
Shortest path length with bounded-alternation
(min,+) formulas

Meena Mahajan1, Prajakta Nimbhorkar2, and Anuj Tawari1

1The Institute of Mathematical Sciences, HBNI, Chennai,
India. {meena,anujvt}@imsc.res.in

2 Chennai Mathematical Institute, India.
prajakta@cmi.ac.in

August 13, 2018

Abstract

We study bounded-depth (min,+) formulas computing the short-
est path polynomial. For depth 2d with d ≥ 2, we obtain lower bounds
parameterized by certain fan-in restrictions on + gates except those
at the bottom level. For depth 4, in two regimes of the parameter, the
bounds are tight.

1 Introduction

For many discrete minimization problems, the most natural and intuitive
way to solve them is using a (min,+) circuit. In this model, the inputs are
either variables or constants from the underlying semiring. The computation
is performed using the operations min,+. Such circuits can compute any
function expressible as the minimum over several linear polynomials with
non-negative integer coefficients. The complexity measures associated with
such a circuit are its size and depth, which capture the number of operations
and the maximal distance between an input and output respectively.

This model captures the complexity of “pure” dynamic programming al-
gorithms; see for instance [5, 6, 7, 8].

In this work, we consider the well-studied problem shortest-path: Given
a graph on vertex set [n] = {1, 2, . . . , n} with an assignment of non-negative

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 146 (2018)

integer weights to its edges, we want to find a (min,+) formula which com-
putes the weight of the shortest path from s = 1 to t = n.

Our Results

A naive approach toward solving this problem would be as follows: Compute
the weights of all possible paths from 1 to n and take the minimum of these
weights. This yields a (min,+) circuit of 2O(n logn) size. For depth 2 (min,+)
circuits, it is easy to see that this naive approach is indeed the best possible.
We show that this is also the case for depth 3 circuits (Theorem 8). We would
expect the lower bounds to degrade as we allow more depth, and the question
we are interested in is, how fast do they degrade? We provide partial answers
to this question, exploring restricted cases of (min,+) formulas (circuits of
fan-out 1). We study restrictions of two types. In the first restriction, except
at the bottom-most level, + gates do not have very large fan-in. (Note that
since paths in an n-vertex graph have at most n − 1 edges, the fan-in of
useful + gates will not exceed n.) Our lower bound is parameterized by the
depth d and the permitted + fan-in k (Theorem 10). For the depth-4 case,
the lower bound is tight when k = O(1) and also when k = O(

√
n). In the

second restriction, which applies only to depth-4 formulas, most + gates just
below the top gate have fan-in 2. Our lower bound here is parameterized by
the the number of + gates with fan-in exceeding 2 (Theorem 13).

Note that any constant-depth circuit can be simulated by a formula of
the same depth, with at most a polynomial blow-up in size. Therefore, our
result also implies an exponential lower bound for the corresponding subclass
of constant depth (min,+) circuits.

Background

Many known algorithms for solving shortest-path are essentially recur-
sively constructed (min,+) circuits. For instance, the classical dynamic
programming algorithm by Bellman and Ford [1, 3] gives a bounded fan-
in circuit of O(n3) size and depth Θ(n). Whether Ω(n3) is necessary is still
open. However the Bellman-Ford algorithms produce skew circuits, and for
skew circuits, this bound is shown in [9] to be optimal. A divide-and-conquer
approach gives a bounded fan-in circuit of poly(n) (O(n4)) size and depth
Θ(log2 n).

A natural question to ask is whether one can prove strong size lower
bounds for bounded depth (min,+) circuits or formulas. This is a first step
towards proving tight lower bounds for general circuits (and hence determin-
ing the exact complexity of the problem).

2

It is known that over the Boolean semiring, any bounded fan-in mono-
tone (∨,∧) circuit for reach must have depth Ω(log2 n) [10]. Using a nat-
ural mapping from (min,+) semiring to the boolean semiring, this result
also implies that any bounded fan-in (min,+) circuit for STCON must have
Ω(log2 n) depth, no matter what size. The divide-and-conquer approach
shows that this depth lower bound is tight.

In this work, we consider the alternation depth of (min,+) circuits. This
corresponds to allowing semi-unbounded fan-in and even unbounded fan-in
in some cases. In this setting, exponential lower bounds are easy to prove.
One way to do so is to use the reduction (via projections) from parity to
reach, and use known lower bounds for (non-monotone) circuits for parity
[4]; see Proposition 1. We are looking for lower bounds better than those
obtained this way.

In [2], such small-depth lower bounds are obtained for the decision version
of “short distance connectivity”: is there a path using at most k edges?
These lower bounds can also be transferred to (min,+) circuits computing
the corresponding optimisation problem: Compute the weight of the shortest
path which uses at most k edges.

2 The Computation Model

Fix any semiring S = (S,⊕,⊗). A circuit over S is a directed acyclic graph
with a unique designated sink node called the output node. Source nodes,
also called leaf nodes, are labeled by variables or elements of S. Each internal
node is labeled by one of the semiring operations ⊕ or ⊗, and is also called
a gate of the circuit. If the underlying graph is a tree, then the circuit is
called a formula. The size of a circuit is the number of nodes and edges in
it. For a formula F , it is equivalent and often more convenient to consider
the number of leaves L(F) as the formula size. The depth of a circuit is the
length of the longest path from a leaf to the output node. The fan-in of a
gate is the number of incoming edges. The alternation depth of a circuit is
the maximum, over all leaf-to-output paths, of the number of maximal blocks
of gates of the same type along the path. With ⊕ and ⊗ being associative,
we can transform any circuit C into an equivalent unbounded fan-in circuit
C ′ where the parent of each gate is a gate of a different type; the alternation
depth of C is then just the depth of C ′. In this paper, when we say depth of
a circuit, we mean alternation depth.

A circuit C syntactically produces a polynomial pC over S = (S,⊕,⊗)
in a natural way; at a leaf, the polynomial produced is the leaf label, and
at intermediate nodes, the polynomial produced is obtained by combining

3

polynomials produced at the children using the operation labeling the gate.
Using the distributivity of ⊗ over ⊕, the polynomial produced at the out-
put gate can be represented as a ⊕ sum of monomials, where within each
monomial we use the ⊗ product.

A circuit C computes a polynomial p if the polynomial pC produced by
C agrees with the polynomial p at all input settings. Over the arithmetic
semiring A = (N,+,×), computing and producing are equivalent in terms of
the size of the circuit required. However, over other semirings, there can be
significant differences. In particular, this is the case for the tropical semiring
Min, the focus of this paper. We use the notation S(p) to denote the size of
the smallest circuit computing (not producing) p over the semiring S.

The tropical semiring Min is the semiring Min = (N,min,+), with 0 being
the identity for + and ∞ the identity for min. A circuit over Min, with
variables x1, . . . , xn, produces a polynomial of the form min{`1, `2, . . . , `t}
where each monomial `r is of the form c0 +c1x1 + . . .+cnxn, for non-negative
integers ci.

For a polynomial p(X), Mon(p) denotes the set of monomials of p. Let �
be the following (partial) ordering amonst monomials over the variable set
X = {x1, . . . , xn}: c0 + c1x1 + . . . + cnxn � d0 + d1x1 + . . . + dnxn if ci ≤ di
for all i. Then Monle(p), the lower envelope of monomials of p, denotes the
set of those monomials in Mon(p) that are minimal with respect to �, and
the lower envelope of p, denoted ple, is the minimum (the ⊕ sum) of these
monomials. Over the semiring Min, if polynomials p and q have the same
lower envelope, then they compute the same values everywhere. Thus for a
polynomial p, Min(p) is the size of the smallest (min,+) circuit producing a
polynomial whose lower envelope is ple.

Computation over the semiring Min lies somewhere in between monotone
Boolean computation and monotone arithmetic computation. For any poly-
nomial p described as an ⊕ sum of ⊗ monomials, the following relation holds:
B(p) ≤ Min(p) ≤ A(p). Here B and A denote the Boolean and arithmetic
semirings respectively.

In general, a (min,+) circuit may have constants from N at the leaves.
However, for computing monic polynomials with no constant term, using
constants in the formula cannot really help. In the rest of the paper, we
always assume that the (min,+) circuits or formulas are constant-free and
have only variables at the leaves. For convenience in describing the upper
bounds, we may use the values 0,∞ at the leaves, but these can be propagated
upwards without increasing the size.

For more details about computation over semirings in general and the
Min in particular, the reader is referred to [5, 6, 7].

4

3 The Shortest Path problem

3.1 Problem Definition

Let G be a directed graph on a set of n vertices. Edges are labeled with costs
that are non-negative and integer-valued. The cost of a path is the total cost
of all edges in the path. For designated source vertex s and target vertex t,
the shortest-pathn problem is to find the minimum cost of a path from
s to t. (The subscript n indicates the graph size; we drop it when implicit
from context.)

To compute shortest-path by (min,+) circuits or formulas, we assume
that G is the complete directed graph with vertex set [n], and for each i, j ∈
[n] with i 6= j, the variable xi,j is the cost of the edge directed from vertex
i to vertex j. All variables take values in the set N ∪ {∞}. While solving
shortest-path on any input graph, we will set xi,j to be the actual cost
of the edge from i to j. We will set xi,j to ∞ for edges absent in G. We
may also assume that there are variables xi,i for i ∈ [n]; these variables are
all set to 0. With these conventions, the following expression is the desired
shortest-path value.

shortest-path = min {cost(ρ) | ρ is a simple s-to-t path} ,

where
cost(ρ) =

∑
〈i,j〉∈ρ

xi,j.

We denote by reachn the decision problem of deciding whether an n-
vertex graph has an s-to-t path.

3.2 Known upper bounds

Viewed as a polynomial over the semiring Min, the shortest-path polyno-
mial has the set of monomials

Mon(shortest-path) = {cost(ρ) | ρ is a simple s-to-t path} .

It is known that any circuit producing the shortest-path polynomial must
be exponentially large [6]. However, to compute this polynomial, it suffices
to design a circuit producing a polynomial whose lower envelope has exactly
the monomials in Mon(shortest-path), and this is a considerably easier
task.

Incremental dynamic programming, extending sub-paths by a single edge
at a time, gives a bounded fan-in circuit of O(n3) size and depth Θ(n).

5

Dynamic programming, merging roughly equal-length sub-paths (equiv-
alently, dividing each path roughly mid-way), gives a bounded fan-in circuit
of poly(n) (O(n4)) size and depth Θ(log2 n).

In this paper, we are concerned with alternation depth, or equivalently,
unbounded fan-in circuits and formulas. Dynamic programming, where r
sub-paths are merged in each merge step for some parameter r, gives a re-
currence as follows. Let f(i, j, `) denote the minimum cost of a path from i to
j amongst all paths with at most ` edges. Our goal is to compute f(s, t, n−1),
we have f(i, i, `) = 0 forall `, and we have the following expressions for i 6= j:

f(i, j, 0) = ∞
f(i, j, 1) = xi,j

f(i, j, `) = min
k1,...,kr−1

{
f

(
i, k1,

`

r

)
+ f

(
k1, k2,

`

r

)
+ . . .+ f

(
kr−1, j,

`

r

)}
The depth of recursion is given by p = logn

log r
. Each level of recursion cor-

responds to a layer of min gates followed by a layer of + gates. Thus the
corresponding circuit has depth d = 2p. Conversely, to get a (min,+) cir-

cuit of depth d = 2p, it suffices to take r = n
2
d . The fan-in of the min

gates is at most nr−1 whereas the fan-in of + gates is at most r. It is easily
verified that this gives rise to a circuit of size exp(O(n

2
d log n)), or a for-

mula of size exp(O(dn
2
d log n)). In particular, the depth-2 formula is of size

exp(O(n log n)).

3.3 Lower bounds implied from known work

The shortest-path polynomial, interpreted over the Boolean ring B, de-
cides reach. Hence B(shortest-path) ≤ Min(shortest-path); any
monotone Boolean circuit size lower bound for reach is also a lower bound
for Min(shortest-path).

For bounded (alternation) depth, one lower bound for Boolean circuits for
reach is derived from the lower bound for circuits for parity [4]. Although
this is folklore, for completeness we include a full proof here.

Proposition 1 (folklore) Depth d Boolean circuits (and hence also mono-

tone Boolean circuits) for reach2n must be of size exp(Ω(n
1

d−1)). Hence
any depth d (min,+) circuit computing shortest-path2n must have size

exp(Ω(n
1

d−1)).

Proof. Given n bits y1, . . . , yn, the Parityn function outputs 1 if an odd
number of yi’s are set to 1, and 0 otherwise. In [4] it is shown that Boolean

circuits for Parityn with alternation depth d must have size exp(Ω(n
1

d−1)).

6

The Parityn function reduces to reach2n by projections as follows. The
reach2n instance is a graph G with 2n vertices, and it is convenient to think
of the vertex set as {(i, b) | i ∈ [n − 1], b ∈ {0, 1}} ∪ {(0, 0), (n, 1)}, with
source vertex s = (0, 0) and sink vertex t = (n, 1). The edges of the graph
are determined as follows: There is an edge from a vertex (i − 1, b) to (i, b)
for b ∈ {0, 1} if and only if yi = 0. Similarly, there is an edge from (i− 1, b)
to (i, 1− b) for b ∈ {0, 1} if and only if yi = 1. That is, x(i−1,b),(i,b) = ȳi, and
x(i−1,b),(i,1−b) = yi. If i 6= j−1, then x(i,b),(j,b′) = 0. It is easy to see that there
is a path from (0, 0) to (n, 1) in G if and only if y1 + . . . + yn ≡ 1 mod 2.
Hence any Boolean circuit for reach2n, with alternation depth d, must also

have size exp(Ω(n
1

d−1)). �
In [2], the restriction of reach to short path lengths is studied. We denote

by shortest-pathn,k the restriction of the shortest-pathn polynomial to
the monomial set

{cost(ρ) | ρ is a simple s-to-t path of length at most k} ,

and let reachn,k denote the corresponding decision version (decide whether
the graph has an s-to-t path of length at most k). In [2], the following result
is shown:

Proposition 2 (Theorem 1 in [2]) 1. For any k(n) ≤ n1/5 and any
d = d(n), any depth-d circuit computing shortest-pathn,k must have

size nΩ(k1/d/d).

2. For any k(n) ≤ n and any d = d(n), any depth-d circuit computing

shortest-pathn,k must have size nΩ(k1/5d/d).

Note that this bound applies for any Boolean circuit, not just monotone

circuits. At k = n, it gives a lower bound of exp(Ω(n
1/5d logn

d
)) for depth-d

circuits computing reachn. Hence

Corollary 3 Any depth-d (min,+) circuit for shortest-path must have

size exp(Ω(n
1/5d logn

d
)).

4 New Lower Bounds

The following fact is easy to verify.

Fact 4 Let P (n) denote the number of distinct st paths in the complete n-
vertex directed graph. Then P (n) = 2Θ(n logn). More specifically,

2((n− 2)!) < P (n) < e((n− 2)!).

7

For any formula F computing shortest-path, as discussed in Sec-
tion 2, the polynomial produced by F must have exactly the monomials
of shortest-path in its lower envelope. A direct graph-theoretic way to see
this is given in the following proposition. In its proof, as well as later in the
paper, we use the notation Gρ to denote the graph with only the edges of ρ,
for any simple st path ρ.

Proposition 5 Let F be a formula computing shortest-path. Let p be the
polynomial syntactically produced by F , and Monle(p) be the set of minimal
monomials of this polynomial (the lower envelope). Then Monle(p) equals the
set of monomials of shortest-path, {cost(ρ) | ρ is a simple s-to-t path}.

Proof. Let ρ be any simple st path, and let Gρ be the graph with only the
edges of ρ. On setting xi,j to 1 for (i, j) ∈ ρ and to ∞ for all other edges, F
should evaluate to |ρ|. So at least one linear form (recall, in the semiring Min,
monomials are linear forms) should use only the variables from ρ (otherwise
it evaluates to∞). However, if for any such linear form, `, var(`) is a proper
subset of var(ρ), then some variable xuv with value 1 does not appear in `.
Deleting edge uv from Gρ (changing the value of xuv to∞) disconnects s and
t in the resulting graph, so F should now evaluate to ∞. But ` is still finite
on this modified graph, a contradiction. Hence every linear form using only
variables from ρ must use all variables from ρ. Since the correct value on Gρ

is ρ, at least one such linear form must use all variables from ρ exactly once,
producing the monomial cost(ρ). By the above argument, this linear from is
minimal, and hence in Monle(p).

To show the other direction, let m be a monomial in Monle(p). Consider
the setting where variables in m are set to 1, and all other variables are set to
∞; let this be the graph H. On H, F evaluates to a finite value, so H must
have an s-to-t path. Let ρ be a shortest such path. By construction, the
variables on edges of ρ are all in m. Hence for the monomial cost(ρ) we have
the order cost(ρ) � m. We have already proved that cost(ρ) ∈ Monle(p).
Since m is also in Monle(p) ie minimal, it follows that m = cost(ρ). �

This gives us the following useful property.

Property 6 Let F be a minimal (min,+) formula computing shortest-path.
The top gate of F must be a min gate.

Proof. By Proposition 5, the polynomial produced by F must have
exactly the monomials of shortest-path in its lower envelope. One of
the monomials is the single variable xst, which cannot be further split by
addition. If the top gate of F is a + gate with more than one child (since
F is minimal, it has no gates with fan-in 1), then to produce this monomial,

8

all but one of the children must return the value 0, making them redundant.
�

We start off with some simple lower bounds in the very special case when
the depth is 2 or 3.

Proposition 7 Any depth-2 formula computing shortest-path must have
size 2Ω(n logn).

Proof. Let F be a depth-2 formula computing shortest-path. By
Property 6, the top gate of F must be a min gate. Let this gate have `
children. Then the polynomial produced by F has at most ` monomials.
Hence, by Proposition 5 and Fact 4, ` ≥ P (n). �

Theorem 8 Any depth-3 circuit computing shortest-path must have size
2Ω(n logn).

Proof. Let F be a depth-3 formula for shortest-path. Let p be the poly-
nomial p produced by F . By Proposition 5, Monle(p) equals Mon(shortest-path),
which by Fact 4 has size P (n). Further, by Property 6, the top gate of F
must be a min gate. Let this gate have ` children. We prove below that each
+ gate can produce at most one monomial from Monle(p). Hence ` ≥ P (n).

Consider a + gate g with fan-in k. Every monomial produced by g has de-
gree k (i.e. k summands). Hence g cannot produce monomials corresponding
to paths of length greater than k. In fact, it cannot even produce monomi-
als corresponding to simple paths of length less than k – a shorter path has
fewer than k variables while the monomial has exactly k summands, so at
least one variable will have to appear with coefficient greater than 1, whereas
the monomials cost(ρ) for simple paths have 0-1 coefficients.

Suppose g produces monomials corresponding to two distinct paths η 6= ρ,
both of length k. We will consider the two graphs Gρ and Gη.

Let g1, . . . , gk be the children of g and let Si be the set of children of gi,
1 ≤ i ≤ k. Since the circuit has depth 3, each element of Si is a variable. Let
ρ = 〈i0 = s, i1, . . . , ik = t〉, and without loss of generality, let the variable
xip−1xip ∈ Sp for 1 ≤ p ≤ k.

First, we show that for each variable xab in Sp, it must be the case that
a ∈ {i0, . . . , ip−1} and b ∈ {ip, . . . , ik}. To see this, consider the graph
G′ = Gρ \ {(ip−1, ip)} ∪ (a, b). Each gi still evaluates to 1, and hence g
evaluates to k on G′. Therefore G′ must be connected, which implies that
a ∈ {i0, . . . , ip−1} and b ∈ {ip, . . . , ik}.

Since the path η is constructed using the variables in the sets Si, this
implies that η cannot have a vertex that is not present in ρ. However, η has

9

the same length as ρ, by assumption, so it uses all the vertices of ρ. Then it
must use them in a different order.

Let p be the smallest index where η and ρ differ. Thus the sub-path
〈i0, . . . , ip−1〉 of ρ is also a sub-path of η, and the edge (ip−1, ip) ∈ ρ, and
(ip−1, ip) /∈ η. Let the edge in η from Sp be (iq, ir). By the argument above,
q ∈ {0, . . . , p − 1} and r ∈ {p, . . . , k}, and furthermore, r 6= q + 1. There
are two cases to consider. One possibility is that q < p− 1. Then η has two
edges out of iq, contradicting the assumption that η is a simple path. The
other possibility is that q = p− 1 but r > p. Then, to eventually visit vertex
ip, η must use an edge that is a “back-edge” with respect to ρ. But we have
shown above that the variable sets Si prohibit such back-edges.

Therefore such a path η does not exist. This completes the proof. �
We now consider formulas of depth 2d. By Property 6, the top gate is

a min gate, and hence the gates at the lowest level are + gates. Without
loss of generality, we assume that all paths from the root to the leaves are of
length exactly 2d. (If necessary, add dummy gates with fan-in 1; this does
not change the formula size i.e. number of leaves).

Let G denote the set of all + gates in C except those at the leaf level.
That is, a + gate is in G if and only if it has as a child another gate of the
formula. Let Gk denote the set of gates in G with fan-in bounded by k.

Lemma 9 Let F be an alternating formula, with a min gate on top, and of
depth 2d for some d ≥ 1. Let the polynomial syntactically produced by F
have M monomials.

If for some k ∈ N, all + gates except those at the leaves have fan-in at
most k (that is, G ⊆ Gk), then M ≤ (L(F))k

d−1
.

Proof. The proof is by induction on d.
Base Case: d = 1. In this case, to syntactically produce M monomials, the
top gate of F must have fan-in M , and so L(F) ≥M .
Inductive Step: d > 1.

Let gi be the + gates just below the output gate, and let hi,j be the min
gates feeding into gi. (Note that j ≤ k, by assumption.) Let si and si,j
denote the leaf-sizes of the formulas rooted at gi and hi,j respectively.

M = number of monomials produced by F

≤
∑
i

(number of monomials produced by gi)

≤
∑
i

∏
j

(number of monomials produced by hi,j)

10

≤
∑
i

∏
j

(si,j)
kd−2

(by induction)

≤
∑
i

∏
j

(si)
kd−2 ≤

∑
i

(si)
kd−1 ≤

(∑
i

si

)kd−1

= (L(F))k
d−1

.

�
Combining Proposition 5 and Fact 4 with Lemma 9, we obtain the fol-

lowing lower bound.

Theorem 10 If F is a depth 2d formula for shortest-path, where all +
gates except those in the bottom level have fan-in at most k, then

L(F) ≥ exp

(
Ω

(
n log n

kd−1

))
.

Proof. By Proposition 5, the polynomial p(F) produced by F must
have the monomials of shortest-path as its lower envelope. By Fact 4,
shortest-path has P (n) monomials. Lemma 9 bounds the number of
monomials of p(F) from above. Hence

(L(F))k
d−1 ≥ number of monomials of p(F) ≥ P (n) = 2Ω(n logn),

giving the claimed bound on formula size. �

Corollary 11 Let F be a depth 4 formula for shortest-path, where all +
gates below the top min gate have fan-in at most k. Then

L(F) ≥ exp

(
Ω

(
n log n

k

))
.

Remark 12 1. If k = O(1), then L(F) = 2Ω(n logn). This size is achiev-
able even with a depth-2 formula and so this bound is tight

2. If k = O(
√
n), then L(F) = 2Ω(

√
n logn). This size is achievable with the

depth-4 formula constructed by dynamic programming with all + gates
having fan-in O(

√
n) and so this bound is tight.

A special case of Corollary 11 is when k = 2. That is, each path (mono-
mial of shortest-path) of length more than 1 is broken at the second level
into just two parts. In this case, Corollary 11 tells us that 2Ω(n logn) size
is necessary; by the remark following it, this is also sufficient. What if we
relax the condition slightly, and allow a few second-level + gates to have

11

fan-in more than 2? Can we get non-trivial savings in size? We explore this
question next.

For natural numbers n, r, k, let L(n, k, r) denote the (leaf-)size of the
smallest depth-4 formula that solves shortest-path on n-vertex graphs,
and where at most r of the + gates at the second level have fan-in exceeding
k.

Theorem 13

L(n, 2, r) ≥ exp
(

Ω
(n

2r
log

n

2r

))
.

To prove this theorem, we gradually decrease r while reducing the size of the
graphs handled, in Lemma 14 below. This works for any value of k. Finally
when k = 2 and r has been brought down to 0, we use the bound given by
Corollary 11, namely

L(n, 2, 0) = exp(Ω(n log n)).

Lemma 14 For r ≥ 1, L(n, k, r) ≥ L(n(k−1
k

), k, r − 1). In particular,

L(n, 2, r) ≥ L
(n

2
, 2, r − 1

)
.

Proof. Let F be the smallest depth-4 formula solving shortest-path
on n-vertex graphs, where the number of + gates at the second level with
fan-in exceeding k is at most r. Let g be the + gate at level 2 that has the
largest fan-in. Without loss of generality, assume fan-in of g to be q ≥ k+ 1,
otherwise the lemma statement trivially holds. Let g1, . . . , gq be the children
of g. Let Li be the set of monomials produced by gi.

For a monomial `, let E(`) = {(u, v) | xuv ∈ `}. By minimality of F , and
Proposition 5, g must produce at least one monomial from Mon(shortest-path),
say corresponding to an st path ρ. Then there exist `i ∈ Li such that
∪qi=1E(`i) gives exactly the edges of Gρ.

Define Si = {u | ∃v, (u, v) ∈ E(`i)}. Without loss of generality, the vertex
s is in the set S1.

Claim 15 For every path η such that g produces the monomial cost(η), and
for every i ∈ [q], the path η visits at least one vertex in Si.

Proof. For i = 1, this is trivially true because the path η starts at vertex
s which is in S1.

For some i > 1, suppose η avoids the set Si. Suppose g constructs cost(η)
by using, for each j ∈ [q], the monomial `′j ∈ Lj; hence ∪qi=jE(`′j) = Gη.
Consider the graph H = Gη \ E(`′i) ∪ E(`i). Clearly, g(H) < ∞. However,

12

since E(`i) is vertex-disjoint from η, H cannot have an st path, contradicting
the correctness of F . �

The above claim implies that for each i > 1, g does not produce any mono-
mial corresponding to a path avoiding Si (i.e. a path on [n] \Si). Thus, if we
remove g from F to get F ′, then F ′ still correctly computes shortest-path
on the vertex set [n] \ Si. We now show that there is i > 1 such that
|Si| ≤ (n− 2)/(q − 1).

The set S = ∪qi=1Si contains all the vertices of ρ except t, so |S| ≤ n− 1
and |S \ {s}| ≤ n− 2. Further, the sets Si are disjoint, thereby partitioning
S into q parts. Among the q−1 parts that do not contain s, by an averaging
argument, the smallest part contains no more than (n− 2)/(q − 1) vertices.
Thus F ′ correctly computes shortest-path on m ≥ n − (n − 2)/(q − 1)
vertices. Since q > k, m ≥ n(k − 1)/k. �
Proof. (of Theorem 13) Using Lemma 14 r times and then Corollary 11,
we get

L(n, 2, r) ≥ L
(n

2
, 2, r − 1

)
≥ . . . ≥ L

(n
2r
, 2, 0

)
= exp

(
Ω
(n

2r
log

n

2r

))
.

�
Theorem 13 gives a non-trivial size lower bound for depth-4 formulas

when at most say, O(log log n) of the second level + gates have fan-in more
than 2.

5 Conclusion

Understanding the limits of dynamic programming is an interesting and chal-
lenging exercise. In particular, it is surprising that we do not yet know
whether with bounded fan-in (min,+) circuits, Ω(n3) is necessary to com-
pute shortest-path. In this paper we have focussed on unbounded fan-in
(min,+) formulas. We still do not have a complete understanding of how to
optimally exploit additional depth, but we have obtained some partial results.
A complete characterisation of the exact complexity of shortest-path in
this setting, parameterised by depth, as is known for Boolean circuits com-
puting the parity function [4] remains open.

References

[1] Bellman, R.: On a routing problem. Quarterly of Applied Mathematics
16, 87–90 (1956)

13

[2] Chen, X., Oliveira, I.C., Servedio, R.A., Tan, L.Y.: Near-optimal small-
depth lower bounds for small distance connectivity. In: Proceedings of
the Forty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’16, pp. 612–625 (2016)

[3] Ford Jr, L.R.: Network flow theory. Tech. Rep. P-923, Rand Corporation
(1956)

[4] H̊astad, J.: Computational Limitations of Small-depth Circuits. MIT
Press, Cambridge, MA, USA (1987)

[5] Jukna, S.: Limitations of incremental dynamic programming. Algorith-
mica 69(2), 461–492 (2014)

[6] Jukna, S.: Lower bounds for tropical circuits and dynamic programs.
Theory of Computing Systems 57(1), 160–194 (2015)

[7] Jukna, S.: Tropical complexity, Sidon sets, and dynamic programming.
SIAM Journal on Discrete Mathematics 30(4), 2064–2085 (2016)

[8] Jukna, S.: Incremental versus non-incremental dynamic programming.
Electronic Colloquium on Computational Complexity (ECCC) 25, 42
(2018)

[9] Jukna, S., Schnitger, G.: On the optimality of bellman-ford-moore
shortest path algorithm. Theoretical Computer Science 628, 101–109
(2016)

[10] Karchmer, M., Wigderson, A.: Monotone circuits for connectivity re-
quire super-logarithmic depth. SIAM J. Discrete Math. 3(2), 255–265
(1990)

14

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

