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Abstract
A central question in derandomization is whether randomized logspace (RL) equals deter-

ministic logspace (L). To show that RL = L, it suffices to construct explicit pseudorandom
generators (PRGs) that fool polynomial-size read-once (oblivious) branching programs (roBPs).
Starting with the work of Nisan [Nis92], pseudorandom generators with seed-length O(log2 n)
were constructed (see also [INW94, GR14]). Unfortunately, improving on this seed-length in
general has proven challenging and seems to require new ideas.

A recent line of inquiry (e.g., [BV10, GMR+12, IMZ12, RSV13, SVW14, HLV17, LV17,
CHRT17]) has suggested focusing on a particular limitation of the existing PRGs ([Nis92,
INW94, GR14]), which is that they only fool roBPs when the variables are read in a particular
known order, such as x1 < · · · < xn. In comparison, existentially one can obtain logarithmic
seed-length for fooling the set of polynomial-size roBPs that read the variables under any fixed
unknown permutation xπ(1) < · · · < xπ(n). While recent works have established novel PRGs in
this setting for subclasses of roBPs, there were no known no(1) seed-length explicit PRGs for
general polynomial-size roBPs in this setting.

In this work, we follow the “bounded independence plus noise” paradigm of Haramaty, Lee
and Viola [HLV17, LV17], and give an improved analysis in the general roBP unknown-order
setting. With this analysis we obtain an explicit PRG with seed-length O(log3 n) for polynomial-
size roBPs reading their bits in an unknown order. Plugging in a recent Fourier tail bound of
Chattopadhyay, Hatami, Reingold, and Tal [CHRT17], we can obtain a Õ(log2 n) seed-length
when the roBP is of constant width.

1 Introduction

A central goal in complexity theory is to understand the power of randomness in computation,
in particular the P vs BPP problem. A particularly natural method of showing P = BPP is to
construct an explicit ε-error pseudorandom generator (PRG) with sufficiently small seed-length `,
ideally logarithmic. That is, a function G : {0, 1}` → {0, 1}n such that for any sufficiently efficiently
computable f , ∣∣∣∣∣ E

y∈{0,1}`
f(G(y))− E

x∈{0,1}n
f(x)

∣∣∣∣∣ ≤ ε .
Given such a PRG, one can then replace the randomness of a BPP algorithm with the pseudorandom
output and then enumerate over all such seeds to obtain a deterministic algorithm by majority vote
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(if ε is a sufficiently small constant). After decades of work, the hardness-vs-randomness paradigm
(see for example Vadhan [Vad12]) shows that the construction of pseudorandom generators fooling
general polynomial-size circuits is intimately tied to the quest for circuit lower bounds, which
remain out of reach. As such, a long line of work has sought to derandomize subclasses of BPP.
A particularly fruitful model to study has been randomized logspace (RL), as not only do PRGs
for RL have natural applications, but they can also be unconditionally constructed, for example as
done in the seminal work of Nisan [Nis92].

In particular, Nisan [Nis92] constructed a PRG fooling the non-uniform version of RL, that
is, the class of polynomial-size read-once (oblivious) branching programs (roBPs). A read-once
branching program can be thought of as a finite automaton that takes in binary input strings x
of some fixed size n. Additionally, the transition function of the automaton is allowed to depend
on the position i of each bit xi. We say that the branching program has width w if the each layer
of time the finite automaton has w states. Visually, branching programs can be represented as a
layered acyclic digraph with n+ 1 layers, each containing w nodes; the transition function is then
represented by assigning two outgoing edges at each interior node into the next layer. The existence
of a logspace-computable PRG G : {0, 1}`(n) → {0, 1}n for branching programs of width w = nO(1)

is sufficient to show that BPL ⊆ DSPACE(`(n)).
Nisan [Nis92] gave a construction of a PRG with seed-length ` = O(log2 n) for polynomial-width

roBPs. Since then, there have been various constructions ([INW94, GR14]) recovering the same
seed-length using different techniques, but there has been little quantitative progress towards
the desired seed-length ` = O(logn).1 In fact, it remains open even to achieve a seed-length of
` = O(log2 n/ log logn), even for constant-width branching programs.

The constructions of Nisan and ([INW94, GR14]) all employ a common high-level approach
which can be summarized by the following “communication” argument. The first half of a branching
program can communicate with the second half only via the state reached in the middle layer. Since
there are only w states in this layer, the second half of the program should “learn” roughly only
logw bits of information about the input bits fed to the first half. Because of this, it is safe to
reuse all but roughly logw of the bits of entropy invested to generate the first half of the input
string to generate the second half. This argument is then applied recursively to the left and right
subprograms.

There is some feeling that this particular recursive paradigm will not yield generators with
seed-lengths better than O(log2 n) ([BV10, RSV13, SVW14]), and that new, more flexible techniques
are required to make progress. A crucial feature of this paradigm is that the PRG knows the order
in which its pseudorandom output will be read. In fact, it is known that Nisan’s generator fails to
generate pseudorandom strings that fool branching programs if they read the bits of the string in a
different order than anticipated ([Tzu09]). The search for a different paradigm motivates the following
challenge: construct a PRG that fools branching programs which may read their input in any order.
To formalize this, we define the notion of an unknown-order roBP: a function g : {0, 1}n → {0, 1} of
the form g(x) = f(xπ(1), xπ(2), . . . , xπ(n)), where π is a permutation (independent of x) and f is a
roBP.

Bogdanov, Papakonstantinou, and Wan [BPW11] constructed a PRG with seed-length (1−Ω(1))·
n for unknown-order roBP of width w = nO(1). Their primary motivation for doing so was to derive
the first generator with nontrivial seed-length that fools read-once formulas. Read-once formulas
can be simulated by small-width read-once branching programs for some order π, and hence existing
generators for known-order roBPs ([Nis92, INW94, GR14]) would not suffice. Impagliazzo, Meka,

1By this we mean quantitative progress in the constant-error regime. Recently in [BCG17], Braverman, Cohen,
and Garg give a hitting set (a “one-sided” PRG) with a better seed-length in the small-error regime than Nisan’s
generator.
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and Zuckerman [IMZ12] achieved a generator with seed length ` = (nw)1/2+o(1) for unknown-order
roBP of width w.2

2 Our Work

Here, we give the first PRG with poly-logarithmic seed-length for poly(n)-width unknown-order
roBPs.

Theorem 2.1. There exists an explicit 1/poly(n)-error pseudorandom generator G : {0, 1}O(log3 n) →
{0, 1}n for the class of functions computable by a poly(n)-width read-once (oblivious) branching
program in some variable order.

As a corollary, we also derive the first PRG with poly-logarithmic seed length for read-once
formulas (see [BPW11] for the reduction).
Corollary. There exists an explicit pseudorandom generator G : {0, 1}O(log3 n) → {0, 1}n for read-
once formulas with constant fan-in.

2.1 Our Techniques

We now briefly describe our proof technique at a high-level, with a more technical discussion given
in Section 5. The main motivation comes from the “bounded independence plus noise” paradigm
introduced by Haramaty, Lee, and Viola ([HLV17, LV17]). There, they study the addition (modulo
2) of a low-wise independent distribution with a pseudorandom noise distribution. The intuition
is that to fool a function f , it suffices to create a distribution to dampen all non-constant Fourier
coefficients. For low-degree Fourier coefficients, this can be achieved by a low-wise independent
distribution. In the other extreme, high-degree Fourier coefficients are dampened by coordinate-wise
independent noise. The addition of these two distributions can then inherit the best of both
distributions and fool the desired function f .

However, the above outline has two challenges. First, the noise distribution (picking each
coordinate independently amongst {0, 1}) requires too large a seed-length. To address this, the work
of Haramaty, Lee, and Viola ([HLV17, LV17]) proposed to use a pseudorandom noise distribution
where a pseudorandom set of coordinates are first chosen, and then the elements within those
coordinates are then substituted with truly random values. While this proposal as stated still
requires a large seed-length, the key observation is that the number of truly random bits has shrunk
from n originally to ≈ n/2 (for if you choose a (pseudorandom) subset of {1, . . . , n} it has size ≈ n/2).
Thus, one can hope to then recursively apply the construction in ≈ logn rounds until no random
bits are further required.

The second, more serious, challenge is to show that a single step of “bounded independence plus
(pseudorandom) noise” actually fools the target function f , and doing so is the main contribution of
this work (Lemma 6.3). The difficulty in addressing this is that there are too many high-degree
Fourier coefficients, so that while each can be individually fooled by the construction, we cannot
apply a union bound while maintaining a small seed-length. Indeed, nothing so far in this discussion
has used anything about the structure of the function f , which clearly must be used to obtain a
small seed-length.

To meet this challenge, we avoid a naive union bound by instead grouping high-degree Fourier
coefficients into a small number of groups, each of which can be dampened at once. Specifically,

2 In fact, their generator fools the more general model of branching programs that may read the input bits any
number of times and in any adaptive order.
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we group high-degree Fourier coefficients into n sets, where the i-th set contains those coefficients
that “become” high-degree upon reading the i-th variable (Proposition 6.1).3 On an intuitive level,
one can then appeal to the “bounded communication” aspect of a roBP to argue that in the i-th
grouping those variables read after the i-th variable can be essentially ignored. We are then left with
Fourier coefficients that are of medium degree (for if they were very-high degree they would have
been put in the j-th group for some j < i). The number of such medium-degree Fourier coefficients
is not too large (because the degree is not too large), and yet each such coefficient is dampened by
the noise distribution (because the degree is not too small). This then allows us to apply a union
bound to obtain that we have dampened all the Fourier coefficients in the i-th grouping, and by
applying this for all i we obtain the result.

2.2 The Constant-Width Case

Although we give the first PRG with poly-logarithmic seed-length for the general case of poly-width
unknown-order roBPs, such a seed-length has been qualitatively achieved in the constant-width
case as a result of a recent line of work. Reingold, Steinke, and Vadhan [RSV13] gave a PRG
with seed-length O(log2 n) for unknown-order permutation branching programs of constant width.
Steinke, Vadhan, and Wan [SVW14] gave a PRG with seed-length Õ(log3 n) for unknown-order
width-3 branching programs. Chattopadhyay, Hatami, Reingold, and Tal [CHRT17] gave a PRG
with seed-length Õ(logw+1 n) for unknown-order branching programs of constant-width w. Central
to each of these results is a bound on a certain key quantity: the level-k Fourier mass of a branching
program (see Section 3). In each work, a bound on this quantity is established for the class of
branching programs under consideration, and then this bound is used to deduce the result.

Although we also employ a Fourier analytic approach, a major contrast between our techniques
and this line of work is that in general we have no need of any nontrivial bound on the Fourier mass
of branching programs. However, we can still make use of one to replace otherwise naive bounds on
Fourier mass in our argument. By incorporating the level-k Fourier mass bound for constant-width
branching programs derived in [CHRT17] into our approach, we get the following improvement on
Theorem 2.1 in the constant-width case.

Theorem 2.2. There exists an explicit 1/poly(n)-error pseudorandom generator G : {0, 1}Õ(log2 n) →
{0, 1}n for the class of functions computable by a O(1)-width read-once (oblivious) branching program
in some variable order.

Thus in the constant-width case, we nearly recover the O(log2 n) seed-length of Nisan’s generator
for the more challenging model of unknown-order branching programs.

3 Preliminaries

Here we describe a convenient algebraic encoding of a branching program as a product of one-bit
matrix-valued functions. Recall that a branching program of width w is a w-state finite automaton
where the transition map is allowed to depend on the number of bits read so far. Let us encode
the w states as the set of standard basis vectors in Rw. Then, the transition map corresponding
to the i-th input bit xi can be encoded by a pair of transition matrices Ai,0, Ai,1 ∈ Rw×w, defined
so that Ai,xi applied to the current state produces the appropriate successor state. Define the

3Note that this grouping depends on the order of the variables. However, this grouping only occurs in the analysis,
and that the construction itself is oblivious to the variable order.
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one-bit matrix-valued functions Fi(xi) = Ai,xi . With this notation in place, the value of a branching
program f on an input x ∈ {0, 1}n is given by the (1, 1) entry of the product

F (x) := F1(x1)F2(x2) · · ·Fn(xn) .

This entry indicates whether the string x defines a path through the program that takes the start
state to the accepting state.

Let U denote the uniform distribution over {0, 1}n and let X be an arbitrary distribution over
{0, 1}n. To show that a branching program f is ε-fooled by X, it suffices to bound the error
|EXf(X)− EUf(U)| = |EXF (X)1,1 − EUF (U)1,1| by ε. However, it will be more convenient to
simply bound the Frobenius norm of the entire error matrix

EXF (X)− EUF (U) ,

by ε. Recall that the Frobenius norm of a matrix is defined by

‖M‖ :=
√

tr (M>M) =
√∑

i,j

M2
i,j ,

so clearly such a bound is also sufficient. In this paper, ‖ · ‖ will always denote the Frobenius norm.

3.1 Fourier Analysis

For every vector α ∈ Fn2 , define the associated Fourier character χα : Fn2 → R via

χα(x) = (−1)〈α,x〉.

We say that χα is a degree-k Fourier coefficient if |α| = k, where |α| denotes the hamming weight of
α. Any function F : Fn2 → Rw×w can be expanded in the basis of Fourier characters, with coefficients
from the ring Rw×w. The Fourier expansion of F is

F (x) =
∑
α∈Fn

2

F̂αχα(x),

where the Fourier coefficients F̂α are given by

F̂α := E
x∈Fn

2
F (x)χα(x).

This identity can easily be checked with the aid of a few useful properties of Fourier characters;
namely

χα(x)χβ(x) = χα+β(x)

and

E
x∈Fn

2
χα(x) =

{
1 if α = 0
0 otherwise.

Aside from this, we will only need a few simple facts about Fourier analysis. Firstly, we note
that the expectation of a function F under the uniform distribution is conveniently encoded by its
0-th degree Fourier coefficient:

EUF (U) =
∑
α∈Fn

2

F̂αEUχα(U) = F̂0.

Next, we will need Parseval’s identity to get a bound on the sum of squares of Fourier coefficients.
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Proposition 3.1 (Parseval for matrix-valued functions).∑
α∈Fn

2

‖F̂α‖2 = E
x∈Fn

2
‖F (x)‖2 .

Proof: Let 〈·, ·〉 denote the Frobenius matrix inner product, which is defined by

〈M,N〉 = tr
(
M>N

)
=
∑
i,j

Mi,jNi,j .

First note that

‖F (x)‖2 = 〈F (x), F (x)〉

=
〈∑
α∈Fn

2

F̂αχα(x),
∑
β∈Fn

2

F̂βχβ(x)
〉

=
∑
α∈Fn

2

∑
β∈Fn

2

〈
F̂α, F̂β

〉
χα+β(x) .

Thus

Ex∈Fn
2
‖F (x)‖2 =

∑
α∈Fn

2

∑
β∈Fn

2

〈
F̂α, F̂β

〉
E

x∈Fn
2
χα+β(x)

=
∑
α∈Fn

2

〈
F̂α, F̂α

〉
=
∑
α∈Fn

2

‖F̂α‖2 .

We remark that if F is a branching program, then upon any input x, F (x) is equal to some
transition matrix that has exactly w entries of value 1 and its remaining entries are all zeros. Thus for
branching programs we have ‖F (x)‖2 = w for any x, and the above identity gives

∑
α∈Fn

2
‖F̂α‖2 = w.

Finally, we define Lk(F ), the level-k Fourier mass of a function, as in [RSV13]:

Lk(F ) :=
∑
α∈Fn

2
|α|=k

‖F̂α‖ .

Recalling that ‖F̂α‖ = ‖ExF (x)χα(x)‖ ≤ Ex‖F (x)‖ = w1/2, note that we have the trivial bound

Lk(F ) ≤
(
n

k

)
w1/2 ,

for branching programs.4
Chattopadhyay, Hatami, Reingold, and Tal [CHRT17] derive the following bound on the level-k

Fourier mass of a branching program which significantly improves upon the trivial bound in the
case of small w.
Theorem 3.2 (Chattopadhyay, Hatami, Reingold, and Tal [CHRT17]). Suppose F : F2

n → Rw×w
encodes a branching program of width w. Then

Lk(F ) ≤ O(logn)wk .
4Actually, one can easily derive the slightly better bound Lk(F ) ≤

(
n
k

)1/2
w1/2 by first applying Cauchy-Schwarz

followed by Parseval’s identity.
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We also define the level-k Fourier complexity of width-w branching programs,

L(n,w; k) := max
F

k∑
i=1
Li(F ) ,

where the maximum is taken over all functions F : Fn2 → Rw×w that encode a branching program.

3.2 Pseudorandom Primitives

In this section, we collect some basic pseudorandom distributions over Fn2 that will serve as building
blocks for our generator. It is important that the defining property of each of these distributions
remains unaffected by a re-ordering of bit positions. The fact that we build our generator out of
permutation-invariant components is what allows it to fool branching programs that read their
input in any order.

First we introduce δ-biased distributions, which fool linear functions over Fn2 , i.e. Fourier
characters.
Definition 3.3. Let D be a distribution over Fn2 . We say D is δ-biased if, for every nonzero α ∈ Nn2 ,
we have

|EDχα(D)| ≤ δ . ♦

It is possible to sample from a δ-biased distribution using O(logn + log 1/δ) random bits
([NN93, AGHP92]).

Next we have k-wise independent and γ-almost k-wise independent distributions, which look
locally uniform and thus fool functions that only depend on a few bits.
Definition 3.4. Let D be a distribution over Fn2 . We say D is k-wise independent if, for every
f : F2 → [−1, 1] that depends on at most k bits, we have

EDf(D) = EUf(U).

If D merely satisfies
|EDf(D)− EUf(U)| ≤ γ

for every such f , we say that D is γ-almost k-wise independent. ♦

It is possible to sample from a k-wise independent distribution using O(k · logn) random bits
([Vad12]) and from a γ-almost k-wise independent distribution using O(k + log logn + log 1/γ)
random bits ([NN93, AGHP92]). We remark that Fourier characters χα(x) only depend on |α| bits
of x, so these distributions also fool low-degree Fourier characters.

4 The Generator

We adopt our construction from the “bounded independence plus noise” framework developed by
Haramaty, Lee, and Viola in [HLV17, LV17]. In fact this framework is essentially equivalent to the
“mild pseudorandom restriction” framework developed by Gopalan, Meka, Reingold, Trevisan and
Vadhan [GMR+12] and subsequently employed by various authors (e.g., [RSV13, SVW14, CHRT17]),
but we find the bounded independence plus noise perspective more convenient to work with.

We actually give two slightly different constructions. The first construction only uses k-wise
independence as a core pseudorandom primitive (along with appropriate recursion), and suffices
for proving Theorem 2.1. The second construction replaces the use of exact k-wise independence
with the use small-bias spaces and almost k-wise independence. This allows the error analysis to
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be more general (but also slightly more involved due to additional parameters). In particular, this
second construction also suffices for handing general roBPs (Theorem 2.1), but now the added
generality can be tuned to achieve a better seed-length for constant-width roBPS, as required to
prove Theorem 2.2.

We proceed to give the first construction.
Let D1, D2, . . . , Dr denote r independent copies of a 2k-wise independent distribution and let

T1, T2, . . . , Tr denote r independent copies of a k-wise independent distribution over Fn2 . We then
define the distribution Gr recursively as follows. Let G0 be equal to the all-ones string in Fn2 , and
set

Gi+1 := Di + Ti ∧Gi,

where ∧ denotes bitwise AND and + denotes addition over Fn2 (i.e. bitwise XOR).

Lemma 4.1. Suppose F : Fn2 → Rw×w encodes a branching program. Then Gr, with parameters
k = d5 lgn+ 2 lgwe and r = d2 lgn+ 1

2 lgwe, fools F with error

ε = ‖EGrF (Gr)− EUF (U)‖ ≤ O
(

1
n

)
.

This proves Theorem 2.1, since in the case of width w = nO(1) the price of sampling such a
distribution is O(r · k · logn) = O(log3 n) random bits.

We now define the second construction, G∗r . This time, let D1, D2, . . . , Dr denote r independent
δ-biased distributions, and let T1, T2, . . . , Tr denote r independent γ-almost k-wise independent
distributions. We set G∗0 equal to a 320k-wise independent distribution, and again we define

G∗i+1 := Di + Ti ∧G∗i .

Lemma 4.2. Suppose F : Fn2 → Rw×w encodes a branching program. Then G∗r, with depth
r = dlgne, fools F with error

ε = ‖EG∗rF (G∗r)− EUF (U)‖ ≤ O
((√

δL(n,w; k) +
(

1
2

)k/2
+√γ + γ4k

)
· nwr

)
.

Since G∗r can be sampled at the cost of

O
(

(logn+ log 1/δ + k + log 1/γ) · r + k · logn
)

random bits, it suffices to set

• r = dlgne

• k = d3 lg(nw/ε)e

• γ = (nw/ε)−9

• δ = (nwL(n,w; k)/ε)−3

to get a generator with seed length

` = O
(

(log(nw/ε) + L(n,w; k)) · logn
)

that O(ε)-fools branching programs F of width w. From this we derive the following two corollaries
by invoking either the trivial bound or the bound from [CHRT17] on the level-k Fourier mass of
width-w branching programs. The second of these corollaries proves Theorem 2.2.
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Corollary 4.3. There exists an explicit PRG with seed length

` = O
(

log(nw/ε) · log2 n
)

that ε-fools unknown-order branching programs of width w.

Corollary 4.4. There exists an explicit PRG with seed length

` = O
(
w · log(nw/ε) · logn · log logn

)
that ε-fools unknown-order branching programs of width w.

5 Proof Strategy

We show that Gr successfully fools branching programs with the following inductive analysis. By
adding and subtracting the term F (Di + Ti ∧ U), we have

‖EGiF (Gi)− EUF (U)‖ = ‖EDiETiEGi−1F (Di + Ti ∧Gi−1)− EUF (U)‖
≤ ‖EDiETiEUF (Di + Ti ∧ U)− EUF (U)‖
+ EDiETi‖EGi−1F (Di + Ti ∧Gi−1)− EUF (Di + Ti ∧ U)‖.

Since, for any fixed vectors d, t ∈ Fn2 , the function F ′(x) := F (d+ t∧ x) is again some branching
program, we argue that F ′ is fooled inductively. The bulk of our proof is then spent arguing that
ED,T,UF (D + T ∧ U) ≈ EUF (U).

The starting point of this argument is the observation that the “noise-like” distribution T ∧ U
successfully fools any function that is divisible by a high-degree Fourier character. Specifically,
suppose that T is k-wise independent and that α ∈ Fn2 has hamming weight |α| ≥ k. Let g : Fn2 →
[−1, 1] be an arbitrary function such that g and χα depend on disjoint sets of input bits. Then
T ∧ U fools the function f := χα · g with error ε = 1/2k:

EUf(U) = (EUχα(U)) (EUg(U)) = 0 ,

and

|ET,Uf(T ∧ U)| =
∣∣ET (EUχα(T ∧ U)

)(
EUg(U)

)∣∣
≤ ET |EUχα(T ∧ U)||EUg(U)|
≤ ET |EUχα(T ∧ U)|
= ET1(α ∧ T = 0)

≤ 1
2k .

Overall, we wish to enact the following plan. If F encodes our branching program, we wish to
use Fourier analysis to rewrite F as a sum of simpler terms, and then use linearity of expectation
together with a triangle inequality to argue that D + T ∧ U fools each term separately.5 Recall the
product structure of F ,

F (x) = F1(x1)F2(x2) · · ·Fn(xn),
5 This approach is inspired by the similar arguments of Haramaty, Lee, and Viola employed in [HLV17]. However,

the generators they produce with this idea have seed length ≥ n1/2, while we achieve generators with poly-logarithmic
seed-length.
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where Fi(xi) = Ai,xi . We can imagine taking the Fourier expansions of these one-bit factors:

Fi(xi) = 1
2(Ai,0 +Ai,1) + 1

2(Ai,0 −Ai,1)(−1)xi =: Bi,0 +Bi,1(−1)xi ,

so that F has the form
F (x) =

n∏
i=1

(
Bi,0 +Bi,1(−1)xi

)
.

If we expand this product completely, we recover the Fourier expansion of F . Certainly the terms
in this sum are simple enough, but the problem is that there are too many of them; we cannot
afford a 2n-fold triangle inequality. Instead, we expand this product more “slowly”: only until we
see that some term has collected a degree-k Fourier character as a factor. By the above observation,
this term can be killed immediately, and we go on expanding the remaining terms. At the end, we
are left with only low-degree Fourier coefficients, which can all be fooled by the distribution D. By
doing this carefully, we get by with only n applications of the triangle inequality.

6 Proof of Lemma 4.1

Suppose
F (x) = F1(x1)F2(x2) · · ·Fn(xn)

encodes a branching program. We define the subprograms of F ,

F≤i(x1, . . . , xi) := F1(x1)F2(x2) · · ·Fi(xi)

and
F>i(xi+1, . . . , xn) := Fi+1(xi+1)Fi+2(xi+2) · · ·Fn(xn) ,

so that F = F≤i · F>i for any i (we define F>n as the empty product, so that it is an identity
matrix I). With this notation in place, we can re-express F in the following convenient form.

Proposition 6.1. Suppose F : Fn2 → Rw×w encodes a branching program. Then for any k ≥ 1, F
can be written as

F = F̂0 + L+
n∑
i=1

Hi · F>i,

where
L =

∑
α∈Fn

2
0<|α|<k

F̂αχα,

and
Hi =

∑
α∈Fi

2
|α|=k
αi=1

F̂≤iα χα.

10



Proof: We verify that the expression has the same Fourier expansion as F .
n∑
i=1

Hi · F>i =
n∑
i=1

( ∑
α∈Fi

2
|α|=k
αi=1

F̂≤iα χα

)( ∑
β∈Fn−i

2

F̂>iβ χβ

)

=
n∑
i=1

∑
α∈Fi

2
|α|=k
αi=1

∑
β∈Fn−i

2

F̂αβχαβ

=
n∑
i=1

∑
α∈Fn

2
α1+α2+···+αi=k

αi=1

F̂αχα(x)

=
∑
α∈Fn

2
|α|≥k

F̂αχα .

Now we derive a useful expectation bound for functions whose Fourier expansions are only
supported at degree k.

Lemma 6.2. Let
H(x) =

∑
α∈Fn

2
|α|=k

Ĥαχα(x)

be some function whose Fourier expansion is supported only at degree k. Let D, T , and U denote
respectively a 2k-wise independent, a k-wise independent, and a uniform distribution over Fn2 . Then
we have

ED,T ‖EUH(D + T ∧ U)‖2 ≤ 1
2k

∑
|α|=k

‖Ĥα‖2 .

Proof: Firstly, note that

EUH(D + T ∧ U) = EU
∑
|α|=k

Ĥα · χα(D + T ∧ U)

= EU
∑
|α|=k

Ĥα · χα(D) · χα(T ∧ U)

=
∑
|α|=k

Ĥα · χα(D) · EUχα(T ∧ U)

=
∑
|α|=k

Ĥα · χα(D) · 1(α ∧ T = 0) .

Letting 〈·, ·〉 denote the Frobenius matrix inner product, we have

‖EUH(D + T ∧ U)‖2 = 〈EUH(D + T ∧ U),EUH(D + T ∧ U)〉

=
〈 ∑
|α|=k

Ĥαχα(D)1(α ∧ T = 0) ,
∑
|β|=k

Ĥβχβ(D)1(β ∧ T = 0)
〉

=
∑
|α|=k

∑
|β|=k

〈
Ĥα, Ĥβ

〉
· χα+β(D) · 1((α ∨ β) ∧ T = 0)

11



and

ED‖EUH(D + T ∧ U)‖2 = ED
∑
|α|=k

∑
|β|=k

〈
Ĥα, Ĥβ

〉
χα+β(D)1((α ∨ β) ∧ T = 0)

=
∑
|α|=k

∑
|β|=k

〈
Ĥα, Ĥβ

〉 (
EDχα+β(D)

)
1((α ∨ β) ∧ T = 0)

=
∑
|α|=k

〈
Ĥα, Ĥα

〉
1(α ∧ T = 0)

=
∑
|α|=k

‖Ĥα‖21(α ∧ T = 0) .

Finally,

ED,T ‖EUH(D + T ∧ U)‖2 = ETED‖EUH(D + T ∧ U)‖2

= ET
∑
|α|=k

‖Ĥα‖21(α ∧ T = 0)

=
∑
|α|=k

‖Ĥα‖2 · ET1(α ∧ T = 0)

=
∑
|α|=k

‖Ĥα‖2 ·
(

1
2

)k
.

We now have the tools in place to prove our main technical lemma.

Lemma 6.3. Suppose F : Fn2 → Rw×w encodes a branching program. Let D, T , and U denote
respectively a 2k-wise independent, a k-wise independent, and a uniform distribution over Fn2 . Then
D + T ∧ U fools F with error

ε = ‖ED,T,UF (D + T ∧ U)− EUF (U)‖ ≤ nw

2k/2 .

Proof: To analyze ‖ED,T,UF (D+ T ∧U)−EUF (U)‖, we use the preceding expansion of F together
with linearity of expectation and the triangle inequality. Recalling that EUF (U) = F̂0, this gives

‖ED,T,UF (D + T ∧ U)− EUF (U)‖ ≤

‖ED,T,UL(D + T ∧ U)‖+
n∑
i=1
‖ED,T,UHi(D + T ∧ U)F>i(D + T ∧ U)‖ .

The low-degree term is dealt with easily by D:

ED,T,UL(D + T ∧ U) = EDETEU
∑
α∈Fn

2
0<|α|<k

F̂αχα(D + T ∧ U)

= EDETEU
∑
α∈Fn

2
0<|α|<k

F̂αχα(D)χα(T ∧ U)

= ETEU
∑
α∈Fn

2
0<|α|<k

F̂α ·
(
EDχα(D)

)
· χα(T ∧ U)

= 0 .

12



Now for each i we have

‖ED,T,UHi(D + T ∧ U)F>i(D + T ∧ U)‖ =
∥∥∥ED,T (EUHi(D + T ∧ U)

)(
EUF>i(D + T ∧ U)

)∥∥∥
≤ ED,T ‖EUHi(D + T ∧ U)‖‖EUF>i(D + T ∧ U)‖
≤ ED,T ‖EUHi(D + T ∧ U)‖w1/2

≤
(
ED,T ‖EUHi(D + T ∧ U)‖2

)1/2
w1/2

≤
(

1
2

)k/2 ( ∑
α∈Fn

2

‖F̂≤iα ‖2
)1/2

w1/2

=
(

1
2

)k/2
w,

where we get the final equality by applying the Parseval identity to F≤i.

6.1 Proof of Lemma 4.1

Proof: Recall the induction framework outlined in Section 5:

‖EGiF (Gi)− EUF (U)‖ = ‖EDiETiEGi−1F (Di + Ti ∧Gi−1)− EUF (U)‖
≤ ‖EDiETiEUF (Di + Ti ∧ U)− EUF (U)‖
+ EDiETi‖EGi−1F (Di + Ti ∧Gi−1)− EUF (Di + Ti ∧ U)‖.

We have seen how to carry out the inductive step; it remains to establish the base case. To do
this, we wish to think of F (Gr) as a function of G0 only, with D1, D2, . . . , Dr and T1, T2, . . . , Tr
fixed.

Specifically, we do the following. Define the strings g0 := x and gi := Di + Ti ∧ gi−1, and define
the function f(x) := F (gr). Note that with this setup we have F (Gr) = f(G0), and so

‖EGrF (Gr)− EUF (U)‖ = ‖EDrETrEGr−1F (Dr + Tr ∧Gr−1)− EUF (U)‖

≤ nw

2k/2 + EDrETr‖EGr−1F (Dr + Tr ∧Gr−1)− EUF (Dr + Tr ∧ U)‖

≤ nw

2k/2 + nw

2k/2 + · · ·+ nw

2k/2 + E
D1,D2,...,Dr
T1,T2,...,Tr

‖EG0f(G0)− EUf(U)‖.

Now we must show that the function f is fooled by G0 for most values of Di and Ti. Luckily,
for r large enough, f is often a constant function and therefore fooled by any distribution.

In particular, let Ti[j] denote the j-th bit of Ti and define the indicator random variables

Yj =
r∧
i=1

Ti[j].

Note that f(x) depends on the j-th bit of x only if Yj = 1, and so f(x) is constant if
∑n
j=1 Yj = 0.

Also note that Pr(Yj = 1) = 2−r. By applying a Markov inequality, we have
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ED1,D2,...,Dr
T1,T2,...,Tr

‖EG0f(G0)− EUf(U)‖ ≤ Pr

 n∑
j=1

Yj ≥ 1

 max
D1,D2,...,Dr
T1,T2,...,Tr

‖EG0f(G0)− EUf(U)‖

≤ E

 n∑
j=1

Yj

 · 2w1/2

= 2nw1/2

2r .

If we set k ≥ 5 lgn+ 2 lgw and r ≥ 2 lgn+ 1
2 lgw, Gr fools F with error

ε = ‖EGrF (Gr)− EUF (U)‖ ≤ r · nw
2k/2 + 2nw1/2

2r ≤ 3
n
.

7 Proof of Lemma 4.2

The proof of Lemma 4.2 follows the same story as the previous section with details differing in two
places. First, we derive an analogue of Lemma 6.2 which is slightly messier due to our now weaker
pseudorandom primitives. Secondly, in order to get the best possible seed-length in the small error
regime, this time we analyze the base case with a bit more care. In particular, we upgrade the
Markov argument to a Chernoff bound for γ-almost k-wise independent variables.

Lemma 7.1. Let
H(x) =

∑
α∈Fn

2
|α|=k

Ĥαχα(x)

be some function whose Fourier expansion is supported only at degree k. Let D, T , and U denote
respectively a δ-biased, a γ-almost k-wise independent, and a uniform distribution over Fn2 . Then
we have

ED,T ‖EUH(D + T ∧ U)‖2 ≤
(
2−k + γ

)δ · ( ∑
|α|=k

‖Ĥα‖
)2

+
∑
|α|=k

‖Ĥα‖2
 .

Proof: As before, we have

‖EUH(D + T ∧ U)‖2 =
∑
|α|=k

∑
|β|=k

〈
Ĥα, Ĥβ

〉
χα+β(D)1((α ∨ β) ∧ T = 0) .

We analyze the terms with α = β and α 6= β separately. For the cross terms we have

EDET
∑
|α|=k

∑
β 6=α

〈
Ĥα, Ĥβ

〉
χα+β(D)1((α ∨ β) ∧ T = 0)

=
∑
|α|=k

∑
β 6=α

〈
Ĥα, Ĥβ

〉 (
EDχα+β(D)

)(
ET1((α ∨ β) ∧ T = 0)

)
≤
∑
|α|=k

∑
β 6=α
‖Ĥα‖‖Ĥβ‖ · δ ·

(
2−k + γ

)
≤ δ ·

(
2−k + γ

)( ∑
|α|=k

‖Ĥα‖
)2
.
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For the like terms we have

ETED
∑
|α|=k

〈
Ĥα, Ĥα

〉
χ0(D)1(T ∧ α = 0)

=
∑
|α|=k

‖Ĥα‖2 · ET1(T ∧ α = 0)

≤
∑
|α|=k

‖Ĥα‖2 ·
(
2−k + γ

)
.

We now derive the following analogue of Lemma 6.3.

Lemma 7.2. Suppose F : Fn2 → Rw×w encodes a branching program. Let D, T , and U denote
respectively a δ-biased, a γ-almost k-wise independent, and a uniform distribution over Fn2 , and let
Then D + T ∧ U fools F with error

ε = ‖ED,T,UF (D + T ∧ U)− EUF (U)‖ ≤
(√

δL(n,w; k) +
(

1
2

)k/2
+√γ

)
· nw.

Proof: Again we use Proposition 6.1 to split F into high and low degree components:

‖ED,T,UF (D + T ∧ U)− EUF (U)‖

≤ ‖ED,T,UL(D + T ∧ U)‖+
n∑
i=1
‖ED,T,UHi(D + T ∧ U)F>i(D + T ∧ U)‖.

For the low-degree component we have

‖ED,T,UF (D + T ∧ U)‖ = ‖EDETEU
∑
α∈Fn

2
0<|α|<k

F̂αχα(D + T ∧ U)‖

= ‖ETEU
∑
α∈Fn

2
0<|α|<k

F̂α
(
EDχα(D)

)
χα(T ∧ U)‖

≤
∑
α∈Fn

2
0<|α|<k

‖F̂α‖ · δ

= δ
k−1∑
i=1
Li(F ).

Now we proceed as before.
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‖ED,T,UF (D + T ∧ U)−EUF (U)‖

≤ δ
k−1∑
i=1
Li(F ) +

n∑
i=1
‖ED,T,UHi(D + T ∧ U)F>i(D + T ∧ U)‖

≤ δ
k−1∑
i=1
Li(F ) +

n∑
i=1

(
ED,T ‖EUHi(D + T ∧ U)‖2

)1/2
w1/2

≤ δ
k−1∑
i=1
Li(F ) +

n∑
i=1

(
δLk(F≤i)2 +

(
1
2

)k
+ γ

)1/2
w

≤
(√

δL(n,w; k) +
(

1
2

)k/2
+√γ

)
· nw .

7.1 Proof of Lemma 4.2

Proof: We proceed as in the proof of Lemma 4.1, except this time we derive a sharper bound on
the quantity

E
D1,D2,...,Dr
T1,T2,...,Tr

‖EG∗0f(G∗0)− EUf(U)‖.

Again, define the random variable

Y = T1 ∧ T2 ∧ · · · ∧ Tr.

Recall that G∗0 is a 320k-wise independent distribution, so if |Y | ≤ 320k then

‖EG∗0f(G∗0)− EUf(U)‖ = 0.

Therefore

E
D1,D2,...,Dr
T1,T2,...,Tr

‖EG∗0f(G∗0)− EUf(U)‖ ≤ Pr(|Y | ≥ 320k) max
D1,D2,...,Dr
T1,T2,...,Tr

‖EG∗0f(G∗0)− EUf(U)‖

≤ Pr(|Y | ≥ 320k) · 2w1/2.

We appeal to the following extension of the Chernoff bound for k-wise independent variables.

Lemma 7.3. (see [SVW14], Lemma A.1) Suppose X1, X2, . . . Xt are γ-almost k-wise independent
variables with Xi ∈ {0, 1}. Then

Pr
(

1
t

t∑
i=1

Xi ≥
1
2 + a

2

)
≤
(40k
a2t

)bk/2c
+ 2γ

(2
a

)k
.

As a result, if T is a γ-almost k-wise independent distribution and α is any fixed bitmask with
hamming weight |α| ≥ 320k, we have

Pr
(
|α ∧ T | ≥ 3

4 |α|
)
≤
(

1
2

)bk/2c
+ 2γ · 4k.

Noting that
(

3
4

)r
n ≤ 1, a simple union bound argument shows that

Pr(|T1 ∧ T2 ∧ · · · ∧ Tr| ≥ 320k) ≤ r ·
((

1
2

)bk/2c
+ 2γ · 4k

)
.
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To conclude, we have

‖EG∗rF (G∗r)− EUF (U)‖ ≤ r ·
(√

δL(n,w; k) +
(

1
2

)k/2
+√γ

)
· nw + r ·

((
1
2

)bk/2c
+ 2γ · 4k

)
· 2w1/2

≤ O
((√

δL(n,w; k) +
(

1
2

)k/2
+√γ + γ4k

)
· nwr

)
.
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