7 we prove the following “Littlewood–Offord theorem for
polytopes”:

Theorem 2.2 (Littlewood–Offord theorem for polytopes). There is a universal constant C (C =
5
√

2 suffices) such that the following holds. For all b ∈ Rm and A ∈ Rm×n with |Aij | ≥ 1 for all
i ∈ [m] and j ∈ [n],

Pr[Au ≤ b & Ai · u > bi − 2 for some i ∈ [m]] ≤ C
√

lnm√
n

,

where u ∼ {−1, 1}n is uniformly random.
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Our proof of Theorem 2.2 draws on and extends techniques from Kane’s bound on the Boolean
average sensitivity of m-facet polytopes [Kan14a]. We complement Theorem 2.2 with a matching
lower bound, which establishes the existence of an m-facet polytope with an Ω(

√
lnm/

√
n)-fraction

of hypercube points lying within its width-2 boundary. (In fact, our lower bound is slightly stronger:
it establishes the existence of a polytope with an Ω(

√
lnm/

√
n)-fraction of hypercube points lying

on its surface, corresponding to its width-0 boundary.)
Theorem 2.2 does not suffice for the purpose of passing from closeness with respect to Bentkus’s

orthant mollifier Õb to closeness in multidimensional CDF distance (i.e. Step 2 in Section 2.2): while
the assumption on the magnitudes of A’s entries is essential to Theorem 2.2 (just as the analogous
assumption on w’s coordinates is essential to the Littlewood–Offord theorem), the weight matrix of
a general m-facet polytope need not have this property. In Section 7 we establish various technical
extensions of Theorem 2.2 that are required to handle this issue.

Remark 2.3. Our generalization of the Littlewood–Offord theorem (Theorem 2.2) is, to our knowl-
edge, incomparable to other high-dimensional generalizations that have been studied in the liter-
ature. In particular, the papers [Kle70, FF88, TV12] (see also the references therein) study the
probability that Au falls within a ball of fixed radius in Rm, where A ∈ Rm×n is a matrix whose
columns have 2-norm at least 1 (i.e. Au is the random ±1 sum of n many m-dimensional vectors
of length at least 1).

2.3 Relation to [ST17a]

We close this section with a discussion of the connection between our techniques and those of the
recent work [ST17a]. Recall that the main result of [ST17a] is a PRG for δ-fooling intersections of
m weight-W halfspaces using seed length poly(logm,W, 1/δ) · polylog n (whereas our main result,
which is strictly stronger, is a PRG for δ-fooling intersections of m general halfspaces using seed
length poly(logm, 1/δ) · log n, with no dependence on the weights of the halfspaces).

A key structural observation driving [ST17a] is that every intersection ofm low-weight halfspaces
can be expressed as H∧G, where H is an intersection of m regular halfspaces and G is a small-width
CNF. (The width of G grows polynomially with the weights of the halfspaces, and this polynomial
growth is responsible for the polynomial dependence on W in the seed length of the [ST17a]
PRG.) From this starting point, it suffices for [ST17a] to bound the multidimensional CDF distance
between the (Rm × {±1})-valued random variables (Au, G(u)) and (Az, G(z)), where A ∈ Rm×n
is the weight matrix of H, u is uniform random, and z is the output of the [ST17a] PRG (which
is a slight variant of [HKM12]’s pseudorandom generator). Since H is an intersection of regular
halfspaces, the fact that Au and Az are close in multidimensional CDF distance is precisely the
main result of [HKM12]; the crux of the work in [ST17a] therefore lies in dealing with the additional
distinguished (m + 1)st coordinate corresponding to the CNF G. Very roughly speaking, [ST17a]
employs a careful coupling (û, ẑ) (whose existence is a consequence of the fact that bounded
independence fools CNFs [Baz09, Raz09]) to ensure that G(û) and G(ẑ) almost always agree, and
hence these (m+1)st coordinates “have a negligible effect” throughout [HKM12]’s Lindeberg-based
proof of the regular case establishing closeness between Au and Az.

Because of the aforementioned structural fact (that an m-tuple of low-weight halfspaces is
equivalent to “an m-tuple of regular halfspaces plus a CNF”), the low-weight case analyzed in
[ST17a] did not require as significant a departure from [HKM12]’s approach, and from the Lindeberg
method as a whole, as the general case which is the subject of this paper. In particular, the new
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ideas discussed in Section 2.2 that are central to our proof were not present in [ST17a]’s analysis
for the low-weight case. To elaborate on this,

◦ [ST17a] did not have to exploit the product structure of Bentkus’s orthant mollifier Õb in
order to fool it. Like [HKM12], the arguments of [ST17a] establish closeness in expectation
between Υ(Au, G(u)) and Υ(Az, G(z)) for all smooth test functions Υ, and the only properties
of Bentkus’s mollifier that are used are the bounds on its derivatives given in [Ben90] (which
are used in a black box way). The simpler setting of [ST17a] also did not necessitate comparing
the Taylor expansions of Υ around distinct points, as discussed in Section 2.2.

◦ [ST17a] did not have to reason about Boolean anticoncentration, which as discussed above re-
quires significant novel conceptual and technical work, including our new Littlewood–Offord
theorem for polytopes. Like [HKM12],[ST17a] were able to apply Nazarov’s Gaussian anti-
concentration bounds as a black box to pass from fooling Bentkus’s mollifier to closeness in
multidimensional CDF distance.

3 Preliminaries

For convenience, in the rest of the paper we view halfspaces as having the domain {−1, 1}n rather
than {0, 1}n. We remind the reader that a halfspace F : {−1, 1}n → {0, 1} is a function of the form
F (x) = 1[w · x ≤ θ] for some w ∈ Rn, θ ∈ R.

For an n-dimensional vector y and subset B ⊆ [n], we write yB to denote the |B|-dimensional
vector obtained by restricting y to the coordinates in B. For an m×n matrix A and subset B ⊆ [n],
we write AB to denote the m × |B| matrix obtained by restricting A to the columns in B. For
indices i ∈ [m] and j ∈ [n], we write Ai to denote the n-dimensional vector corresponding to the
i-th row of A, and Aj to denote the m-dimensional vector corresponding to the j-column of A.

3.1 Regularity, orthants, and Taylor’s theorem

Definition 3.1 ((k, τ)-regular vectors and matrices). We say that a vector w ∈ Rn is τ -regular if
|wj | ≤ τ‖w‖2 for all j ∈ [n]. More generally, we say that w is (k, τ)-regular if there is a partition
[n] = Head t Tail where |Head| ≤ k and the subvector wTail is τ -regular. We say that w is
(k, τ)-standardized if w is (k, τ)-regular and

∑
j∈Tailw

2
j = 1. We say that a matrix A ∈ Rm×n is

τ -regular (respectively: (k, τ)-regular, (k, τ)-standardized) if all its rows are τ -regular (respectively:
(k, τ)-regular, (k, τ)-standardized). We also use this terminology to refer to polytopes Ax ≤ b.

Translated orthants and their boundaries. For b ∈ Rm, we write Ob ⊂ Rm to denote the
translated orthant

Ob = {v ∈ Rm : vi ≤ bi for all i ∈ [m]}.
We will overload notation and also write “Ob” to denote the indicatorRm → {0, 1} of the orthantOb
(i.e., Ob(v) = 1[v ≤ b]). We write aOb ⊂ Ob to denote Ob’s surface,

aOb = {v ∈ Ob : vi = bi for some i ∈ [m]}.
For Λ > 0, we write a−ΛOb and a+ΛOb to denote the inner and outer Λ-boundaries of Ob,

a−ΛOb = Ob \ Ob−(Λ,...,Λ), a+ΛOb = Ob+(Λ,...,Λ) \ Ob, (1)

and a±ΛOb to denote the disjoint union a±ΛOb = a+ΛOb t a−ΛOb.
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Derivatives and multidimensional Taylor expansion. We write ψ(d) to denote the d-th
derivative of a Cd function ψ : R→ R. For an m-dimensional multi-index α = (α1, . . . , αm) ∈ Nm,
we write |α| to denote α1 + · · ·+ αm, and α! to denote α1!α2! · · ·αm!. Given a vector ∆ ∈ Rm, the
expression ∆α denotes

∏m
i=1 ∆αi

i . Given a function Υ : Rm → R, the expression ∂αΥ denotes the
mixed partial derivative taken αi times in the i-th coordinate.

The following is a straightforward consequence of the multidimensional Taylor theorem, upper-
bounding the error term by the L1-norm of the derivatives times the L∞-norm of the offset-powers:

Fact 3.2 (Multidimensional Taylor approximation). Let d ∈ N and let Υ : Rm → R be a Cd
function. Then for all v,∆ ∈ Rm,

Υ(v + ∆) =
∑

0≤|α|≤d−1

∂αΥ(v)

α!
∆α + err(v,∆),

where

|err(v,∆)| ≤ sup
v∗∈Rm

{ ∑
|α|=d

|∂αΥ(v∗)|
}
· ‖∆‖d∞.

3.2 Pseudorandomness preliminaries

Throughout this work we use boldface for random variables and random vectors. If D is a proba-
bility distribution, we write x ∼ D to denote that x is drawn from that distribution. For example,
N (0, 1) will denote the standard normal distribution, so g ∼ N (0, 1) means g is a standard Gaus-
sian random variable. In case S is a finite set, the notation x ∼ S will mean that x is chosen
uniformly at random from S. The most common case for this will be u ∼ {−1, 1}n, meaning that
u is chosen uniformly from {−1, 1}n. We will reserve u for this specific random vector.

We recall the definition of a pseudorandom generator:

Definition 3.3 (Pseudorandom generator). A function G : {−1, 1}r → {−1, 1}n is said to δ-fool a
function F : {−1, 1}n → R with seed length r if∣∣∣ E

s∼{−1,1}r

[
F (G (s))

]
− E
u∼{−1,1}n

[
F (u)

]∣∣∣ ≤ δ.
Such a function G is said to be a explicit pseudorandom generator (PRG) that δ-fools a class F
of n-variable functions if G is computable by a deterministic uniform poly(n)-time algorithm and
G δ-fools every function F ∈ F . We will also use the notation z ∼ G to mean that z = G (s) for
s ∼ {−1, 1}r.

Bounded independence and hash families. A sequence of random variables x1, . . . ,xn is said
to be r-wise independent if any collection of r of them is independent. In case the xi’s are uniformly
distributed on their range, we say the sequence is r-wise uniform. We will also use this terminology
for distributions D on {−1, 1}n. An obvious but useful fact about r-wise uniform PRGs G is that
they 0-fool the class of degree-r polynomials {−1, 1}n → R.

A distribution H on functions [n] → [L] is said to be an r-wise uniform hash family if, for
h ∼ H, the sequence (h(1), . . . ,h(n)) is r-wise uniform. Such a distribution also has the property
that for any ` ∈ [L], the sequence (1h(1)=`, . . . ,1h(n)=`) is r-wise independent on {0, 1}n, with each
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individual random variable being Bernoulli(1/L). Well-known constructions (see e.g. Section 3.5.5
of [Vad12]) give that for every n,L and r, there is an r-wise uniform hash family H of functions
[n] → [L] such that choosing a random function from H takes O(r log(nL)) random bits (and
evaluating a function from H takes time poly(r, log n, logL)), and consequently there are known
efficient constructions of r-wise uniform distributions over {0, 1}n with seed length O(r log n).

Fooling CNFs. Gopalan, Meka, and Reingold [GMR13] have given an efficient explicit PRG that
fools the class of small-width CNFs:

Theorem 3.4 (PRG for small-width CNFs). There is an explicit PRG GGMR = GGMR(w, δCNF)
that δCNF-fools the class of all width-w CNF formulas over {−1, 1}n and has seed length

O(w2 log2(w log(1/δCNF)) + w log(w) log(1/δCNF) + log log n).

4 Our PRG

The Meka–Zuckerman generator. As stated earlier the PRG which we will analyze is a slight
variant of a PRG first proposed by Meka and Zuckerman for fooling a single halfspace [MZ13]. We
begin by recalling the Meka–Zuckerman PRG.

Definition 4.1 (Meka–Zuckerman generator). The Meka–Zuckerman generator with parameters
L, rhash, rbucket ∈ [n], denoted GMZ, is defined as follows. Let h : [n]→ [L] be an rhash-wise uniform
hash function. Let y1, . . . ,yL ∼ {−1, 1}n be independent random variables, each rbucket-wise
uniform. A draw from GMZ = GMZ(L, rhash, rbucket) is z ∼ {−1, 1}n where

zh−1(`) = y`h−1(`) for all ` ∈ [L].

In words, an rhash-wise uniform hash h is used to partition the variables x1, . . . , xn into L “buck-
ets,” and then independently across buckets, the variables in each bucket are assigned according to
an rbucket-wise uniform distribution.

We note in passing that the generators of [HKM12, ST17a] also have this structure (though the
choice of parameters L, rbucket, and rhash are different than those in [MZ13]).

Our generator. Now we are ready to describe our generator and bound its seed length. Roughly
speaking, our generator extends the Meka–Zuckerman generator by (i) additionally Xor-ing each
bucket with an independent pseudorandom variable that fools CNF formulas; and (ii) globally Xor-
ing the entire resulting n-bit string with an independent draw from a 2k-wise uniform distribution.

Definition 4.2 (Our generator). Our generator, denoted G , is parameterized by values L, rhash, rbucket,
k, w ∈ [n], δCNF ∈ (0, 1) and is defined as follows. Let:

◦ h,y1, . . . ,yL be defined as in the Meka–Zuckerman generator with parameters L, rhash, and
rbucket.

◦ ỹ1, . . . , ỹL ∼ {−1, 1}n be independent draws from GGMR(w, δCNF).

◦ y? ∼ {−1, 1}n be 2k-wise uniform.

Define the random variable y̆ ∼ {−1, 1}n by

y̆h−1(`) = (y` ⊕ ỹ`)h−1(`) for all ` ∈ [L],

where ⊕ denotes bitwise Xor. A draw from our generator G = G (L, rhash, rbucket, k, w, δCNF) is
z ∼ {−1, 1}n where z = y̆ ⊕ y?.
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Recalling the standard constructions of r-wise uniform hash functions and random variables
described at the end of Section 3, we have the following:

Fact 4.3 (Seed length). The seed length of our PRG G with parameters L, rhash, rbucket, k, w, δCNF is

- rhash · log(nL) + L · rbucket · log n (Seed length for GMZ)

+ L · (w2 log2(w log(1/δCNF)) + w log(w) log(1/δCNF) + log log n) (L copies of GGMR)

+ k log n. (2k-wise uniform string)

4.1 Setting of parameters

We close this section with the parameter settings for fooling intersections of m halfspaces over
{−1, 1}n. Fix ε ∈ (0, 1) to be an arbitrarily small absolute constant; the parameters we now specify
will be for fooling to accuracy Oε(δ) = O(δ). We first define a few auxiliary parameters:

λ =
δ√

log(m/δ) logm
(Dictated by Equation (33))

τ =
δ1+ε

(logm)2.5+ε
(Dictated by Equation (32))

d = constant depending only on ε. (Dictated by Equation (32))

The precise value of d = d(ε) will be specified in the proof of Theorem 8.1. We will instantiate our
generator G = G (L, rhash, rbucket, k, w, δCNF) with parameters:

L =
(logm)5

δ2+ε
(Constrained by Equation (32),

chosen to optimize seed length)

rhash = C1 log(Lm/δ) (Dictated by Proposition 8.11)

rbucket = log(m/δ) (Dictated by Lemma 8.10)

k =
C2 log(m/δ) log log(m/δ)

τ2
(Dictated by Lemma 5.1)

w =
2k

L
(Dictated by Proposition 8.11)

δCNF =
δ

L
·
(

λ

m
√
n

)d−1

, (Dictated by Equation (32))

where C1 and C2 are absolute constants specified in the proofs of Proposition 8.11 and Lemma 5.1
respectively.

Our seed length: By Fact 4.3, our overall seed length is

Õ

(
(logm)6+ε

δ2+ε

)
· log n+ Õ

(
(logm)7+ε

δ2+ε

)
= poly(logm, 1/δ) · log n (2)

for any absolute constant ε ∈ (0, 1).
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Remark 4.4. As alluded to in the introduction, our techniques can also be used to show that
the Meka–Zuckerman generator itself fools the class of intersections of m halfspaces over {−1, 1}n.
However, this would require setting the parameters L, rhash, and rbucket to be somewhat larger than
the values used above, and would result in a slightly worse seed length of poly(logm, 1/δ, log n) than
our poly(logm, 1/δ) · log n. Briefly, such an analysis would use the fact that bounded-uniformity
distributions fool CNF formulas [Baz09, Raz09]; our analysis instead uses the (more efficient)
[GMR13] generator for this purpose.

5 Reduction to standardized polytopes

5.1 A reduction from fooling polytopes to fooling standardized polytopes

In this section we reduce from the problem of fooling general m-facet polytopes to the problem of
fooling m-facet (k, τ)-standardized polytopes (Definition 3.1). The main technical result we prove
in this section is the following:

Lemma 5.1 (Approximating arbitrary polytopes by (k, τ)-standardized polytopes under bound-
ed-uniformity distributions). There is a universal constant C2 > 0 such that the following holds.
Fix m ≥ 1 and 0 < δ, τ < 1/2 such that the right-hand side of Equation (3) below is at most n/2.
Let

k =
C2 log(m/δ) log log(m/δ)

τ2
. (3)

For every m-facet polytope Ax ≤ b in Rn, there is an m-facet (k, τ)-standardized polytope A′x ≤ b′
in Rn such that if y ∼ {−1, 1}n is 2k-wise uniform, then

Pr
[
1[Ay ≤ b] 6= 1[A′y ≤ b′]

]
≤ δ. (4)

Remark 5.2. Had we been content in this theorem with the worse value of k = O
(
log2(m/δ)/τ2

)
,

then the result would essentially be implicit in [DGJ+10, Theorem 5.4] (and [GOWZ10, Theo-
rem 7.4]), using only (k + 2)-wise uniformity. To save essentially a log(m/δ) factor, we give a
modified proof in Section 5.2.

We stress that Lemma 5.1 establishes that 1[Ax ≤ b] is well-approximated by 1[A′x ≤ b′] under
both the uniform distribution and the pseudorandom distribution constructed by our generator,
since both of these distributions are 2k-wise uniform. (Note that a draw z = y̆ ⊕ y? from our
generator is indeed 2k-wise uniform, since y? is; indeed, Lemma 5.1 is the motivation for why our
construction includes a bitwise-Xor with y?.) This is crucial: in general, given a function F and
an approximator F ′ that is close to F only under the uniform distribution (i.e. Pr[F (u) 6= F ′(u)]
is small), fooling F ′ does not suffice to fool F itself.

Given Lemma 5.1, in order to prove Theorem 1.1 it is sufficient to prove the following:

Theorem 5.3 (Fooling (k, τ)-standardized polytopes). Let G be our generator with parameters as
set in Section 4.1. For all m-facet (k, τ)-standardized polytopes A′x ≤ b′,∣∣∣∣ Pr

u∼{−1,1}n

[
A′u ∈ Ob′

]
− Pr
z∼G

[
A′z ∈ Ob′

]∣∣∣∣ = O(δ).
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Proof of Theorem 1.1 assuming Theorem 5.3 and Lemma 5.1. Let Ax ≤ b be anym-facet polytope
in Rn. Given δ > 0, we recall that τ = δ1+ε/(logm)2.5+ε. If the quantity (3) is greater than n/2 then
the claimed seed length from Fact 4.3 is greater than n and the conclusion of Theorem 1.1 trivially
holds, so we suppose that (3) is less than n/2. Let A′x ≤ b′ be the m-facet (k, τ)-standardized
polytope given by Lemma 5.1. We have

Pr
u∼{−1,1}n

[Au ∈ Ob] = Pr
u∼{−1,1}n

[A′u ∈ Ob′ ]± δ (Lemma 5.1 applied to u)

= Pr
z∼G

[A′z ∈ Ob′ ]± δ ± δ (Theorem 5.3)

= Pr
z∼G

[Az ∈ Ob]± δ ± δ ± δ (Lemma 5.1 applied to z)

and Theorem 1.1 is proved.

The rest of the paper following this section is devoted to proving Theorem 5.3. In the remainder
of this section we prove Lemma 5.1.

5.2 Proof of Lemma 5.1

The proof uses the “critical index” theory for Boolean halfspaces, introduced in [Ser07] and used
in several subsequent works on halfspaces.

Definition 5.4 (Critical index). Let w ∈ Rn and assume for notational simplicity that |w1| ≥
|w2| ≥ · · · ≥ |wn|. The τ -critical index of w is the least j such that the “tail” (wj , wj+1, . . . , wn) is
τ -regular, or ∞ if no such j exists.

Given A as in Lemma 5.1, the rows that are already (k, τ)-regular pose no difficulty as a simple
rescaling of any such row (and the corresponding entry of b) makes it (k, τ)-standardized. The
remaining rows Ai have τ -critical index exceeding k. The critical index theory [Ser07, OS11] says
that such halfspaces 1[Aix ≤ bi] are very close to k-juntas, and in fact [DGJ+10] shows that this is
true even under (k+ 2)-wise uniform distributions (for a slightly larger choice of k as alluded to in
Remark 5.2). We tweak the quantitative aspects of these arguments below to work for the choice
of k given in (3). It will be convenient to follow the treatment in [GOWZ10].

The first lemma below says that if the “head” variables are set uniformly, the resulting random
variable has good anticoncentration at the scale of the two-norm of the tail:

Lemma 5.5. Let τ ∈ (0, 1), ε ∈ (0, 1/2), s > 1. Then for a certain ` = O(log(s) log(1/ε)/τ2) the
following holds: If w ∈ Rn as in Definition 5.4 has τ -critical index at least `, then for all θ ∈ R,

Pr
u∼{−1,1}`

uniform

[|w1u1 + · · ·+ w`u` − θ| ≤ s · σ] ≤ ε+O(log(1/ε) exp(−s2/2)),

where σ :=
√
w2
`+1 + · · ·+ w2

n.

Proof. We refer directly to the proof of the almost identical [GOWZ10, Theorem 5.3] in the full
version of that paper. In that proof we may take “δ” to be τ2, and “η” to be 1/

√
3 since we work

with uniform ±1 bits (see Fact 3.3.5 therein). The only change needed in the proof occurs before
“inequality (10)”. That inequality uses the fact that a certain random variable z satisfies the tail
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bound Pr[|z| ≥ sρ] ≤ O(1/s4) when ρ is at most the standard deviation of z. But in our current
setting, the random variable z equals w1u1 + · · · + w`u`, i.e. it is a weighted sum of independent
uniform ±1 bits, and so we have the improved tail bound 2 exp(−s2/2) using Hoeffding. Carrying
through the remainder of the proof with this change yields the conclusion of Lemma 5.5.

Lemma 5.6. Let τ ∈ (0, 1) and let ε ∈ (0, 1/2). Then for a certain k = O(log(1/ε) log log(1/ε)/τ2)
and r = O(log(1/ε)), the following holds for every w ∈ Rn that is not (k, τ)-regular:

Let H ⊆ [n] be the set of k coordinates i for which |wi| is largest and let T = [n] \H. Assume
w′ ∈ Rn has w′H = wH and ‖w′T ‖2 ≤ ‖wT ‖2. Then for any θ ∈ R,

Pr
y

[
1[w · y ≤ θ] 6= 1[w′ · y ≤ θ]

]
= O(ε)

provided y ∼ {−1, 1}n is (k + r)-wise uniform.

Proof. Suppose w is not (k, τ)-regular. By reordering coordinates we may assume that H = [k];
then the non-(k, τ)-regularity of w means the τ -critical index of w exceeds k. We may therefore
apply Lemma 5.5 with s = O(

√
log(1/ε)). Using the fact that yH is fully uniform we get

Pr[|wH · yH − θ| ≤ s · ‖wT ‖2] = O(ε) (and note that w′H · yH = wH · yH). (5)

Conditioned on any outcome of yH , the distribution of yT remains r-wise uniform. We claim that
it remains to show the following:

Pr[|w′T · yT | ≥ s · ‖wT ‖2] = O(ε). (6)

To see that this suffices, observe that by (5) we have that |wH ·yH − θ| = |w′H ·yH − θ| > s · ‖wT ‖2
except with probability O(ε). Also, by applying (6) with w′ and with w′ = w, we get both
|wT · yT |, |w′T · yT | ≤ s · ‖wT ‖2 except with another probability at most O(ε). When all of these
events occur, 1[w · y ≤ θ] and 1[w′ · y ≤ θ] agree.

Finally, we can establish Equation (6) by appealing to, e.g., [O’D14, Theorem 9.23]. That
theorem (with k = 1) shows that for t ≥

√
2e, any linear form f(x) in uniform ±1 random

variables x has Pr[|f(x)| ≥ t‖f‖2] ≤ exp(−O(t2)). If we could directly apply this to the linear
form w′T · yT , we would be done by taking t = s and using ‖w′T ‖2 ≤ ‖wT ‖2. We cannot directly
apply this theorem because the bits yT are not uniformly random. However, inspecting the proof
of [O’D14, Theorem 9.23] shows that it suffices for those bits to be O(t2)-wise uniform, which they
are provided that r = O(log(1/ε)) = O(s2) = O(t2). The reason that this suffices is because the
proof only uses (2, q, 1/

√
q − 1)-hypercontractivity of f(x) for q = O(t2), and (for even integer q)

this condition only involves the first q moments of f(x), which don’t change if x is assumed to be
merely q-wise uniform rather than truly uniform.

We can now prove Lemma 5.1:

Proof. We will use Lemma 5.6 with ε = cδ/m for small constant c > 0. This leads to the choice
of k in the statement of Lemma 5.1; also, r � k and so 2k ≥ r + k.

Given A ∈ Rm×n, as noted earlier the rows that are (k, τ)-regular are not a problem, so we
consider all rows Ai that are not (k, τ)-regular. For these rows we apply Lemma 5.6, taking A′i
to agree with Ai on the appropriate “head” coordinates Hi, and taking A′i to simply be 0 on the
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remaining “tail” coordinates. Note that A′i is now trivially (k, τ)-regular. By Lemma 5.6 we have
that

Pr
y

[
1[Ai · y ≤ bi] 6= 1[A′i · y ≤ bi]

]
≤ δ/m.

Taking b′i = bi for these i’s, and union-bounding over the at most m of them, we are almost at
the point of establishing Equation (4) from the theorem statement. We now have that all A′i are
(k, τ)-regular; the only deficiency is that the “tail” of each row need not have 2-norm 1 as required.

Whenever the “tail” of A′i has nonzero 2-norm, we can simply scale A′i and b′ by the same
positive factor so as to make the tail of A′i have 2-norm 1; this scaling does not change the Boolean
function 1[A′i · x ≤ b′i] at all. The only (very minor) difficulty now remaining is that some of the
rows A′i may have tail with 2-norm zero. It is well known, however, that one can always slightly
perturb the coefficients and threshold in a halfspace without changing it as a Boolean function.2

We can perturb in such a way that the tail coefficients all become equal to some sufficiently small
η > 0. After this perturbation, the row A′i is (k, τ)-regular (this holds, recalling that k ≤ n/2,
since n− k ≥ k ≥ 1/τ2) and its tail has positive 2-norm. Now we can scale up (A′i, b

′
i) as before to

make the tail have 2-norm 1.

6 Bentkus’s mollifier and its properties

In this section we introduce and analyze Bentkus’s orthant mollifier Õb : Rm → (0, 1), which is a
smoothed version of the translated orthant indicator function Ob : Rm → {0, 1} from Section 3.1.

Definition 6.1 (Gaussian-mollified halfline). For θ ∈ R and λ > 0, we define the C∞ function
1̃θ,λ : R→ (0, 1),

1̃θ,λ(t) = E
g∼N(0,1)

[
1[t+ λg ≤ θ]

]
.

Definition 6.2 (Bentkus’s orthant mollifier). For b ∈ Rm and λ > 0, the Bentkus λ-mollifier for
Ob is defined to be the C∞ function Õb,λ : Rm → (0, 1),

Õb,λ(v) = E
g∼N(0,1)m

[
Ob(v + λg)

]
.

Since Ob(v) =
∏m
i=1 1[vi ≤ bi] and N (0, 1)m is a product distribution, the mollifier Õb,λ can be

equivalently defined as follows:

Õb,λ(v) =
m∏
i=1

1̃bi,λ(vi). (7)

This product structure of Bentkus’s mollifier will be crucially important for us in the analysis that
we carry out in Section 8.1. We note the following translation property of Bentkus’s mollifier:

Fact 6.3. For all b, v,∆ ∈ Rm and λ > 0, we have Õb,λ(v + ∆) = Õb−v,λ(∆).

In Section 8.1 we will also use the following global bound on the magnitude of the derivatives
of the Gaussian-mollified halfline:

2Given a halfspace 1[w ·x ≤ θ], there is a smallest value θ′ > θ achievable as w ·x for x ∈ {−1, 1}n; first perturb θ
upward to (θ+θ′)/2. Now no input x achieves w ·x = θ exactly, so we can perturb the coefficients of w by sufficiently
small amounts.
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Fact 6.4 (Standard; see Exercise 11.41 in [O’D14]). For all θ ∈ R, λ > 0, and integer d ≥ 1,∥∥∥1̃(d)
θ,λ

∥∥∥
∞

= Od

(
1

λ

)d
.

The following result, from Bentkus [Ben90, Theorem 3(ii)], can be viewed as a multidimensional
generalization of Fact 6.4. (Strictly speaking [Ben90] only considers b’s of the form (θ, θ, . . . , θ),
but by translation-invariance the bound holds for all b ∈ Rm.)

Theorem 6.5 (Bounded sum of derivatives). For all m ≥ 2, b ∈ Rm, λ > 0, and integer d ≥ 1,

sup
v∈Rm

{ ∑
|α|=d

|∂αÕb,λ(v)|
}

= Od

(√
logm

λ

)d
.

Recall from (1) that a−ΛOb = Ob \ Ob−(Λ,...,Λ) and a+ΛOb = Ob+(Λ,...,Λ) \ Ob. We will use the
following notions of approximation for translated orthants:

Definition 6.6 (Inner and outer approximators for orthants). We say that Υ : Rm → [0, 1] is a
(Λ, δ)-inner approximator for Ob if

|Υ(v)−Ob(v)| ≤ δ for all v /∈ a−ΛOb.

Similarly, we say that Υ is a (Λ, δ)-outer approximator for Ob if

|Υ(v)−Ob(v)| ≤ δ for all v /∈ a+ΛOb.

The connection between Bentkus’s mollifier and these notions of approximation is established
in the following claim.

Lemma 6.7 (Bentkus’s mollifier, appropriately translated, yields inner and outer approxima-
tors for translated orthants). For all b ∈ Rm and λ, δ ∈ (0, 1), there are bin, bout ∈ Rm such that
Õbin,λ, Õbout,λ are (Λ, δ)-inner and -outer approximators for Ob respectively, where Λ = Θ(λ

√
log(m/δ)).

Proof. Let bin = b − β1m where β = Θ(λ
√

log(m/δ)) < Λ will be specified in more detail later.

We show below that Õbin,λ is an (Λ, δ)-inner approximator for Ob; an analogous argument in which

the v ∈ Ob and v /∈ Ob cases switch roles shows that Õbout,λ is a (Λ, δ)-outer approximator for Ob,
where bout = b+ β1m.

Fix v /∈ a−ΛOb. There are two possibilities: either v ∈ Ob, or v /∈ Ob. We first consider the case
in which v lies in Ob. Since v /∈ a−ΛOb, we have vi ≤ bi−Λ for all i ∈ [m]. Since Ob(v) = 1, we must
show that Õbin,λ(v) ≥ 1− δ. Recalling Equation (7) and the fact that the function 1̃θ,λ : R→ (0, 1)

is monotone decreasing for all θ ∈ R and λ > 0, it suffices to show that Õbin,λ(b − Λ1m) ≥ 1 − δ.
Again by Equation (7) this holds if and only if

m∏
i=1

1̃bi−β,λ(bi − Λ) ≥ 1− δ,

which is equivalent to (
Pr

g∼N (0,1)
[g ≤ (Λ− β)/λ]

)m
≥ 1− δ,
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which holds if
Pr

g∼N (0,1)
[g ≤ (Λ− β)/λ] ≥ 1− δ/m. (8)

By the well-known Gaussian tail bound Pr[g ≥ t] ≤ 1 − 1
t
√

2π
e−t

2/2 for t > 0 (see e.g. [Fel68],

Section 7.1), we see that to achieve Equation (8) it suffices to have Λ − β ≥ Cλ
√

ln(m/δ) for an
absolute constant C > 0, and hence Λ = Θ(λ

√
log(m/δ)) suffices.

Now we turn to the case in which v /∈ Ob, and hence for some i ∈ [m] we have vi > bi; without
loss of generality we suppose that v1 > b1. Since Ob(v) = 0 in this case, we must show that
Õbin,λ(v) ≤ δ. By Equation (7) this holds if and only if

m∏
i=1

1̃bi−β,λ(vi) ≤ δ,

which holds if
1̃b1−β,λ(v1) ≤ δ,

which is equivalent to
Pr

g∼N (0,1)
[v1 + λg ≤ b1 − β] ≤ δ.

Recalling that v1 > b1, it suffices to have

Pr
g∼N (0,1)

[g ≤ −β/λ] ≤ δ,

which holds (with room to spare) for our choice of β by the standard Gaussian tail bound.

6.1 The connection between inner/outer approximators and CDF distance

The following elementary properties of inner/outer approximators will be useful for us:

Fact 6.8. Fix b ∈ Rm and let Υin,Υout be (Λ, δ)-inner and -outer approximators for Ob. Then

1. Υin(v)− δ ≤ Ob(v) ≤ Υout(v) + δ for all v ∈ Rm.

2. Υin is a (Λ, δ)-outer approximator for Ob−Λ1m, and similarly Υout is a (Λ, δ)-inner approxi-
mator for Ob+Λ1m.

The next lemma is straightforward but very useful for us. Intuitively, it says that in order for
an Rm-valued random variable ṽ to fool a translated orthant Ob relative to another Rm-valued
random variable v, it suffices to (i) have ṽ fool both inner and outer approximators for Ob, and (ii)
establish anticoncentration of the original random variable v at the inner and outer boundaries of
Ob. We explain in detail how we will use this lemma after giving its proof below.

Lemma 6.9. Let Υin,Υout : Rm → [0, 1] be (Λ, δ)-inner and -outer approximators for Ob. Let v
and ṽ be Rm-valued random variables satisfying:∣∣E [Υ(v)

]
−E

[
Υ(ṽ)

]∣∣ ≤ γ (9)

for both Υ ∈ {Υout,Υin}. Then∣∣Pr
[
v ∈ Ob

]
−Pr

[
ṽ ∈ Ob

]∣∣ ≤ γ + 2δ + Pr
[
v ∈ a±ΛOb

]
.
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Proof. The proof follows similar lines to the arguments used to prove Lemma 3.3 in [HKM12]. We
first note that

Pr
[
ṽ ∈ Ob

]
≤ E

[
Υout(ṽ)

]
+ δ (Item 1 of Fact 6.8)

≤ (E
[
Υout(v)

]
+ γ) + δ (Equation (9) with Υ = Υout)

≤ Pr
[
v ∈ Ob+Λ1m

]
+ γ + 2δ. (Item 2 of Fact 6.8)

Combining this with a symmetric argument for the lower bound, we have:

Pr
[
v ∈ Ob−Λ1m

]
− γ − 2δ ≤ Pr

[
ṽ ∈ Ob

]
≤ Pr

[
v ∈ Ob+Λ1m

]
+ γ + 2δ. (10)

To convert this type of closeness into CDF closeness, we observe that

Pr
[
v ∈ Ob+Λ1m

]
= Pr

[
v ∈ Ob

]
+ Pr

[
v ∈ a+ΛOb

]
Pr
[
v ∈ Ob−Λ1m

]
= Pr

[
v ∈ Ob

]
−Pr

[
v ∈ a−ΛOb

]
.

Plugging these identities into Equation (10), we conclude that

Pr
[
ṽ ∈ Ob

]
= Pr

[
v ∈ Ob

]
±
(
γ + 2δ + Pr

[
v ∈ a+ΛOb

]
+ Pr

[
v ∈ a−ΛOb

])
= Pr

[
v ∈ Ob

]
±
(
γ + 2δ + Pr

[
v ∈ a±ΛOb

])
,

thus completing the proof of Lemma 6.9.

6.1.1 Applying Lemma 6.9 in the context of Theorem 5.3, and the organization of
the rest of this paper.

Applying Lemma 6.9 with v and ṽ being Au and Az respectively, the task of bounding∣∣∣ Pr
u∼{−1,1}n

[
Au ∈ Ob

]
− Pr
z∼GMZ

[
Az ∈ Ob

]∣∣∣
reduces to the following two-step program:

1. Establishing anticoncentration within orthant boundaries: bounding Pr
[
Au ∈ a±ΛOb

]
; and,

2. Fooling Bentkus’s mollifier: bounding
∣∣E [Õ(Au)

]
−E

[
Õ(Az)

]∣∣ for Õ ∈ {Õbout,λ, Õbin,λ}, the
inner and outer approximators for Ob given by Lemma 6.7.

Section 7 is devoted to the former, and Section 8 the latter. In Section 9 we put these pieces
together to prove Theorem 5.3.

7 Boolean anticoncentration within orthant boundaries

The main result of this section is Theorem 7.1, which provides the first step of the two-step program
described at the end of Section 6:

Theorem 7.1 (Boolean anticoncentration within orthant boundaries). Assume A ∈ Rm×n satisfies
the following property: each of its row vectors has a τ -regular subvector of 2-norm 1, where τ is as
set in Section 4.1.3 Then for all b ∈ Rm and Λ ≥ τ , we have

Pr
u∼{−1,1}n

[Au ∈ a±ΛOb] = O
(

Λ
√

logm
)
.

3Equivalently, A is (n, τ)-standardized.
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En route to proving Theorem 7.1 we will establish a “Littlewood–Offord theorem for polytopes,”
Theorem 2.2, that was stated in Section 2.2.1. Theorem 2.2 will in fact be obtained as a special case
of a more general result about intersections of m arbitrary unate functions (namely Lemma 7.12).

Definition 7.2 (Unateness). A function F : {−1, 1}n → {0, 1} is unate in direction σ ∈ {−1, 1}n
if the function G(x1, . . . , xn) = F (σ1x1, . . . , σnxn) is a monotone Boolean function, meaning that
G(x) ≤ G(x) whenever xj ≤ xj for all j ∈ [n]. We refer to σ as the orientation of F .

Our analysis, dealing as it does with intersections of unate functions, is somewhat reminiscent
of that of [Kan14a], and indeed we will establish the main result of [Kan14a]—an upper bound of
O(
√
n logm) on the average sensitivity of any intersection of m unate functions—in the course of

our analysis.

7.1 Caps and their boundary edges

Let G and H be subsets of {−1, 1}n. We typically think of G as a General/arbitrary set and H as
a Halfspace, though formally H will only need to be unate. Throughout this section we write
σ ∈ {−1, 1}n to denote the orientation of H.

We call the set G \H the cap, the set G ∩H the body, and the complement of G the exterior.
Please refer to Figure 1, where G is the union of the two regions with blue shading and H is the
gray-shaded region (depicted as a halfspace in the figure). The upward arrows in the diagram
illustrate some edges of the hypercube. We have oriented these edges according to σ: for an edge
{x, y} in the j-th direction in which xj = −1 and yj = 1, the tail of the corresponding arrow
represents x if σj = −1, and y if σj = 1. Note in particular that the edges are oriented “away”
from H (i.e., so that H is antimonotone with respect to the edge orientations).

unate H
<latexit sha1_base64="Ca5tBxLyjnwiXCV0M0l6PGQQhew=">AAAB+XicbVDLTgJBEJzFF+Jr1aOXiWDiiewaEz0SvXDERB4JEDI7NDBhdnYz00skG/7EiweN8eqfePNvHGAPClbSSaWqO91dQSyFQc/7dnIbm1vbO/ndwt7+weGRe3zSMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC+n/vNCWgjIvWI0xi6IRsqMRCcoZV6rttBeMI0UQyBlqqlWc8temVvAbpO/IwUSYZaz/3q9COehKCQS2ZM2/di7KZMo+ASZoVOYiBmfMyG0LZUsRBMN11cPqMXVunTQaRtKaQL9fdEykJjpmFgO0OGI7PqzcX/vHaCg9tuKlScICi+XDRIJMWIzmOgfaGBo5xawrgW9lbKR0wzjjasgg3BX315nTSuyr5X9h+ui5W7LI48OSPn5JL45IZUSJXUSJ1wMiHP5JW8Oanz4rw7H8vWnJPNnJI/cD5/APRkkzE=</latexit><latexit sha1_base64="Ca5tBxLyjnwiXCV0M0l6PGQQhew=">AAAB+XicbVDLTgJBEJzFF+Jr1aOXiWDiiewaEz0SvXDERB4JEDI7NDBhdnYz00skG/7EiweN8eqfePNvHGAPClbSSaWqO91dQSyFQc/7dnIbm1vbO/ndwt7+weGRe3zSMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC+n/vNCWgjIvWI0xi6IRsqMRCcoZV6rttBeMI0UQyBlqqlWc8temVvAbpO/IwUSYZaz/3q9COehKCQS2ZM2/di7KZMo+ASZoVOYiBmfMyG0LZUsRBMN11cPqMXVunTQaRtKaQL9fdEykJjpmFgO0OGI7PqzcX/vHaCg9tuKlScICi+XDRIJMWIzmOgfaGBo5xawrgW9lbKR0wzjjasgg3BX315nTSuyr5X9h+ui5W7LI48OSPn5JL45IZUSJXUSJ1wMiHP5JW8Oanz4rw7H8vWnJPNnJI/cD5/APRkkzE=</latexit><latexit sha1_base64="Ca5tBxLyjnwiXCV0M0l6PGQQhew=">AAAB+XicbVDLTgJBEJzFF+Jr1aOXiWDiiewaEz0SvXDERB4JEDI7NDBhdnYz00skG/7EiweN8eqfePNvHGAPClbSSaWqO91dQSyFQc/7dnIbm1vbO/ndwt7+weGRe3zSMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC+n/vNCWgjIvWI0xi6IRsqMRCcoZV6rttBeMI0UQyBlqqlWc8temVvAbpO/IwUSYZaz/3q9COehKCQS2ZM2/di7KZMo+ASZoVOYiBmfMyG0LZUsRBMN11cPqMXVunTQaRtKaQL9fdEykJjpmFgO0OGI7PqzcX/vHaCg9tuKlScICi+XDRIJMWIzmOgfaGBo5xawrgW9lbKR0wzjjasgg3BX315nTSuyr5X9h+ui5W7LI48OSPn5JL45IZUSJXUSJ1wMiHP5JW8Oanz4rw7H8vWnJPNnJI/cD5/APRkkzE=</latexit><latexit sha1_base64="Ca5tBxLyjnwiXCV0M0l6PGQQhew=">AAAB+XicbVDLTgJBEJzFF+Jr1aOXiWDiiewaEz0SvXDERB4JEDI7NDBhdnYz00skG/7EiweN8eqfePNvHGAPClbSSaWqO91dQSyFQc/7dnIbm1vbO/ndwt7+weGRe3zSMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC+n/vNCWgjIvWI0xi6IRsqMRCcoZV6rttBeMI0UQyBlqqlWc8temVvAbpO/IwUSYZaz/3q9COehKCQS2ZM2/di7KZMo+ASZoVOYiBmfMyG0LZUsRBMN11cPqMXVunTQaRtKaQL9fdEykJjpmFgO0OGI7PqzcX/vHaCg9tuKlScICi+XDRIJMWIzmOgfaGBo5xawrgW9lbKR0wzjjasgg3BX315nTSuyr5X9h+ui5W7LI48OSPn5JL45IZUSJXUSJ1wMiHP5JW8Oanz4rw7H8vWnJPNnJI/cD5/APRkkzE=</latexit>

Body G \ H
<latexit sha1_base64="P/y1y0A5lG96oIZfUzmqtaWs5+Y=">AAAB/3icdVDJSgNBEO1xjXEbFbx4aUwET2FGXG8hHswxglkgGUJPTydp0tMzdNeIYczBX/HiQRGv/oY3/8bOIkTRBwWP96qoqufHgmtwnE9rbn5hcWk5s5JdXVvf2LS3tms6ShRlVRqJSDV8opngklWBg2CNWDES+oLV/f7lyK/fMqV5JG9gEDMvJF3JO5wSMFLb3m0Bu4O0FAUDnL/CLUpiXM4P23bOKThj4Bly4rgXpy52p0oOTVFp2x+tIKJJyCRQQbRuuk4MXkoUcCrYMNtKNIsJ7ZMuaxoqSci0l47vH+IDowS4EylTEvBYnZ1ISaj1IPRNZ0igp397I/Evr5lA59xLuYwTYJJOFnUSgSHCozBwwBWjIAaGEKq4uRXTHlGEgoksa0L4/hT/T2pHBdcpuNfHuWJpGkcG7aF9dIhcdIaKqIwqqIooukeP6Bm9WA/Wk/VqvU1a56zpzA76Aev9C2hblQs=</latexit><latexit sha1_base64="P/y1y0A5lG96oIZfUzmqtaWs5+Y=">AAAB/3icdVDJSgNBEO1xjXEbFbx4aUwET2FGXG8hHswxglkgGUJPTydp0tMzdNeIYczBX/HiQRGv/oY3/8bOIkTRBwWP96qoqufHgmtwnE9rbn5hcWk5s5JdXVvf2LS3tms6ShRlVRqJSDV8opngklWBg2CNWDES+oLV/f7lyK/fMqV5JG9gEDMvJF3JO5wSMFLb3m0Bu4O0FAUDnL/CLUpiXM4P23bOKThj4Bly4rgXpy52p0oOTVFp2x+tIKJJyCRQQbRuuk4MXkoUcCrYMNtKNIsJ7ZMuaxoqSci0l47vH+IDowS4EylTEvBYnZ1ISaj1IPRNZ0igp397I/Evr5lA59xLuYwTYJJOFnUSgSHCozBwwBWjIAaGEKq4uRXTHlGEgoksa0L4/hT/T2pHBdcpuNfHuWJpGkcG7aF9dIhcdIaKqIwqqIooukeP6Bm9WA/Wk/VqvU1a56zpzA76Aev9C2hblQs=</latexit><latexit sha1_base64="P/y1y0A5lG96oIZfUzmqtaWs5+Y=">AAAB/3icdVDJSgNBEO1xjXEbFbx4aUwET2FGXG8hHswxglkgGUJPTydp0tMzdNeIYczBX/HiQRGv/oY3/8bOIkTRBwWP96qoqufHgmtwnE9rbn5hcWk5s5JdXVvf2LS3tms6ShRlVRqJSDV8opngklWBg2CNWDES+oLV/f7lyK/fMqV5JG9gEDMvJF3JO5wSMFLb3m0Bu4O0FAUDnL/CLUpiXM4P23bOKThj4Bly4rgXpy52p0oOTVFp2x+tIKJJyCRQQbRuuk4MXkoUcCrYMNtKNIsJ7ZMuaxoqSci0l47vH+IDowS4EylTEvBYnZ1ISaj1IPRNZ0igp397I/Evr5lA59xLuYwTYJJOFnUSgSHCozBwwBWjIAaGEKq4uRXTHlGEgoksa0L4/hT/T2pHBdcpuNfHuWJpGkcG7aF9dIhcdIaKqIwqqIooukeP6Bm9WA/Wk/VqvU1a56zpzA76Aev9C2hblQs=</latexit><latexit sha1_base64="P/y1y0A5lG96oIZfUzmqtaWs5+Y=">AAAB/3icdVDJSgNBEO1xjXEbFbx4aUwET2FGXG8hHswxglkgGUJPTydp0tMzdNeIYczBX/HiQRGv/oY3/8bOIkTRBwWP96qoqufHgmtwnE9rbn5hcWk5s5JdXVvf2LS3tms6ShRlVRqJSDV8opngklWBg2CNWDES+oLV/f7lyK/fMqV5JG9gEDMvJF3JO5wSMFLb3m0Bu4O0FAUDnL/CLUpiXM4P23bOKThj4Bly4rgXpy52p0oOTVFp2x+tIKJJyCRQQbRuuk4MXkoUcCrYMNtKNIsJ7ZMuaxoqSci0l47vH+IDowS4EylTEvBYnZ1ISaj1IPRNZ0igp397I/Evr5lA59xLuYwTYJJOFnUSgSHCozBwwBWjIAaGEKq4uRXTHlGEgoksa0L4/hT/T2pHBdcpuNfHuWJpGkcG7aF9dIhcdIaKqIwqqIooukeP6Bm9WA/Wk/VqvU1a56zpzA76Aev9C2hblQs=</latexit>

Cap G \ H
<latexit sha1_base64="e02+0GILooBvtP7y6PnWyQf8HMU=">AAACA3icdVDLSgNBEJz1bXxFvellMBE8hV3xeQt60KOCiYHsEmYnnWTI7Owy0yuGJeDFX/HiQRGv/oQ3/8bJQ1DRgoaiqpvurjCRwqDrfjgTk1PTM7Nz87mFxaXllfzqWtXEqeZQ4bGMdS1kBqRQUEGBEmqJBhaFEq7D7unAv74BbUSsrrCXQBCxthItwRlaqZHf8BFuMTtlCS2eUd8ARkKlhp4X+418wS25Q9BvZN/1jg886o2VAhnjopF/95sxTyNQyCUzpu65CQYZ0yi4hH7OTw0kjHdZG+qWKhaBCbLhD326bZUmbcXalkI6VL9PZCwypheFtjNi2DG/vYH4l1dPsXUUZEIlKYLio0WtVFKM6SAQ2hQaOMqeJYxrYW+lvMM042hjy9kQvj6l/5PqbslzS97lXqF8Mo5jjmySLbJDPHJIyuScXJAK4eSOPJAn8uzcO4/Oi/M6ap1wxjPr5Aect0/Vfpb9</latexit><latexit sha1_base64="e02+0GILooBvtP7y6PnWyQf8HMU=">AAACA3icdVDLSgNBEJz1bXxFvellMBE8hV3xeQt60KOCiYHsEmYnnWTI7Owy0yuGJeDFX/HiQRGv/oQ3/8bJQ1DRgoaiqpvurjCRwqDrfjgTk1PTM7Nz87mFxaXllfzqWtXEqeZQ4bGMdS1kBqRQUEGBEmqJBhaFEq7D7unAv74BbUSsrrCXQBCxthItwRlaqZHf8BFuMTtlCS2eUd8ARkKlhp4X+418wS25Q9BvZN/1jg886o2VAhnjopF/95sxTyNQyCUzpu65CQYZ0yi4hH7OTw0kjHdZG+qWKhaBCbLhD326bZUmbcXalkI6VL9PZCwypheFtjNi2DG/vYH4l1dPsXUUZEIlKYLio0WtVFKM6SAQ2hQaOMqeJYxrYW+lvMM042hjy9kQvj6l/5PqbslzS97lXqF8Mo5jjmySLbJDPHJIyuScXJAK4eSOPJAn8uzcO4/Oi/M6ap1wxjPr5Aect0/Vfpb9</latexit><latexit sha1_base64="e02+0GILooBvtP7y6PnWyQf8HMU=">AAACA3icdVDLSgNBEJz1bXxFvellMBE8hV3xeQt60KOCiYHsEmYnnWTI7Owy0yuGJeDFX/HiQRGv/oQ3/8bJQ1DRgoaiqpvurjCRwqDrfjgTk1PTM7Nz87mFxaXllfzqWtXEqeZQ4bGMdS1kBqRQUEGBEmqJBhaFEq7D7unAv74BbUSsrrCXQBCxthItwRlaqZHf8BFuMTtlCS2eUd8ARkKlhp4X+418wS25Q9BvZN/1jg886o2VAhnjopF/95sxTyNQyCUzpu65CQYZ0yi4hH7OTw0kjHdZG+qWKhaBCbLhD326bZUmbcXalkI6VL9PZCwypheFtjNi2DG/vYH4l1dPsXUUZEIlKYLio0WtVFKM6SAQ2hQaOMqeJYxrYW+lvMM042hjy9kQvj6l/5PqbslzS97lXqF8Mo5jjmySLbJDPHJIyuScXJAK4eSOPJAn8uzcO4/Oi/M6ap1wxjPr5Aect0/Vfpb9</latexit><latexit sha1_base64="e02+0GILooBvtP7y6PnWyQf8HMU=">AAACA3icdVDLSgNBEJz1bXxFvellMBE8hV3xeQt60KOCiYHsEmYnnWTI7Owy0yuGJeDFX/HiQRGv/oQ3/8bJQ1DRgoaiqpvurjCRwqDrfjgTk1PTM7Nz87mFxaXllfzqWtXEqeZQ4bGMdS1kBqRQUEGBEmqJBhaFEq7D7unAv74BbUSsrrCXQBCxthItwRlaqZHf8BFuMTtlCS2eUd8ARkKlhp4X+418wS25Q9BvZN/1jg886o2VAhnjopF/95sxTyNQyCUzpu65CQYZ0yi4hH7OTw0kjHdZG+qWKhaBCbLhD326bZUmbcXalkI6VL9PZCwypheFtjNi2DG/vYH4l1dPsXUUZEIlKYLio0WtVFKM6SAQ2hQaOMqeJYxrYW+lvMM042hjy9kQvj6l/5PqbslzS97lXqF8Mo5jjmySLbJDPHJIyuScXJAK4eSOPJAn8uzcO4/Oi/M6ap1wxjPr5Aect0/Vfpb9</latexit>

Figure 1: Illustration of a cap and body
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We will be concerned with the boundary edges for the cap G \H; these are edges which have
one endpoint inside G \H and one endpoint outside it.

Definition 7.3 (Edge boundary). For a general set F ⊆ {−1, 1}n, let E(F ) denote the fraction of
all n2n−1 edges that are boundary edges for F .

We distinguish the three possible types of boundary edges of the cap G \H:

◦ Body→Cap (BC) edges: the red edges in the diagram. Formally, these are edges where
the tail is in the body G ∩H and the head is in the cap G \H.

◦ Exterior→Cap (EC) edges: the green edges in the diagram. Formally, these are edges
where the tail is not in G, and the head is in the cap G \H.

◦ Cap→Exterior (CE) edges: the purple edges in the diagram. Formally, these are edges
where the tail is in the cap G \H and the head is not in G.

Remark 7.4. Note that there are no Cap→Body (CB) edges. Formally, these would be the
last possibility for G \H boundary edges, namely ones with tail in the cap G \H and head in the
body G ∩H. But these cannot exist due to the antimonotonicity of H vis-a-vis the edges; if the
tail is already not in H, then the head cannot be in H.

Given a cap C = G\H, we write BC(G,H), EC(G,H), CE(G,H) for the fraction of hypercube
edges of each of the three above types. Therefore E(C) = BC(G,H) + EC(G,H) + CE(G,H).

We will also be interested in the directed edge boundary of caps:

Definition 7.5 (Directed edge boundary). For a cap G \H, define

~E(G,H) = BC(G,H) + EC(G,H)− CE(G,H), (11)

the fraction of inward boundary edges minus the fraction of outward boundary edges.

It will be very useful for us to have an upper bound on E(G ∩H)− E(G), the change in E(G)
when we intersect G with H (note that this quantity can be either positive or negative). The
following fact is immediate from the definitions:

Fact 7.6 (Change in boundary size). If G \H is a cap, then

E(G ∩H)− E(G) = BC(G,H)− EC(G,H)− CE(G,H). (12)

Comparing Equations (11) and (12), we plainly have:

Fact 7.7. E(G ∩H)− E(G) ≤ ~E(G,H).

To get a quantitative bound, we have the following lemma:

Lemma 7.8. For any cap C = G \H,

~E(G,H) ≤ U(vol(C))√
n

,

where vol(C) = |C|/2n and U denotes the function U(p) = 2p
√

2 ln(1/p).
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Proof. This is a basic fact in analysis of Boolean functions. Identifying C with its indicator function
C : {−1, 1}n → {0, 1}, we have vol(C) = E[C(u)] and

~E(G,H) = 2 E
u∼{−1,1}n
j∼[n]

[C(u)σjuj ] =
2

n

n∑
j=1

σjĈ({j}),

where Ĉ({j}) denotes the degree-1 Fourier coefficient of C corresponding to coordinate j. It is well
known and elementary that for F : {−1, 1}n → {0, 1} with E[F ] = p, one has

∑n
j=1 |F̂ ({j})| ≤

O(p
√

ln(1/p))
√
n; see, e.g., Kane’s paper [Kan14a, Lemma 6] for the short proof. For the sake of

an asymptotically tight constant, we can use Cauchy–Schwarz and the Fourier “Level-1 Inequality”
[Tal96, Cha02, IMR14] to get

n∑
j=1

σjĈ({j}) ≤ √n ·

√√√√ n∑
j=1

Ĉ({j})2 ≤ √n · p
√

2 ln(1/p).

7.1.1 Reproving the main result of [Kan14a]

We can now reprove the main result of [Kan14a] (which we will use later):

Theorem 7.9 ([Kan14a]). Let F be the intersection of m ≥ 2 unate functions over {−1, 1}n. Then

E(F ) ≤ 2
√

2 lnm√
n

. (13)

(Equivalently, an intersection of m ≥ 2 unate functions has average sensitivity at most 2
√

2 lnm
√
n.)

Proof. Let H1, . . . ,Hm be unate functions and define associated caps

Ci = (H1 ∩ · · · ∩Hi−1) \Hi, (14)

with C1 = {−1, 1}n \ H1 (i.e. H0 = {−1, 1}n). Letting F = H1 ∩ · · · ∩ Hm, we have that the
complement F c = {−1, 1}n \ F of F can be expressed as a disjoint union of caps:

F c = C1 t · · · t Cm. (15)

For intuition, we may think of the intersection of m unate sets F as being formed in m stages,
starting with {−1, 1}n and successively intersecting with each Hi; given this interpretation, Ci is
the portion of {−1, 1}n that is removed in the i-th stage. With this notation in hand, we have that

E(F ) =

m∑
i=1

E((H1 ∩ · · · ∩Hi−1) ∩Hi)− E(H1 ∩ · · · ∩Hi−1)

≤
m∑
i=1

~E(H1 ∩ · · · ∩Hi−1, Hi) (Fact 7.7 with G = H1 ∩ · · · ∩Hi−1 and H = Hi)

≤ 1√
n
·
m∑
i=1

U(vol(Ci)). (Lemma 7.8)
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Finally,

m∑
i=1

U(vol(Ci)) ≤ m · U
(∑m

i=1 vol(Ci)

m

)
= m · U

(
vol(F c)

m

)
≤ m · U( 1

m) = 2
√

2 lnm,

where we used concavity of U , then Equation (15), then the fact that U is increasing on [0, 1/2].
This completes the proof of Theorem 7.9.

7.2 A Littlewood–Offord theorem for polytopes (Theorem 2.2)

In this section we prove Theorem 2.2:

Theorem 2.2. There is a universal constant C (C = 5
√

2 suffices) such that the following holds.
For all m ≥ 2, b ∈ Rm and A ∈ Rm×n with |Aij | ≥ 1 for all i ∈ [m] and j ∈ [n],

Pr
u∼{−1,1}n

[Au ∈ a−2Ob] ≤
C
√

lnm√
n

.

We note in passing that that the anticoncentration bound given by Theorem 2.2 is best possible
up to constant factors. Indeed, our matching lower bound applies even to the stricter event of
falling on the surface of Ob:

Claim 7.10 (Optimality of Theorem 2.2). For 2 ≤ m ≤ 2n, there is a matrix A ∈ {−1, 1}m×n and
a vector b ∈ Rm such that

Pr
u∼{−1,1}n

[Au ∈ aOb] = Ω

(√
lnm√
n

)
.

We prove Claim 7.10 in Appendix A.

7.2.1 Proof of Theorem 2.2

As mentioned at the beginning of this section, we will obtain Theorem 2.2 as a corollary of a more
general result about intersections of unate functions. Let H1, . . . ,Hm ⊆ {−1, 1}n be unate sets,
m ≥ 2, and further suppose that we have additional unate sets H1, . . . ,Hm such that Hi ⊆ H i

for all i. (For intuition it may be helpful to think of Hi as the “interior” of H i; see the proof
of Theorem 2.2 using Lemma 7.12 just below for a typical example of sets Hi and H i.) We define
the following subsets of {−1, 1}n:

F = H1 ∩ · · · ∩Hm

F ◦ = H1 ∩ · · · ∩Hm (interior of F )

∂F = F \ F ◦ (boundary of F )

F c = {−1, 1}n \ F (exterior of F )

∂Hi = H i \Hi (for each i ∈ [m]). (boundary of H i)

Definition 7.11 (Thin sets). We say that ∂Hi is thin if it does not contain any induced edges of
the hypercube.

Lemma 7.12. If ∂Hi is thin for each i ∈ [m], then vol(∂F ) ≤ 5
√

2 lnm√
n

.
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Proof of Theorem 2.2 assuming Lemma 7.12. Fix any b ∈ Rm and A ∈ Rm×n such that |Aij | ≥ 1
for all i ∈ [m] and j ∈ [n], and let

H i =
{
x ∈ {−1, 1}n : Ai · x ≤ bi

}
, Hi =

{
x ∈ {−1, 1}n : Ai · x ≤ bi − 2

}
,

so

∂Hi =
{
x ∈ {−1, 1}n : bi − 2 < Ai · x ≤ bi

}
and

∂F =
{
x ∈ {−1, 1}n : Ax ≤ b & Ai · x > bi − 2 for some i ∈ [m]

}
=
{
x ∈ {−1, 1}n : Ax ∈ a−2Ob

}
.

Since |Aij | ≥ 1 for all i, j, it follows that each ∂Hi is thin, and hence Lemma 7.12 directly gives
Theorem 2.2.

The rest of this section will be devoted to the proof of Lemma 7.12. Recalling that F ◦ is called
the interior of F and ∂F is called the boundary of F , we say that an edge in the hypercube is
boundary-to-interior if it has one endpoint in ∂F and the other endpoint in F ◦, and we write νBI
for the fraction of all edges that are of this type. We similarly define boundary-to-exterior edges and
νBE , with F c. Note that every boundary-to-interior edge is a boundary edge for F ◦ = H1∩· · ·∩Hm,
which is an intersection of m unate sets. By applying Theorem 7.9 to F ◦, we get that

νBI ≤
2
√

2 lnm√
n

. (16)

Similarly, every boundary-to-exterior edge is a boundary edge for F = H1 ∩ · · · ∩ Hm; applying
Theorem 7.9 to this intersection yields

νBE ≤
2
√

2 lnm√
n

. (17)

Next, we bound the fraction of edges that have both endpoints in ∂F and go between “two dif-
ferent parts of ∂F . More precisely, for x ∈ ∂F , define i?(x) to be the least i for which x ∈ ∂Hi

(equivalently, the least i for which x 6∈ Hi). We say that an edge {x, y} is boundary-to-boundary′ if
x, y ∈ ∂F but i?(x) 6= i?(y); we write νBB′ for the fraction of such edges.

Observation 7.13. If every ∂Hi is thin, then every edge with both endpoints in ∂F is boundary-
to-boundary′. In this case, νBI + νBE + νBB′ is exactly the fraction of edges in the cube that
touch ∂F , which in turn is an upper bound on vol(∂F ).

Thus Lemma 7.12 follows from Equations (16) and (17) and the following claim:

Claim 7.14 (Boundary-to-boundary′ edges). νBB′ ≤
√

2 lnm√
n

.

Proof. We define the caps C1, . . . , Cm with respect to the Hi’s as in Equation (14) in the proof of
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Theorem 7.9. Subtracting Equation (12) from Equation (11) for each Ci and summing over i ∈ [m],

2
m∑
i=1

EC(H1 ∩ · · · ∩Hi−1, Hi) =
m∑
i=1

~E(H1 ∩ · · · ∩Hi−1, Hi)

−
( m∑
i=1

E((H1 ∩ · · · ∩Hi−1) ∩Hi)− E(H1 ∩ · · · ∩Hi−1)

)

=
m∑
i=1

~E(H1 ∩ · · · ∩Hi−1, Hi)− E(H1 ∩ · · · ∩Hm)

=

m∑
i=1

~E(H1 ∩ · · · ∩Hi−1, Hi)− E(F ◦).

Since E(F ◦) ≥ 0, it follows that

m∑
i=1

EC(H1 ∩ · · · ∩Hi−1, Hi) ≤
1

2

m∑
i=1

~E(H1 ∩ · · · ∩Hi−1, Hi) ≤
√

2 lnm√
n

, (18)

where the derivation of the second inequality is exactly as in the proof of Theorem 7.9. By Equa-
tion (18), it suffices to show

νBB′ ≤
m∑
i=1

EC(H1 ∩ · · · ∩Hi−1, Hi). (19)

Let {x, y} be a boundary-to-boundary′ edge and assume without loss of generality that i?(x) <
i?(y). We now show that edge {x, y} contributes to EC(H1∩· · ·∩Hi?(y)−1, Hi?(y)). For brevity, write

G = H1 ∩ · · · ∩Hi∗(y)−1, H = Hi∗(y), and C = G \H = Ci?(y). Since x ∈ ∂Hi?(x) = H i?(x) \Hi?(x)

(in particular, x 6∈ Hi?(x)) and i?(x) < i?(y) we have that x 6∈ G. On the other hand, y ∈ G\H = C
by definition of i?(y). Since x /∈ G and y ∈ G \H, we conclude that indeed {x, y} ∈ EC(G,H) as
claimed.

This completes the proof of Lemma 7.12, and hence Theorem 2.2.

7.3 A robust generalization of the Littlewood–Offord theorem for polytopes

In the previous section we proved Theorem 2.2, which establishes anticoncentration of Au under
the assumption that all its entries have magnitude at least 1. The goal of this section is to prove
the following robust generalization of Theorem 2.2:

Theorem 7.15. Let A ∈ Rm×n have the property that in every row, at least an α fraction of the
entries have magnitude at least λ. Then for any b ∈ Rm,

Pr[Au ∈ a−2λOb] ≤
5
√

2 lnm

α
√
n

.

Recall that Theorem 2.2 followed as an easy consequence of the fact that vol(∂F ) ≤ 5
√

2 logm√
n

when all ∂Hi’s are “thin” (Lemma 7.12). We slightly generalize this notion here.

25



Definition 7.16 (Semi-thin). For α ∈ [0, 1], say that ∂Hi is α-semi-thin if the following holds:
For each x ∈ ∂Hi, at least an α fraction of its hypercube neighbors are outside ∂Hi. (Note that
“1-semi-thin” is equivalent to “thin”.)

Example 7.17. Suppose H = {x ∈ {−1, 1}n : a · x ≤ b1} and H = {x ∈ {−1, 1}n : a · x ≤ b2}
where b1 ≤ b2, so ∂H = {x ∈ {−1, 1}n : b1 < a · x ≤ b2}. If |aj | ≥ (b2 − b1)/2 for at least an α
fraction of the coordinates j ∈ [n], then ∂H is α-semi-thin.

Theorem 7.15 follows as a direct consequence of the following lemma (by the same reasoning
that derives Theorem 2.2 as a corollary of Lemma 7.12):

Lemma 7.18 (Robust version of Lemma 7.12). In the setup of Section 7.2.1, suppose each ∂Hi is
α-semi-thin. Then

vol(∂F ) ≤ 5
√

2 lnm

α
√
n

.

Proof. Our proof of Lemma 7.12 (a combination of Equation (16), Equation (17), and Claim 7.14)
shows that

νBI + νBE + νBB′ ≤
5
√

2 lnm√
n

. (20)

However, in our current setting the left-hand side of the above is not a bound on vol(∂F ); Observa-
tion 7.13 no longer holds and we now may have edges (x, y) where i?(x) = i?(y). Given an x ∈ ∂F
and y a Hamming neighbor of x, we say that y is x-bad if y ∈ ∂F and i?(y) = i?(x); otherwise, we
say that y is x-good. With this terminology, we can rewrite Equation (20) as

Pr
[
u ∈ ∂F & u⊕j is u-good

]
≤ 5
√

2 lnm√
n

, (21)

where u ∼ {−1, 1}n and j ∼ [n] are uniformly random, and u⊕j denotes u with its j-th coordinate
flipped. By the α-semi-thin property, for any x ∈ ∂F , the fraction of j’s such that x⊕j is x-good
is at least α. Therefore

Pr
[
u ∈ ∂F & u⊕j is u-good

]
≥ Pr[u ∈ ∂F ] · α, (22)

and the lemma follows by combining Equations (21) and (22).

7.4 Proof of Theorem 7.1

In this section we prove Theorem 7.1 using Lemma 7.18 established in the previous section. In
more detail, we use a bound on the anticoncentration of Au under the assumption that at least an
α fraction of entries of each row of A have magnitude at least τ (given by Lemma 7.18) to establish
a bound on the anticoncentration of Au under the assumption that each of A’s rows has a τ -regular
subvector of 2-norm 1 (Theorem 7.1).

The following result regarding τ -regular linear forms is fairly standard.

Proposition 7.19. Let w ∈ Rn be a τ -regular vector with ‖w‖2 = 1. Let π : [n]→ [B] be a random
hash function that independently assigns each coordinate in [n] to a uniformly random bucket in
[B]. For b ∈ [B], write σ2

b =
∑

j∈π−1(b)w
2
j , and say that bucket b is good if σ2

b >
1

2B . Assume

B ≤ 1/τ2. Then

Pr

[
at most

B

16
buckets b ∈ [B] are good

]
≤ exp

(
−B

64

)
.
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Proof. Let Xb = 1[σ2
b >

1
2B ] be the indicator that the b-th bucket is good. Since E[σ2

b ] = 1
B and

E[σ4
b ] = E

 n∑
j=1

w2
j1[π(j) = b]

2 =
1

B

n∑
j=1

w4
j +

1

B2

∑
j 6=j′

w2
jw

2
j′ ≤

τ2

B
+

1

B2
≤ 2

B2
,

the Paley–Zygmund inequality implies that E[Xb] = Pr[σ2
b >

1
2 E[σ2

b ]] ≥ 1
8 .

The joint random variables σ2
1, . . . ,σ

2
B are of “balls in bins” type (where the j-th “ball” has

“mass” w2
j ), and are therefore negatively associated (see, e.g., [DP09, Example 3.1]; the fact that

the balls have different “masses” does not change the argument). Since 1( 1
2B
,∞) is a nondecreasing

function, it follows that the random variables X1, . . . ,XB are also negatively associated. Thus we
may apply the Chernoff bound to

∑B
k=1Xk, which has mean at least B

8 . The result follows.

Recall the following fact, which can also be easily proven using Paley–Zygmund (see e.g. Propo-
sition 3.7 of the full version of [GOWZ10]):

Fact 7.20. For all w ∈ Rn and u ∼ {−1, 1}n, we have Pr
[
|w · u| ≥ 1

2‖w‖2
]
≥ 1

16 .

We combine these as follows:

Proposition 7.21. Let w ∈ Rn and assume that some subvector w′ of w is τ -regular with ‖w′‖2 =
1. Let π : [n] → [B] be as in Proposition 7.19, where B ≤ 1/τ2. Let u ∼ {−1, 1}n, and define
w ∈ RB by wb =

∑
j∈π−1(b)wjuj. Call a bucket b ∈ [B] big if |wb| > 1

2
√

2B
. Then

Pr

[
fewer than

B

512
buckets are big

]
≤ exp

(
− B

2048

)
.

Proof. First apply Proposition 7.19 to w′ and observe that the presence of additional coordinates
from w cannot harm “goodness”. Then apply Fact 7.20 to the good buckets. Each becomes “big”
independently with probability at least 1

16 , and the proof follows from another Chernoff bound.

We take B = b1/τ2c in the above. This yields the following:

Corollary 7.22. Assume A ∈ Rm×n satisfies the following property: each of its row vectors has
a τ -regular subvector of 2-norm 1. Fix B = b1/τ2c and let A ∈ Rm×B be the matrix obtained
from A by randomly partitioning its columns into B buckets, and adding them up with uniformly
random ±1 signs within each bucket. Say that a row of A is spread if at least a 1

512 -fraction of its
entries exceed τ

2
√

2
. Then except with probability at most m · exp(−Ω(1/τ2)), all of A’s rows are

spread.

7.4.1 Proof of Theorem 7.1

We can now prove Theorem 7.1, which we restate here for convenience:

Theorem 7.1. Assume A ∈ Rm×n satisfies the following property: each of its row vectors has a
τ -regular subvector of 2-norm 1, where τ is as set in Section 4.1. Then for all b ∈ Rm and Λ ≥ τ ,
we have

Pr
u∼{−1,1}n

[Au ∈ a±ΛOb] = O
(

Λ
√

logm
)
.
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Proof. By union-bounding over 2dΛ/τe choices of b, it suffices to prove the following: Whenever
A ∈ Rm×n has a τ -regular subvector of 2-norm 1 in each row, it holds that Pr[Au ∈ a−τOb] ≤
O(τ
√

logm). Note that the distribution of Au is the same as that of Au′, where A is as in
Corollary 7.22, and u′ ∼ {−1, 1}B is uniform. Thus applying Corollary 7.22 and then Theorem 7.15
(with α = 1

512 and λ = τ
2 ≥ τ

2
√

2
), we conclude that

Pr[Au ∈ a−τOb] = O
(
τ
√

logm
)

+m · exp
(
−Ω(1/τ2)

)
.

By our choice of τ as set in Section 4.1, we get the desired overall bound of O
(
τ
√

logm
)

and the
proof is complete.

8 Fooling Bentkus’s mollifier

The main result of this section is the following theorem, which provides the second step of the
two-step program described at the end of Section 6:

Theorem 8.1 (G fools Bentkus’s mollifier). Let G be our generator with parameters as given in
Section 4.1, and likewise let λ > 0 be as set in Section 4.1. For all (k, τ)-standardized matrices
A ∈ Rm×n and all b ∈ Rm,∣∣∣ E

u∼{−1,1}n

[
Õb,λ(Au)

]
− E
z∼GMZ

[
Õb,λ(Az)

]∣∣∣ = O(δ).

At a very high level, in line with the usual Lindeberg approach, Theorem 8.1 is proved by
hybridizing between u and z via a sequence of intermediate distributions. In our setting there are
L+1 such distributions, the first of which is u and the last of which is z, and the `-th of which may
be viewed as “filling in buckets `, . . . , L according to u and filling in buckets 1, . . . , `− 1 according
to z,” where the L buckets correspond to the partition of [n] induced by the choice of the random
hash function in the Meka–Zuckerman generator.

In Section 8.1 we upper bound the error incurred by taking a single step through this sequence
of hybrid distributions. The upper bound given there (see Lemma 8.3) has a first component
corresponding to the terms of order 0, . . . , d − 1 in a (d − 1)-st order Taylor expansion, and a
second component corresponding to the error term in Taylor’s theorem. The first component
is upper bounded in Section 8.1, and the second component is upper bounded in Section 8.2.
Section 8.3 formalizes the hybrid argument and uses the results of these earlier subsections to
establish Theorem 8.1.

Remark 8.2 (Head and tail matrices). Recalling the definition of a (k, τ)-standardized matrix A
(Definition 3.1), for every i ∈ [m] there is a partition [n] = Headi tTaili such that |Headi| ≤ k
and (Ai)Taili is τ -regular with 2-norm ‖(Ai)Taili‖2 equal to 1. Therefore, we may write A as H+T
where

Hij = Aij · 1[ j ∈ Headi ] and Tij = Aij · 1[ j ∈ Taili ]

for all j ∈ [n] and i ∈ [m]. Note that every row of H is k-sparse, and every row of T is τ -regular
with 2-norm 1.
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8.1 Single swap in the hybrid argument

Lemma 8.3 (Error incurred by a single swap). Fix B ⊆ [n]. Let HB, TB ∈ Rm×B, where every
row of HB is w-sparse and every row of TB has 2-norm at most 1. Let u,y be random variables
over {−1, 1}B, where u is uniform and y δCNF-fools the class of width-w CNFs. For all b ∈ Rm,
λ > 0, and all integers d ≥ 2∣∣E [Õb,λ(HBu+ TBu)

]
−E

[
Õb,λ(HBy + TBy)

]∣∣ (23)

= δCNF ·md−1 ·Od
(√

n

λ

)d−1

+Od

(√
logm

λ

)d (
E
[
‖TBu‖d∞

]
+ E

[
‖TBy‖d∞

])
.

As we will see later, Equation (23) is a useful bound because we can (and will) take δCNF to be
very small, and when we apply Lemma 8.3 we will be able to ensure that both expectations on the
right-hand side of Equation (23) are small as well.

The main ingredient in the proof of Lemma 8.3 is the following claim:

Claim 8.4. For all integers c ≥ 1 and α ∈ Nm such that |α| = c,∣∣∣E [∂αÕb,λ(HBu) · (TBu)α
]
−E

[
∂αÕb,λ(HBy) · (TBy)α

]∣∣∣ = δCNF ·Oc
(√

n

λ

)c
. (24)

Remark 8.5. Recalling the discussion of Step 1 in Section 2.2, we remark that Claim 8.4 provides
the key ingredient of the arguments sketched there. This claim plays an essential role in enabling
us to get a strong bound on the magnitude of the difference of two expectations (which was denoted
“|E[Υ(v + ∆)] − E[Υ(v′ + ∆′)]|” in Section 2.2 and corresponds precisely to the left-hand side
of Lemma 8.3 above) through an application of Taylor’s theorem around two different points. As
will be seen in Section 8.1.1, the proof of Claim 8.4 exploits the product structure of Õb by using
pseudorandom generators for small-width CNF formulas.

Before proving Claim 8.4, we observe that Lemma 8.3 follows as a consequence:

Proof of Lemma 8.3 assuming Claim 8.4. By the multidimensional Taylor expansion (Fact 3.2) ap-
plied twice to Õb,λ, we have

(23) ≤
∣∣∣∣∣ ∑

0≤|α|≤d−1

1

α!
E
[
∂αÕb,λ(HBu) · (TBu)α

]
− 1

α!
E
[
∂αÕb,λ(HBy) · (TBy)α

]∣∣∣∣∣
+ E

[∣∣err(HBu, TBu)
∣∣]+ E

[∣∣err(HBy, TBy)
∣∣]

≤
∑

0≤|α|≤d−1

∣∣E [∂αÕb,λ(HBu) · (TBu)α
]
−E

[
∂αÕb,λ(HBy) · (TBy)α

]∣∣ (25)

+ sup
v∈Rm

{ ∑
|α|=d

|∂αÕb,λ(v)|
}
·
(
E
[
‖TBu‖d∞

]
+ E

[
‖TBy‖d∞

])
.

By Claim 8.4, each of the O(md−1) summands of Equation (25) is at most δCNF · O(
√
n/λ)d−1.

This along with the bound on Õb,λ’s derivatives given by Theorem 6.5,

sup
v∈Rm

{ ∑
|α|=d

|∂αÕb,λ(v)|
}

= Od

(√
logm

λ

)d
yields Lemma 8.3.
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8.1.1 Proof of Claim 8.4

Definition 8.6. We say that a function ξ : {−1, 1}B → R is Boolean if its range is contained in
{0, 1}. For ξ1, . . . , ξm : {−1, 1}B → R, we say that the associated product function Ξ =

∏
i∈[m] ξi is

a Boolean product function in case all the ξi’s are Boolean.

Definition 8.7. We say that ξ is a weight-W combination of Boolean functions if it is expressible
as a linear combination ξ =

∑
` c`ξ` where each ξ` is a Boolean function and where

∑
` |c`| ≤ W .

Likewise, Ξ is a weight-W combination of Boolean product functions if it is expressible as a linear
combination Ξ =

∑
` c`Ξ` where each Ξ` is a Boolean product function and where

∑
` |c`| ≤W .

The following facts are easy to establish:

Fact 8.8. 1. A function ξ : {−1, 1}B → [0, 1] is a weight-1 combination of Boolean functions.

2. A function ξ : {−1, 1}B → [−W,W ] is a weight-(2W ) combination of Boolean functions.

3. A weight-W1 combination of weight-W2 combinations of Boolean functions is a weight-(W1W2)
combination of Boolean functions.

4. If ξ1 and ξ2 are weight-W1 and weight-W2 combinations of Boolean product functions respec-
tively, then ξ1 · ξ2 is a weight-(W1W2) combination of Boolean product functions.

We are now ready to prove Claim 8.4.

Proof of Claim 8.4. We define the function Gα : {−1, 1}B → R,

Gα(x) := ∂αÕb,λ(HBx) · (TBx)α

=

(∏
i/∈S

1̃bi,λ(HB
i x)

∏
i∈S
1̃

(αi)
bi,λ

(HB
i x)

)
·
∏
i∈S

(TBi x)αi , (26)

where S denotes supp(α) = {i ∈ [m] : αi > 0}. (Equation (26) crucially relies on the product
structure of Õb,λ : Rm → (0, 1); recall Equation (7).)

Note that Claim 8.4 is equivalent to the claim that y δ-fools Gα for δ = δCNF ·Oc(
√
n/λ)c. We

analyze the three types of functions in Equation (26) in turn:

◦ Recalling the assumptions of Lemma 8.3, by Item 1 of Fact 8.8, the function x 7→ 1̃bi,λ(HB
i x)

is a weight-1 combination of Boolean functions. Furthermore, since |supp(HB
i )| ≤ w, it is in

fact a weight-1 combination of Boolean w-juntas.

◦ Similarly, by Item 2 of Fact 8.8, the function x 7→ 1̃
(αi)
bi,λ

(HB
i x) is a weight-(2‖1̃(αi)

bi,λ
‖∞) com-

bination of Boolean w-juntas.

◦ Since ‖TBi ‖1 ≤
√
B · ‖TBi ‖2 ≤

√
B ≤ √n and xj ∈ {−1, 1} for all j ∈ B, by Items 2 and

3 of Fact 8.8 the function x 7→ TBi x is a weight-(2
√
n) combination of Boolean functions.

Furthermore, it is a weight-(2
√
n) combination of Boolean 1-juntas.
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Combining the above with Item 4 of Fact 8.8, it follows that Gα : {−1, 1}B → R is a weight-W
combination of Boolean product functions Ξ : {−1, 1}B → {0, 1}, where

W =

(∏
i∈S

2 ‖1̃(αi)
bi,λ
‖∞
)
·
(∏
i∈S

(2
√
n)αi

)

=

(∏
i∈S

Oαi

(
1

λαi

))
·
(∏
i∈S

(2
√
n)αi

)
(Fact 6.4)

= Oc

(√
n

λ

)c
. (|α| = α1 + · · ·+ αm = c)

Furthermore, every Ξ in this combination is the product of m Boolean w-juntas and |α| Boolean
1-junta(s). Since each such Ξ is computable by a width-w CNF, and y δCNF-fools the class of
width-w CNFs, we conclude that y δ-fools Gα where δ = δCNF · W . This completes the proof
of Claim 8.4.

8.2 Bounding the error terms

We will use the following technical result:

Claim 8.9 (Rosenthal’s inequality). Let β ∈ [0, 1] and let x1, . . . ,xn be independent {0,±1}-valued
random variables, each being 0 with probability 1−β and ±1 with probability β/2 each. Let w ∈ Rn
be a τ -regular vector of 2-norm 1. Then for any q ≥ 2,

E[|w · x|q] = O
(
qτ · (β/τ2)1/q +

√
q
√
β
)q
.

Of course, if q is an even integer, then the above continues to hold even if x1, . . . ,xn are merely
q-wise independent.

Proof. This is an almost immediate consequence of a refinement of an inequality due to Rosen-
thal [Ros70]. The exact version we use is due to Nagaev and Pinelis [NP78] (see also [PU85, (4)]);
in our context, it states that

E[|w · x|q] ≤ 2O(q) ·

qq n∑
j=1

E[|wjxj |q] + qq/2

 n∑
j=1

E[(wjxj)
2]

q/2


≤ 2O(q) ·

qqβ n∑
j=1

|wj |q + (qβ)q/2

 .

Since β
∑

j |wj |q ≤ β
(∑

j w
2
j

)
· τ q−2 = βτ q−2, using xq + yq ≤ (x+ y)q for positive x, y we get the

claimed bound.

The following lemma will be used to bound the expectations on the right-hand side of Equa-
tion (23):

31



Lemma 8.10. Let L, rhash, rbucket, and τ be as set in Section 4.1. Let h : [n] → [L] be an rhash-
wise uniform hash function, and fix a bucket ` ∈ [L]. Let y ∼ {−1, 1}n be an rbucket-wise uniform
random variable. Let T ∈ Rm×n be a τ -regular matrix in which each row has 2-norm 1. Then for
all integers d ≥ 2,

E
h,y

[
‖Th−1(`)yh−1(`)‖d∞

]
= Od

(
τ logm+

√
(logm)/L

)d
.

Proof. Let q be the largest even integer smaller than both rhash and rbucket; note that q =
Θ(log(m/δ)). For notational brevity we let X denote the Rm-valued random variable X :=
Th
−1(`)yh−1(`). Since rbucket, rhash ≥ q, we can express X as

∑n
j=1 xjT

j where x1, . . . ,xn ∼
{−1, 0, 1} are q-wise independent random variables distributed as in Claim 8.9, with β = 1/L.

Since q > d, we have that

E
[
‖X‖d∞

]
≤ E

[
‖X‖dq

]
≤ E

[
‖X‖qq

]d/q
=

(
m∑
i=1

E[Xq
i ]

)d/q
.

Applying Claim 8.9 to bound each E[Xq
i ], we conclude that

E
[
‖X‖d∞

]
=
(
m ·O

(
qτ · (1/Lτ2)1/q +

√
q/L

)q)d/q
= md/q ·O

(
qτ +

√
q/L

)d
= Od

(
τ log(m/δ) +

√
log(m/δ)

L

)d
,

where the second inequality uses the fact that
(

1
Lτ2

)1/q
=
(

δ
logm

)O(1/q)
= O(1). This completes

the proof of Lemma 8.10.

8.3 Proof of Theorem 8.1: the hybrid argument

In this subsection we put together the two main results of the two previous subsections (Lemma 8.3
and Lemma 8.10) to prove Theorem 8.1.

Recalling Remark 8.2, we can write A as H + T , where every row of H is k-sparse and every
row of T is τ -regular with 2-norm 1. Let us say that a hash h : [n]→ [L] is H-good if

|h−1(`) ∩ supp(Hi)| ≤ w :=
2k

L
(27)

for all buckets ` ∈ [L] and rows i ∈ [m]. Equivalently, for all ` ∈ [L], every row of the the submatrix
Hh−1(`) is w-sparse.

Proposition 8.11 (Even distribution of head variables). There is a universal constant C1 > 0
such that the following holds. If h : [n] → [L] is rhash-wise uniform where rhash ≥ C1 log(Lm/δ),
then

Pr[h is not H-good] ≤ δ.
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Proof. Fix any ` ∈ [L] and i ∈ [m]. The quantity |h−1(`) ∩ supp(Hi)| is a sum of |supp(Hi)| ≤ k
many rhash-wise independent {0, 1}-valued random variables, each of which takes the value 1 with
probability 1/L. To bound the probability that |h−1(`) ∩ supp(Hi)| is larger than w, we apply the
well-known tail bounds for sums of limited-independence random variables due to Schmidt, Siegel,
and Srinivasan [SSS95], specifically their Theorem 5(I)(a). Taking the “δ” of their paper to be 1
and observing that their “µ” is our k/L and their “k” is our rhash = Θ(log(Lm/δ)), we get that
Pr[|h−1(`) ∩ supp(Hi)| > w] ≤ δ/(Lm). The proposition follows by a union bound over all ` ∈ [L]
and i ∈ [m].

We are now ready to prove Theorem 8.1, which we restate here for convenience:

Theorem 8.1. Let G be our generator with parameters as given in Section 4.1, and likewise let
λ > 0 be as set in Section 4.1. For all (k, τ)-standardized matrices A ∈ Rm×n and all b ∈ Rm,∣∣∣ E

u∼{−1,1}n

[
Õb,λ(Au)

]
− E
z∼GMZ

[
Õb,λ(Az)

]∣∣∣ = O(δ).

Proof. Let h,y1, . . . ,yL, ỹ1, . . . , ỹL, y̆, and y? be the random hash function and random variables
associated with our generator G , as defined in Definition 4.2. Recall that a draw from z ∼ G is
z := y̆ ⊕ y?. We will show that in fact y̆ alone satisfies:∣∣∣ E

u∼{−1,1}n

[
Õb,λ(Au)

]
−E

[
Õb,λ(Ay̆)

]∣∣∣ = O(δ). (28)

Since y? and y̆ are independent, Theorem 8.1 follows as a consequence of Equation (28).
We recall the definition of y̆:

y̆h−1(`) = (y` ⊕ ỹ`)h−1(`) for all ` ∈ [L].

We observe first that for each ` ∈ [L], the random variable y` ⊕ ỹ` ∼ {−1, 1}n

(i) is rbucket-wise uniform (since y` is); and

(ii) δCNF-fools the class of width-w CNF formulas (since ỹ` does).

We will use both properties in this proof. For each hash h : [n] → [L] and index ` ∈ {0, 1, . . . , L},
we define the hybrid random variable xh,` ∼ {−1, 1}n,

xh,`
h−1(c)

=

{
uh−1(c) if c > `

(y` ⊕ ỹ`)h−1(c) if c ≤ `.

Averaging over h, we get that xh,0 ≡ u and xh,L ≡ y̆, and so we may write

LHS of (28) =
∣∣E [Õb,λ(Au)

]
−E

[
Õb,λ(Ay̆)

]∣∣
=
∣∣E [Õb,λ(Axh,0)

]
−E

[
Õb,λ(Axh,L)

]∣∣
≤ E
h

[∣∣E [Õb,λ(Axh,0)
]
−E

[
Õb,λ(Axh,L)

]∣∣]
≤ E
h

[∣∣E [Õb,λ(Axh,0)
]
−E

[
Õb,λ(Axh,L)

]∣∣ · 1[h is H-good
]]

+ Pr
[
h is not H-good

]
≤ E
h

[∣∣E [Õb,λ(Axh,0)
]
−E

[
Õb,λ(Axh,L)

]∣∣ · 1[h is H-good
]]

︸ ︷︷ ︸
♥

+δ.
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The penultimate inequality uses the fact that Õb,λ is (0, 1)-valued (and hence the difference in its
expectations under any two distributions is at most 1), and the final inequality is by Proposition 8.11
(note that we indeed have rhash ≥ C1 log(Lm/δ)).

It remains to bound ♥ by O(δ). Fix a H-good hash h. By the triangle inequality,

∣∣E [Õb,λ(Axh,0)
]
−E

[
Õb,λ(Axh,L)

]∣∣ ≤ L∑
`=1

∣∣E [Õb,λ(Axh,`−1)
]
−E

[
Õb,λ(Axh,`)

]∣∣. (29)

Fix ` ∈ [L] and consider the corresponding summand∣∣E [Õb,λ(Axh,`−1)
]
−E

[
Õb,λ(Axh,`)

]∣∣. (30)

For notational clarity, let us write B for h−1(`) and B to denote [n] \B. Furthermore, since these
“adjacent” hybrid random variables xh,`−1 and xh,` agree on all coordinates outside B, we introduce
the random variable s ∼ {−1, 1}B where sh−1(c) ≡ xh,`−1

h−1(c)
≡ xh,`

h−1(c)
for all c 6= `. Note that s,uB,

and (y` ⊕ ỹ`)B are mutually independent. We have that

(30) =
∣∣∣E
s

[
E
u

[
Õb,λ(ABs+ABuB)

]
− E
y`,ỹ`

[
Õb,λ(ABs+AB(y` ⊕ ỹ`)B)

]]∣∣∣
≤ E

s

[∣∣E
u

[
Õb,λ(ABs+ABuB)

]
− E
y`,ỹ`

[
Õb,λ(ABs+AB(y` ⊕ ỹ`)B)

]∣∣]
= E

s

[∣∣E
u

[
Õ
b−ABs,λ

(ABuB)
]
− E
y`,ỹ`

[
Õ
b−ABs,λ

(AB(y` ⊕ ỹ`)B)
]∣∣] (Fact 6.3)

= E
s

[∣∣E
u

[
Õ
b−ABs,λ

(HBuB + TBuB)
]
− E
y`,ỹ`

[
Õ
b−ABs,λ

(HB(y` ⊕ ỹ`)B + TB(y` ⊕ ỹ`)B)
]∣∣].

Since h is H-good, every row of HB is indeed w-sparse, and since every row of T has 2-norm 1,
every row of TB has 2-norm at most 1. Recalling (ii) from above, we may apply Lemma 8.3 to each
outcome s of s, and we get that this quantity is at most

δCNF ·md−1 ·O
(√

n

λ

)d−1

+O

(√
logm

λ

)d(
E
u

[
‖TBuB‖d∞

]
+ E
y`,ỹ`

[
‖TB(y` ⊕ ỹ`)B‖d∞

])
,

and therefore

RHS of (29) ≤ L · δCNF ·md−1 ·O
(√

n

λ

)d−1

+O

(√
logm

λ

)d
·
L∑
`=1

(
E
u

[
‖T h−1(`)uh−1(`)‖d∞

]
+ E
y`,ỹ`

[
‖T h−1(`)(y` ⊕ ỹ`)h−1(`)‖d∞

])
.

(31)

34



Since Equation (31) holds for every H-good hash h, we have shown that

♥ ≤ E
h

[
(RHS of (29)) · 1[h is H-good ]

]
≤ E
h

[
(RHS of (31)) · 1[h is H-good ]

]
≤ E
h

[
(RHS of (31))

]
= L · δCNF ·md−1 ·O

(√
n

λ

)d−1

+O

(√
logm

λ

)d
·
L∑
`=1

(
E
h,u

[
‖Th−1(`)uh−1(`)‖d∞

]
+ E
h,y`,ỹ`

[
‖Th−1(`)(y` ⊕ ỹ`)h−1(`)‖d∞

])
︸ ︷︷ ︸

♦

.

Applying Lemma 8.10 to bound each of the 2L many summands of ♦, we have that

♥ ≤ L · δCNF ·md−1 ·O
(√

n

λ

)d−1

+O

(√
logm

λ

)d
· 2L ·O

(
τ log(m/δ) +

√
log(m/δ)

L

)d

= L · δCNF ·md−1 ·O
(√

n

λ

)d−1

+ L ·O
(
τ
√

log(m) log(m/δ)

λ
+

√
log(m) log(m/δ)

λ
√
L

)d
. (32)

By our choice of parameters as set in Section 4.1,

(32) = O(δ) +
(logm)5

δ2+ε
·O
(
δε · log(m)(log(m/δ))1.5+ε

(logm)2.5+ε
+ δε/2 · log(m) log(m/δ)

(logm)2.5

)d
.

Taking d to be sufficiently large relative to ε, the above expression can be bounded by O(δ). This
establishes Equation (28), and the proof of Theorem 8.1 is complete.

9 Proof of Theorem 5.3

Having completed both steps of the two-step program described at the end of Section 6 we are
finally ready to prove Theorem 5.3, which we restate here for convenience:

Theorem 5.3. Let G be our generator with parameters as set in Section 4.1. For all m-facet
(k, τ)-standardized polytopes Ax ≤ b,∣∣∣ Pr

u∼{−1,1}n

[
Au ∈ Ob

]
− Pr
z∼G

[
Az ∈ Ob

]∣∣∣ = O(δ).

Proof. Let λ ∈ (0, 1) be as set in Section 4.1. By Lemma 6.7, there are bin, bout ∈ Rm such that
Õbin,λ, Õbout,λ are (Λ, δ)-inner and -outer approximators forOb respectively, where Λ = Θ(λ

√
log(m/δ)).

Next, we apply Lemma 6.9 with v and ṽ being Au and Az respectively, using Theorem 8.1 to show
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that Equation (9) is satisfied for both Õbin,λ and Õbout,λ with γ = O(δ). We conclude that:∣∣∣∣ Pr
u∼{−1,1}n

[Au ∈ Ob]− Pr
z∼G

[Az ∈ Ob]
∣∣∣∣

= O(δ) + Pr[Au ∈ a±ΛOb] (Lemma 6.9 and Theorem 8.1)

= O(δ) +O
(
Λ
√

logm)
)

(Theorem 7.1; note that Λ ≥ τ is indeed satisfied)

= O(δ) +O
(
λ
√

log(m/δ) logm
)

= O(δ). (33)

This completes the proof of Theorem 5.3.
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A Proof of Claim 7.10

We recall Claim 7.10:

Claim A.1 (Claim 7.10 restated). For 2 ≤ m ≤ 2n, there is a matrix A ∈ {−1, 1}m×n and a vector
b ∈ Nm such that

Pr[Au ∈ aOb] = Ω

(√
lnm√
n

)
.

Proof. The proof is a simple probabilistic existence argument that follows the approach used to
prove Theorem 2 in [Kan14a]. For a polytope K = 1[Ax ≤ b] we define

Inside(K) = {x ∈ {−1, 1}n : Ax ∈ Ob \ aOb, i.e. Aix < bi for all i ∈ [m]},
Surface(K) = {x ∈ {−1, 1}n : Ax ∈ aOb, i.e. Ax ≤ b and Aix = bi for some i ∈ [m]}.

Given 2 ≤ m ≤ 2n, if m < 10 then the one-facet polytope 1[x1 + · · ·+xn ≤ 0] does the job (more
formally, we take A to be the m×n all-1’s matrix and b to be the zero vector in Rm). It is also clear
that proving our result for m ≤ 2n/10 also proves it for 2n/10 ≤ m ≤ 2n. So we henceforth assume
that 10 ≤ m ≤ 2n/10. Let k ≥ n/2 be an integer to be chosen later, and let F : {−1, 1}n → {0, 1}
denote the halfspace F (x) = 1[x1 + · · ·+ xn ≤ t]. Now define the following quantities:

pI := |Inside(F )|/2n =

(
n

< k

)
/2n, pS := |Surface(F )|/2n =

(
n

k

)
/2n.
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Let σ = (σ1, . . . ,σm) where each σi is an independent uniform string in {−1, 1}n. Let A ∈
{−1, 1}m×n be the matrix whose i-th row is σi, and let b be the vector (k, . . . , k) ∈ Nm. It is easy
to see that in order to prove our result it suffices to show that there is a fixed outcome A of A such
that

Pr[Au ∈ aOb] = Ω

(√
logm√
n

)
, (34)

and this is what we show below. Towards this end, for each i ∈ [m] let us define the matrix A\i ∈
{−1, 1}(m−1)×n obtained by removing the i-th row of A, and further define b′ = (k, . . . , k) ∈ Nm−1.

For each fixed z ∈ {−1, 1}n and each i ∈ [m] we have

Pr
σ

[
z ∈ Inside(1[A\ix ≤ b′])

]
= pm−1

I

and
Pr
σ

[
z ∈ Surface(1[σi · x ≤ k])

]
= pS.

Since σi and (σi
′
)i′∈[m]\{i} are independent for each i ∈ [m], it follows that

Pr
σ

[
z ∈ Inside(1[A\ix ≤ b′]) & z ∈ Surface(1[σi · x ≤ k])

]
= pS · pm−1

I ,

and since the events

z ∈ Inside(1[A\ix ≤ b′]) & z ∈ Surface(1[σi · x ≤ k])

and
z ∈ Inside(1[A\i

′
x ≤ b′]) & z ∈ Surface(1[σi

′ · x ≤ k])

are mutually exclusive for i 6= i′ ∈ [m], by a union bound we have that

Pr
σ

[
z ∈ Surface(1[Ax ≤ b′])

]
= Pr

σ
[Az ∈ aOb′ ] = m · pS · pm−1

I .

It follows that there is an outcome of σ such that the resulting matrix A ∈ Rm×n has at least an
m · pS · pm−1

I fraction of all points in {−1, 1}n satisfying Az ∈ aOb; i.e.,

Pr[Au ∈ aOb] ≥ m · pS · pm−1
I . (35)

It remains only to argue that for any 10 ≤ m ≤ 2n/10, there is a value k such that, for pI =
(
n
<k

)
and pS =

(
n
k

)
, we have

m · pS · pm−1
I = Ω(

√
logm/

√
n).

Towards this end we choose k to be the largest integer such that
(
n
<k

)
/2n ≤ 1− 1

m . Recalling that

10 ≤ m ≤ 2n/10, we have that n/2 ≤ k ≤ 0.99n, and hence
(
n
k

)
and

(
n
k−1

)
are within an absolute

constant multiplicative factor of each other. It follows that

pI =

(
n

< k

)
/2n = 1−Θ(1/m),

which implies that
pm−1

I = Ω(1).
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Writing k = n/2+(
√
n/2)t, we have the elementary binomial tail lower bound 1−pI ≥ exp(−O(t2))

(see, e.g., [LT91, inequality (4.2)])); hence t ≥ Ω(
√

lnm). The desired bound

pS =

(
n

k

)
/2n = Ω(t/(m

√
n))

now follows from asymptotically tight estimates (up to universal constants for all 0 ≤ t ≤ √n) for
the Mills ratio of the binomial distribution; see [McK89].
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