
Finding forbidden minors in sublinear time: a n1/2+o(1)-query

one-sided tester for minor closed properties on bounded degree

graphs

Akash Kumar∗ C. Seshadhri† Andrew Stolman‡

Abstract

Let G be an undirected, bounded degree graph with n vertices. Fix a finite graph H, and
suppose one must remove εn edges from G to make it H-minor free (for some small constant
ε > 0). We give an n1/2+o(1)-time randomized procedure that, with high probability, finds
an H-minor in such a graph. As an application, suppose one must remove εn edges from a
bounded degree graph G to make it planar. This result implies an algorithm, with the same
running time, that produces a K3,3 or K5 minor in G. No prior sublinear time bound was known
for this problem.

By the graph minor theorem, we get an analogous result for any minor-closed property. Up
to no(1) factors, this resolves a conjecture of Benjamini-Schramm-Shapira (STOC 2008) on the
existence of one-sided property testers for minor-closed properties. Furthermore, our algorithm
is nearly optimal, by an Ω(

√
n) lower bound of Czumaj et al (RSA 2014).

Prior to this work, the only graphs H for which non-trivial one-sided property testers were
known for H-minor freeness are the following: H being a forest or a cycle (Czumaj et al, RSA
2014), K2,k, (k × 2)-grid, and the k-circus (Fichtenberger et al, Arxiv 2017).

∗Department of Computer Science, Purdue University. akumar@purdue.edu (Supported in part by NSF CCF-
1319080.)
†Department of Computer Science, University of California, Santa Cruz. sesh@ucsc.edu (Supported by NSF

TRIPODS grant CCF-1740850)
‡Department of Computer Science, University of California, Santa Cruz. astolman@ucsc.edu (Supported by NSF

TRIPODS grant CCF-1740850)

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 148 (2018)

mailto:akumar@purdue.edu
mailto:sesh@ucsc.edu
mailto:astolman@ucsc.edu

1 Introduction

Deciding if an n-vertex graph G is planar is a classic algorithmic problem solvable in linear time
[HT74]. The Kuratowski-Wagner theorem asserts that any non-planar graph must contain a K5

or K3,3-minor [Kur30, Wag37]. Thus, certifying non-planarity is equivalent to producing such a
minor, which can be done in linear time. Can we beat the linear time bound if we knew that G
was “sufficiently” non-planar?

Assume random access to an adjacency list representation of a bounded degree graph, G. Sup-
pose, for some constant ε > 0, one had to remove εn edges from G to make it planar. Can
one find a forbidden (K5 or K3,3) minor in o(n) time? It is natural to ask this question for any
property expressible through forbidden minors. By the famous Robertson-Seymour graph minor
theorem [RS04], any graph property P that is closed under taking minors can be expressed by a
finite list of forbidden minors. We desire sublinear time algorithms to find a forbidden minor in
any G that requires εn edge deletions to make it have P.

This problem was first posed by Benjamini-Schramm-Shapira [BSS08] in the context of property
testing on bounded degree graphs. We follow the model of property testing on bounded-degree
graphs as defined by Goldreich-Ron [GR02]. Fix a degree bound d. Consider G = (V,E), where
V = [n], and G is represented by an adjacency list. We have random access to the list through
neighbor queries. There is an oracle that, given v ∈ V and i ∈ [d], returns the ith neighbor of v (if
no neighbor exists, it returns ⊥).

Given any property P of graphs with degree bound d, the distance of G to P is defined to be
the minimum number of edge additions/removals required to make G have P, divided by dn. This
ensures that the distance is in [0, 1]. We say that G is ε-far from P if the distance to P is more
than ε.

A property tester for P is a randomized procedure takes as input (query access to) G and a
proximity parameter ε > 0. If G ∈ P, the tester must accept with probability at least 2/3. If G is
ε-far from P, the tester must reject with probability at least 2/3. A one-sided tester must accept
G ∈ P with probability 1, and thus provide a certificate of rejection.

We are interested in property P expressible through forbidden minors. Fix a finite graph H.
The property PH of H-minor freeness is the set of graphs that do not contain H as a minor.
Observe that one-sided testers for PH have a special significance since they must produce an H-
minor whenever they reject. One can cast one-sided property testers as sublinear time procedures
that find forbidden minors. Our main theorem follows.

Theorem 1.1. Fix a finite graph H with |V (H)| = r and arbitrarily small δ > 0. Let PH be the
property of H-minor freeness. There is a randomized algorithm that takes as input (oracle access
to) a graph G with maximum degree d, and a parameter ε > 0. Its running time is dn1/2+O(δr4) +
dε−2 exp(2/δ)/δ. If G is ε-far from PH , then, with probability > 2/3, the algorithm outputs an H-
minor in G.

Equivalently, there exists a one-sided property tester for PH with the above running time.

The graph-minor theorem of Robertson and Seymour [RS04] asserts the following. Consider
any property Q that is closed under taking minors. There is a finite list H of graphs such that
G ∈ Q iff G is H-minor free for all H ∈ H. If G is ε-far from Q, then G is Ω(ε)-far from PH for
some H ∈H. Thus, a direct corollary of Theorem 1.1 is the following.

Corollary 1.2. Let Q be any minor-closed property of graphs with degree bound d. For any δ > 0,
there is a one-sided property tester for Q with running time O(dn1/2+δ + dε−2 exp(2/δ)/δ).

1

In the following discussion, we suppress dependences on ε and nδ by O∗(·) (where δ > 0 is
arbitrarily small). Previously, the only graphs H for which an analogue of Theorem 1.1 was known
are the following: O∗(1) time for H being a forest, O∗(

√
n) for H being a cycle [CGR+14], and

O∗(n2/3) for H being K2,k, the (k× 2)-grid, and the k-circus [FLVW17]. No sublinear time bound
was known for planarity.

Corollary 1.2 implies that properties such as planarity, series-parallel graphs, embeddability in
bounded genus surfaces, and bounded treewidth are all one-sided testable in O∗(

√
n) time.

We note a particularly pleasing application of Theorem 1.1. Suppose bounded degree G has
more than (3 + ε)n edges. Then it is guaranteed to be ε-far from being planar, and thus, there
is an algorithm to find a forbidden minor in G in O∗(

√
n) time. Since all minor-closed properties

have constant average degree bounds, analogous statements can be made for all such properties.

1.1 Related work

Graph minor theory is a deep topic, and we refer the reader to Chapter 12 of Diestel’s book [Die10]
and Lovász’ survey [Lov06]. For our purposes, we use as a black-box polynomial time algorithms
that find fixed minors in a graph. A result of Kawarabayashi-Kobayashi-Reed provides an O(n2)
time algorithm [KKR12].

Property testing on graphs is an immensely rich area of study, and we refer the reader to Gol-
dreich’s recent textbook for more details [Gol17]. There is a significant difference between the
theory of property testing for dense graphs and that of bounded-degree graphs. For the former,
there is a complete characterization of properties (one-sided, non-adaptive) testable in query com-
plexity independent of graph size. There is a deep connection between property testing and the
Szemeredi regularity lemma [AFNS06]. Property testing for bounded degree graphs is much less
understood. This study was initiated by Goldreich-Ron, and the first results focused on connectiv-
ity properties [GR02]. Czumaj-Sohler-Shapira proved that hereditary properties of non-expanding
graphs are testable [CSS09]. A breakthrough result of Benjamini-Schramm-Shapira (henceforth
BSS) proved that all minor-closed (more generally, hyperfinite) properties are two-sided testable
in constant time. The dependence on ε was subsequently improved by Hassidim et al, using the
concept of local partitioning oracles [HKNO09]. A result of Levi-Ron [LR15] significantly simplified
and improved this analysis, to get a final query complexity quasi-polynomial in 1/ε. Indeed, it is a
major open question to get polynomial dependence on 1/ε for two-sided planarity testers. Towards
this goal, Ito and Yoshida give such a bound for testing outerplanarity [YI15], or Edelman et al
generalize for bounded treewidth graphs [EHNO11].

In contrast to dense graph testing, there is a significant jump in complexity for one-sided testers.
BSS first raised the question of one-sided testers for minor-closed properties (especially planarity)
and conjectured that the bound is O(

√
n). Czumaj et al [CGR+14] made the first step by giving

an Õ(
√
n) one-sided tester for the property of being Ck-minor free [CGR+14]. For k = 3, this

is precisely the class of forests. This tester is obtained by a reduction to a much older result of
Goldreich-Ron for one-sided bipartiteness testing for bounded degree graphs [GR99]. (The results
in Czumaj et al are obtained by black-box applications of this result.) Czumaj et al adapt the one-
sided Ω(

√
n) lower bound for bipartiteness and show an Ω(

√
n) lower bound for one-sided testers

for H-minor freeness when H has a cycle [CGR+14]. This is complemented with a constant time
tester for H-minor freeness when H is a forest.

Recently, Fichtenberger-Levi-Vasudev-Wötzel give an Õ(n2/3) tester for H-minor freeness when
H is one of the following graphs: K2,k, the (k×2)-grid or the k-circus graph (a wheel where spokes

2

have two edges) [FLVW17]. This subsumes the properties of outerplanarity and cactus graphs.
This result uses a different, more combinatorial (as opposed to random walk based) approach than
Czumaj et al.

The use of random walks in property testing was pioneered by Goldreich-Ron [GR99] and was
then (naturally) used in testing expansion properties and clustering structure [GR00, CS10, KS08,
NS07, KPS13, CPS15]. Our approach is inspired by the Goldreich-Ron analysis, and we discuss
more in the next section. A number of previous results have used random walks for routing in
expanders [BFU99, KR96]. We use techniques from Kale-Seshadhri-Peres to analyze random walks
on projected Markov Chains [KPS13]. We also employ the local partitioning methods of Spielman-
Teng [ST12], which is in turn derived from the Lovász-Simonovits analysis technique [LS90].

2 Main Ideas

We give an overview of the proof strategy and discuss the various moving parts of the proof. For
convenience, assume that G is a d-regular graph. It is instructive to understand the method of
Goldreich-Ron (henceforth GR) for one-side bipartiteness testing [GR99]. The basic idea to perform
O(
√
n) random walks of poly(log n) length from a uar vertex s. An odd cycle is discovered when

two walks end at the same vertex v, through path of differing parity (of length).
The GR analysis first considers the case when G is an expander (and ε-far from bipartite). In

this case, the walks from s reach the stationary distribution. One can use a standard collision
argument to show that O(

√
n) suffice to hit the same vertex v twice, with different parity paths.

The deep insight is that any graph G can be decomposed into pieces where the algorithm works, and
each piece P has a small cut to P . This has connections with decomposing a graph into expander-
like pieces [Tre05, GT12]. Famously, the Arora-Barak-Steurer algorithm [ABS15] for unique games
basically proves such a statement. We note that GR does not decompose into expanders, but
rather into pieces where the expander analysis goes through. So, one might hope to analyze the
algorithm by its behavior on each component. Unfortunately, the algorithm cannot produce the
decomposition; it can only walk in G and hope that performing random walks in G suffice to
simulate the procedure within P . This is extremely challenging, and is precisely what GR achieve
(this is the bulk of the analysis). The main lemma produces a decomposition into such pieces,
such that for each piece P , there exists s ∈ P wherein short random walks (in G) from s reach all
vertices in P with sufficient probability. One can think of this a simulation argument: we would
like to simulate the random walk algorithm running only on P , through random walks in G.

The challenge of general minors: With planarity in mind, let us focus on finding K5 minors.
It is highly unlikely that random walks from a single vertex will find a such a minor. Intuitively, we
would need to find 5 different vertices, launch random walks from all of them and hope these walks
will produce a minor. Thus, we would need to simulate a much more complex procedure than the
(odd) cycle finder of GR. Most significantly, we need to understand the random walks behavior
from multiple sources within P simultaneously. The GR analysis actually constructs the pieces P
by a local partitioning looking at the random walk distribution from a single vertex. There is no
guarantee on random walk behavior from other vertices in P .

There is a more significant challenge from arbitrary minors. The simulation does not say
anything about the specific structure of the paths generated. It only deals with the probability of
reaching v from s by a random walk in G when v and s are in the same piece. For bipartiteness, as
long as we find two paths of differing parity, we are done. They may intersect each other arbitrarily.

3

For finding a K5 minor, the actual intersection behavior. We would need paths between all pairs of
5 seed vertices to be “disjoint enough” to give a K5 minor. This appears extremely difficult using
the GR analysis. Even if we did understand the random walk behavior (in G) from all vertices in
P , we have little control over their behavior when they leave P . (Based on the parameters, the
walks leave P with high probability.) They may intersect arbitrarily, and thus destroy any minor
structure.

2.1 When do random walks find minors?

Inspired by GR, let us start with an algorithm to find a K5 minor in an expander G. (Variants of
these ideas were present in a result of Kleinberg-Rubinfeld that expanders contain an H-minor for
any H with n/poly(log n) edges [KR96].) Let ` denote the mixing time. Pick u.a.r. a vertex s, and
launch 5 random walks each of length ` to reach v1, v2, . . . , v5. From each vi, launch

√
n random

walks each of length `. With high probability, a walk from vi and a walk from vj will “collide” (end
at the same vertex). We can collect these collisions to get paths between all vi, vj , and one can,
with some effort, show that these form a K5-minor.

Our main insight is to show that this algorithm, with minor modifications, works even when
random walks have extremely slow mixing properties. When the random walks mix even more
slowly than the requisite bound, we can essentially perform local partitioning to pull out very small
(nδ for arbitrarily small δ > 0) pieces that have low conductance cuts. We can simply query all
edges in this piece and run a planarity test.

There is a parameter δ > 0 that can be set to an arbitrarily small constant. Let us set the
random walk length ` to nδ, and let ps,` be the random walk distribution after ` steps from s. Our
proof splits into two cases, where α = cδ for explicit constant c > 1:
• Case 1 (the leaky case): For at least εn vertices s, ‖ps,`‖22 ≤ 1/nα.
• Case 2 (the trapped case): For at least (1− ε)n vertices s,‖ps,`‖22 > 1/nα.

In the leaky case, random walks are hardly mixing by any standard of convergence. We are merely
requiring that a random walk of length nδ (roughly speaking) spreads to a set of size ncδ.

We prove that, in the leaky case, the procedure described in the first paragraph succeeds in
finding a K5 with high probability. We give an outline of this proof strategy.

Let us assume that pv,`/2 = pv,` (so `-length walks have “stabilized”). Let us make a slight
modification to the algorithm. We pick v1, . . . , v5 as before, with `-length random walks from s. We
will perform O(

√
n) `/2 length random walks from each vi to produce the K5 minor. By symmetry

of the random walks, the probability that a single walk from vi and one from vj collide (to produce
a path) is exactly pvi,`/2 · pvj ,`/2. Thus, we would like these dot products to be large. By the
symmetry of the random walk, the probability of an `-length random walk starting from s and
ending at v is ps,`/2 · pv,`/2. In other words, the entries of ps,` are precisely these dot products,
and ‖ps,`‖22 =

∑
v∈V (ps,`/2 · pv,`/2)2 = Ev∼ps,`/2 [ps,`/2 · pv,`/2]. Since ps,`/2 = ps,`, we rewrite to

get ps,`/2 · ps,`/2 = Ev∼ps,`/2 [ps,`/2 · pv,`/2].
Think of the dot products as correlations between distributions. We are saying that the average

correlation (over some distribution on vertices) of pv,`/2 with ps,`/2 is exactly the self-correlation of
ps,`/2. If the distributions by and large had low `2-norm (as in the leaky case), we might hope that
these distributions are reasonably correlated with each other. Indeed, this is what we prove. Under
some conditions, we show that Evi,vj∼ps,`/2 [pvi,`/2 · pvj ,`/2] can be lower bounded, and pvi,`/2 is
exactly the distribution the algorithm picks the vi’s from. This is evidence that `/2-length random

4

walks will connect the vi’s through collisions.
There are four difficulties in increasing order of worry.

1. We only have a lower bound of the average pvi,`/2 ·pvj ,`/2. We would need bounds for all (or
most) pairs to produce a minor.

2. pv,` might be very different from pv,`/2.
3. The expected number of collisions between walks from vi and vj is controlled by the dot

product above, but the variance (which really controls the probability of getting a collision) can be
large. There are instances where the dot product is high, but the collision probability is extremely
low.

4. There is no guarantee that these paths will produce a minor since we do not have any obvious
constraints on the intermediate vertices in the path.

The first problem is surmounted by a technical trick. It turns out to be cleaner to analyze
the probability of getting a biclique minor. So, we perform 50 random walks from s to get sets
A = {a1, a2, . . . , a25} and an analogous B. We launch `/2-length random walks from each vertex in
A∪B. The average lower bound on the dot product suffices to get a lower bound on the probability
of getting a K25,25-minor, which contains a K5-minor.

For the second problem, it turns out that the weaker bound of ‖pv,`‖2 = Ω(n−δ‖pv,`/2‖2)
suffices. We could try to search for some value of ` where this happens. If there was no (small)
value of ` where this bound held, then it suggest that ‖pv,nδ‖2 is extremely small (say Θ(1/n)).
This kind of reasoning is detailed more in the next subsection.

The third problem requires bounds on the variance, or higher norms, of pv,`/2. Unfortunately,
there appears be no handle on these. At a high level, our idea is to truncate pv,`/2 by ignoring
large entries. This truncated vector is not a probability vector any more, but we can hope to redo
the analysis for such vectors.

Now for the fourth problem. Naturally, if the vertices v1, . . . , v5 are close to each other, we
do not expect to get a minor by connecting them. Suppose they were sufficiently “spread out”,
One could hope that the paths connecting the vi, vj pairs would only intersect “near” the vi. The
portion of the paths nears the vis could be contracted to get a K5-minor. We can roughly quantify
how far the vis will be by the variance of pv,`/2. Thus, the third and fourth problem are coupled.

2.2 R-returning walks

The main technical contribution of our work is in defining R-returning walks. These are walks that
periodically return to a given set R of vertices. A careful analysis of these walks provides to tools
to handle the various problems discussed above.

Fix ` as before. Formally, an R-returning walk of length j` (for j ∈ N) is a walk that encounters
R at every i` step ∀i ∈ [j]. While random walk distributions can have poor variance, we can
carefully choose R to ensure that the distribution of R-returning walks is well-behaved. We will
quantify this as approximate “support uniformity” (being approximatedly uniform on the support).

In the leaky case, there is some (large) set R, such that ∀s ∈ R, ‖ps,`/2‖22 ≤ 1/nα. Let p[R],s,`

be the random walk distribution restricted to R. Suppose for some s ∈ R, ‖p[R],s,`‖22 ≥ 1/nα+δ.
Observe that each entry in p[R],s,` is ps,`/2 · pv,`/2, for s, v ∈ R. By Cauchy-Schwartz, this is at
most 1/nα. For any distribution v, the condition ‖v‖22 = ‖v‖∞ is equivalent to support uniformity.
Thus, p[R],s,` is approximately support uniform, up to nδ deviations. The math discussed in the

5

previous section goes through for any such s. In other words, if the random walk algorithm started
from s, it succeeds in finding a K5 minor.

Suppose only a negligible fraction of vertices satisfied this condition, and so our algorithm would
not actually find such a vertex. Let us remove all these vertices from R (abusing notation, let R
be the resulting set). Now, ∀s ∈ R, ‖p[R],s,`‖22 ≤ 1/nα+δ. So, the bound on the l2-norm has fallen

by an nδ factor. What does p[R],s,` · p[R],v,` signify? This is the probability of a 2`-length random
walk starting from s, ending at v, and encountering R at the `th step. This is an R-returning walk
of length 2`. Let q[R],s,2` denote the vector of R-returning walk probabilities. Suppose for some

s, ‖q[R],s,2`‖22 ≥ 1/nα+2δ. By Cauchy-Schwartz, ‖q[R],s,2`‖∞ ≤ 1/nα+δ, implying that q[R],s,2` is
approximately support uniform. Again, the math of the previous section goes through for such an
s.

We remove all vertices that have this property, and end up withR such that ∀s ∈ R, ‖q[R],s,2`‖22 ≤
1/nα+2δ. Observe that q[R],s,2` · q[R],v,2` is a probability of a 4` R-returning walk. We then iterate
this argument.

In general, this argument goes through phases. In the ith phase, we find s ∈ R that satisfy
‖q[R],s,2i`‖22 ≥ 1/nα+iδ. We show that the random walk procedure of the previous section (with
some modifications) finds a K5-minor starting from such vertices. We remove all such vertices from
R, increment i and continue the argument. The vertices removed at the ith phase are called the
ith stratum, and we refer to this entire process as stratification. Intuitively, for vertices in the ith
stratum, the R-returning (for the setting of R at that phase) walk probabilities roughly form a
uniform distribution of support nα+iδ. Thus, for vertices in higher strata, the random walks are
spreading to larger sets.

There is a major problem. The q vectors are not distributions, and the vast majority of walks
are not R-returning. Indeed, the reduction in norm as we increase strata might simply be an artifact
of the lower probability of a longer R-returning walk (note that the walks lengths are increasing
exponentially in the phase number). We prove a spectral lemma asserting that this is not the
case. As long as R is sufficiently large, the probabilities of R-returning walks are sufficiently high.
Unfortunately, these probabilities (must) decrease exponentially in the number of returns. In the
ith phase, the walk length is 2i` and it must return to R 2i times. Here is where the nδ decay in
l2-norm condition saves us. After 1/δ phases, the ‖q[R],s,2i`‖22 is basically 1/n. The spectral lemma

tells us that if R is still large, the probability that a 21/δ` length walk is R-returning is sufficiently
large. Thus, the norm cannot decrease, and almost all vertices end up in the very next stratum. If
R was small, then there is an earlier stratum containing Ω(δεn) vertices. Regardless of the case,
there exists a i ≤ 1/δ + O(1) such that the ith stratum contains Ω(δεn) vertices. For all these
vertices, the random walk algorithm to find minors succeeds with non-trivial probability.

2.3 The trapped case: local partitioning to the rescue

In this case, for almost all vertices ‖ps,`‖22 ≥ 1/nα. The proofs of the (contrapositive of the) Cheeger
inequality basically imply the existence of a set of low condutance cut Ps “around” s. By local
partitioning methods such as those of Spielman-Teng and Anderson-Chung-Lang [ST12, ACL06],
we can actually find Ps in roughly nα time. We expect our graph to basically decompose into
O(nα) sized components with few edges between them. Our algorithm can simply find these pieces
Ps and run a planarity test on them. We refer to this as the local search procedure.

While the intuition is correct, the analysis is difficult. The main problem is that actual parti-

6

tioning of the graph (into small components connected by low conductance cuts) is fundamentally
iterative. It starts by finding a low conductance set Ps1 , then finding a low conductance set Ps2
in Ps1 , then Ps3 in Ps1 ∪ Ps2 , and so on. In general, this requires conditions on the random walk
behavior inside

⋃
j<i Psj . On the other hand, our algorithm and the trapped case condition only

refer to random walk behavior in all of G. Furthermore,
⋃
j<i Psj can be as small as Θ(εn), and so

we do expect the random walk behavior to be quite different.
The GR bipartiteness analysis surmounts this problem and performs such a decomposition, but

their parameters do not work for us. Starting from a source vertex s, their analysis discovers Ps
such that probabilities of reaching any vertex in Ps (from s) is roughly uniform and smaller than
1/
√
n. On the other hand, we would like to discover all of Ps in nO(δ) time so that we can run a

full planarity test.
We employ a collection of tools, and use the methods of Kale-Peres-Seshadhri to analyze “pro-

jected” Markov Chains [KPS13]. In the analysis above, we have some set S (
⋃
j<i Psj) and want

to find a low conductance set P completely contained in S. Moreover, we wish to discover P using
random walks in G. We construct a Markov chain, MS , with vertex set S, and include new transi-
tions that correspond to walks in G whose intermediate vertices are not in S. Each such transition
has an associated “cost,” corresponding to the actual length in G. (GR also have a similar idea,
although their Markov chain introduces extra vertices to track the length of the walk in G. This
makes the analysis somewhat unwieldy, since low conductance cuts in MS may include these extra
vertices.)

Using bounds on the return time of random walks, we have relationships between the average
length of a walk in G whose endpoints are in S and the corresponding length when “projected”
to MS . On average, an `-length walk in G with endpoints in S corresponds to an `|S|/n-length
walk in MS . Roughly speaking, we hope that for many vertices s, an `|S|/n-length walk in MS is
trapped in a set of size nα.

We employ the Lovász-Simonovits curve technique to produce a low conductance cut Ps in
MS [LS90]. We can guarantee that all vertices in Ps are reachable with roughly n−α probability
from s through `|S|/n-length random walks in MS . Using the average length correspondence
between walks in MS to G, we can make a similar statement in G - albeit with a longer length.
We basically iterate over this entire argument to produce the decomposition into low conductance
pieces.

In our analysis, we use the stratification itself to (implicitly) distinguish between the leaky and
trapped case. Stratification peels the graph into 1/δ + O(1) strata. If a vertex s lies in a stratum
numbered at least some fixed constant b, we can show that the algorithm finds a Kr-minor with s
as the starting vertex. Thus, if at least (say) n1−δ vertices lie in stratum b or higher, we are done.
If s is in a low strata, we have a lower bound on the random walks norm. This allows for local
partitioning around s.

3 The algorithm

We are given a bounded degree graph G = (V,E), with max degree d. We assume that V = [n].
We follow the standard adjacency list model of Goldreich-Ron for (random) access to the graph.
This model allows an algorithm to sample u.a.r. vertices and perform edge queries. Given a pair
(v, i) ∈ [n] × [d], the output of an edge query is the ith neighbor of v according to the adjacency
list ordering. If the degree of v is smaller than i, the output is ⊥.

7

In the algorithm, the phrase “random walk” refers to a lazy random walk on G. Given a
current vertex v, with probability 1/2, the walk remains at v. With probability 1/2, the procedure
generates u.a.r. i ∈ [d]. It performs the edge query for (v, i). If the output is ⊥, the walk remains
at v, otherwise the walk visits the output vertex. This is a symmetric, ergodic Markov chain with
a uniform stationary distribution.

Our main procedure FindMinor(G, ε,H), tries to find a H-minor in G. We prove that it succeeds
with high probability if G is ε-far from being H-minor free. There are three subroutines:

• LocalSearch(s): This procedure perform a small number of short random walks to find the
piece described in §2.3. This produces a small subgraph of G, where an exact H-minor finding
algorithm is used.
• FindPath(u, v, k, i): This procedure tries to find a path from u to v. The parameter i decides

the length of the walk, and the procedure performs k walks from u and v. If any pair of these walks
collide, this path is output.
• FindBiclique(s): This is the main procedure mostly as described in §2.1. It attempts to

find a sufficiently large biclique minor. First, it generates seed sets A and B by performing random
walks from s. Then, it calls FindPath on all pairs in A×B.

We fix a collection of parameters.
• δ: An arbitrarily small constant.
• r: The number of vertices in H.
• `: The random walk length. This will be n5δ.

• εCUTOFF: εCUTOFF = n
−δ

exp(2/δ) . If ε < εCUTOFF, the algorithm just queries the whole graph.
• KKR(F,H): This refers to an exact H-minor finding process (in F). For concreteness, we use

the quadratic time procedure of Kawarabayashi-Kobayashi-Reed [KKR12].

FindMinor(G, ε,H)

1. If ε < εCUTOFF, query all of G, and output KKR(G,H)
2. Else

(a) Repeat ε−2n35δr
4

times:
i. Pick uar s ∈ V
ii. Call LocalSearch(s) and FindBiclique(s).

LocalSearch(s)

1. Initialize set B = ∅.
2. For h = 1, . . . , n7δr

4
:

(a) Perform ε−1n30δr
4

independent random walks of length h from s. Add all
destination vertices to B.

3. Determine G[B], the subgraph induced by B.
4. Run KKR(G[B], H). If it returns an H-minor, output that and terminate.

8

FindBiclique(s)

1. For i = 5r4, . . . , 1/δ + 4:
(a) Perform 2r2 independent random walks of length 2i+1` from s. Let the destina-

tions of the first r2 walks be multiset A, and the destinations of the remaining
walks be B.

(b) For each a ∈ A, b ∈ B:
i. Run FindPath(a, b, nδ(i+18)/2, i)

(c) If all calls to FindPath return a path, then let the collection of paths be
the subgraph F . Run KKR(F,H). If it returns an H-minor, output that and
terminate.

FindPath(u, v, k, i)

1. Perform k random walks of length 2i` from u and v.
2. If a walk from u and v terminate at the same vertex, return these paths. (Otherwise,

return nothing.)

Theorem 3.1. If G is ε-far from being H-minor free, then FindMinor(G, ε,H) finds an H-minor
of G with probability at least 2/3. Furthermore, FindMinor has a running time of dn1/2+O(δr4) +
dε−2 exp(2/δ)/δ.

The query complexity is fairly easy to compute. The total queries made in the LocalSearch

calls is dnO(δr4). The main work happens in the calls of FindPath, within FindBiclique. Observe
that k is set to nδ(i+18)/2, where i ≤ 1/δ + 4. This leads to the

√
n in the final complexity. (In

general, a setting of δ < 1/ log(ε−1 log logn) suffices for an n1/2+o(1) running time.)
Outline: There are a number of moving parts in the proof, which we relegate to their own

subsections. We first develop the notion of R-returning walks and the stratification process, given
in §4. In §5, we use these techniques to prove that FindBiclique discovers a sufficiently large
biclique-minor in the leaky case. In §6, we prove a local partitioning lemma that will be used
to handle the trapped case. Finally, in §7, we put the tools together to complete the proof of
Theorem 3.1.

4 Returning walks and stratification

We introduce the concept of R-returning random walks for any R ⊆ V . These definitions are with
respect to a fixed length `.

Definition 4.1. For any set of vertices R, s ∈ R, u ∈ R, and i ∈ N, we define the R-returning

probability as follows. We denote by q
(i)
[R],s(u) the probability that a 2i`-length random walk from

s ends at u, and encounters a vertex in S at every j`th step, for all 1 ≤ j ≤ 2i. The R-returning

probability vector, denoted by q
(i)
[R],s, is the |R|-dimensional vector of returning probabilities.

Proposition 4.2. q
(i+1)
[R],s (u) = q

(i)
[R],s · q

(i)
[R],u

Proof. We use the symmetry of (returning) random walks in G.

q
(i+1)
[R],s (u) =

∑
w∈S

q
(i)
[R],s(w)q

(i)
[R],w(u) =

∑
w∈R

q
(u)
[R],s(w)q

(i)
[R],u(w) = q

(i)
[R],s · q

(i)
[R],u

9

Let M be the transition matrix of the lazy random walk on G. Let PR be the n×|R| matrix on
R, where each column is the unit vector for some s ∈ R. For any set U , we use 1U for the indicator
vector on U . If no subscript is given, it is the all ones vector, for the appropriate dimension.

Proposition 4.3. q
(i)
[R],s = (PTRM `PR)2

i
1s

Now for a critical lemma. We can lower bound the total probability of an R-returning random
walk. If R contains at least a β-fraction of vertices, the average R-returning walk probability, for t
returns, is at least βt.

Lemma 4.4. |R|−1
∑

s∈R ‖q
(i)
[R],s‖1 ≥ (|R|/n)2

i

Proof. We will express
∑

s∈R ‖q
(i)
[R],s‖1 = 1T (PTRM `PR)2

i
1. Let us first prove the lemma for i = 0.

Observe that
∑

s∈R ‖q
(0)
[R],s‖1 = 1TRM

`1R = ((MT)`/21R)T (M `/21R) = ‖M `/21R‖22. Since M `/2 is

a stochastic matrix, ‖M `/21R‖1 = ‖1R‖1 = |R|. By a standard norm inequality, ‖M `/21R‖22 ≥
‖M `/21R‖21/n = |R|2/n. This completes the proof for i = 0.

Let N = PTRM `PR, which is a symmetric matrix. We have just proven that 1TN1 ≥ |R|2/n.
Let the eigenvalues of N be 1 ≥ λ1 ≥ λ2 . . . λ|R|, with corresponding eigenvectors u1,u2, . . . ,us.

We can express 1 =
∑

k≤|R| αkuk, where
∑

k α
2
k = |R|. Observe that N2i1 =

∑
k≤|R| αkλ

2i

k uk

Let µk = α2
k/
∑

j α
2
j , noting that

∑
k µk = 1. We apply Jensen’s inequality below.

1TN2i1

|R|
=

∑
k α

2
kλ

2i

k∑
j α

2
j

=
∑
k

µkλ
2i

k ≥ (
∑
k

µkλk)
2i

For i = 0, we already proved that 1TN1/|R| =
∑

k µkλk ≥ |R|/n. We plug this bound to
complete the proof for general i.

4.1 Stratification

Stratification results in a collection of disjoint sets of vertices denoted by S0, S1, . . . which are called
strata. The corresponding residue sets denoted by R0, R1, The zeroth residue R0 is initialized
before stratification and subsequent residues are defined by the recurrence Ri = R0 \

⋃
j<i Sj . The

definitions and claims may seem technical, and the proofs are mostly norm manipulations. But
these provide the tools to analyze our main algorithm.

Definition 4.5. Suppose Ri has been constructed. A vertex s ∈ Ri is placed in Si if ‖q(i+1)
[Ri],s
‖22 ≥

1/nδi.

We have an upper bound for the length of Ri-returning walk vectors.

Claim 4.6. For all s ∈ Ri and 1 ≤ j ≤ i, ‖q(j)[Ri],s
‖22 ≤ 1/nδ(j−1).

Proof. Suppose ∃j ≤ i, ‖q(j)[Ri],s
‖22 > 1/nδ(j−1). By assumption, s ∈ Ri ⊆ Rj−1. An Ri-returning

walk from s is also an Rj−1-returning walk. Thus, every entry of q
(j)
[Rj−1],s

is at least that of q
(j)
[Ri],s

. So

‖q(j)[Rj−1],s
‖22 ≥ ‖q

(j)
[Ri],s
‖22 > 1/nδ(j−1). This implies that s ∈ Sj−1 or an earlier stratum, contradicting

the assumption that s ∈ Ri.

10

We prove an `∞ bound on the returning probability vectors. Note that we allow j to be i + 1
in the following bound.

Claim 4.7. For all s ∈ Ri and 2 ≤ j ≤ i+ 1, ‖q(j)[Ri],s
‖∞ ≤ 1/nδ(j−2).

Proof. By Prop. 4.2, for any v ∈ Ri, q
(j)
[Ri],s

(v) = q
(j−1)
[Ri],s

· q(j−1)[Ri],v
. Note that 1 ≤ j − 1 ≤ i. By

Cauchy-Schwartz and Claim 4.6, q
(j)
[Ri],s

(v) ≤ 1/nδ(j−2).

As a consequence of these bounds, we are able to bound the amount of probability mass retained
by Ri-returning walks.

Claim 4.8. For all s ∈ Si, ||q(i+1)
[Ri],s
||1 ≥ n−δ.

Proof. Since s ∈ Si, ||q(i+1)
[Ri],s
||22 ≥ n−iδ, and by Claim 4.7, ||q(i+1)

[Ri],s
||∞ ≤ n−δ(i−1). Since, ||q(i+1)

[Ri],s
||22 ≤

||q(i+1)
[Ri],s
||1||q(i+1)

[Ri],s
||∞, we conclude ||q(i+1)

[Ri],s
||1 ≥ n−iδnδ(i−1) = n−δ.

We prove that most vertices lie in “early” strata.

Lemma 4.9. Suppose ε ≥ εCUTOFF. At most εn/log n vertices are in R1/δ+3.

Proof. We prove by contradiction. Suppose that R1/δ+3 has at least εn/ log n vertices. The previous
residue, R1/δ+2, is only bigger and thus |R1/δ+2| ≥ εn/ log n as well. By Lemma 4.4,

|R1/δ+2|−1
∑

s∈R1/δ+2

‖q(1/δ+3)
[R1/δ+2],s

‖1 ≥
(

ε

log n

)21/δ+3

. (1)

By averaging and a standard l1-l2 norm inequality,

||q(1/δ+3)
[R1/δ+2],s

‖22 ≥ n−1
(

ε

log n

)21/δ+4

. (2)

By assumption, ε ≥ εCUTOFF ≥ n−δ/ exp(1/δ). For sufficiently small δ, δ/ exp(1/δ) < 2δ/21/δ+4.

Thus, ε ≥ (log n)n−2δ/(2
1/δ+4). Plugging into the RHS of the previous equation, ||q(1/δ+3)

[R1/δ+2],s
‖22 ≥

1/n1+2δ = 1/nδ(1/δ+2). This implies that v ∈ S1/δ+2, a contradiction.

4.2 The correlation lemma

The following lemma is an important tool in our analysis. Here is an intuitive explanation. Fix

some s ∈ Si. By Prop. 4.2, the probability q
(i+1)
[Ri],s

(v) is the correlation between the vectors q
(i)
[Ri],s

and q
(i)
[Ri],v

. If many of these probabilities are large, then there are many v such that q
(i)
[Ri],v

is

correlated with q
(i)
[Ri],s

. We then expect many of these vectors are correlated among themselves.

Definition 4.10. For s ∈ Ri, the distribution Ds,i has support Ri, and the probability of u ∈ Ri is

q̂
(i+1)
[Ri],s

(v) = q
(i+1)
[Ri],s

(v)/‖q(i+1)
[Ri],s
‖1.

11

Lemma 4.11. Fix arbitrary s ∈ Ri.

Eu1,u2∼Ds,i [q
(i)
[Ri],u1

· q(i)[Ri],u2
] ≥ 1

‖q(i+1)
[Ri],s
‖21
·
‖q(i+1)

[Ri],s
‖42

‖q(i)[Ri],s
‖22

Proof.

Eu1,u2∼Ds,i [q
(i)
[Ri],u1

· q(i)[Ri],u2
] (3)

=
∑

u1,u2∈Ri

‖q(i+1)
[Ri],s
‖−21 q

(i+1)
[Ri],s

(u1)q
(i+1)
[Ri],s

(u2)q
(i)
[Ri],u1

· q(i)[Ri],u2
(4)

=‖q(i+1)
[Ri],s
‖−21

∑
u1,u2∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u1
)(q

(i)
[Ri],s

· q(i)[Ri],u2
)(q

(i)
[Ri],u1

· q(i)[Ri],u2
) (Prop. 4.2) (5)

=‖q(i+1)
[Ri],s
‖−21

∑
u1,u2∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u1
)(q

(i)
[Ri],s

· q(i)[Ri],u2
)
∑
w∈Ri

q
(i)
[Ri],u1

(w)q
(i)
[Ri],u2

(w)) (6)

=‖q(i+1)
[Ri],s
‖−21

∑
w∈Ri

∑
u1,u2∈Ri

[(q
(i)
[Ri],s

· q(i)[Ri],u1
)q

(i)
[Ri],u1

(w)][(q
(i)
[Ri],s

· q(i)[Ri],u2
)q

(i)
[Ri],u2

(w)] (7)

=‖q(i+1)
[Ri],s
‖−21

∑
w∈Ri

∑
u∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u
)q

(i)
[Ri],u

(w)

2

(8)

We now write out ‖q(i+1)
[Ri],s
‖22 =

∑
u∈Ri q

(i+1)
[Ri],s

(u)2 =
∑

u∈Ri(q
(i)
[Ri],s

· q(i)[Ri],u
)2, by Prop. 4.2. We

expand further below. The only inequality is Cauchy-Schwartz.

‖q(i+1)
[Ri],s
‖22 =

∑
u∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u
)
∑
w∈Ri

q
(i)
[Ri],s

(w)q
(i)
[Ri],u

(w) (9)

=
∑
w∈Ri

q
(i)
[Ri],s

(w)
[∑
u∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u
)q

(i)
[Ri],u

(w)
]

(10)

≤
√∑
w∈Ri

q
(i)
[Ri],s

(w)2
√∑
w∈Ri

[∑
u∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u
)q

(i)
[Ri],u

(w)
]2

(11)

= ‖q(i)[Ri],s
‖2‖q(i+1)

[Ri],s
‖1
√

Eu1,u2∼Dsi [q
(i)
[Ri],u1

· q(i)[Ri],u2
] (by (8)) (12)

We rearrange and take squares to complete the proof.

We can apply previous norm bounds to get an explicit lower bound. To see the significance of

the following lemma, note that by Claim 4.6 and Cauchy-Schwartz, ∀u1, u2 ∈ Ri, q(i)[Ri],u1
·q(i)[Ri],u2

≤
1/nδ(i−1) (fairly close to the lower bound below).

Lemma 4.12. Fix arbitrary s ∈ Si.

Eu1,u2∼Ds,i [q
(i)
[Ri],u1

· q(i)[Ri],u2
] ≥ 1/nδ(i+1)

Proof. By Lemma 4.11, the LHS is at least 1

‖q(i+1)
[Ri],s

‖21
·
‖q(i+1)

[Ri],s
‖42

‖q(i)
[Ri],s

‖22
. Note that ‖q(i+1)

[Ri],s
‖1 ≤ 1. By

Definition 4.5, ‖q(i+1)
[Ri],s
‖22 ≥ 1/nδi. Since s ∈ Si ⊆ Ri, by Claim 4.6, ‖q(i)[Ri],s

‖22 ≤ 1/nδ(i−1).

12

5 Analysis of FindBiclique

This is the central theorem of our analysis. It shows that the FindBiclique(s) procedure discovers
a Kr2,r2 minor with non-trivial probability when s is in a sufficiently high stratum.

Theorem 5.1. Suppose s ∈ Si, for 5r4 ≤ i ≤ 1/δ + 3. The probability that the paths discovered in
FindBiclique(s) contain a Kr2,r2 minor is at least n−4δr

4
.

Theorem 5.1 is proved in §5.5. Towards the proof, we will need multiple tools. In §5.1, we
perform a standard calculation to bound the success probability of FindPath. In §5.2, we use this
bound to show that the sets A and B sampled by FindBiclique are successfully connected by paths
as discovered by FindPath. In §5.3, we argue that the intersections of these paths is “well-behaved”
enough to induce a Kr2,r2 minor.

We note that the
√
n in the final running time comes from the calls to FindPath in FindBiclique.

5.1 The procedure FindPath

For convenience, we reproduce the procedure FindPath. It is a relatively straightforward application
of a birthday paradox argument for bidirectional path finding.

FindPath(u, v, k, i)

1. Perform k random walks of length 2i` from u and v.
2. If a walk from u and v terminate at the same vertex, return these paths.

Lemma 5.2. Let c be a sufficiently large constant. Consider u, v ∈ Ri. Suppose there exist

α ≤ β such that max(‖q(i)[Ri],u
‖22, ‖q

(i)
[Ri],v
‖22) ≤ 1/nα and q

(i)
[Ri],u

· q(i)[Ri],v
≥ 1/2nβ. Then, with k ≥

cnβ/2+4(β−α), FindPath(u, v, k, i) returns an Ri-returning path of length 2i+1` with probability ≥
2/3.

Proof. First, define W = {w|q(i)[Ri],u
(w)/q

(i)
[Ri],v

(w) ∈ [1/(8nβ−α), 8nβ−α]}.∑
w/∈W

q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) ≤ (8nβ−α)−1
∑
w/∈W

max(q
(i)
[Ri],u

(w), q
(i)
[Ri],v

(w))2

≤(8nβ−α)−1(‖q(i)[Ri],u
‖22 + ‖q(i)[Ri],v

‖22) ≤ 1/4nβ

Therefore,
∑

w∈W q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) ≥ 1/2nβ.

For a, b ≤ k, let Xa,b be the indicator for the following event: the ath 2i`-length random walk
from u is an Ri-returning walk that ends at some w ∈ W , and the bth random walk from v is
also Ri-returning, ending at the same w. Let X =

∑
a,b≤kXa,b. Observe that the probability that

FindPath(u, v, k, i) returns a path is at least Pr[X > 0].

We can bound E[
∑

a,b≤kXa,b] = k2
∑

w∈W q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) ≥ k2/4nβ ≥ (c2/4)n4(β−α). Let
us now bound the variance. First, let us expand out the expected square.

E[(
∑
a,b

Xa,b)
2] =

∑
a,b

E[X2
a,b] + 2

∑
a6=a′,b

E[Xa,bXa′,b] + 2
∑
a,b 6=b′

E[Xa,bXa′,b] + 2
∑

a6=a′,b 6=b′
E[Xa,bXa′,b′]

(13)

13

Observe that X2
a,b = Xa,b. Furthermore, for a 6= a′, b 6= b′, by independence of the walks,

E[Xa,bXa′,b′] = E[Xa,b]E[Xa′,b′]. (This term will cancel out in the variance.) By symmetry,∑
a6=a′,b E[Xa,bXa′,b] ≤ k3E[X1,1X2,1] (and analogously for the third term in (13)). Plugging these

in and expanding out the E[X]2,

var[X] ≤ E[X] + 2k3E[X1,1X2,1] + 2k3E[X1,1X1,2]

Note that X1,1X2,1 = 1 when the first and second walks from u end at the same vertex where the

first walk from v ends. Thus, E[X1,1X2,1] =
∑

w∈W q
(i)
[Ri],u

(w)2q
(i)
[Ri],v

(w). Since w ∈W , q
(i)
[Ri],v

(w) ≤

8nβ−αq
(i)
[Ri],u

(w). Plugging this bound in,

2k3E[X1,1X2,1] ≤ 16k3nβ−α
∑
w∈W

q
(i)
[Ri],u

(w)3 ≤ 16k3nβ−α[
∑
w∈W

q
(i)
[Ri],u

(w)2]3/2 (14)

= 16nβ−α[k2
∑
w∈W

q
(i)
[Ri],u

(w)2]3/2 (15)

≤ 64n2(β−α)[k2
∑
w∈W

q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w)]3/2 (16)

≤ (E[X]1/2/(c/128))(E[X]3/2) = E[X]2/(c/128) (17)

(For the last line, we use the bound E[X] ≥ (c2/4)n4(β−α). We get an identical bound for
2k3E[X1,1X1,2]. Putting it all together, we can prove that var[X] ≤ 4E[X]2/c′. An application of
Chebyshev proves that Pr[X > 0] > 2/3.

5.2 The procedure FindBiclique

For convenience, we reproduce FindBiclique.

FindBiclique(s)

1. For i = 5r4, . . . , 1/δ + 4:
(a) Perform 2r2 independent random walks of length 2i+1` from s. Let the destina-

tions of the first r2 walks be multiset A, and the destinations of the remaining
walks be B.

(b) For each a ∈ A, b ∈ B:
i. Run FindPath(a, b, nδ(i+18)/2, i)

(c) If all calls to FindPath return a path, then let the collection of paths be
the subgraph F . Run KKR(F,H). If it returns an H-minor, output that and
terminate.

Lemma 5.3. Suppose s ∈ Si, for some i ≤ 1/δ+ 4. Condition on the event that A,B ⊆ Ri, during
the ith iteration in FindBiclique(s). With probability (4n2δ)−r

4
, the calls to FindPath output

paths from every a ∈ A to every b ∈ B, where each path is an Ri-returning walk of length 2i+1`.

Proof. The probability that a 2i+1`-length random walk from s ends at u is at least q
(i+1)
[Si],s

(u)

= q̂
(i+1)
[Ri],s

(u)‖q(i+1)
[Ri],s
‖1. In the rest of the proof, let t = |A| = |B| = r2 denote the common size of the

multisets A and B. For any a, b ∈ V , let τa,b be the probability that FindPath(a, b, nδ(i+18)/2, i)

14

succeeds in finding an Ri-returning walk between a and b (of length 2i+1`). The probability of
success for FindBiclique(s) conditioned on A,B ⊆ Ri is at least∑
A∈Rti

∑
B∈Rti

∏
a∈A

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

q̂
(i+1)
[Ri],s

(b)τa,b =
∑
A∈Rti

∑
B∈Rti

∏
a∈A

q̂
(i+1)
[Ri],s

(a)
(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)(∏

b∈B
τa,b

)
(18)

=
∑
B∈Rti

(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
) ∑
A∈Rti

∏
a∈A

[
q̂
(i+1)
[Ri],s

(a)
(∏
b∈B

τa,b

)]
=

∑
B∈Rti

∏
b∈B

q̂
(i+1)
[Ri],s

(b)
(∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

)t
. (19)

Observe that
∏
b∈B q̂

(i+1)
[Ri],s

(b) is a probability distribution over B. By Jensen, we lower bound.

∑
B∈Rti

(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)(∑

a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

)t
≥
[∑
B∈Rti

(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
) ∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

]t
(20)

We manipulate and expand further.[∑
B∈Rti

(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
) ∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

]t
(21)

=
[∑
a∈Ri

∑
B∈Rti

q̂
(i+1)
[Ri],s

(a)
(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)(∏

b∈B
τa,b

)]t
(22)

=
[∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∑
B∈Rti

∏
b∈B

q̂
(i+1)
[Ri],s

(b)τa,b

]t
(23)

=
[∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
(∑
b∈Ri

q̂
(i+1)
[Ri],s

(b)τa,b
)t]t

(24)

≥
[∑
a∈Ri

∑
b∈Ri

q̂
(i+1)
[Ri],s

(a)q̂
(i+1)
[Ri],s

(b)τa,b

]t2
(Jensen) (25)

=
[
Ea,b∼Ds,i [τa,b]

]t2
. (26)

Towards lower bounding τa,b, we first lower bound q
(i)
[Ri],a

· q(i)[Ri],b
. By Lemma 4.12, Ea,b[q

(i)
[Ri],a

·

q
(i)
[Ri],b

] ≥ 1/nδ(i+1). Applying Cauchy-Schwartz, q
(i)
[Ri],a

· q(i)[Ri],b
≤ 1/nδ(i−1). Let p be the probability

(over a, b) that q
(i)
[Ri],a

· q(i)[Ri],b
≥ 1/2nδ(i+1).

1/nδ(i+1) ≤ Ea,b[q
(i)
[Ri],a

· q(i)[Ri],b
] ≤ (1− p)/2nδ(i+1) + p/nδ(i−1)

Thus, p ≥ 1/2n2δ.

By Claim 4.6, for every a ∈ Ri, ‖q(i)[Ri],a
‖22 ≤ 1/nδ(i−1) (similarly for b ∈ Ri). Suppose q

(i)
[Ri],a

·

q
(i)
[Ri],b

≥ 1/2nδ(i+1). Let us apply Lemma 5.2, with α = δ(i − 1) and β = δ(i + 1). The number

of paths taken in FindPath (the value k) is nδ(i+18)/2. Note that δ(i + 18)/2 > δ(i + 1)/2 + 8δ =

15

β/2 + 4(α − β). By Lemma 5.2, in this case, τ ≥ 1/2. As argued in the previous paragraph, this
will happen with probability 1/2n2δ (over the choice of a, b ∼ Ds,i). We plug in (26) and deduce

that the probability of success is at least (1/4n2δ)r
4
.

5.3 Criteria for FindBiclique to reveal a minor

Fix s ∈ Si, as in Lemma 5.3. This lemma only asserts that all pairs in A × B are connected
by FindBiclique (with non-trivial probability). We need to argue that these paths will actually
induce a Kr2,r2-minor.

As in Lemma 5.3, let us focus on the ith iteration within FindBiclique, and condition on
A,B ∈ Ri. For every a ∈ A, b ∈ B, there is a call to FindPath(a, b, nδ(i+18)/2, i). Within each such
call, a set of walks is performed from both a and b, with the hope of connecting a to b. We use
a, a′ (resp. b, b′) to refer to elements in A (resp. B).
• Let W b

a be the set of walks from a performed in the call to FindPath(a, b, nδ(i+18)/2, i) that
are Ri-returning. We stress that these walks do not necessarily end at b, and come from a distri-
bution independent of b (but we wish to track the specific call of FindPath where these walks were
performed). Note that W a

b is the set of Ri-returning walks from b, performed in the same call.
We use Wa to denote the set of all vertices in

⋃
b∈BW

b
a .

• Let Pa,b be a single path from a to b discovered by FindPath(a, b, nδ(i+18)/2, i), that consists
of a walk in W b

a and a walk W a
b that end at the same vertex. If there are many possible such

paths, pick the lexicographically least.

Note that any of the paths/sets described above could be empty. We will think of paths as
sequences, rather than sets, since the order in which the path is constructed is relevant. For any
path P , we use P (t) to denote the tth element in the sequence. We use P (≥ t) to denote the sequence
of elements with index at least t. When we refer to intersections of paths being empty/non-empty,
we refer to sets induced by the corresponding sequence.

For s ∈ Si, conditioned on A,B ⊆ Ri, Lemma 5.3 gives a lower bound on Pr[
⋂
a∈A,b∈B Pa,b 6= ∅].

We will define some bad events that interfere with minor structure.
Recall that A and B are multisets. (It is convenient to think of them as sequences.) The same

vertex may appear multiple times in A ∪B, but we think of each occurrence as a distinct multiset
element. Therefore, equality refers to vertex at the same index in A (or B). By definition, elements
in A are disjoint from B.

Definition 5.4. The following events are referred to as bad events of Type 1, 2, or 3. We set
τ = 2i−1`.

1. ∃a, b, c ∈ A ∪B, c 6= a, b, such that Wc ∩ Pa,b 6= ∅.
2. ∃a, b, b′ (all distinct) such that ∃W ∈W b

a where W (≥ τ) ∩ Pa,b′ 6= ∅. (Or, ∃a, a′ ∈ A, b ∈ B,
all distinct, such that ∃W ∈W a

b where W (≥ τ) ∩ Pa′,b 6= ∅.)
3. ∃a, b,Wa ∈ W b

a ,Wb ∈ W a
b such that Wa,Wb end at the same vertex and ∃t1, t2 such that

min(t1, t2) ≤ τ and Wa(t1) = Wb(t2).

For clarity, let us express the above bad events in plain English. Note that τ is the index of the
midpoint of the walks, so it splits walks into halves.

1. A walk from c ∈ A ∪B intersects Pa,b, where c 6= a, b.
2. The second half of a walk in W b

a (which starts from a) intersects Pa,b′ for b 6= b′.

16

3. A walk in W b
a and a walk in W a

b intersect twice. Note that this is a pair of walks, one from
a and the other from b. The first intersection is in the first half of either of the walks. The walks
also end at the same vertex.

Claim 5.5. If all Pa,b sets are non-empty and there is no bad event, then
⋃
a,b Pa,b contains a

Kr2,r2-minor.

Proof. The Pa,bs may not form simple paths, and it will be convenient to “clean them up”. Each
Pa,b is formed by Wa ∈W b

a and Wb ∈W a
b that end at the same vertex. Since there is no Type 3 bad

event, Wa(≤ τ) is disjoint from Wb (and vice versa). Therefore (by removing self-intersections and
loops), we can construct a simple path from a to b with the following (vertex) disjoint contiguous

simple paths: Qa,b ⊆Wa(≤ τ), P̂a,b ⊆Wa(≥ τ) ∪Wb(≥ τ), and Qb,a ⊆Wb(≤ τ).
In each bullet below, we first make a statement about the disjointness of these various sets.

The proof follows immediately. We consider a, a′ ∈ A and b, b′ ∈ B, where the elements in A (or
B) might be equal.
• If a 6= a′, Qa,b ∩Qa′,b′ = ∅. If b 6= b′, Qb,a ∩Qb′,a′ = ∅.

Consider the first statement. (Note that we allow b = b′.) Observe that Qa,b ⊆ Wa and Qa′,b′ ⊆
Pa′,b′ . So Wa ∩ Pa′,b′ 6= ∅, implying a Type 1 bad event. The second statement has an analogous
proof.
• Qa,b ∩Qb′,a′ = ∅.

If a = a′, b = b′, then this holds by the argument in the first paragraph (no Type 3 bad events).
Suppose a 6= a′. Then (as before), Qa,b ⊆ Wa and Qb′,a′ ⊆ Pa′,b′ . Since no Type 1 bad events
occur, Wa ∩ Pa′,b′ = ∅. The case b 6= b′ is analogous.

• If a 6= a′ or b 6= b′, P̂a,b ∩ Pa′,b′ = ∅.
Wlog, assume a 6= a′. Note that P̂a,b ⊆ Wa(≥ τ) ∪Wb(≥ τ), where Wa ∈ W b

a and Wb ∈ W a
b . If

Wa(≥ τ) ∩ Pa′,b′ 6= ∅, then Wa ∩ Pa′,b′ 6= ∅ (a Type 1 bad event). Suppose Wb(≥ τ) ∩ Pa′,b′ 6= ∅. If
b 6= b′, this is Type 1 bad event. So suppose b = b′, so Wb(≥ τ) ∩ Pa′,b 6= ∅. Since Wb ∈W a

b (for
a 6= a′), this is Type 2 bad event.

We construct the minor. Let C(a) =
⋃
b∈B Qa,b and C(b) =

⋃
a∈AQb,a. Each C(a), C(b)

forms a connected subgraph. By the disjointness properties of the Qa,b sets, all the C(a), C(b)

sets/subgraphs are vertex disjoint. Note that P̂a,b is disjoint from all other Pa′,b′ paths and all the
C(a), C(b) sets. (We construct Pa,b to be disjoint from Qa,b and Qb,a in the first paragraph. Every
other Qa′,b′ is contained in Pa′,b′ .) Thus, we have disjoint paths from each C(a) to C(b), which
gives a Kr2,r2-minor.

5.4 The probabilities of bad events

In this section, we bound the probability of bad events, as detailed in Definition 5.4. As before, we
fix s ∈ Si and condition on A ∪B ⊆ Ri.

We require some technical definitions of random walk probabilities.

Definition 5.6. Let σs,S,t(v) be the probability of a walk from s to v of length t being S-returning.
(We allow ` - t, and require that the walk encounters S at every j`th step, for j ≤ bt/`c.)

We use σs,S,t to denote the vector of these probabilities. More generally, given any distribution
vector x on V , σx,S,t denotes the vector of S-returning walk probabilities at time t.

17

We stress that this is not a conditional probability. Note that if t = 2i`, then σs,S,t = q
(i)
[S],s.

We show some simple propositions on these vectors. Let IS denote the n×n matrix that preserves
all coordinates in S and zeroes out other coordinates.

Proposition 5.7. The vector σx,S,t evolves according to the following recurrence. Firstly, σx,S,0 =
x. For t ≥ 1 such that ` - t, σx,S,t = Mσx,S,t−1. For t ≥ 1 such that ` | t, σx,S,t = ISMσx,S,t−1

Proposition 5.8. For all x and all t ≥ 1, ‖σx,S,t‖∞ ≤ ‖σx,S,t−1‖∞.

Proof. Since M is a symmetric random walk matrix, it computes the “new” value at a vertex by
averaging the values of the neighbors (and itself). This can never increase the maximum value.
Furthermore, IS only zeroes out some coordinates. This proves the proposition.

In what follows, we fix the walk length to 2i`. To reduce clutter, we drop notational dependencies
on this length.

Definition 5.9. The distribution of 2i`-length walks from u is denotedWu. For any walk W , Wu(t)
denotes the tth vertex of the walk.

The Boolean predicate ρ(Wu) is true if Wu is Ri-returning.

Recall that Ds,i is the distribution with support Ri, where the probability of u ∈ Ri is

q̂
(i+1)
[Ri],s

(v)/‖q(i+1)
[Ri],s
‖1 (Definition 4.10). Conditioned on a ∈ Ri, this is precisely the distribution

that the elements of the sets A,B are drawn from. Refer to FindBiclique, where A ∪ B are the
destinations of 2i+1` length random walks from s. Since i is fixed, we will simply write this as Ds.

Claim 5.10. For any F ⊆ V :
1.

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa ∩ F 6= ∅] ≤ 2i`|F |/(nδ(i−1)‖q(i+1)
[Ri],s
‖1).

2. For any a ∈ Ri,

Pr
Wa∼Wa

[∃t ≥ τ | ρ(Wa) ∧Wa(t) ∈ F] ≤ 2i`|F |/nδ(i−2)

Proof. We prove the first part. Let x be the probability vector corresponding to Ds. So ‖x‖∞ =

‖q(i+1)
[Ri],s
‖∞/‖q(i+1)

[Ri],s
‖1. By Prop. 5.8, ∀t ≥ 1, ‖σx,Ri,t‖∞ ≤ ‖x‖∞. sing Claim 4.7, this is at most

1/(nδ(i−1)‖q(i+1)
[Ri],s
‖1). We union bound over F and the walk length.

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa ∩ F 6= ∅] ≤
∑
t≤2i`

∑
v∈F

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa(t) = v]

≤
∑
t≤2i`

∑
v∈F
‖x‖∞ ≤ 2i`|F |/(nδ(i−1)‖q(i+1)

[Ri],s
‖1)

Now for the second part. By the union bound, the probability is bounded above by∑
t≥2i−1`

∑
u∈F

Pr
Wa∼Wa

[ρ(Wa) ∧Wa(t) = u] ≤
∑

t≥2i−1`

∑
u∈F
‖σa,Ri,t‖∞ (27)

By Prop. 5.8, the infinity norm is bounded above by ‖σa,Ri,2i−1`‖∞ = ‖q(i−1)[Ri],a
‖∞. By Claim 4.7,

the latter is at most 1/nδ(i−2). Plugging in (27), we get an upper bound of 2i−1`|F |/nδ(i−2).

18

Claim 5.11. For any a ∈ Ri,

Pr
b∼Ds,Wa∼Wa,Wb∼Wb

[ρ(Wa) ∧ ρ(Wb) ∧Wa(2
i`) = Wb(2

i`) ∧ (∃ta, tb,min(ta, tb) ≤ τ, Wa(ta) = Wb(tb))]

≤ 22i`2/(nδ(2i−2)‖q(i+1)
[Ri],s
‖1)

Proof. Let us write out the main event in English. We fix an arbitrary a, and pick b ∼ Ds. We
perform Ri-returning walks of length 2i` from both a and b. We are bounding the probability
that the “initial half” (less than 2i−1` steps) of one of the walks intersects with the other, and
subsequently, both walks end at the same vertex.

To that end, let us define two vertices w1, w2. We want to bound the probability of that both
walks first encounter w1, and then end at w2. It is be very useful to treat the latter part simply as
two walks from w1, where one of them is at least of length 2i−1`. Note that w1 might not be in Ri.

Let Za,t be the random variable denoting the tth vertex of a random walk from a. Let us also
define Ri-returning walks with an offset g, starting from w. Basically, such a walk starts from w
(that may not be in Ri) and performs g steps to end up in Ri. Subsequently, it behaves as an
Ri-returning walk. Observe that the second parts of the walks are Ri-returning walks from w1,
with offsets of ` − [ta(mod `)], ` − [tb(mod `)]. Let Yw,t be the random variable denoting the tth
vertex of an Ri-returning walk from w, with the offset `− [t(mod `)]. We use primed versions for
independent such variables.

Let us fix values for ta, tb such that min(ta, tb) ≤ τ = 2i−1`. (We will eventually union bound
over all such values.) The probability we wish to bound is the following. We use independence
of the walks to split the probabilities. There are four independent walks under consideration: one
from a, one from b, and two from w.∑

w1∈V

∑
w2∈V

Pr
b∼Ds,Wa,Wb,Ww1

[Za,ta = w1 ∧ Zb,tb = w1 ∧ Yw1,2i`−ta = w2 ∧ Y ′w1,2i`−tb = w2]

=
∑
w1∈V

∑
w2∈V

Pr
Wa

[Za,ta = w1] Pr
b∼Ds,Wb

[Zb,tb = w1] Pr
Ww1

[Yw1,2i`−ta = w2] Pr
Ww1

[Yw1,2i`−tb = w2]

Consider Prb∼Ds,Wb
[Zb,tb = w1]. This is exactly the w1th entry in σx,Ri,tb where x is the distribution

given by Ds. By Prop. 5.8, this is at most ‖x‖∞, which is at most 1/(nδ(i−1)‖q(i+1)
[Ri],s
‖1) (as argued

in the second pat of the proof of Claim 5.10).
Since min(ta, tb) ≤ τ , one of 2i`−ta, 2i`−tb is at least 2i−1`. Thus, one of PrWw1

[Yw1,2i`−ta = w2]

or PrWw1
[Yw1,2i`−tb = w2] refers to a walk of length at least 2i−1`. Let us bound PrWw1

[Yw1,t = w2]

for t ≥ 2i`. We can break such a walk into two parts: the first ` − [t(mod `)] steps lead to some
v ∈ Ri, and the second part is an Ri-returning walk of length at least 2i` from v to w. Recall that
px,d(y) is the standard random walk probability of starting from x and ending at y after d steps.
For some t′ ≥ 2i`,

Pr
Ww1

[Yw1,t = w2] =
∑
v∈Ri

pw1,`−[t(mod `)](v)σv,Ri,t′(w2) ≤
∑
v∈Ri

pw1,`−[t(mod `)](v)‖σv,Ri,t′‖∞

≤
∑
v∈Ri

pw1,`−[t(mod `)](v)‖q(i)[Ri],v
‖∞ ≤

∑
v∈Ri

pw1,`−[t(mod `)](v)n−δ(i−1) = n−δ(i−1)

19

Plugging these bounds in (28), for fixed ta, tb, there exists t ∈ {2i`− ta, 2i`− tb} such that the
probability of the main event is at most

(1/nδ(i−1)‖q(i+1)
[Ri],s
‖1) · (1/nδ(i−1))

∑
w1∈V

∑
w2∈V

Pr
Wa

[Za,ta = w1] Pr
Ww1

[Yw1,t = w2]

≤ 1/(nδ(2i−2)‖q(i+1)
[Ri],s
‖1)

∑
w1∈V

Pr
Wa

[Za,ta = w1]
∑
w2∈V

Pr
Ww1

[Yw1,t = w2] = 1/(nδ(2i−2)‖q(i+1)
[Ri],s
‖1)

A union bound over all pairs of ta, tb completes the proof.

We now bound the total probability of bad events. Most of the technical work is already done
in the previous lemmas; we only need to perform some union bounds.

Lemma 5.12. Conditioned on A ∪B ⊆ Ri, the total probability of bad events is at most

22i+4r8n30δ

nδi/2‖q(i+1)
[Ri],s
‖1

(28)

Proof. We bound the bad events by type. Recall that ` = n5δ.
Type 1: ∃a, b, c ∈ A ∪B, c 6= a, b, such that Wc ∩ Pa,b 6= ∅.
Fix a choice of a ∈ A, b ∈ B. Conditioned in A ∪ B ⊆ Ri, any c 6= a, b is drawn from Ds.

In Claim 5.10, set F = Pa,b. By the first part of Claim 5.10, the probability that a single walk

drawn from Wc is Ri-returning and intersects Pa,b is at most 2i`(2i+1`)/nδ(i−1)‖q(i+1)
[Ri],s
‖1. The set

Wc consists of at most r2nδ(i+18)/2 such walks. We union bound over all these walks, and all r4

choices of a, b, and plug in ` = n5δ to get an upper bound of

22i+1`2r6nδ(i+18)/2

nδ(i−1)‖q(i+1)
[Ri],s
‖1

=
22i+1r6n20δ

nδi/2‖q(i+1)
[Ri],s
‖1

Type 2: ∃a, b, b′ (all distinct) such that ∃W ∈ W b
a where W (≥ τ) ∩ Pa,b′ 6= ∅. (Or, ∃a, a′ ∈

A, b ∈ B with analogous conditions.)
Fix a, b, b′. Set F = Pa,b′ in Claim 5.10. By the second part of Claim 5.10, the probability that

a single walk from Wa is Ri-returning and intersects F at step ≥ τ is at most 2i`(2i+1`)/nδ(i−2).
We union bound over all the r2nδ(i+18)/2 walks in Wa and all r6 choices of a, b, b′. (We also union
bound over choosing b, b′ or a, a′.) The upper bound is 22i+1r6n21δ/nδi/2.

Type 3: ∃a, b,Wa ∈W b
a ,Wb ∈W a

b such that Wa,Wb end at the same vertex and ∃t1, t2 such
that min(t1, t2) ≤ τ and Wa(t1) = Wb(t2).

This case is qualitatively different. We will take a union bound over pairs of walks, and require
the stronger bound of Claim 5.11.

Fix a ∈ A. Observe that b ∼ Ds. For a single walk Wa ∼ Wa and a single walk Wb ∼
Wb, the probability of a Type 3 bad event is bounded by Claim 5.11. The upper bound is

22i`2/(nδ(2i−2)‖q(i+1)
[Ri],s
‖1). We union bound over the r4nδ(i+18) pairs of walks from a and b, and

then over the r4 choices of a, b. The final bound is:

22ir4`2nδ(i+18)

nδ(2i−2)‖q(i+1)
[Ri],s
‖1

=
22ir4n30δ

nδi‖q(i+1)
[Ri],s
‖1

20

We complete the proof by taking a union bound over the three types. Note that ‖q(i+1)
[Ri],s
‖1 ≤ 1,

so we can upper bound the probability of each type of bad event by 22i+1r8n30δ

nδi/2‖q(i+1)
[Ri],s

‖1
.

5.5 Proof of Theorem 5.1

Proof. Fix s ∈ Si. Let C be the event that A∪B ⊆ Ri, let E be the event
⋂
a∈A,b∈B Pa,b 6= ∅, and let

F be the union of bad events. By Claim 5.5, the probability that FindBiclique(s) find a minor is at
least Pr[E∩F]. We lower bound as follows: Pr[E∩F] ≥ Pr[C] Pr[E∩F|C] ≥ Pr[C](Pr[E|C]−Pr[F|C]).

Note that Pr[C] = ‖q(i+1)
[Ri],s
‖2r21 . By Claim 4.8, ‖q(i+1)

[Ri],s
‖1 ≥ n−δ, so Pr[C] ≥ n−2δr2 .

Lemma 5.3 provides a lower bound for Pr[E|C], and Lemma 5.12 provides an upper bound for
Pr[F|C]. We plug these bounds in below.

Pr[E|C]− Pr[F|C] ≥ 1

(4n2δ)r4
− 22i+4r8n30δ

nδi/2‖q(i+1)
[Ri],s
‖1

(29)

Observe how the positive term is independent of i, while the negative term decays exponentially
in i. This is crucial to argue that for a sufficiently large (constant) i, the lower bound is non-trivial.

When i ≥ 5r4, niδ/2 ≥ n2δr
4+δr4/2 ≥ n2δr

4+40δ (note that, r, the number of vertices in H, is at

least 3). By Claim 4.8, ‖q(i+1)
[Ri],s
‖1 ≥ n−δ. Thus, for sufficiently large n, Pr[F|C] ≤ 1/(2(4n2δ)r

4
).

Putting it all together, the probability of finding a Kr2,r2-minor is at least n−4δr
4
.

6 Local partitioning in the trapped case

Theorem 5.1 tells us that if there are Ω(n1−δ) vertices in strata numbered 5r4 and above, then
FindMinor finds a biclique minor with high probability. We deal with the case when most vertices
lie in low strata, i.e, random walks from most vertices are trapped in a very small subset.

We will argue that (almost) all vertices in low strata can be partitioned into “pieces”, such that
each piece is a low conductance cut, and (a superset of) each piece can be found by performing
random walks in G. If FindMinor fails to find a minor, this lemma can be iteratively applied to
make G H-minor free by removing few edges (this argument is given in §7).

We use ps,t(v) to denote the probability that at t length random walk from s ends at v.

Lemma 6.1. Let α ≥ n−δ/2. Consider some subset S ⊆ V and i ∈ N such that ∀s ∈ S, ‖q(i)[S],s‖
2
2 ≤

1/nδ(i−1). Define S′ ⊆ S to be {s|s ∈ S and ‖q(i+1)
[S],s ‖

2
2 ≥ 1/nδi}.

Suppose |S′| ≥ αn. Then, there is a subset S̃ ⊆ S′, |S̃| ≥ αn/8 such that for ∀s ∈ S̃: there
exists a subset Ps ⊆ S where
• E(Ps, S \ Ps) ≤ 2n−δ/4d|Ps|
• ∀v ∈ Ps, ∃t ≤ 160nδ(i+7)/α such that ps,t(v) ≥ α/nδ(2i+14).

The aim of this section is to prove this lemma. Henceforth, we will assume that S, S′ are as
defined in the lemma.

Using the norm bounds, we show that for every vertex s ∈ S′, there is a large set of destination
vertices that are all reached with high probability through random walks of length 2i+1`.

21

Claim 6.2. For every s ∈ S′, there exists a set Us ⊆ S, |Us| ≥ nδ(i−2), such that ∀u ∈ Us,
ps,2i+1`(u) ≥ 1/2nδi.

Proof. By Prop. 4.2, for any u ∈ U , q
(i+1)
[S],s (u) = q

(i)
[S],s · q

(i)
[S],u. By the property of S and Cauchy-

Schwartz, q
(i+1)
[S],s (u) ≤ 1/nδ(i−1).

Since s ∈ S′,
∑

u∈S q
(i+1)
[S],s (u)2 ≥ 1/nδi. Let us simply define Us to be {u|u ∈ S, q

(i+1)
[S],s (u) ≥

1/2nδi}. Note that ps,2i+1`(u) ≥ q(i+1)
[S],s (u).

1/nδi ≤
∑
u∈S

q
(i+1)
[S],s (u)2 =

∑
u∈Us

q
(i+1)
[S],s (u)2 +

∑
u/∈Us

q
(i+1)
[S],s (u)2 (30)

≤ |Us|/n2δ(i−1) + (1/2nδi)
∑
u/∈Us

q
(i+1)
[S],s (u) ≤ |Us|/n2δ(i−1) + 1/2nδi (31)

We rearrange to bound the size of Us.

6.1 Local partitioning on the projected Markov chain

We define the “projection” of the random walk onto the set S. This uses a construction of [KPS13].
We define a Markov chain MS over the set S. We retain all transitions from the original random

walk on G that are within S, and we denote these by e
(1)
u,v for every u to v transition in the random

walk on G. Additionally, for every u, v ∈ S and t ≥ 2, we add a transition e
(t)
u,v. The probability of

this transition is equal to the total probability of t-length walks in G from u to v, where all internal
vertices in the walk lie outside S.

Since G is irreducible and the stationary mass on S is non-zero, all walks eventually reach S.
Thus the outgoing transition probabilities from each v in MS sum to 1, and hence MS is a valid

Markov chain. Furthermore, by the symmetry of the original random walk, e
(t)
u,v = e

(t)
v,u. Therefore

the transition matrix of MS remains symmetric, and the stationary distribution is uniform on S.

For a transition e
(t)
u,v in MS , we define the length of this transition to be t. For clarity, we use

“hops” to denote the length of a walk in MS , and retain “length” for walks in G. The length of
an h hop random walk in MS is defined to be the sum of the lengths of the transitions it takes.
We note that these ideas come from the work of Kale-Peres-Seshadhri to analyze random walks in
noisy expanders [KPS13].

We use τs,h to denote the distribution of the h-hop walk from s, and τs,h(v) to denote the
corresponding probability of reaching v. We use Wh to denote the distribution of h-hop walks
starting from the uniform distribution in S.

We state Kac’s formula (Corollary 24 in Chapter 2 of [AF02], restated).

Lemma 6.3. (Kac’s formula) The expected return time (in G) to S of a random walk starting
from S is reciprocal of the fractional stationary mass of S, ie n/|S|.

The following is a direct corollary.

Lemma 6.4. EW∼Wh
[length of W] = hn/|S|

Proof. Since the walk starts at the stationary distribution, it remains in this distribution at all
hops. By linearity of expectation, it suffices to get the expected length for the first hop (and

22

multiply with h). This is precisely expected return time to S, if we performed random walks in
G. By Kac’s formula above, the expected return time to S equals the reciprocal of the stationary
mass of S, which is just n/|S|.

The next lemma is an analogue of Claim 6.2 for MS . Recall that ` = n5δ.

Lemma 6.5. There exists a subset S′′ ⊆ S′, |S′′| ≥ |S′|/2, such that ∀s ∈ S′′, ‖τs,nδ‖∞ ≥ 1/nδ(i+6).

Proof. Define event Es,v,h as follows. The event Es,v,h occurs when an h-hop random walk from
s has length 2i+1` and ends at v. Observe that ps,2i+1`(v) =

∑
h≤2i+1` Pr[Es,v,h] (because the

number of hops is always at most the length). Since τs,h is a random walk vector in a symmetric
Markov Chain, the infinity norm is non-increasing in h. Thus, it suffices to find a subset S′′ ⊆ S′,
|S′′| ≥ |S′|/2 such that ∀s ∈ S′′, ∃v ∈ S, h ≥ nδ, Pr[Es,v,h] ≥ 1/nδ(i+6).

We define Us as given in Claim 6.2. For all v ∈ Us, by Claim 6.2, ps,2i+1`(v) ≥ 1/2nδi. Therefore,
for all v ∈ Us, ∑

h≥2i+1`

Pr[Es,v,h] ≥ 1/2nδi (32)

We will construct S′′ by finding s where for some v ∈ Us,
∑

h≤nδ Pr[Es,v,h] is sufficiently small.

For any h,

1

|S|
∑
s∈S′

∑
v∈Us

Pr[Es,v,h](2i+1`) ≤ EW∼Wh
[length of W] = hn/|S|

Suppose h ≤ 2i+1`/n4δ. (This is true for all h ≤ nδ). Then
∑

s∈S′
∑

v∈Us Pr[Es,v,h] ≤ n1−4δ, and∑
h≤nδ

∑
s∈S′

∑
v∈Us Pr[Es,v,h] ≤ n1−3δ.

We rearrange to get ∑
s∈S′

∑
v∈Us

∑
h≤nδ

Pr[Es,v,h] ≤ n1−3δ

By the Markov bound, there is a set S′′ ⊆ S′, |S′′| ≥ |S′|/2 such that for all s ∈ S′′,∑
v∈Us

∑
h≤nδ Pr[Es,v,h] ≤ 2n1−3δ/|S′|. By averaging, ∀s ∈ S′′, ∃v ∈ Us, such that

∑
h≤nδ Pr[Es,v,h] ≤

2n1−3δ/(|S′| · |Us|). By the assumptions of Lemma 6.1, |S′| ≥ αn ≥ n1−δ/2. Claim 6.2 bounds
|Us| ≥ nδ(i−2). Plugging these in,

∑
h≤nδ

Pr[Es,v,h] ≤ 2n1−3δ

n1−δ/2nδ(i−2)
≤ 2

nδ(i+1/2)
(33)

Subtracting this bound from (32),
∑

h∈[nδ,2i+1`] Pr[Es,v,h] ≥ 1/4nδi. By averaging, for some

h ∈ [nδ, 2i+1`], Pr[Es,v,h] ≥ 1/(2i+3nδi`) ≥ 1/nδ(i+6). This completes the proof.

We perform local partitioning on MS , starting with arbitrary s ∈ S′′. We apply the Lovász-
Simonovits curve technique. (The definitions are originally from [LS90]. Refer to Lecture 7 of
Spielman’s notes [Spi] as well as Section 2 in Spielman-Teng [ST12].) This requires a series of
definitions.

• Ordering of states at time t: At time t, let us order the vertices in MS as v
(t)
1 , v

(t)
2 , . . . such

that τs,t(v
(t)
1) ≥ τs,t(v(t)2) . . ., breaking ties by vertex id.

23

• The LS curve ht: We define a function ht : [0, |S|] → [0, 1] as follows. For every k ∈ [|S|],
set ht(k) =

∑
j≤k[τs,t(v

(t)
j) − 1/|S|]. (Set ht(0) = 0.) For every x ∈ (k, k + 1), we linearly

interpolate to construct h(x). Alternately, ht(x) = max~w∈[0,1]|S|,‖~w‖1=x
∑

v∈S [τs,t(v)− 1/n]wi.

• Level sets: For k ∈ [0, |S|], we define the (k, t)-level set, Lk,t to be {v(t)1 , v
(t)
2 , . . . , v

(t)
k }. The

minimum probability of Lk,t denotes τs,t(v
(t)
k).

• Conductance: for some T ⊆ S we define the conductance of T in MS to be

Φ(T) =

∑
u∈T
v∈S\T

τu,1(v)

min(|T |, |S \ T |)

The main lemma of Lovász-Simonovits is the following (Lemma 1.4 of [LS90]).

Lemma 6.6. For all k and all t,

ht(k) ≤ 1

2
[ht−1(k − 2 min(k, n− k)Φ(Lk,t)) + ht−1(k + 2 min(k, n− k)Φ(Lk,t))]

The typical use of the Lovász-Simonovitz technique is to argue about rapid mixing when all
conductances (or conductances of sufficiently large sets) are lower bounded. We consider a scenario
in which only sets with minimum probability at least (say) p have high conductance. In this case,
we can guarantee that the largest probability will converge to p.

Lemma 6.7. Suppose the following holds. For all t′ ≤ t, if the minimum probability of Lk,t′ is at
least 1/10nδ(i+6), then Φ(Lk,t′) ≥ n−δ/4, Then, ∀x ∈ [0, n], ht(x) ≤

√
x(1−n−δ/2/4)t+x/10nδ(i+6).

Proof. Notice that it suffices to show this claim for integral values of x since ht is concave. To
begin with, note that if x = k ≥ nδ(i+6), then the RHS is at least 1. Thus the bound is trivially
true. Let us assume that k < nδ(i+6) < n/2. We proceed by induction over t and split into two
cases based on the conductance of level sets.

Suppose k is such that Φ(Lk,t) ≥ n−δ/4. By Lemma 6.6 and concavity of h, we have the following
at x = k

ht(k) ≤ 1

2

(
ht−1(k(1− 2n−δ/4)) + ht−1(k(1 + 2n−δ/4))

)
(34)

≤ 1

2

(√
k(1− 2n−δ/4)(1− n−δ/2/4)t−1 +

√
k(1 + 2n−δ/4)(1− n−δ/2/4)t−1 +

2k

10nδ(i+6)

)
(35)

≤ 1

2

(√
k(1− 2n−δ/4)t−1(

√
1− 2n−δ/4 +

√
1 + 2n−δ/4) +

2k

10nδ(i+6)

)
(36)

≤
√
k(1− nδ/2/2)t + k/nδ(i+6) (37)

For the last inequality we use the bound
(√

1 + x+
√

1− z
)
/2 ≤ 1− z2/8.

Now, consider the case where k is such that Φ(Lk,t) ≤ n−δ/4. By assumption, it must be that
Lk,t′ must have minimum probability less than 1/10nδ(i+6). Let k′ be the largest integer less than

24

k such that Φ(Lk′,t) ≥ n−δ/4. By the previous case, ht(k
′) ≤

√
k′(1 − nδ/2/2)t + k/nδ(i+6). Using

this and the concavity of ht, we get

ht(k) ≤ ht(k′) + (k − k′)/10nδ(i+6) (38)

≤
√
k′(1− n−δ/2/2)t + k′/10nδ(i+6) + (k − k′)/10nδ(i+6) (39)

≤
√
k(1− n−δ/2/2)t + k/10nδ(i+6) (40)

6.2 Proof of Lemma 6.1

Proof. Define S′′ as given in Lemma 6.5. For any s ∈ S′′, ‖τs,nδ‖∞ ≥ 1/nδ(i+6). By the definition

of the LS curve, hnδ(1) ≥ 1/nδ(i+6). Suppose (for contradiction’s sake) all level sets for t ≤ nδ

with minimum probability at least 1/10nδ(i+6) have conductance at least n−δ/4. By Lemma 6.7,

hnδ(1) ≤ (1 − n−δ/2/4)n
δ

+ 1/10nδ(i+6) < 1/nδ(i+6). This contradicts the bound obtained by
Lemma 6.5.

Thus, for every s ∈ S′′, there exists some level set for ts ≤ nδ with minimum probability at
least 1/10nδ(i+6) and conductance < n−δ/4. Let us call this level set Ps. We also use the fact that
|Ps| < |S|/2. By the construction of MS , we have,

Φ(Ps) ≥

∑
x∈Ps
y∈S\Ps

τx,1(y)

min(|Ps|, |S \ Ps|)
=
E(Ps, S \ Ps)

2d|Ps|

The first inequality follows because we restrict the numerator to length one transitions in the Markov
Chain MS (which correspond to edges in G). Rearranging, we get E(Ps, S \ Ps) ≤ n−δ/4(2d|Ps|).

For all s ∈ S′′ and v ∈ Ps, τs,nδ(v) ≥ 1/10nδ(i+6). Set L = 160nδ(i+7)/α. Let S̃ be the subset

of S′′ such that ∀s ∈ S̃, Ps is such that ∀v ∈ Ps,
∑

l≤L ps,l(v) ≥ 1/20nδ(i+6). By averaging, ∃l ≤ L
such that ps,l(v) ≥ α/nδ(2i+14).

We have seen that S̃ satisfies the two desired properties: for all s ∈ S̃ E(Ps, S \ Ps) ≤
2n−δ/4d|Ps|/α and for all v ∈ Ps, ∃t ≤ 160nδ(i+7) such that ps,t(v) ≥ α/nδ(2i+14). It only re-

mains to prove a lower bound on size, or alternately, an upper bound on |S′′ \ S̃|.
Consider any s ∈ S′′ \ S̃. There exists some vs ∈ Ps such that τs,nδ(vs) ≥ 1/10nδ(i+6) but∑
l≤L ps,l(vs) < 1/20nδ(i+6). Let us use p̂s,l(vs) to denote the probability of reaching vs from s in

an l-length walk that makes nδ hops. Observe that

τs,nδ(vs) =
∑
l≥nδ

p̂s,l(vs) =
L∑

l=nδ

p̂s,l(vs) +
∑
l>L

p̂s,l(vs) ≤
L∑

l=nδ

ps,l(vs) +
∑
l>L

p̂s,l(vs) (41)

< 1/20nδ(i+6) +
∑
l>L

p̂s,l(vs) (42)

The last inequality follows from the fact that s ∈ S′′ \ S̃, and hence
∑L

l=nδ ps,l(vs) < 1/20nδ(i+6).
Since τs,nδ(vs) ≥ 1/10nδ(i+6), the above calculation shows that

∑
l>L p̂s,l(vs) > 1/20nδ(i+6). Thus,

1

|S|
∑

s∈S′′\S̃

∑
l>L

p̂s,l(vs)L >
|S′′ \ S̃| · L
|S|20nδ(i+6)

=
160α−1nδ(i+7) · |S′′ \ S̃|

20|S|nδ(i+6)
=

8nδ|S′′ \ S̃|
α|S|

(43)

25

By Lemma 6.4,
1

|S|
∑

s∈S′′\S̃

∑
l>L

p̂s,l(vs)L ≤ EW∼Wδ
n
[length of W] =

n1+δ

|S|
(44)

Combining the above, |S′′ \ S̃| ≤ αn/8. By Lemma 6.5, |S′′| ≥ |S′|/2 ≥ αn/2, yielding the bound
|S̃| ≥ αn/4.

7 Wrapping it all up: the proof of Theorem 3.1

We have all the tools required to complete the proof of Theorem 3.1. Our aim is to show that if
FindMinor(G, ε,H) outputs an H-minor with probability < 2/3, then G is ε-close to being H-minor
free. Henceforth in this section, we will simply assume the “if” condition.

The following decomposition procedure is used by the proof. We set parameter α = ε/(50r4 log n).

Decompose(G)

1. Initialize S = V and P = ∅.
2. For i = 1, . . . , 5r4:

(a) Assign S′ :=
{
s ∈ S : ||q(i+1)

[S],s ||
2
2 ≥ 1/nδi

}
(b) While |S′| ≥ αn:

i. Choose arbitrary s ∈ S′′, and let Ps be as in Lemma 6.1.
ii. Add Ps to P and assign S := S \ Ps
iii. Assign S′ :=

{
s ∈ S : ||q(i+1)

[S],s ||
2
2 ≥ 1/nδi

}
(c) Assign S := S \ S′
(d) Assign Xi := S′

3. Let X =
⋃
iXi.

4. Output the partition P, X, S

The procedure Decompose repeatedly employs Lemma 6.1 for values of i ≤ 5r4. In the ith
iteration, eventually |S′| becomes too small for Lemma 6.1. Then, S′ is moved (from S) to an
“excess” set Xi, and the next iteration begins. Decompose ends with a partition P, X, S where
each set in P is a low conductance cut, X is fairly small, and FindBiclique succeeds with high
probability on every vertex in S.

This is formalized in the next lemma.

Lemma 7.1. Assume ε > εCUTOFF. Suppose FindMinor(G, ε,H) outputs an H-minor with proba-
bility < 2/3. Then, the output of Decompose satisfies the following conditions.
• |X| ≤ εn/10.
• |S| ≤ εn/10.
• ∀Ps ∈ P, v ∈ Ps, ∃t ≤ 160n6δr

4
/α such that ps,t(v) ≥ α

n11δr4
.

• There are at most εn/10 edges that go between different Ps sets.

Proof. Consider the Xi’s formed by Decompose. Each of these has size at most αn = εn/50r4 log n,
and there are at most 5r4 of these. Clearly, their union has size at most εn/10.

The third condition holds directly from Lemma 6.1. Consider the number of edges that go
between Ps and the rest of S, when Ps was constructed (in Decompose). By Lemma 6.1 again, the

26

number of these edges is at most 2n−δ/4d|Ps|/α = 40r4(log n)ε−1n−δ/4d|Ps|. Note that ε > εCUTOFF.
For sufficiently small constant δ, the number of edges between Ps and S\Ps (at the time of removal)
is at most ε|Ps|/10. The total number of such edges is at most εn/10 (since Ps are all disjoint).

Suppose, for contradiction’s sake, that |S| > εn/10. Consider the stratification process with

R0 = S. By construction of S, ∀s ∈ S, ||q(5r
4+1)

[S],s || ≤ 1/n5δr
4
. Thus, all of these vertices will lie

in strata numbered 5r4 or above. Since ε > εCUTOFF, by Lemma 4.9, at most εn/ log n vertices are
in strata numbered more than 1/δ + 3. By Theorem 5.1, for at least εn/10 − εn/ log n ≥ εn/20
vertices, the probability that the paths discovered by FindBiclique(s) contain a Kr2,r2-minor is

at least n−4δr
4
. Since a Kr2,r2 minor contains an H-minor, the algorithm (in this situation) will

succeed in finding an H-minor.
All in all, this implies that the probability that a single call to FindBiclique finds an H minor

is at least n−5δr
4
. Since FindMinor makes n20δr

4
calls to FindBiclique, an H-minor is found with

probability at least 5/6. This is a contradiction, and we conclude that |S| ≤ εn/10.

And now, we can prove the correctness guarantee of FindMinor.

Claim 7.2. Suppose FindMinor(G, ε,H) outputs an H-minor with probability < 2/3. Then G is
ε-close to being H-minor free.

Proof. If ε ≤ εCUTOFF, then FindMinor runs an exact procedure. So the claim is clearly true.
Henceforth, assume ε > εCUTOFF. Apply Lemma 7.1 to partition V into P, X, S.

Call s ∈ V bad, if there is a corresponding Ps ∈ P and Ps induces an H-minor. By Lemma 7.1,
for all v ∈ Ps, ∃t ≤ 160n6δr

4
/α such that ps,t(v) ≥ α/n11δr

4
. Note that 160n6δr

4
/α ≤ n7δr

4
and

α/n11δr
4 ≥ n−12δr

4
. Also, |Ps| ≤ 160(n6δr

4
/α) × (n11δr

4
/α) ≤ n18δr

4
. Note that LocalSearch(s)

performs walks of all lengths up to n7δr
4
, and performs n30δr

4
walks of each length. For any

v ∈ Ps, the probability that LocalSearch(s) does not add v to B (the set of “discovered” vertices

in LocalSearch(s)) is at most (1 − n−12δr
4
)n

30δr4 ≤ 1/n2. Taking a union bound over Ps, the
probability that Ps is not contained in B is at most 1/n. Consequently, for bad s, LocalSearch(s)
outputs an H-minor with probability > 1− 1/n.

Suppose there are more than n1−30δr
4

bad vertices. The probability that a uar s ∈ V is bad is
at least n−30δr

4
. Since FindMinor(G, ε,H) invokes LocalSearch n35δr

4
times, the probability that

LocalSearch(s) is invoked for a bad vertex is at least 1− 1/n. Thus, FindMinor(G, ε,H) outputs
an H-minor with probability > 1− 2/n, contradicting the claim assumption.

We conclude that there are at most n1−30δr
4

bad vertices. Each Ps has at most n18δr
4

vertices,
and |

⋃
s bad Ps| ≤ n1−12δr

4 ≤ εn/10.
We can make G H-minor free by deleting all edges incident to X, all edges incident to S, all

edges incident to vertices in any bad Ps sets, and all edges between Ps sets. By Lemma 7.1 and the
bound given above, the total number of edges deleted is at most 4εdn/10 < εdn.

Finally, we bound the running time.

Claim 7.3. The running time of FindMinor(G, ε,H) is dn1/2+O(δr4) + dε−2 exp(2/δ)/δ.

Proof. If ε < εCUTOFF, then the running time is simply O(n2). Since ε < n−δ/ exp(2/δ), this can be
expressed as ε−2 exp(2/δ)/δ.

27

Assume ε ≥ εCUTOFF. The total number of vertices encountered by all the LocalSearch calls is
nO(δr4). There is an extra d factor to determine all incident edges, through vertex queries. Thus,
the total running time is dnO(δr4), because of the quadratic overhead of KKR. Consider a single
iteration for the main loop of FindBiclique. First, FindBiclique performs 2r2 random walks
of length 2i+1n5δ, and then for each of these, FindPath performs nδi/2+9δ walks of length 2in5δ.
Hence, the total steps (and thus, queries) in all walks performed by a single call to FindBiclique

is

1/δ+3∑
i=5r4

(
2r22i+1n5δ + 2r2nδi/2+9δ2in5δ

)
= r2n1/2+O(δ). (45)

While this is the total number of vertices encountered, we note that the calls made to KKR(F,H)
are for much smaller graphs. The output of find path has size O(21/δn5δ), and the subgraph F
constructed has at most O(21/δn5δ) vertices. We incur an extra d factor to determine the induced
subgraph, through vertex queries. Thus, the time for each call to KKR(F,H) is nO(δ). There are
nO(δr4) calls to FindBiclique, and we can bound the total running time by dn1/2+O(δr4).

Acknowledgements

We would like to acknowledge Madhur Tulsiani for his improvements to Lemma 4.4.

References

[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. Journal of the ACM, 62(5):42:1–42:25, 2015. 3

[ACL06] R. Andersen, F. R. K. Chung, and K. Lang. Local graph partitioning using pagerank
vectors. Foundations of Computer Science (FOCS), pages 475–486, 2006. 6

[AF02] David Aldous and James Allen Fill. Reversible markov chains and random walks on
graphs, 2002. Unfinished monograph, recompiled 2014, available at http://www.stat.
berkeley.edu/~aldous/RWG/book.html. 22

[AFNS06] N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of
the testable graph properties : it’s all about regularity. Symposium on the Theory of
Computing (STOC), pages 251–260, 2006. 2

[BFU99] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. Static and dynamic path selection on
expander graphs: A random walk approach. Random Struct. Algorithms, 14(1):87–109,
1999. 3

[BSS08] I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse
graphs is testable. In Symposium on the Theory of Computing (STOC), pages 393–402,
2008. 1

[CGR+14] Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri, Asaf Shapira, and Christian
Sohler. Finding cycles and trees in sublinear time. Random Structures & Algorithms,
45(2):139–184, 2014. 2

[CPS15] Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In
Symposium on the Theory of Computing (STOC), pages 723–732, 2015. 3

28

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html

[CS10] Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree graphs.
Combinatorics, Probability & Computing, 19(5-6):693–709, 2010. 3

[CSS09] Artur Czumaj, Asaf Shapira, and Christian Sohler. Testing hereditary properties of
nonexpanding bounded-degree graphs. SIAM Journal on Computing, 38(6):2499–2510,
2009. 2

[Die10] Reinhard Diestel. Graph Theory, Fourth Edition. Springer, 2010. 2

[EHNO11] Alan Edelman, Avinatan Hassidim, Huy N. Nguyen, and Krzysztof Onak. An efficient
partitioning oracle for bounded-treewidth graphs. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques RANDOM 2011, Prince-
ton, NJ, USA, August 17-19, 2011. Proceedings, pages 530–541, 2011. 2

[FLVW17] Hendrik Fichtenberger, Reut Levi, Yadu Vasudev, and Maximilian Wötzel. On testing
minor-freeness in bounded degree graphs with one-sided error. CoRR, abs/1707.06126,
2017. 2, 3

[Gol17] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. 2

[GR99] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs.
Combinatorica, 19(3):335–373, 1999. 2, 3

[GR00] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. ECCC,
TR00-020, 2000. 3

[GR02] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002. 1, 2

[GT12] Shayan Oveis Gharan and Luca Trevisan. Approximating the expansion profile and
almost optimal local graph clustering. In Foundations of Computer Science (FOCS),
pages 187–196. IEEE Computer Society, 2012. 3

[HKNO09] A. Hassidim, J. Kelner, H. Nguyen, and K. Onak. Local graph partitions for approxi-
mation and testing. In Foundations of Computer Science (FOCS), pages 22–31, 2009.
2

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM
(JACM), 21(4):549–568, 1974. 1

[KKR12] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths
problem in quadratic time. J. Comb. Theory, Ser. B, 102(2):424–435, 2012. 2, 8

[KPS13] Satyen Kale, Yuval Peres, and C. Seshadhri. Noise tolerance of expanders and sublinear
expansion reconstruction. SIAM J. Comput., 42(1):305–323, 2013. 3, 7, 22

[KR96] Jon M. Kleinberg and Ronitt Rubinfeld. Short paths in expander graphs. In Foundations
of Computer Science (FOCS), pages 86–95. IEEE Computer Society, 1996. 3, 4

[KS08] S. Kale and C. Seshadhri. Testing expansion in bounded degree graphs. Proc. 35th
ICALP, pages 527–538, 2008. 3

[Kur30] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Math-
ematica, 15:271–283, 1930. 1

[Lov06] L. Lovász. Graph minor theory. Bulletin of the American Mathematical Society,
43(1):75–86, 2006. 2

29

[LR15] Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Transactions on Algorithms (TALG), 11(3):24, 2015. 2

[LS90] László Lovász and Miklós Simonovits. The mixing rate of markov chains, an isoperi-
metric inequality, and computing the volume. In Foundations of Computer Science
(FOCS), pages 346–354, 1990. 3, 7, 23, 24

[NS07] A. Nachmias and A. Shapira. Testing the expansion of a graph. ECCC, TR07-118,
2007. 3

[RS04] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory Series B, 92(1):325–357, 2004. 1

[Spi] D. Spielman. Lecture notes on spectral graph theory.
http://www.cs.yale.edu/homes/spielman/eigs/. 23

[ST12] D. Spielman and S.-H. Teng. A local clustering algorithm for massive graphs and its
application to nearly-linear time graph partitioning. SIAM Journal on Computing,
42(1):1–26, 2012. 3, 6, 23

[Tre05] Luca Trevisan. Approximation algorithms for unique games. In Foundations of Com-
puter Science (FOCS), pages 197–205. IEEE, 2005. 3

[Wag37] K. Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114:570–590, 1937. 1

[YI15] Yuichi Yoshida and Hiro Ito. Testing outerplanarity of bounded degree graphs. Algo-
rithmica, 73(1):1–20, 2015. 2

30

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

