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Abstract

We describe obfuscation schemes for matrix-product branching programs that are purely alge-
braic and employ matrix algebra and tensor algebra over a finite field. In contrast to the obfuscation
schemes of Garg et al (SICOM 2016) which were based on multilinear maps, these schemes do not use
noisy encodings. We prove that there is no efficient attack on our scheme based on re-linearization
techniques of Kipnis-Shamir (CRYPTO 99) and its generalization called XL-methodology (Courtois
et al, EC2000). We also provide analysis to claim that general Grobner-basis computation attacks
will be inefficient. In a generic colored matrix model our construction leads to a virtual-black-box
obfuscator for NC1 circuits.
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1 Introduction

Couple of year ago, Ye and Liu [YL16] posted a paper titled “Obfuscation without Multilinear Maps”.
The basic idea of that paper is to express binary circuits of depth d on n input bits as matrix-product
programs using Barrington’s theorem (the length of the matrix-product programs is exponential in
d). Current obfuscation schemes (based on MMAPs [GGH+16]) also use Kilian randomization of such
a product program. However, if the underlying matrices are not securely encoded, then we have a
problem. The new idea of [YL16] is to have a dynamic way of constructing new Kilian randomization
matrices which depend on the full input x. This approach is called “dynamic fencing”’ by Ye and Liu.
Unfortunately, various attacks based on analyzing the underlying linear subspaces can be demonstrated
on this scheme, and it is unlikely the scheme can be rescued without major changes. In this note, we will
not go into these specific attacks as we will anyway highlight many relevant cryptanalytic techniques.
The idea of dynamic-fencing was also discussed in [CEJvO02], although that work did not give any
realizations of it.

To circumvent the possibly fatal flaws, our scheme moves to general linear transforms of the under-
lying Barrington matrices; the transforms we focus on are equivalent to simultaneously multiplying the
underlying matrix by both its left and right randomizer matrix. The ring of (k × k) matrices over F

is usually denoted by Mk(F) (or Mk, for short). These matrices can also be viewed as k2-dimensional

vector spaces over F, which we will denote by F
k2

. The endomorphism-ring of any m-dimensional vector
space V (i.e. the ring of homomorphisms from V to V ) is itself the matrix ring Mm. Thus, we focus on

the endomorphism-ring (or general linear transforms) Mk2 of the vector space Fk2

. But, we will further
focus on a subset of such transforms which can be represented as tensor product (Kronecker product)
of two matrices from Mk, i.e. two (k × k) matrices. It turns out that these transforms, say G⊗H , are
exactly the transforms that result in multiplying a matrix by G on the left and HT on the right. This
subset of transforms form a multiplicative subgroup of the ring Mk2 , which is easily seen since matrix
tensor product distributes over matrix multiplication.

Our construction requires each step i of the obfuscated program to consist of n stages, where n
is the number of input bits. Each stage has a pair of such transforms associated with it. At “stage”
j of step i of the program, let’s say the pairs are 〈Gi

j,0 ⊗ Hi
j,0, G

i
j,1 ⊗ Hi

j,1〉. The various stages in
a step are used to build a dynamic-fence based on the input, and if the j-th input variable is zero,
then the first element of the j-th pair is used, and likewise if the j-th input variable is one then the
second element of the j-th pair is used. We must ensure that it should be impossible to obtain a mixed
transform, say Gi

j,0⊗Hi
j,1. But, if G

i
j,0⊗Hi

j,0, G
i
j,1⊗Hi

j,1 are given in the clear, then one easily obtains

Gi
j,0, H

i
j,0, G

i
j,1, H

i
j,1 up-to scalar multiples, and hence one also obtains the mixed transforms (up-to

scalar multiples). Hence, the construction only gives blinded versions of these tensor transforms. Thus,
the (i, j)-th step tensor transforms are given masked by an invertible (linear transform) matrix Fi,j

from Mk4 (with (Gi
j,0 ⊗Hi

j,0) and (Gi
j,1 ⊗Hi

j,1) viewed as elements of Fk4

).

We must however provide a gadget to take such a “masked dynamic-fence” computed for a step
of the program, and apply the unmasked dynamic-fence to the Barrington matrix of the step1. Since
the output of this gadget will not have a masking linear transform, a naive such gadget can be used

1Similarly, we also need to provide gadgets to multiply the tensor products of the different stages within a step.
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to collect many outputs on related inputs, which then can allow computation of the linear transform

Gi
j,0G

i
j,1

−1⊗Hi
j,0H

i
j,1

−1
, and hence also mixed gadgets. Thus, the gadget must compute an (invertible)

quadratic form of the dynamic-fence before applying it to the Barrington matrix of the step. Since
matrix multiplication is non-commutative, this then defeats the attack that computes the above linear
transform.

It is well known that the space of homogeneous polynomials of degree d on a vector space V is
isomorphic to the space of symmetric tensors of degree d on V . Thus, if we make the quadratic forms
representing the gadgets homogeneous then these are completely specified by input-output behavior

on
(

k4+1
2

)

linearly independent inputs. Since legitimate inputs to the gadgets are (masked) tensor-
products, they belong to an affine algebraic variety, namely rank (at most) one matrices. A similar
correspondence would then allow us to give a gadget that only works on the algebraic variety. Since
our algebraic variety is of a particular special form (variety of an ideal with homogeneous multi-linear
generators), we can indeed show such a correspondence and the gadget is completely specified (and easily

computed) by input-output behavior on
(

k2+1
2

)2
inputs of the (masked) tensor-product form. In fact,

we can just specify the input-output behavior on legitimate inputs computed from the above described
masked transforms associated with the different stages of a step. Thus, the gadget specifications can
be considered black-box.

Security. Although the tensor transforms are hidden or masked by general linear transforms, say
F , the Adversary gets many such samples masked by the same linear transform F . Calling one such
sample Xi = F · vec(Ai ⊗ Bi), where vec is an operator that vectorizes a matrix, one can take tensor
product of Xi with itself and then Xi ⊗ Xi has a non-trivial kernel, and belongs to what is called
a symmetric tensor space. Many such samples yield many quadratic equations in F , the number of
such equations equal to the product of the rank of the symmetric tensor space and the rank of a
related skew-symmetric tensor space. A simple calculation shows that one gets about k16/16 quadratic
equations in k8 variables representing F . The XL-methodology, a generalization of Kipnis-Shamir
relinearlization technique [KS99, CKPS00], as well as what is known as Macaulay-matrix approach
(see e.g. [BFS03, BFSS13]) are Grobner-Basis based cryptanalytic techniques for solving multi-variate
polynomial equations. The basic idea of Grobner-basis based methodology is to multiply the original
equations by monomials to get new equations (but in higher degree monomials)2. Since the monomials
grow slower than the number of new equations obtained, at some point one expects more equations
than monomials. However, the equations may not be linearly independent – if they were then one can
solve for the monomials, and hence possibly the individual variables or at least their ratios.

We prove that this methodology fails for the k16/16 quadratic equations above. In other words,
we show that the number of linearly independent equations obtained at each grade (i.e. degree of the
monomials) remains in large deficit of the number of monomials at that grade. This is not surprising as
one can easily see that there are multiple solutions for F given the above equations, and F is at most
determined modulo the tensor-product (multiplicative) subgroup.

Next, we add the equations obtained from the gadgets. Recall a gadget unmasks the linear-transform

2Grobner-basis methodology is more general than the XL-methodology, as in the former one can specify a monomial
ordering and aim to eliminate low-ordered monomials.
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F and outputs a quadratic form of the unmasked tensor-products. This yields further quadratic equa-
tions in variables representing F . However, as argued above the gadget is completely specified by k8

inputs, and thus we only get that many new quadratic equations3. We then show that if one contin-
ues the XL-methodology and multiplies these additional equations also by monomials to get further
equations, then the degree of the monomials must be at least k2 before the total number of linearly
independent equations approach the total number of monomials. This approach would then require
computing an exponential number of additional equations. In particular, the number of equations
required would be of the order of (k8)k

2 ∗ k16.
While this rules out XL-methodology attacks, it is possible that a smaller set of monomials can

yield equations such that there is a small-weight “codeword” spanned by the linear combination of
the equations; possibility also exists of a not-so small “codeword” but with a linear factor. However,
we have found no evidence suggesting that such anomalous codewords exist, and in Section 7 we give
support for this claim. We consider proving lower bounds for weights of such codewords to be at par
with proving lower bounds in proof-complexity [BP01] and computational complexity theory.

In Section 8 we also formulate and analyze a new one-more masked tensor problem and we believe
progress on this hard problem can shed further light on the security of our scheme.

In the full version of the paper, we will show that in a generic colored matrix model [GGH+16], our
construction yields a virtual black-box (VBB) [BGI+12] obfuscator for NC1 circuits. The generic model
disallows feeding the obfuscated program as input to another program, and hence the generic model
proof of VBB-obfuscation does not contradict the known impossibility of VBB obfuscation of general
circuits [BGI+12] which does require self-feeding circuits. For this proof we employ another assumption
called the pseudo-randomness of consistent matrix products.

Pseudo-randomness of Consistent Matrix-Products Assumption. For a security parameter s,
and for any n, consider an oracle O which initializes itself by picking s ∗ n pairs of invertible matrices
〈G0

i , G
i
i〉 from Mk(F). On a query which is an assignment x from [0..n− 1] to [0..1], the oracle responds

with
∏

i′∈[0..s−1]

∏

i′′∈[0..n−1]

G
x[i′′]
i′∗n+i′′ .

The pseudo-randomness of consistent matrix products assumption states that no efficient adversary
can distinguish with non-negligible probability the above oracle from another which just replies with
random invertible matrices.

In other words, the consistent matrix product is a PRF on n-bit inputs with output that are invertible
Mk matrices and with the key being the sequence of pairs of invertible matrices. The assumption is
based on the fact that a Barrington matrix program of a small depth pseudo-random function would
yield a similar consistent matrix product function.

3There may be additional multiplicative factor of k2 equations, but then the equations also have an additional degree,
e.g. in k2 variables representing the pre-randomized Barrington matrix.
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2 Preliminaries

Definition 1. Let vec be a vectorizing operator which takes an s by t matrix and represents it naturally
as an s ∗ t-length column vector (by scanning row-wise). Let mats,t denote the inverse operation, i.e.
taking an s ∗ t-length column vector and re-shaping it as an s by t matrix. Let Ωs,t be the permutation
such that Ωs,t · vec(X) = vec(XT) for every s× t-matrix X .

Lemma 1.

(A⊗BT) · vec(C) = vec(A · C · B), (1)

for every A,C,B for which the product on the right is well-defined.

This is proven by simple algebraic manipulation.

Corollary 2. For all Mt matrices A and B,

Ωt,t · (A⊗B) · Ωt,t = B ⊗A

Note Ωt,t is symmetric, and since it is also a permutation, it implies that is is involutory, i.e.
Ωt,tΩt,t = I.

Similarly, for vectors we have,

Corollary 3. For all t-vectors a and b,

Ωt,t · (a⊗ b) = b⊗ a

Lemma 4. Define the permutation Πs,t = Is×s ⊗ Ωs,t ⊗ It×t. Consider any Mst matrix A, which can
also be viewed as an s by s block matrix, with each block Aij being an Mt matrix. Then, Πs,t · vec(A) =
vec(A′), where A′ is the matrix such that each Mt-blocks Aij of A is replaced by vec(Aij)

T.

The lemma is proved by applying the above fact twice. As an example application of the lemma,
note

Π2,2 · vec
([

A00 A01

A10 A11

])

= vec

([

vec(A00)
T vec(A01)

T

vec(A10)
T vec(A11)

T

])

=









vec(A00)
vec(A01)
vec(A10)
vec(A11)









(2)

where each Aij is an M2 matrix.

We really do not need the above lemma in this work; all we need is that the permutation Πs,t is
defined to be the one that satisfies Πs,t · vec(A) = vec(A′).

Corollary 5. For Y in Ms and Z in Mt, Πs,t · vec(Y ⊗ Z) is same as vec(Y )⊗ vec(Z).
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3 The Obfuscation Construction

We will assume that the circuit on n input-bits is given as a matrix branching program of length m:

P (x) =
∏

i∈[0..m−1]

Ci,x[l(i)]

where l(i) ∈ [1..n] is the index of the input bit used in the i-th branch. The matrices Ci,0/1 are in
SLk(F), where k ≥ 2 is a security parameter.

3.1 Tensor-Product Encoding Scheme

We now describe an encoding scheme which is at the heart of the obfuscation construction. This
encoding is just for one step, and in particular for one matrix Ci,0/1 above. Even though it is an
encoding for one step, say i, which has input bit l(i) associated with it, the encoding allows building
dependence on all n variables. Alternative, and potentially more efficient (encoding) schemes will be
discussed later (see Appendix A).

To aim for the required security, we employ two security parameters k and p. The parameter p is
used to repeat the n variables p times. Assume that p ∗ n is a power of two, and let d = log (p ∗ n).

The encoding scheme (with parameters k, p, n, lmax) takes the following as input:

1. an SLk(F) matrix C (called center-piece),

2. for each j ∈ [0..p ∗n−1], a length len(j) (≤ lmax), and a len(j)-length list of pairs of Mk matrices,
say (〈Gj,0, Hj,0〉, ..., 〈Gj,len(j)−1, Hj,len(j)−1〉). The matrices G,H will be generically referred to

as small Kilian matrices.

In the immediate application, lmax will be two. We will also assume that len is consistent, i.e. for
all j, len(j) = len(j + n).

The output of the encoding is a collection of masked leaf tensor-products, intermediate gadgets and
a root gadget.

We now describe the encoding procedure. Let k′ = k4.

• Masked Leaf Tensor-Products:

1. Pick p ∗ n random and independent invertible Mk′ -matrices F0, ..., Fp∗n−1.

2. For each j ∈ [0..p ∗ n− 1], for each z ∈ [0..(len(j)− 1)], set Pj,z = Fj · vec(Gj,z ⊗Hj,z).

The Pj,z are the masked leaf tensor-products.

• Intermediate Gadgets: Building a binary tree from the masked leaves, the intermediate gadgets
allow one to generate masked tensor-products which are a (quadratic) function of its two child
nodes. Pick a random and independent invertible Mk′ matrix for each internal node of a binary
tree of depth d, which we will refer to generically as Fnode. The F matrix associated to the (2d)

7



leaf nodes will just be the F0 to Fp∗n−1 defined above. For each node, define R1(node) to be the
affine algebraic set4:

R1(node) = {v ∈ F
k4 | ∃A,B ∈Mk : v = Fnode · vec(A⊗B)}

For each node in the binary tree, except for the leaf nodes and the root node, generate the following
gadgets:

Gadgetnode : R1(left(node))× R1(right(node))→ R1(node) given by

Gadgetnode(x,y) = Fnode · vec( [mat(F−1
left(node) · x),mat(F−1

right(node) · y)] )

where left(node) and right(node) refer to the left and right children of the node respectively, and
where the bracket [·, ·] is the commutator operator. The inverse of a matrix in the commutator
can be replaced by adjugate of the matrix. Since we are aiming for quadratic functions, for k > 2,
one can also consider replacing inverse of a matrix by transpose of the matrix, i.e. [A,B] can
then be considered to be ABATBT. We will later describe how such gadgets can be efficiently

implemented. A naive implementation can extend the gadget to be defined over all Fk2 × F
k2

, in
which case it can be given as coefficients of the resulting degree two polynomial in x and y (total
degree four).

• Root Gadget: Let us call the root node of the binary tree “root”. The root gadget is defined to
be the following:

Gadgetroot : R1(left(root))× R1(right(root))→Mk given by

Gadgetroot(x,y) = mat( [mat(F−1
left(root) · x),mat(F−1

right(root) · y)] · vec(C) )

Again, we will describe later how such a gadget can be implemented efficiently.

3.1.1 Using the Tensor-Product Gadgets

Recall that the encoding scheme produces as output a collection of masked leaf tensor-products, inter-
mediate gadgets and a root gadget.

A legitimate use of these gadgets is to pick a (not necessarily consistent) assignment x[j] for each
j ∈ [0..p ∗ n− 1] (x[j] ∈ [0..(len(j)− 1)]), and then pick the corresponding masked leaf tensor-product
Pj,x[j]. Next, use the intermediate gadgets to build a masked tensor-product for each internal node of
the binary tree. If to each node (including the leaves) we associate the computed (or picked) masked
tensor-product by v(node), we then have:

1. For all j ∈ [0..p ∗ n− 1] , v(j) = Fj · vec(Gj,x[j] ⊗Hj,x[j]).

4 It is not difficult to see that such sets are algebraic as these are exactly the v with the property that (Fnode ·Πk,k)
−1v

are vectorized rank one (or zero) Mk2 matrices: Note, F · vec(A ⊗ B) is same as F · Πk,k · (vec(A) ⊗ vec(B)). Thus,

(F ·Πk,k)
−1v is vecA⊗vecB which can be re-shaped into vecAvecBT, a rank one matrix. for more details, See Section 4.2.
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2. For each internal node, v(node) = Fnode · vec( [mat(F−1
left(node) · v(left(node))),mat(F−1

right(node) ·
v(right(node)))] ).

Finally, the root gadget is used to compute the (unmasked) commutator of the children tensor-
products applied to vec(C). Since the commutator is itself a tensor product, by Lemma 1 this leads to
a dynamic-fence applied to C, with a function of the G matrices (picked according to assignment x)
multiplied on the left and a function of the matched H matrices applied on the right. We will refer to
this value as sandwiched-centerpiece.

The full evaluation of the obfuscated program is described after we describe the full obfuscated
program itself. The consistency of the assignment x is enforced in the full evaluation.

3.2 The Obfuscated Program

We will assume that the circuit on n-input bits is given as a matrix branching program of length m:

P (x) =
∏

i∈[0..m−1]

Ci,x[l(i)]

where l(i) ∈ [1..n] is the index of the input bit used in the i-th branch. The matrices Ci,0/1 are in
SLk(F). We will also assume that if the circuit evaluates to false on an input x then P (x) is the identity
matrix, and if the circuit evaluates to true on an input x then P (x) is not a scalar matrix. Usual
application of Barrington’s theorem would easily result in such a matrix product program.

In a first reading, the following pre-processing step can be skipped, and the reader can move directly
to the beginning of the next paragraph.

Pre-Processing: The branching program above is first pre-processed to obtain another branching pro-
gram (on n-bits input) by the usual Kilianization procedure. In other words, choose m matrices Fi

from SLk(F) (i ∈ [0..m− 1]), and let the new matrices for step i be C′
i,b = Fi ·Ci,b ·F−1

i+1, where (i+ 1)
is computed modulo m. The size of the program remains the same, as well as the labeling l. Next,
each step of this pre-processed branching program is further pre-processed as follows. A new security
parameter (natural number) p′ is chosen, which can be zero. Each step is expanded into 1+ p′ ∗n steps
as follows: the new matrices for the m′ = m ∗ (1+ p′ ∗n) total steps will be called C′. The new labeling
will be called l′. For each i ∈ [0..m− 1],

• Pick p′ ∗ n random matrices S0, ..., Sp′∗n−1 from SLk(F). Let Sp′∗n be the identity matrix.

• Let C′
i∗(1+p′∗n),b = Ci,b ∗ S0 (for b ∈ [0..1]). Let l′(i ∗ (1 + p′ ∗ n)) = l(i).

• for each κ ∈ [0..p′ − 1], for each j′ ∈ [0..n − 1], and each b ∈ [0..1], let C′
i∗(1+p′∗n)+1+κ∗n+j′,b =

S−1
κ∗n+j′ ∗ Sκ∗n+j′+1. Let l

′(i ∗ (1 + p′ ∗ n) + 1 + κ ∗ n+ j′) = j′.

That finishes the description of the pre-processing. For ease of presentation, we will refer to C′, l′ and
m′ as the new C, l and m below, i.e. the pre-processing is assumed implicit.

We now define the various components of the obfuscated program. This consists primarily of two
encodings corresponding to each step (i ∈ [0..m−1]) of the matrix program, obtained by using the above
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tensor-product encoding scheme. To obtain “dynamic fences”, for each of the m steps, the encoding
scheme is provided, as required, with pairs of p ∗ n left (small) Kilian matrices, and pairs of p ∗ n right
(small) Kilian matrices. In each such pair (Gj,0, Gj,1) (j ∈ [0..p ∗ n − 1]) of left Kilian matrices, one
matrix is meant to be used if the j′-th variable has assignment zero, and the other if the assignment
is one, where j′ = j (mod n). Similarly, for the right Kilian matrix pairs (Hj,0, Hj,1). Of course,
these Kilian matrices are chosen so that the right Kilian matrices for one program step, say step i, are
canceled by left Kilian matrices of the next program step i+ 1. We also want to assure that if for the
left Kilian matrix for variable j′, the assignment zero is chosen, i.e. Gj′,0 is chosen, then for the right
Kilian matrix for variable j′, the assignment zero is chosen as well, i.e. Hj′,0 is chosen. To this end,
the encoding scheme is called with pairs (Gj,0, Hj,0), and (Gj,1, Hj,1), which enforces this consistent
assignment on left and right. Thus, the encoding scheme is called with a list of pairs of length two,
i.e. ((Gj,0, Hj,0), (Gj,1, Hj,1)), except when j′ is same as l′(i), where i is the step number. When j′

is same as l′(i), the encoding scheme is provided with (a list of) only one pair (Gj,b, Hj,b), where b
is the centerpiece being encoded for this step. Recall, each step has two centerpieces, corresponding
to matrices Ci,b of the program (or C′

i,b of the pre-processed program). The two centerpieces and its
encodings obtained using the encoding scheme are considered as two different tracks. They share the
same left and right Kilian matrices above, i.e. the G and the H matrices. But otherwise, their encodings
are obtained independently.

We now give a formal description of the obfuscated program. Given a branching program on n
variables of length m, specified by SLk(F) matrices Ci,b for each i ∈ [0..m − 1] and b ∈ {0, 1}, and a
step-to-variable mapping l from [0..m− 1] to [0..n− 1], the obfuscated program is obtained as follows:

• For each i ∈ [0..m − 1], each j ∈ [0..p ∗ n − 1], and for each z ∈ [0..1], generate a random (left
small Kilian) invertible Mk matrix Gi,j,z .

• For each i ∈ [0..m− 1] do

1. Define a mapping len as len(j) = 2 if j 6= l(i) (mod n), otherwise len(j) = 1.

2. For each z ∈ [0..1], each j ∈ [0..p ∗n−1], let (the right small Kilian matrix) Hi,j,z = G−T
i+1,j,z ,

where subscript addition is modulo m.

3. For each track b ∈ [0..1], and j ∈ [0..p ∗ n− 1], prepare a list of pairs, Li,b,j , of length len(j),
as follows:

– if len(j) = 1, then Li,b,j [0] = 〈Gi,j,b, Hi,j,b〉 (i.e. only the variable assignment consistent
with track b is provided),

– else, Li,b,j[z] = 〈Gi,j,z , Hi,j,z〉, for z ∈ [0..1],

Note, that the lists (corresponding to the two tracks) are identical except when j = l(i) (mod
n). Next, invoke the tensor-product encoding scheme with input:

– the SLk(F) matrix Ci,b,

– for each j ∈ [0..p ∗n−1], the length len(j), and for each j ∈ [0..p ∗n−1] the len(j)-length
lists Li,b,j .

to obtain as output a collection of masked leaf tensor-products, intermediate gadgets and a
root gadget. Call these P i,b

j,z , Gadgeti,bnode and Gadgeti,broot resp.

10



4. When j = l(i) (mod n), i.e. len(j) = 1, since only one masked leaf tensor-product is returned,

for convenience we set the second matrix to be same. Thus, set P i,b
j,1 = P i,b

j,0 for j = l(i) (mod
n).

The obfuscated program consists of the masked leaf tensor-products P i,b
j,z , intermediate gadgets

Gadgeti,bnode and root gadgets Gadgeti,broot (i ∈ [0..m − 1], b ∈ [0..1], j ∈ [0..2 ∗ p ∗ n− 1], z ∈ [0..1] and
node belonging to internal nodes of a binary tree of depth d).

3.3 Evaluating the Obfuscated Program

During an honest execution of the obfuscated program, an assignment, say x[j′], is chosen for each of
the n variables, i.e. j′ ∈ [0..n− 1].

Next, for each step of the pre-processed program, i.e. for i ∈ [0..m − 1], use the x[l(i)]-th track

encoding, i.e. Gadget
i,x[l(i)]
node and root gadgets Gadget

i,x[l(i)]
root on the masked leaf tensor-products from

that track and picking the x[j]-th choice for each leaf, i.e. P
i,x[l(i)]
j,x[j] (j ∈ [0..p ∗ n]) to compute the

sandwiched-centerpiece as described in Section 3.1.1. Note that the centerpiece inside the sandwiched-
centerpiece is Ci,x[l(i)]. For each i, we will refer to the so obtained sandwiched-centerpiece as Si,x.

Compute T = S0,x · S1,x · ... · Sm−1,x.

Output false if T is a scalar matrix (i.e. scalar multiple of the identity matrix), else output true.

It is an easy exercise to see the correctness of the evaluation of the obfuscated program.

4 Tensor Algebra

In this section we introduce the basics of tensor algebra. We refer the reader to books on tensor algebra
such as [BG68, Gre78] for a more extensive treatment. In the following we will consider vector spaces
over the field F. If a basis of a vector space V of dimension t is fixed, the elements of V will be identified
with t-column vector of coefficients with respect to the basis. If V is a linear sub-space of Fm, then
the basis can be represented as set of m-column vectors of m × t matrix. The dual space V ∗ of V is
the linear space of linear functionals on V , i.e. linear functions V → F. It is well known that V ∗ is
isomorphic to V and V ∗∗ = V . If a basis of V ∗ is fixed, then a linear functional will be identified with a
t-row vector of coefficients with respect to this basis. Thus, if f is a linear functional in V ∗ and x ∈ V ,
then f(x) = f · x.

A tensor over V is a F-valued multilinear-function with all variables in V or V ∗. The number of
variables from V ∗ are called the contravariant degree, and the number of variables from V are called
covariant degree of the tensor. The (linear) space of multilinear functions on, say, V ∗ × V × V will be
denoted by V ⊗ V ∗ ⊗ V ∗ or T 1

2 (V ). The linear space will also be called the space of tensors of type
(1, 2).

The tensor product of tensor a of type (r, s) and tensor b of type (p, q) is a tensor a ⊗ b of type

11



(r + p, s+ q) and defines a function on (V ∗)r+p × V s+q, given by

a⊗ b(τ i, ..., τr+p, v1, ..., vs+q) = a(τ i, ..., τr , v1, ..., vs)b(τ
r+1, ..., τr+p, vs+1, ...vs+q).

It is not difficult to see the tensor product distributes over addition.

Note that T 1
0 , i.e. linear functionals from V ∗ to F, is just V . In this work, we will focus mostly on

tensor products of such tensors (or just column vectors aka contravariant vectors). Since a p×p′ matrix
can be represented as a p ∗ p′-columns vector (e.g. using the vec operator), one can also consider tensor
product of matrices A (of dimension r × s) and B (of dimension p× q) by A⊗B = mat(Π · (vec(A)⊗
vec(B))), where Π is an appropriate permutation as defined in Section 2. This then yields the familiar
definition of matrix tensor product (also known as Kronecker product).

A basis for T n
0 is easily seen to be given by tensors {ei1 ⊗ ei2 ⊗ · · · ⊗ ein}, where {ei} is a basis of

V . Thus with respect to such a basis, a tensor a ∈ T n
0 is given by components ai1,...,in (represented as

a t ∗ n vector). We will conveniently write ei1 ⊗ ei2 ⊗ · · · ⊗ ein as ei1,i2,...,in .

4.1 Symmetric Tensors

A tensor a (in T n
0 ) is symmetric in the p-th and q-th indices if a (i.e. the corresponding multilinear

function (V ∗)n → F) is symmetric in the p-th and q-th variables. A tensor is symmetric if it is symmetric
in every pair of indices. The symmetric tensors of type (n, 0) form a subspace SYMn of T n

0 . A symmetric
tensor a is given by the components ai1,...,in such that i1 ≤ · · · ≤ in, and the other components are
given by symmetry. A convenient basis is given by the symmetrization operator, the basis consisting of
following tensors: for every unordered choice of i1, ..., in,

∑

σ

eσ(i1,...,in),

where σ is a permutation of n letters (henceforth called n-permutation).5 Thus, the dimension of SYMn

is
(

t+n−1
n

)

.

It is well known that SYMn(V ) is isomorphic to homogeneous polynomials of degree n in t variables
in field F (see e.g. Section 9.13 [Gre78]). By fixing a basis for V , any element of V is then specified by t
elements in F, and hence we also have an isomorphism to degree n homogeneous polynomial functions
on V .

A tensor a (in T n
0 ) is skew-symmetric in the p-th and q-th indices if a is skew-symmetric in the

p-th and q-th variables. Again, it is not difficult to see that a skew-symmetric tensor a of type (n, 0) is
given by components ai1,...,in such that i1 < i2 < · · · < in. Thus the dimension of the space is

(

t
n

)

. A
convenient basis is now given by anti-symmetrization, i.e. the basis consisting of following tensors: for
every unordered choice of distinct i1, ..., in,

∑

σ

sgnσ · eσ(i1,...,in).

5Every permutation σ on n letters determines a permutation on [k]n (also called σ) and defined by σ(i1, i2, ..., in) =
(iσ−1(1), iσ−1(2), ..., iσ−1(n)).
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It is also not difficult to see that the skew-symmetric tensor space is the orthogonal complement of
SYM2, and for this reason we will call it coSYM2, its basis being the co-kernel of the basis of SYM2

(viewed as a t×
(

t+n−1
n

)

matrix)6

4.2 Rank One Matrices

Square matrices in Mt that have rank one (or zero) are exactly the matrices abT, where a and b are
T 1
0 tensors (or simply, t-columns). Such a rank one matrix can also be viewed as mat(a ⊗ b). Thus,

we will identify rank one matrices with rank one T 2
0 tensors over Ft. Rank one matrices also form an

algebraic set, as these are exactly the matrices for which every 2×2 minor of the matrix has determinant
zero, thus giving an algebraic representation. We now show an alternate way of proving that rank one
matrices form an algebraic set (hint: defining determinant in terms of exterior product of columns).

Let SYM(1,3),(2,4) (to be later renamed SYM2,2) be the space of tensors of degree four (i.e. subspace
of T 4

0 ) for which the first and third indices are symmetric, and the second and fourth degrees are
symmetric. Taking a cue from the basis of SYMn above, it is the space spanned by all tensors in T 4

0 of
the form a⊗ b⊗ a⊗ b.

It will be convenient to denote ei1,j1,i2,j2 by ǫ(〈i1, i2〉, 〈j1, j2〉). As for symmetric tensors, it is not
difficult to show that the linear sub-space spanned by a ⊗ b ⊗ a ⊗ b has as basis the following vectors
(for every unordered choice of (i1, i2) and every unordered choice of (j1, j2)):

∑

σ1

∑

σ2

ǫ(σ1〈i1, i2〉, σ2〈j1, j2〉) (3)

where σ1 and σ2 are 2-permutations. This implies that the number of basis vectors is exactly the square

of the number of monomials of degree two in t variables, which is
(

t+1
2

)2
. Alternatively, one can view

this space as tensor product of two symmetric tensor spaces of degree two. For this reason we will now
just call it SYM2,2. Its orthogonal complement, which will have as its basis the co-kernel of the matrix
representing the above basis of SYM2,2, will be denoted by coSYM2,2.

In the following, we will let x ⊗ x denote the Kronecker-product of a vector of t variables x with
itself. In other words, (x ⊗ x)〈i,j〉 = xixj . We will also denote the vector of all degree two monomials
in x by Mon2(x), and in particular (Mon2(x))〈i,j〉 = xixj with i ≤ j. Then it is easy to check that if

we identify SYM2 with its basis matrix {∑σ eσ(i,j)}i≤j , then

x⊗ x = SYM2(Ft) ·Mon2(x). (4)

Similarly, with y being an additional t-vector of variables, we have

x⊗ y⊗ x⊗ y = SYM2,2 · (Mon2(x)⊗Mon2(y)), (5)

where SYM2,2 is identified with the matrix representing the basis (3) above with indices ranging (i1 ≤
i2, j1 ≤ j2).

6An m × n matrix T is also a linear transformation from F
n to F

m. Thus, the orthogonal complement of the vector
space with basis T is same as the cokernel of the linear transformation T , i.e. F

m/Im(T ).
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Lemma 6. The set of rank one (or zero) matrices is the subset of F
t2 which is the zero-set of the

quadratic polynomials in (t2-vector of variables) x given by (coSYM2,2(Ft))T(x⊗ x).

Proof. By definition of coSYM2,2 and the above characterization of rank one matrices as of the form
a⊗ b, it is clear that rank one matrices are in the zero-set of these polynomials.

We next show that if for some t2-vector c it is the case that c⊗ c is in span of SYM2,2, then c must
be a T 2

0 tensor, i.e. of the form a⊗ b. This is same as checking that if ccT is in span of tensor product of
symmetric matrices then c itself must be a tensor-product. To this end, divide c into blocks of vectors,
each of size t. Call these blocks c1, ...ct. Then the (i, j)-th Mt-block of ccT is cic

T
j . Next, we argue

that every Mt2 matrix m that is in the span of tensor product of symmetric matrices has the property
that each Mt-block of m is itself a symmetric matrix. This follows because symmetric matrices form
an additive sub-group of Mt.

Hence, for each i, j ∈ [1..t], the block cic
T
j is symmetric. For each vector ci, we will let ci,k denote

its k-th element. Next, we claim that if cic
T
j is symmetric then either (a) cj is a scalar multiple of ci,

or (b) ci is zero. So, suppose ci is not zero. Let, k be the smallest index such that ci,k be non-zero.
Then, for all l ∈ [1..t], by the symmetry property of cic

T
j , we have cj,l = (cj,k/ci,k) ∗ ci,l, and hence cj

is a scalar multiple of ci.

Next, let s be the smallest index in [1..t], such that cs is non-zero. If there is no such s, then c is
zero, and c is trivially a T 2

0 tensor. Otherwise, for all s′ ∈ [1..t], cs′ is a scalar multiple of cs by above
claim. Thus, c is a T 2

0 tensor.

Since, coSYM2(Ft2) is a subspace of coSYM2,2(Ft), and (coSYM2)T(x⊗x) is identically zero, we are
really looking at the zero-set of (coSYM2,2/coSYM2)T(x⊗ x).

4.3 Quadratic Polynomials Modulo Ideal of Rank One Matrices

For any invertible Mt2 matrix F , define

R1(F ) = {v ∈ F
t2 | ∃a, b ∈ T 1

0 (F
t) : v = F · (a⊗ b)}

Lemma 7. Rank of span Mon2(R1(F )) is
(

t+1
2

)2
.

Proof. We will first prove rigorously that the span of Mon2(R1(F )) is isomorphic to the span of {y⊗y|y ∈
R1(F )}. When we identify a vector space V with its basis B, we drop the term “span” when saying
V = span B or V ≃ span B, and just write V = B or V ≃ B resp.

Recall, for a t2-vector of variables x, (x ⊗ x) = SYM2(Ft2) · Mon2(x). Since, Mon2(x) is just a
subset of x ⊗ x, there is another matrix INVSYM2 such that Mon2(x) = INVSYM2 · (x ⊗ x). Thus,

(SYM2 · INVSYM2 − It
2

) · SYM2 = 0, as SYM2(Ft2) is same as span of (c⊗ c), where c is an arbitrary
t2-vector. We also have

span Mon2(R1(F )) = INVSYM2 · (F ⊗ F ) · SYM2,2(Ft). (6)

14



Since, (F ⊗ F ) · SYM2,2(Ft) is subspace of SYM2(Ft2), we also have

(SYM2 · INVSYM2 − It
2

) · (F ⊗ F ) · SYM2,2(Ft) = 0. (7)

Since matrix SYM2 is full-ranked, i.e. has no right kernel, we have from (7),

INVSYM2 · (F ⊗ F ) · SYM2,2(Ft) ≃ (F ⊗ F ) · SYM2,2(Ft). (8)

Thus, by (6)

span Mon2(R1(F )) ≃ (F ⊗ F ) · SYM2,2(Ft) = span {y ⊗ y | y ∈ R1(F )}. (9)

Thus, rank of span Mon2(R1(F )) is
(

t+1
2

)2
.

It is worth noting that by the very definition of INVSYM2 · (x ⊗ x), the transform INVSYM2 picks
(

t2+1
2

)

rows from (x⊗x) , and we have shown that when picking the same rows from SYM2,2 it preserves

the rank of SYM2,2.

In the following, given a full-ranked (
(

t2+1
2

)

×
(

t+1
2

)2
)-matrix M , we would like to identify a subset

of indices from [1..
(

t2+1
2

)

], called “full”, such that the sub-matrix of M consisting of rows with indices
from this subset is invertible.

Theorem 8.

(a) The vector space of homogeneous quadratic functions on R1(F ) is isomorphic to the F-linear span
of {y ⊗ y | y ∈ R1(F )}.

(b) Any homogeneous quadratic function f(x) defined on R1(F ) and given by ~f T ·Mon2(x), is with
high probability equivalent to the function

{f(Xi)}i · {Mon2(Xi)full}−1
i ·Mon2(x)full,

where {Xi}i are a set of
(

t+1
2

)2
random and independent samples from R1(F ), and the subscript

full denotes any subsequence of indices of size
(

t+1
2

)2
such that the resulting matrix {Mon2(Xi)full}i

is invertible.

It is well known that the space of degree d homogeneous polynomials over a vector-space V is
isomorphic to degree d symmetric tensors of V . However, here we are claiming the same to be true
for an algebraic set R1(F ). This however is not surprising, since it can be checked that the ideal
generator (coSYM2,2)T(x ⊗ x) of ideal of R1(F ) is already a Grobner basis for any natural monomial
ordering. Moreover the ideal generators are homogeneous quadratic polynomials, and hence using
Macaulay’s theorem (see e.g. Theorem 15.3 in [Eis95]) the above theorem follows. However, for sake of
completeness, we give a direct proof here.

Proof. Now, we prove (a) and (b).
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(a) A homogeneous quadratic function f on F
t is given by polynomial ~f T ·Mon2(x), where ~f is the

coefficients of f . Also, by lemma 6, R1(F ) is the zero-set of (coSYM2,2)T · (F−1 ⊗ F−1) · (x⊗ x) or
alternatively the zero set of (coSYM2,2)T· (F−1 ⊗ F−1)· SYM2 ·Mon2(x).

So, consider the kernel of (coSYM2,2)T· (F−1 ⊗ F−1)· SYM2. We will call it W . By lemma 6 it
follows that span of Mon2(R1(F )) is a subspace of W . However, a quick check of the ranks shows

that the spaces are identical: we will just show that rank of W is also
(

t+1
2

)2
. First, note that

coSYM2(Ft2) is a subspace of coSYM2,2(Ft). Thus,

rankW = rank SYM2(Ft2)− (rank coSYM2,2(Ft)− rank coSYM2(Ft2))

= t4 − rank coSYM2,2(Ft)

= rank SYM2,2(Ft).

Now, consider a reduced “column-echelon” basis of W which can be obtained from Mon2(R1(F )) or
INVSYM2 ·(F⊗F )·SYM2,2, by multiplying on the right by inverse of (INVSYM2 ·(F⊗F )·SYM2,2)full.
Call this reduced-W . Since, x ∈ R1(F ) iff (coSYM2,2)T· (F−1 ⊗ F−1)· SYM2 ·Mon2(x) is zero, this
implies that x ∈ R1(F ) iff Mon2(x) = reduced-W · Mon2(x)full (see Appendix B for a detailed

proof). Thus, the homogeneous quadratic function f on F
t given by polynomial ~f T ·Mon2(x), can

be restricted to be well-defined on R1(F ) by the function

~f T · reduced-W ·Mon2(x)full.

Thus, the vector space of homogeneous quadratic functions on R1(F ) is spanned by

reduced-W ·Mon2(x)full

= reduced-(INVSYM2 · (F ⊗ F ) · SYM2,2) ·Mon2(x)full.

We already showed that linear span of {y ⊗ y | y ∈ R1(F )} is isomorphic to Mon2(R1(F )) or
INVSYM2 · (F ⊗ F ) · SYM2,2, which then completes the proof.

(b) It is not difficult to see that with high probability

{Xi ⊗Xi}i=1..rankSYM2,2 ,

with Xi chosen randomly and independently from R1(F ), form a basis of span of {y ⊗ y | y ∈
R1(F )}. Then, by the above isomorphism (i.e. INVSYM2), it follows that with high probability
{Mon2(Xi)}i=1..rankSYM2,2 also form a basis of space spanned by Mon2(R1(F )). Thus, we have
with high probability,

~f T · reduced-W ·Mon2(x)full

=~f T · reduced-{Mon2(Xi)}i=1..rankSYM2,2 ·Mon2(x)full

=~f T · {Mon2(Xi)}i · {Mon2(Xi)full}−1
i ·Mon2(x)full

={f(Xi)}i · {Mon2(Xi)full}−1
i ·Mon2(x)full.
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The proof of theorem 8 easily extends to give the following theorem.

Theorem 9. Any homogeneous function f(x,y) defined on R1(F 1)× R1(F 2), quadratic in both x and

y, and given by ~f T · (Mon2(x)⊗Mon2(y)), is with high probability equivalent to the function

{f(Xi, Yj)}i,j · ({Mon2(Xi)xfull}−1
i ⊗ {Mon2(Yj)yfull}−1

j ) · (Mon2(x)xfull ⊗Mon2(y)yfull),

where {Xi}i are a set of
(

t+1
2

)2
random and independent samples from R1(F 1) and {Yj}j are a set of

(

t+1
2

)2
random and independent samples from R1(F 2), and subscript “xfull” denotes any subsequence

of indices of size
(

t+1
2

)2
such that the resulting matrix {Mon2(Xi)xfull}i is invertible, subscript “yfull”

denotes any subsequence of indices of size
(

t+1
2

)2
such that the resulting matrix {Mon2(Yj)yfull}j is

invertible.

5 Implementation of Gadgets

In Section 3.1, we promised to give an efficient implementation of the gadgets (i.e. the intermediate
gadgets and the root gadget).

Recall, the intermediate gadget is:

Gadgetnode : R1(left(node))× R1(right(node))→ R1(node) given by

Gadgetnode(x,y) = Fnode · vec( [mat(F−1
left(node) · x),mat(F−1

right(node) · y)] )

and the root gadget is:

Gadgetroot : R1(left(root))× R1(right(root))→Mk given by

Gadgetroot(x,y) = mat( [mat(F−1
left(root) · x),mat(F−1

right(root) · y)] · vec(C) )

Theorem 9 shows that the above gadgets can be given by giving out polynomially many input-output
samples of the evaluations of the Gadgets. In particular, we can give evaluations on legitimate inputs,
and before a certain depth there are enough legitimate inputs such that their input-output behavior
completely determines the Gadgets on all inputs in R1. Near the leaves there may not be enough
legitimate inputs, but then the Gadget can be given on just those (few) legitimate inputs.

6 Ranks of Certain Symmetric-Tensor Spaces

Since by corollary 5, F · vec(A⊗B) is same as F ·Πk,k · (vec(A) ⊗ vec(B)), in this section we will just
focus on vectors F · (a⊗ b), where a and b are k2-vectors (and let F stand for F ·Πk,k). In this section
t should be thought of as t = k2, where k is the security parameter used in Section 3.
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Now, given arbitrarily many samples Xi = F ·(ai⊗bi), it follows by Marcus-Moyls Theorem [MM59]
(or see [Fei03]) that modulo tensor-product multiplicative-subgroup, any G satisfying (for all i) Xi =
G · (xi ⊗ yi) for some xi and yi is either F or FΩ. Further, note that the same ai maybe used in
the neighbouring step hidden under a different F , say F 1. Thus, the adversary may also be given
Yi = F 1 · (ai ⊗ ci), for some arbitrary ci. We next show that given arbitrarily many Xi and Yi, G
(modulo tensor-product subgroup) must be F (and G1 must be F 1).

Note, for all i, F−1Xi and (F 1)−1Yi have the same columns (namely ai) up to scaling (when re-
shaped as matrices, using the operatormat). Let P andQ be “alternatives” to F and F 1 (modulo tensor-
product subgroup) – that is, P−1Xi and Q−1Yi are all rank-1 matrices (i.e. of the form xyT). Firstly,
by Marcus-Moyls Theorem, P is either F or FΩ (modulo tensor-product subgroup). Suppose (toward
a contradiction) that P is FΩ (modulo tensor-product subgroup). Then P−1Xi = (R⊗S)Ω(ai ⊗ bi) =
(R⊗ S) · (bi ⊗ ai) = (Rbi ⊗ Sai).

Thus, the columns of P−1Xi (when re-shaped as a matrix) are multiples of Rbi. It is impossible
for the columns of Q−1Yi to be multiples of some Rbi, since these samples are independent of bi, which
leads to a contradiction.

Despite this information-theoretic result, we now argue that it is computationally-hard for the
Adversary to obtain F (up to tensor-products and scalars). We will then extend the argument to the
case where the Adversary is given additional equations, e.g. from the commutator gadgets, or if the
Adversary tries to fix a representative modulo the tensor-product subgroup.

6.1 Rank of Macaulay Matrices

For a given non-singular Mt2 -matrix F , consider the sub-space E of Ft2 generated by vectors F · (a⊗ b),

where each a and b are arbitrary t-vectors. While E as a linear sub-space of Ft2 has rank t2, one does
get non-trivial information about F by taking tensor product of F · (a⊗ b) with itself.

Given arbitrary samples of F · (ai⊗ bi), called Xi, i ∈ [0..rankSYM2,2− 1], the collection {Xi⊗Xi}i
can be written as (F ⊗F ) ·SYM2,2 ·R, for some matrix R in Mrank SYM2,2 . Given random samples, with
high probability R is non-singular. Thus, by introducing free variables G for F−1, we then have the
following equations in the t4 variables of G:

coSYM2,2T · (GF ⊗ GF ) · SYM2,2 = 0

At face value, this would mean
(

t+1
2

)2·(t4−
(

t+1
2

)2
), orO(t8) quadratic equations in t4 variables. However,

since GF ⊗ GF have repeated entries, the number of linearly independent (quadratic) equations, i.e.
linear equations in Mon2(vec(GF )), is smaller. From now on-wards, we will write GF as H. To get the
correct number of independent equations in Mon2(vec(H)), it is convenient to write the above equations
using Lemma 1 as

(coSYM2,2T ⊗ SYM2,2T) · vec(H⊗ H) = 0 (10)

Instead of using the relation (4), we will use a slightly different representation in this section. It will
also be convenient to write an index in [0..t8 − 1] as (〈i, j〉, 〈k, l〉), with each coordinate in [0..t2 − 1],
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such that vec(H⊗H)〈i,j〉,〈k,l〉 refers to the (i ∗ t2 + j)-th row and (k ∗ t2 + l)-th column of H⊗H. This,
of course, is just Hi,kHj,l. Hence, we have equality relations

vec(H⊗ H)〈i,j〉,〈k,l〉 = vec(H⊗ H)〈j,i〉,〈l,k〉

In other words, for every permutation π of pairs of integers in [0..t2 − 1],

vec(H⊗ H)〈i,j〉,〈k,l〉 = vec(H⊗ H)π〈i,j〉,π〈k,l〉 (11)

We will use the basis of SYM2,2 characterized in Section 4.2. We will also use other notation from
that section. Recall, the linear sub-space spanned by a⊗ b⊗ a⊗ b has as basis the following vectors:

∑

σ1

∑

σ2

ǫ(σ1〈i1, i2〉, σ2〈j1, j2〉) (12)

where σ1 and σ2 are 2-permutations. More generally, the space spanned by (a ⊗ b)⊗n, has as basis
vectors:

∑

σ1

∑

σ2

ǫ(σ1〈i1, i2, ..., in〉, σ2〈j1, j2, ..., jn〉)

where the permutations are now n-permutations. Again, the number of such basis vectors is exactly

the square of the number of monomials of degree n in t variables, which is
(

t+n−1
n

)2
. It will be useful

to note that the basis vectors are closed under an n2-permutation σ ⊗ σ applied to all terms, i.e. a
n-permutation σ applied to the i-indices and the same σ simultaneously applied to the j-indices. While
one can consider generalizations of the attack where instead of tensoring Xi with itself, one does an
n-fold tensor product of Xi with itself, we will focus on the base case. This more general case can be
handled similarly, and yields more or less the same result.

The orthogonal complement of the above space can also be characterized similarly, although it is
slightly more complicated as the sign of the permutation gets involved7. However, since we are only
seeking the number of independent equations in (10), i.e. in Mon2(vec(H)), one need only consider the
following closure. For a vector c, and a set of operations Γ, the additive closure of c under Γ is defined
as

∑

γ∈Γ γ(c).

Thus, for each row of coSYM2,2T ⊗ SYM2,2T, given that vec(H⊗ H) satisfies equality relations (11),
we must take its additive closure under π⊗π, for every 2-permutation π of pair of integers in [0..t2−1].
Each such 2-permutation π can be viewed as a 2-permutation σ⊗ σ (by first pairing indices as in going

from e to ǫ as in Section 4.2). However, as remarked earlier, SYM2,2T is already closed under such
permutations π (viewed as σ ⊗ σ). The basis of the cokernel however is not closed under σ ⊗ σ, and
indeed most elements of the cokernel are trivialized (i.e. become zero) by this closure operation, except
when all indices i1, i2 are distinct, as well as j1, j2 are distinct. In such cases, the closure of the cokernel

7 The orthogonal complement coSYM2,2 is generated by the following vectors: For each i1, i2, j1, j2,
∑

σ sgn σ ·

ǫ(σ〈i1, i2〉, j1, j2) and
∑

σ sgn σ · ǫ(i1, i2, σ〈j1, j2〉). It is easy to check that only (4 − 1) ·
(

t

2

)2
+ 2 · t ·

(

t

2

)

of these are
linearly independent.
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(under π) is characterized by basis vectors :

∑

σ1

∑

σ2

sgnσ1 · sgnσ2 · ǫ(σ1〈i1, i2〉, σ2〈j1, j2〉). (13)

Thus, the total number of linearly independent (quadratic) equations8 in (10) is
(

t
2

)2 ·
(

t+1
2

)2
. This is

still O(t8) (quadratic) equations in t4 variables.

The usual XL-methodology at this point would require one to multiply each of these equations with
degree n monomials of H to get extra equations of degree n+ 2 in H-variables (the matrix comprising
of coefficients of all the equations in terms of the degree (n + 2)-monomials is called the Macaulay

matrix). The number of monomials of degree n in H variables is
(

t4+n−1
n

)

, and of degree n + 2 is
(

t4+n+2−1
n+2

)

. The total number of equations obtained by multiplying by degree n monomials is then

(

t

2

)2

·
(

t+ 1

2

)2

·
(

t4 + n− 1

n

)

.

It is not difficult to see that there is a small constant n, for which this number of equations exceeds
(

t4+n+2−1
n+2

)

. The only problem is that these equations are not linearly independent (in the degree (n+2)
monomials). Actually, the problem of determining the number of linearly independent equations in
grade (n+ 2) (i.e. degree (n+ 2) monomials of a graded polynomial ring) is the subject of the famous
Hilbert function. For any ideal I, which in this case is the set of quadratic equations above, the Hilbert
function of the ideal I, denoted HI , evaluated at (n+2), is exactly the number of linearly independent
generators of the ideal restricted to the (n+2)-th grade (the independence is defined over the underlying
field or ring of the polynomial ring). In general, it is inaccurate to just multiply the number of original
equations and by the number of monomials of degree n to get HI(n+2) as the following analysis shows:
Let the ideal I be generated by N quadratic equations {fi}. We will denote the polynomial ring R[G]
by RG. Then the natural map from the free RG-module RGN =

⊕

RGǫi to RG given by ǫi → fi has a
kernel. Included in this kernel are expressions fiǫj − fjǫi. In other words, equations fi = 0 and fj = 0
yield dependent equations in grade 4 when multiplied by polynomials fj and fi resp. These are some
of the obvious generators of the kernel, and in general there could be more complicated generators. Of
course, these kernel generators can themselves be dependent, and we need to take a further kernel of

8 Note that although the number of distinct monomials is
(

t4+2−1
2

)

, we are considering the equations represented as

a subspace of Ft8 . Alternatively, we are looking at the quotient space

(coSYM2,2 ⊗ SYM2,2)/cokernel Πt2,t2 · SYM2(Ft2).

Strictly speaking, cokernel Πt2,t2 ·SYM
2(Ft2) is not a subspace of (coSYM2,2⊗SYM2,2), so we must take their intersection

before dividing. It can be shown that this space is same as

((coSYM2,2/coSYM2(Ft2 ))⊗ SYM2,2,

where SYM2 is the sub-space of symmetric tensors, i.e. t2-vectors tensor-ed with itself. It is not difficult to see that

(coSYM2,2/coSYM2(Ft2)) has as its basis
∑

σ2

∑

σ sgn σ · ǫ(σ2σ〈i1, i2〉, σ2〈j1, j2〉), which is non-trivial only if i1 6= i2 and
j1 6= j2.
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these kernel generators. This is the subject matter of Hilbert’s syzygy theorem (see e.g. [Eis95]) which
shows that this process of free resolution of the original ideal terminates after a finite number of steps.
Then, by inclusion-exclusion principle one can obtain the Hilbert function.

For general ideals, it is a difficult problem to accurately get the Hilbert function at different grades.
However, we show that for our problem we can exactly upper bound the number of independent gener-
ators of the ideal at each grade.

First note that it suffices to consider additional equations obtained by multiplying by monomials in
H instead of G. Next, note that the generators of coSYM2,2 as given in (13) can be written as

∑

σ1

∑

σ2

sgnσ2 · ǫ(σ1〈i1, i2〉, σ1σ2〈j1, j2〉). (14)

Now, consider multiplying an original equation with coefficients

∑

σ1,σ2

sgnσ2 · ǫ(σ1〈i1, i2〉, σ1σ2〈j1, j2〉)T ·
∑

σ′

1
,σ′

2

ǫ(σ′
1〈i′1, i′2〉, σ′

2〈j′1, j′2〉)T (15)

by a (degree one) monomial H〈i3,j3〉,〈i′3,j
′

3
〉. Since monomials satisfy symmetry relations, the resulting

equation is closed under a 3-permutation σ̄ to give coefficients

∑

σ̄

∑

σ1,σ2

sgnσ2 · ǫ(σ̄(σ1〈i1, i2〉, i3), σ̄(σ1σ2〈j1, j2〉, j3))T ·
∑

σ′

1
,σ′

2

ǫ(σ̄(σ′
1〈i′1, i′2〉, i′3), σ̄(σ′

2〈j′1, j′2〉, j′3))T

=
∑

σ̄

∑

σ2

sgnσ2 · ǫ(σ̄(i1, i2, i3), σ̄(σ2〈j1, j2〉, j3))T ·
∑

σ′

1
,σ′

2

ǫ(σ̄(σ′
1〈i′1, i′2〉, i′3), σ̄(σ′

2〈j′1, j′2〉, j′3))T (16)

When multiplying an original equation (15) by a degree (n− 2) monomial in H, we similarly get an
equation with coefficients

∑

σ̄

∑

σ2

sgnσ2 · ǫ(σ̄(i1, i2, i3, .., in), σ̄(σ2〈j1, j2〉, j3, .., jn))T ·
∑

σ′

1
,σ′

2

ǫ(σ̄(σ′
1〈i′1, i′2〉, i′3, .., i′n), σ̄(σ′

2〈j′1, j′2〉, j′3, .., j′n))T

(17)

Note that the expression

∑

σ̄

ǫ(σ̄(i1, i2, i3, .., in), σ̄(j1, j2, j3, .., jn))
T · ǫ(σ̄(i′1, i′2, i′3, .., i′n), σ̄(j′1, j′2, j′3, .., j′n))T

corresponds to a monomial H〈i1,j1〉,〈i′1,j
′

1
〉 ·...·H〈in,jn〉,〈i′n,j

′

n〉
From now on, when we talk about a monomial

in H, we mean the equivalence class modulo the commutation relations, as in xy and yx are in the same
equivalence class. Similarly,

∑

σ̄

∑

σ2

sgnσ2 · ǫ(σ̄(i1, i2, i3, .., in), σ̄(σ2〈j1, j2〉, j3, .., jn))T · ǫ(σ̄(i′1, i′2, i′3, .., i′n), σ̄(j′1, j′2, j′3, .., j′n))T
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corresponds to H〈i1,j1〉,〈i′1,j
′

1
〉·H〈i2,j2〉,〈i′2,j

′

2
〉·...·H〈in,jn〉,〈i′n,j

′

n〉
− H〈i1,j2〉,〈i′1,j

′

1
〉·H〈i2,j1〉,〈i′2,j

′

2
〉·...·H〈in,jn〉,〈i′n,j

′

n〉
.

Such terms will be referred to as j-transposed anti-symmetric terms. Now, note that all the equations
of the form (17) are linear combinations of j-transposed anti-symmetric terms. We now give a basis
which spans all the equations of the form (17).

We first partition the set of degree n monomials in H into disjoints sets as follows: fix 〈i1, i′1, j′1〉,
〈i2, i′2, j′2〉,...,〈in, i′n, j′n〉 Note that each of these indices, i.e. i1, ..., in, i

′
1, ..., i

′
n, j

′
1, ..j

′
n takes value in

[1..t] and possibly with repetition. Next, pick j1, ..., jn, again possibly with repetition. Consider
all possible permutations of the picked j1, ..., jn and fill the j-slots in tuples above to get a set of
monomials. This set is then characterized by unordered multi-set (〈i1, i′1, j′1〉, ..., 〈in, i′n, j′n〉) and un-
ordered multi-set (j1, j2, ..., jn), and consists of all (equivalence classes of) monomials H〈i1,j∗1 〉,〈i

′

1
,j′

1
〉 · ... ·

H〈in,j∗n〉,〈i
′

n,j
′

n〉
, where j∗1 , ..., j

∗
n is a permutation of j1, ..., jn. We will refer to this set of monomials as

Monn(〈i1, i′1, j′1〉, ..., 〈in, i′n, j′n〉, j1, j2, ..., jn).
Each monomial belongs to at least one of these sets, and by construction the sets are pair-wise

disjoint. Next, consider each such set of monomials above, and consider its transposition graph, the
nodes of which are the monomials in the set. Note that each node is characterized by a different ordering
of multi-set (j1, ..., jn). Two nodes have an edge if their characterizing orderings are a transposition of
each other, i.e. one ordering is obtained from the other by exchanging two different entries in (j1, ..., jn).
It is well-known that the transposition graph of orderings of a multi-set is Hamiltonian [Cha73]. Further,
as noted above, the equations of the form (17) are linear combinations of j-transposed anti-symmetric
terms, which in this new formulation means the anti-symmetric term involving two monomials from
the same set and with an edge between the two monomials in the transposition-graph of the set. A
basis of such j-transpose anti-symmetric terms is then easily obtained by focusing on each set, and in
particular focusing on a Hamiltonian path in its transposition-graph: for each edge in the Hamiltonian
path introduce a basis element consisting of a j-transposed anti-symmetric term. Any transposition T
in this set can be obtained by following the the sub-path of the Hamiltonian path starting from one
node and ending in the other. A linear combination of the basis elements corresponding to the edges
of the sub-path also yields the j-transposed anti-symmetric term for T . Thus, we have a basis for the
j-transposed anti-symmetric terms associated with this set. The size of this basis is one less than the
number of nodes in the transposition-graph corresponding to this particular set, or alternatively one
less than the number of monomials in this particular set. We will refer to a basis for Monn(...) as
Basisn(...), and the size of the basis |Basisn(...)| is one less than |Monn(...)|.

For all equations of the form (17), we then have a basis which is of size at most the total number
of monomials minus the total number of disjoint sets of monomials. Thus, the number of linearly-
independent equations obtained at grade n is less than the total number of monomials of degree n by
at least the total number of disjoint sets at grade n. The total number of disjoint sets above is

(

t3 + n− 1

n

)(

t+ n− 1

n

)

, (18)

as the unordered multi-set (〈i1, i′1, j′1〉, ..., 〈in, i′n, j′n〉) corresponds to a degree n monomial in t3 variables,
and the unordered multi-set (j1, ..., jn) corresponds to a degree n monomial in t variables.

It is not surprising that for every grade n, the number of linearly-independent equations is much less
than the monomials, since there are multiple solutions to H (or G) given the original equations (15). In
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particular, any G which is same as F−1 modulo tensor-products is a solution for G.

6.2 Additional Equations from the Neighbouring Steps

While one particular step of the obfuscated program yields information about F via the equations
considered above, the neighbouring steps yield additional information about F . In particular, the
Adversary not only gets samples of the form Xi = F · (ai ⊗ bi), but also Yi = F̂ · (bi ⊗ ci), where F̂
is another Mt2 matrix, and ci is an arbitrary t-vector. Since by Corollary 3, (bi ⊗ ci) = Ω(ci ⊗ bi),
without loss of generality we will assume that Yi = F̂ · (ci ⊗ bi). Tensoring Xi with Yi then yields
Xi ⊗ Yi = (F ⊗ F̂ ) · (ai ⊗ bi⊗ ci ⊗ bi). We can then consider the space SYM2,1,1 generated by arbitrary
a⊗ b⊗ c⊗ b, as well as its cokernel coSYM2,1,1, and get new equations

(coSYM2,1,1T ⊗ (SYM2,1,1)T) · vec(GF ⊗ ĜF̂ ) = 0, (19)

where Ĝ are new variables for (F̂ )−1. Again, we will let Ĥ stand for ĜF̂ .

This time, the coefficients in the original equations (cf. (15)) can be written as

∑

σ

sgnσ · ǫ(i1, i2, σ〈j1, j2〉)T ·
∑

σ′

ǫ(i′1, i
′
2, σ

′〈j′1, j′2〉)T (20)

Note H⊗ Ĥ has no kernel, and hence the above equation has no outer permutation. If we multiply the
above equation by a (degree one) monomial H〈i3,j3〉,〈i′3,j

′

3
〉, we get coefficients

∑

σ

[ǫ(σ〈i1, i3〉, i2, σ〈j1, j3〉, j2)T − ǫ(σ〈i1, i3〉, i2, σ〈j2, j3〉, j1)T]·

[ǫ(σ〈i′1, i′3〉, i′2, σ〈j′1, j′3〉, j′2)T + ǫ(σ〈i′1, i′3〉, i′3, σ〈j′2, j′3〉, j′1)T] (21)

and if instead we multiply by Ĥ〈i3,j3〉,〈i′3,j
′

3
〉, we get

∑

σ

[ǫ(i1, σ〈i3, i2〉, j1, σ〈j3, j2〉)− (ǫ(i1, σ〈i3, i2〉, j2, σ〈j3, j1〉)]·

[ǫ(i′1, σ〈i′3, i′2〉, j′1, σ〈j′3, j′2〉) + (ǫ(i′1, σ〈i′3, i′2〉, j′2, σ〈j′3, j′1〉)] (22)

Similarly, we can consider multiplying by higher degree monomials of degree m− 2, with possibly both
H and Ĥ variables. All such equations can again be seen as linear combinations of cross-transposed
anti-symmetric terms which are of the form:

H〈i1,j1〉,〈i′1,j
′

1
〉 · ... · H〈in,jn〉,〈i′n,j

′

n〉
· Ĥ〈̂i1,ĵ1〉,〈̂i′1,ĵ

′

1
〉 · ... · Ĥ〈̂in̂,ĵn̂〉,〈̂i′n̂,ĵ

′

n̂
〉

− H〈i1,ĵ1〉,〈i′1,j
′

1
〉 · ... · H〈in,jn〉,〈i′n,j

′

n〉
· Ĥ〈̂i1,j1〉,〈̂i′1,ĵ

′

1
〉 · ... · Ĥ〈̂in̂,ĵn̂〉,〈̂i′n̂,ĵ

′

n̂
〉

where n ≥ 1, n̂ ≥ 1 and n+ n̂ = m.

So, these cross-transposed anti-symmetric terms are essentially j-transposed anti-symmetric terms
considered in the previous sub-section, except that the transposition goes across between H and Ĥ
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variables. We must also consider original equations (15) multiplied by mixed-variable monomials, and
these would yield j-transposed anti-symmetric terms, except the transpositions are restricted to be
between H variables.

As in the previous section, we now split the set of monomials of degree (n, n̂), n + n̂ = m, into a
union of disjoint sets: each set is characterized by an unordered multi-set (〈i1, i′1, j′1〉, ..., 〈in, i′n, j′n〉), an
unordered multi-set (〈̂i1, î′1, ĵ′1〉, ..., 〈̂in̂, î′n̂, ĵ′n̂〉) and unordered multi-set (j1, ..., jm), and consists of all
(equivalence classes of) monomials

H〈i1,j∗1 〉,〈i
′

1
,j′

1
〉 · ... · H〈in,j∗n〉,〈i

′

n,j
′

n〉
· Ĥ〈̂i1,j∗n+1

〉,〈̂i′
1
,ĵ′

1
〉 · ... · Ĥ〈̂in̂,j∗m〉,〈̂i′

n̂
,ĵ′

n̂
〉,

where j∗1 , ..., j
∗
m is a permutation of j1, ..., jm.

Each monomial belongs to at least one of these sets, and by construction the sets are pair-wise
disjoint. Then, reasoning as before, the deficit of the number of linearly-independent equations from
the total number of monomials of degree m is same as the number of disjoint sets considered above.
The number of disjoint sets is at least

∑

n:m>n≥2

(

t3 + n− 1

n

)(

t3 + (m− n)− 1

m− n

)(

t+m− 1

m

)

.

6.3 Additional Equations from Gadgets

In this section we show that if there are additional O(t2) linear or affine equations in G available, or
additional O(t4) quadratic equations in G available, one would need n = Ω(t) so as to make the number
of equations exceed the number of monomials.

So, first consider the case of O(t2) affine equations in G that one can get by just fixing about 2 · t2
G-variables to arbitrary values. Since the equations (10) and (19) only determine G modulo tensor-
product subgroup, one can indeed set about 2 · t2 variables of G to arbitrary constants (and no more)
so as to fix a representative of G modulo the tensor-product subgroup (see Section 7 for more details).

Now, if we multiply these equations E by monomials of degree (n − 1), we will get equations with
monomials of degree (n−1) and n. However, given that the equations (15) could be generated9 as linear
combinations of j-transposed anti-symmetric terms (dropping one for each set of disjoint monomials
Monn(...)), a careful analysis shows that the total number of new independent equations obtained by
multiplying the new equations E by monomials is at most one per equation from E and a disjoint
set Monn−1(...). To be more precise, consider an equation Ei,j = Gi,j − ci,j in E. Now, consider
two monomials m1 and m2 of degree (n − 1) such that they are in some same disjoint monomials set
Monn−1(...). Then we claim that m1Ei,j and m2Ei,j are dependent given the basis for j-transposed
anti-symmetric terms of degree n. First, check that for any x, y, m1Hx,y and m2Hx,y are in some same
disjoint set Monn(...). Thus, (m1 −m2)Hx,y is a j-transpose anti-symmetric term of degree n. Since
Gi,j is same as HF−1, the claim follows. Hence for each equation Ei,j in E we only obtain (at most) as
many new independent equations as there are disjoint Monomial sets of degree n− 1.

9For simplicity we will ignore equations coming from the neighbouring step, although one can also analyze these
equations together without getting a different result.
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Hence, the total number of new independent equations we obtain is

O(t2)

(

t3 + n− 2

n− 1

)(

t+ n− 2

n− 1

)

.

Since, the deficit from the total number of degree n monomials was as given in (18), for the total number
of independent equations to equal (or approach) the number of monomials we must have

O(t2)

(

t3 + n− 2

n− 1

)(

t+ n− 2

n− 1

)

=

(

t3 + n− 1

n

)(

t+ n− 1

n

)

.

This implies n = Ω(t).

A similar analysis shows that if we get O(t4) additional quadratic equations in G, then we must have

O(t4)

(

t3 + n− 3

n− 2

)(

t+ n− 3

n− 2

)

=

(

t3 + n− 1

n

)(

t+ n− 1

n

)

.

This implies that n continues to be Ω(t).

Note that the number of equations we get from each commutator gadget is equal to the number
of monomials of degree two in both x and y, where x and y are vectors of length t2 each. Thus, in
variables corresponding to F−1

left and F−1
right, the number of degree four (two in each variable) equations10

coming from a commutator gadget is of the order of O(t8). Again, by analysis similar to above we have
n = Ω(t).

7 Further Cryptanalysis

In this section, we investigate the possibility of obtaining small hamming-weight “codewords” using
Grobner basis computation, especially for the case where some components of G are fixed to random
values (as in Section 6.3). Recall F is a random invertible matrix in Mt2 .

Since the equations (10) in G (or even the additional equations (19)) only determine F−1 modulo
(left) tensor-product subgroup, an Adversary may fix some of the components of G to particular or
random values, so as to obtain a representative of F−1 (modulo the (left) tensor-product of invertible
matrices group). So, we first show that only O(t2) components of G can be fixed arbitrarily.

Since, G must still be in the same left-coset as F−1, we must have GF = U ⊗ V. Recall, we
let H = GF , So, fixing components of G is same as fixing components of HF−1, or (U ⊗ V) · F−1.
We will let T stand for F−1. Now, assume that the full left column of G, i.e. G0 is fixed to some
values R0. Hence, (U ⊗ V)T 0 = R0. Or, U mat(T 0)VT = mat(R0). We will write mat(T 0) as T0,
and mat(R0) as R0, and hence UT0VT = R0. So, this then just determines U in terms of V−T or
vice versa. We can try to fix another full column of G, say G1 = R1, for some R1. This would then

10Technically, there are t2 output components, and hence t2 ∗ O(t8) equations. But, the degree of the equations goes
up by one because of the additional variables for Fnode. Similarly, for the root commutator-gadget we have an additional
degree corresponding to the variables for the center-piece.
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also imply UT1VT = R1. But, since T is random, and if we pick R0 and R1 at random, then this
would lead to a contradiction with high probability (by just taking determinants of all quantities).
Hence, we cannot set another full column of G to random values. We can, try to set all but one (last)
component of G1, and by letting z be a free variable for G1,t2−1, we get G1 = R1||z, where now R1 is
a random (t2 − 1)-column, and the operator “||” stands for column-wise concatenation. Now, we get
UT1(T0)−1U−1R0 = mat(R1||z), or U = mat(R1||z)(R0)−1UT0(T1)−1. For U to be not all zero, we must
have that det((mat(R1||z)(R0)−1)⊗ (T0(T1)−1)T − I) is zero. However, this with high probability also
leads to det(U) being zero, so this is also not a viable way to set some components of G.

It turns out that one can set all but t components of G1, and (t − 1) components of G2, and then
the t-th component of G2 (say, z) has t solutions (in particular, we get a degree t equation in z, as can
be seen from computing the determinant of the resulting linear system in vec(U)). So, we have

UT0VT = R0

U0..t−2T
1VT = R1

U0T
2VT = R2, (23)

where R0 is a random Mt matrix, R1 is a random (t − 1) × t matrix and R2 is a random row vector
of length t − 1 followed by a singleton free variable z. The determinant that determines the degree t
equation in z is of the following matrix

(R1 ⊗ (T1)−T || R2 ⊗ (T2)−T) · ((R0)−1 ⊗ (T0)T)− It
2

.

So, now consider the problem of determining this degree t polynomials in z from the equations (10)
in G (or even (19)) and fixing some components of G as above. We are interested in finding if there is
an efficient Grobner-basis computation of p(z), and in fact p(z) must lie in the ideal of these system
of equations, and a Grobner-basis computation that eliminates all variables except z will eventually
output p(z). However, we want to determine if there is an efficient computation of p(z) or even any
polynomial with p(z) as a factor using Grobner-basis computation. To this end, we first define what we
mean by Grobner-basis computation and secondly, when do we consider such a method to be efficient.

Note that the system of equations is in free variables G and z defined over a field F. We call a
computation of p(z) to be F[G, z]-linear if p(z) = 0 is in the F[G, z]-linear span of the equations. In
other words, p(z) = 0 is obtained by multiplying each of the original equations by some polynomial
in G and z and then adding them all up. We will refer to these multiplying polynomials as Macaulay
factors. The computation is considered efficient if each of these Macaulay factors has only polynomial
(in t) many monomials – each Macaulay factor is to be considered as a sum of monomials in G and z,
and not as an arithmetic circuit or arithmetic formula. The reason for this last requirement is that this
is the only known way that general Grobner basis computations work, as Grobner basis by definition
deals with monomial ideals.
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To reiterate, we have the following equations in G and z

(coSYM2,2T ⊗ SYM2,2T)vec((GF )⊗ (GF )) = 0

G0
0..t2−1 = R0

G1
0..t2−t−1 = R1

G2
0..t−1 = R2, (24)

where R0 is a random t2-column, R1 is a random t(t− 1)- column and R2 is a random (t− 1)-column
followed by free variable z. We now conjecture11 that there is no efficient F[G, z]-linear computation of
p(z). To provide support for this conjecture, we first strengthen the above system and hence give more
power to the Adversary, and replace the first set of equations by just (GF ) = U ⊗ V – note that this
definitely is a solution of the first set of equations but is not necessarily the only solution (despite the
Marcus-Moyls Theorem and its extension discussed at the beginning of Section 6). So, then we have

GF = U⊗ V

G0
0..t2−1 = R0

G1
0..t2−t−1 = R1

G2
0..t−1 = R2,

or more simply (recalling, T = F−1)

(U⊗ V)T 0
0..t2−1 = R0

(U⊗ V)T 1
0..t2−t−1 = R1

(U⊗ V)T 2
0..t−1 = R2.

and thus we seek an efficient F[(U⊗V)T, z)] computation of p(z) from these equations. A computation
of p(z) linear in (U⊗V)T is impossible if we treat each component of (U⊗V)T as an independent term.
Thus, we next check if an efficient F[U ⊗ V, z]-linear or more liberal F[U,V, z]-linear computation of
p(z) is possible from the above equations. We remind the reader that the distinction in these alternate
computations comes from the fact that the efficiency definition counts the number of monomials in the
Macaulay factors and not the size of the arithmetic circuit or arithmetic formula.

Writing the above equations as (23), we note that multiplying the first of these equations, i.e.
(R0)−1UT0VT = I, into the second and third we get in an F[U,V, z]-linear fashion the equations

U0..t−2T
1VT = R1(R0)−1UT0VT

U0T
2VT = R2(R0)−1UT0VT.

However, removing VT from these equations in an F[U,V, z]-linear computation, so as to get the de-
terminant of the resulting linear-system in vec(U), seems to require multiplication by inverse of V (or
adjugate of V), which has exponential in t many monomials.

11The conjecture should also hold for additional equations (19) added to the above system of equations.
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7.1 Computing Mixed Gadgets

If one does indeed manage to compute p(z) efficiently from equations (24) (and additional equa-
tions (19)), then we show that, under reasonable assumptions, computing mixed gadgets is efficient
as well. In other words, given X1 = F · (a1 ⊗ b1) and X2 = F · (a2 ⊗ b2), one can compute F · (a1 ⊗ b2)
upto scalar factors.

We will need the following lemma. Let K be the algebraic closure of F.

Lemma 10. For any ideal I of F[z,x], where z is a single variable and x is a vector of independent
variables, if a polynomial p(z) ∈ F[z] is the generator of I ∩ F[z], an F[z] ideal, then for every root ζ
of p(z) (possibly in extension ring E = F[z]/(p(z)) ⊆ K), there is a vector of values in K, say xζ , such
that (ζ,xζ) is in the zero-set of I.

Proof. Since F[z,x] is Noetherian, I is finitely generated. Let I = (p(z)) + J , where J ∩ F[z] ⊆ (p(z)),
and J is finitely generated. For any root ζ of p(z), consider the ideal of K[z,x] given by (z − ζ) + J .
Now, either (z − ζ) and J are coprime or (z − ζ) + J is a non-trivial ideal of K[z,x]. In the latter case,
by Hilbert’s nullstellensatz (see e.g. Proposition 1.2 [Har77]), the zero-set of (z − ζ) + J is non-empty.
But, if (ζ′,x′) is such a member of the zero-set, ζ′ must be same as ζ. And the claim of the theorem
holds.

On the other hand, if (z−ζ) and J are coprime, i.e. (z−ζ)+J = (1), then multiplying by p(z)/(z−ζ),
a polynomial in K[z], we get that ((p(z))+J)K[z,x], i.e. IK[z,x], contains p(z)/(z− ζ). We next claim
that if p(z) is the generator of I ∩ F[z], then it is also the generator of K[z]-ideal IK[z,x]∩K[z], which
would then contradict that I contains p(z)/(z − ζ). The claim is proved using Grobner basis theory as
follows: let σ be a monomial order of F[z,x] such that monomials in z are lower ranked than all other
monomials except 1. Then a reduced Grobner basis Gσ of I will contain p(z) as a basis element, since
initial terms of Gσ must generate initial terms of I, which includes p(z). It is well known that Gσ is
also the Grobner basis of IK[z,x] (see e.g. [Eis95]), and hence p(z) also generates IK[z,x] ∩K[z].

So, suppose a degree t polynomial p′(z) is the generator of ideal I ∩ F[z], where I is the ideal
generated by polynomials in equations 24 (as well as additional equations (19)). Since, p′(z) is zero at
the zero set of I, and roots of p(z) are in the zero-set of I, we must have that p′(z) is a multiple of
p(z), and since they have the same degree, they must be same (up to scalars). Instead of G2

〈0,t−1〉 being

set to z, one can also consider any other Gi
j being set to z, and assume that a polynomial pi,j(z) can

be computed efficiently as well. The lemma above relates p(z) (i.e. p2,〈0,t−1〉(z)) to pi,j(z) by roots. If
pi,j(ζ

′) has t solutions, one for each solution ζ of p(z), then it can be shown that ζ′ + f(ζ) = 0 where
f is a degree t − 1 polynomial. Essentially, the two polynomials p(z) = 0 and z′ + f(z) = 0 are zero
at the same points as p(z) and pi,j(z

′) (this can be seen by forming Vandermonde matrices). Thus, we
get all of G in terms of a single parameter z (and modulo p(z)). Since the mixed gadget is uniquely
determined up to scalar factors, this then implies that if one does arithmetic in the ring F[z]/(p(z)),
the ratio of components of the mixed gadget will be in the base field F.
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8 The One-More Masked Tensor Problem

In this section, we describe the so-called “One-More Masked Tensor Problem”. The hardness of the
One-More Masked Tensor Problem is neither necessary nor sufficient for the security of our scheme.
However, the problem is easy to understand, and we believe that progress on it could shed light on the
security of our scheme.

Let m = t × t. Let F ∈ Mm be a matrix over the field F. Consider a distribution of samples
w(i) ← F · x(i) where each x(i) is (the vectorization of) a random rank-1 matrix (a tensor) – i.e.,
x(i) = y(i) ⊗ z(i) where y(i), z(i) ∈ F

t. With this setup, let us define the One-More Masked Tensor
Problem.

Definition 2 (One-More Masked Tensor Problem). Given as many samples w(i) ← F · x(i) as desired,
output a “new” sample w = F · x, where x is another tensor. “New” means that w is not simply a
scalar multiple of one of the previous samples.

Observe that all valid samples satisfy certain nontrivial quadratic equations. Let F̄ be the adjugate
of F , such that F̄ · F = det(F ) · I. Then, for each w(i), we have F̄ · w(i) = det(F ) · x(i), where
x(i) is a tensor which satisfies certain quadratic equations. Specifically, let us index the m = t × t

coefficients of x(i) by (j, k) ∈ [t] × [t] in the natural way, so that x
(i)
j,k = y

(i)
j · z

(i)
k . Then, we have that

x
(i)
(j1,k1)

· x(i)
(j2,k2)

= x
(i)
(j1,k2)

· x(i)
(j2,k1)

for every “rectangle” (j1, k1, j2, k2). Letting F̄(j,k) be the (j, k)-th

row of F̄ , we have:

〈F̄(j1,k1), w
(i)〉 · 〈F̄(j2,k2), w

(i)〉 = 〈F̄(j1,k2), w
(i)〉 · 〈F̄(j2,k1), w

(i)〉 (25)

and thus:

〈F̄(j1,k1) ⊗ F̄(j2,k2) − F̄(j1,k2) ⊗ F̄(j2,k1), w
(i) ⊗ w(i)〉 = 0 (26)

So, every tensored sample w(i)⊗w(i) falls in a linear subspace defined by the vectors F̄(j1,k1)⊗ F̄(j2,k2)−
F̄(j1,k2)⊗ F̄(j2,k1), and further defined by fact that each w(i)⊗w(i) is (the vectorization of) a symmetric
matrix. Alternatively, see Lemma 6 and the remark after the proof of the lemma. We can rephrase the
One-More Masked Tensor Problem in terms of this subspace.

Definition 3 (One-More Masked Tensor Problem - Subspace Version). Given as many samples w(i) ←
F · x(i) as desired, output a “new” sample w such that w ⊗ w is in the subspace generated by the
w(i) ⊗ w(i)’s. “New” means that w is not simply a scalar multiple of one of the previous samples.

We can also consider a related problem that may be much harder.

Definition 4 (Masked Tensor Equations Problem). Again, consider samples w(i) ← F ·x(i). Given only
a canonical representation of the quadratic equations satisfied by all of these samples, output nontrivial
w that satisfies these quadratic equations. In other words, given p(x) = (coSYM2,2/coSYM2)T· (F−1 ⊗
F−1)· SYM2 ·Mon2(x), output non-trivial w such that p(w) = 0.
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We conjecture that these problems are hard for appropriate parameters. More concretely, we spec-
ulate that it may be possible to prove that these problems are impossible to solve using a generic
algorithm. “Generic” means that only black-box operations (+,−,×,÷) are allowed, and also that the
characteristic of the field is unknown. To put it another way, a generic solution must be a rational
polynomial over the coefficients of the initial samples that is a formal solution.

Below, we describe some attacks on these problems. There is a generic attack for the case t = 2.
(We explain why this attack does not extend to higher dimensions.) We also describe a few non-generic
attacks, including an attack on the Masked Tensor Equations Problem when t = 2 and the “field” is
ZN for composite integer N , and some attacks on higher dimensions when the field has characteristic
zero.

8.1 Attacks

8.1.1 Generic Solution to the One-More Masked Tensor Problem when t = 2

First, we explain the generic attack on the One-More Masked Tensor Problem when t = 2.

Consider the dimension of the subspace generated by the w(i) ⊗ w(i)’s. We have w(i) ⊗ w(i) =
(F ⊗ F ) · (x(i) ⊗ x(i)) for invertible F , so the dimension is the same as the subspace generated by the
x(i)⊗ x(i)’s. Writing x(i) ⊗x(i) as y(i)⊗ z(i)⊗ y(i)⊗ z(i), and observing that the rank of the y(i)⊗ y(i)’s
is 3 due to symmetry, the rank of the w(i) ⊗w(i)’s is 32 = 9. Since this is within a 42 = 16 dimensional
space, the kernel should have dimension 16 − 9 = 7. Indeed, when t = 2, Equation 26 gives a single
nontrivial vector orthogonal to the w(i) ⊗ w(i)’s – namely:

F̄(1,1) ⊗ F̄(2,2) − F̄(1,2) ⊗ F̄(2,1),

and 6 more dimensions come from the subspace of vectorized anti-symmetric 4× 4 matrices, which are
orthogonal to w(i) ⊗ w(i) because it is symmetric. Given enough random samples, one can generate a
basis for this kernel.

Pick any vector u in this kernel that is not in the subspace generated by the antisymmetric matrices.
If you like, you can pick u to be a symmetric matrix: start with an initial choice of u, split it into
symmetric and asymmetric parts (u = u+ + u−), set u ← u+, and send u− back into the subspace of
antisymmetric matrices whence it came.12 Now, view the equation 〈u,w(i) ⊗ w(i)〉 = 0 as saying the
quadratic polynomial u(w) has all valid samples as roots. If we find a new w such that u(w) = 0, then
it will be a valid new sample, as w ⊗ w will be orthogonal to the subspace of antisymmetric matrices
automatically, and will be orthogonal to F̄(1,1) ⊗ F̄(2,2) − F̄(1,2) ⊗ F̄(2,1) since it is orthogonal to u.

All that remains is to explain how to generate a new solution to u(w) = 0 from old ones. For “most”
quadratic equations over two or more variables, it is straightforward to generate a new solution from
an old one. First, fix all but two variables to be equal to the old solution, and then diagonalize the
equation over the remaining variables to obtain ax2 + by2 = c, an equation to which we already have

12Interestingly, this u+, as the only symmetric component of the kernel subspace, must equal (up to scaling) the
symmetrization of the nontrivial vector – namely, F̄(1,1) ⊗ F̄(2,2) + F̄(2,2) ⊗ F̄(1,1) − F̄(1,2) ⊗ F̄(2,1) − F̄(2,1) ⊗ F̄(1,2). We
can thus obtain this function of F from the samples when t = 2.

30



one solution (x0, y0) from the old sample. Suppose we are “lucky” and a 6= 0 6= c. Then we can divide
by a to get x2 − By2 = C for B = −b/a and nonzero C = c/a. View this equation as saying that the
norm of x0 + y0

√
B is C in the number field V(

√
B). Then, the norm of (x0 + y0

√
B)3/C must also be

C in V(
√
B), yielding the (likely different) solution (x1, y1) = ((x3

0 + 3Bx0y
2
0)/C, (3x

2
0y0 +By30)/C) to

x2 −By2 = C, which gives a new solution to u(w) = 0.

The main reason this attack works is that, when t = 2, a valid sample w only needs to be a root of
a single quadratic polynomial, and it is easy to generate new rational solutions of a single multivariate
quadratic polynomial given an initial solution. When t > 2, a sample must satisfy a larger system of
quadratic equations.

8.1.2 Non-Generic Solution to Masked Tensor Equations Problem when t = 2

As we saw above, when t = 2, finding a valid sample is tantamount to solving a single multivariate
quadratic equation. Somewhat surprisingly, the equation ax2+by2 = 1 mod N can be solved efficiently,
even when N is composite, under the minimal assumption that a− b 6= 0 6= ab.13 The algorithm works
by lifting to a problem Ax2+By2−z2 = 0 over the integers, where A = a mod N , B = b mod N , A and
B are distinct primes that are quadratic residues of each other, A is odd, and B = 1 mod 4. Suitable
A and B can be found in probabilistic polynomial time. Once found, the equation Ax2 +By2 − z2 = 0
is guaranteed to have a solution over the integers. A solution (x, y, z) to Ax2 + By2 − z2 = 0 yields a
solution (x/z, y/z) to ax2 + by2 = 1 mod N .

For A and B satisfying the above conditions, Cremona and Rusin show how to reduce solving
Ax2+By2−z2 = 0 over the integers to finding the shortest vector in a 3-dimensional lattice. See [BGH07]
for an exposition of this algorithm.14 This algorithm is non-generic in a couple of ways. First, lifting
the problem from one “field” to another (from ZN to Z (or V)) is non-generic. Second, lattice reduction
crucially uses the size of elements to make progress, and size is a non-generic notion.15

One may point to this algorithm as a reason not to place any faith in generic proofs of impossibility,
as it is “ruled out” by our proof that solving the Masked Tensor Equations Problem is generically im-
possible. Indeed, we cannot rule out non-generic algorithms for the Masked Tensor Equations Problem
that work even when t > 2. We merely note that the algorithm for t = 2 appears quite specialized, and
does not seem readily extensible to solving systems of quadratic equations (even when the system has
a lot of structure, as in our case).

13Boneh, Gentry and Hamburg described an identity-based encryption scheme that actually uses this algorithm during
the encryption process [BGH07].

14 Just to give a taste of the algorithm, it is analogous to a lattice-based approach for expressing a prime p ≡ 1 mod 4
as the sum of two squares: Let r and s be such that r2 = 1 mod p and s2 = −1 mod p (these exist since p ≡ 1 mod 4).
Consider the lattice generated by the rows (1, s/r mod p) and (0, p). Note that, for any vector ~v = (v1, v2) in this lattice,
p divides its squared length v21 + v22 . Suppose ~v is the shortest nonzero vector in the lattice. Since the lattice determinant
is p, by Minkowski’s theorem the squared length of ~v is less than 2p, and therefore can only be p.

15Another example of a non-generic algorithm that uses size is the computation of a Jacobi symbol modulo N .
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8.1.3 Attacks on the One-More Masked Tensor Problem in Characteristic Zero

Suppose we are given a basis of some subspace of matrices, together with the promise that there is
basis of this subspace consisting entirely of rank-1 matrices; can we recover a rank-1 basis? If so, then
we can solve the One-More Masked Tensor Problem: given a canonicalized basis generated by some
w(i)⊗w(i)’s, the algorithm will output a (likely different) basis of symmetric rank-1 matrices. Over the
reals, it appears that this problem is solvable for large parameter sizes. (See [YSU17]).

8.2 Generic Solution to One-More Masked Tensor Problem Must Have High

Degree

Let τ be minimal such that there is a formal arithmetic circuit that computes a new sample w from old
samples w(1), . . . , w(τ). First, we show that τ ≥ m (where m is the dimension of the w vectors). Next,
we show that the total degree of the arithmetic circuit must be at least τ/2.

This result certainly does not prove that computing a new sample is generically impossible, or even
infeasible. But it does rule out naive application of certain low-degree attacks – for example, low-degree
relinearization attacks a la Kipnis-Shamir and Courtois et al [KS99, CKPS00], and low-degree Grobner
basis attacks. A successful attack will need to be more sophisticated.

To show that τ ≥ m, the basic idea is simple: given only m − 1 samples, F is underdetermined,
even if the values of x(1), . . . , x(m−1) are also given. In particular, F−1 ·w is a random and independent
vector in the field if w is linearly independent of w(1), . . . , w(m−1). Hence F−1 ·w is likely not a tensor.

But suppose w is in the subspace of w(1), . . . , w(m−1). Then we have w =
∑

i fi({w(j)}) · w(i) for
some functions fi. If w = F · x, we have x =

∑

i fi({w(j)}) · x(i). But, viewing only m − 1 samples
w(1), . . . , w(m−1) (and not knowing F a priori), the w(j)’s appear independent of the x(i)’s, and so we
can replace fi({w(j)}) with constant ci, obtaining x =

∑

i∈[m−1] ci ·x(i). But as the ci’s are independent

of the tensors {x(i)}, the formal rank of x is clearly equal to the number of nonzero ci’s. If only one ci
is nonzero, the new sample w is not new: it equals an old sample up to scaling.

Now, we establish that the degree must be at least τ/2. Consider the “projected” arithmetic circuit
that results when we set one of the old samples to 0. Clearly this projected arithmetic circuit outputs
a sample that is valid, in the sense that it is F times a tensor. We consider two cases.

Case 1: There is some j such that zeroizing the j-th sample gives a projected formal polynomial is not a
multiple of one of the original samples. Then, we can construct a new sample from τ − 1 initial
samples (contradiction).

Case 2: For all j, the projected formal polynomial is a (possibly zero) multiple of one of the old samples.

It remains to address Case 2. Suppose zeroizing the j-th sample leads to a projected polynomial that
is a multiple of the i-th sample – that is,

C(w(1), . . . , w(j−1), 0, w(j+1), . . . , w(t)) = f({w′s}) · w(i).

Consider what happens to the output of the projected polynomial when we zeroize the j′-th sample
for j′ 6= j. It only changes the value of f({w′s}), and does not alter the fact that the output is some
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multiple of w(i). Now, suppose we zeroize the j′-th sample and then j-th sample (in the opposite order
of before). Zeroizing the j′-th sample gives a multiple of the i′-th sample for some i′, and then zeroizing
the j-th sample gives another multiple of the i′-th sample. If i 6= i′, since the i-th and i′-th samples
are different, zeroizing the j-th and j′-th samples must set the entire formal polynomial to zero. Thus,
every monomial of the formal polynomial must be divisible by either a coefficient of the j-th sample
or of the j′-th sample for any (j, j′) whose annihilation projects down to different (i, i′). (Note that
if annihilating the j-th sample projects down to the zero polynomial, then every monomial must be
divisible by some coefficient of the j-th polynomial.)

Consider a graph G, in which each vertex is associated to an index j ∈ [τ ]. Partition the vertices V
into subsets V0, V1, . . . , Vt, where V0 consists of those indices j such that annihilating the j-th sample
projects down to the zero polynomial, and otherwise Vi consists of j’s that project down to a nonzero
multiple of the i-th sample. Within V0 draw an edge from each vertex to itself; otherwise, draw an edge
between j and j′ if they are in subsets Vi and Vi′ for i 6= i′. By the discussion above, the degree of the
formal polynomial is lower-bounded by the size of the smallest vertex cover of this graph. Since the
complement of a vertex cover is an independent set, the degree is lower-bounded by τ − |Vi∗ |, where Vi∗

is the largest subset with i∗ 6= 0.

Let Si∗ be the set of j’s whose annihilation leads to a multiple of the i∗-th sample, where i∗ is the
index with the largest number of associated j’s. (Si∗ corresponds to V0 ∪ Vi∗ .) We lower-bound the
degree by |Si∗ |. Together with the above result, this gives a lower-bound on the degree of τ/2. To
prove this result, we use inclusion-exclusion. For a subset X ⊆ [τ ], let pX be the portion of the formal
polynomial containing monomials that are divisible by some coefficient of the i-th sample for every
i ∈ X . Let qX be the portion of the formal polynomial consisting of monomials that are divisible by a
coefficient of the i-th sample for some i ∈ X . By inclusion-exclusion, for any set X , we have:

qX =
∑

j∈X

p{j} −
∑

(j1,j2)⊂X

p(j1,j2) +
∑

(j1,j2,j3)⊂X

p(j1,j2,j3) − · · · ± pX

Suppose X has cardinality k. Since (1− 1)k · C = 0, we obtain:

(C − qX) =
∑

j∈X

(C − p{j})−
∑

(j1,j2)⊂X

(C − p(j1,j2)) + · · · ± (C − pX) (27)

Assume inductively that we have proven that (C − pX) is a multiple of the i∗-th sample for all X ⊆ Si∗

with |X | ≤ k − 1; we prove it for k. From Equation 27, observe that our induction hypothesis implies
that all of the addends are multiples of the i∗-th sample except possibly C − qX and C − pX . But
C − qX corresponds to the polynomial we obtain when we annihilate all of the samples associated to
indices in X , and this result must be a multiple of the i∗-th sample. Therefore C − pX must be as
well. Ultimately, we obtain that C − pSi∗

is a multiple of the i∗-th sample. Since C must output a new
sample, pSi∗

must be nonzero. That is, there is a non-empty set of monomials in C that are divisible
by coefficients from the j-th sample for every j ∈ Si∗ .
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9 Security Parameters

We suggest the following parameters for target security level of 80 bits.

• Size of F: The field size should be about 280, prime or otherwise. It is possible that a field size of
about 264 suffices, but this needs more analysis.

• Security parameter k: The parameter k, which is the size of the centerpiece matrices is recom-
mended to be 3. This also means t = k2 = 9 (see Section 6).

• Security parameter p: The repetition parameter p can be set to 10.

• The pre-procsseing parameter p′ = 1 (see Section 3.2).
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matrix subspace. Mathematical Programming, 162(1-2):325–361, 2017. 8.1.3

A Tensor-Product Encoding Scheme II

We now describe an alternate, more efficient, tensor-product encoding scheme. In the full version of
the paper, we will show that the security analysis (as in Section 6) of the Section 3.1 encoding scheme
continues to hold for this scheme.

As before, we employ two security parameters k and p. Instead of a binary-tree fashioned encoding,
this scheme will be flat above the root gadget.

The encoding scheme (with parameters k, p, n, lmax) takes the following as input:

1. an SLk(F) matrix C (called center-piece),

35



2. for each j ∈ [0..p ∗n−1], a length len(j) (≤ lmax), and a len(j)-length list of pairs of Mk matrices,
say (〈Gj,0, Hj,0〉, ..., 〈Gj,len(j)−1, Hj,len(j)−1〉). The matrices G,H will be generically referred to

as small Kilian matrices.

In the immediate application, lmax will be two. We will also assume that len is consistent, i.e. for
all j, len(j) = len(j + n).

Let k′ = k2.

The output of the encoding will include for each j ∈ [0..p∗n−1] a list of matrices (Pj,0, ..., Pj,len(j%n)−1)

where each Pj,z is a Mk′ matrix. The output will also include a root gadget.

We now describe the encoding procedure.

• Pick p ∗ n+ 1 random and independent invertible Mk′ matrices F0, ..., Fp∗n.

• For each j ∈ [0..p ∗ n− 1], for each z ∈ [0..len(j)− 1], let

Pj,z = Fj+1 · (Gj,z ⊗Hj,z) · F−1
j ,

• Root Gadget: Define R1 to be the affine algebraic set:

R1 = {v ∈ F
k4 | ∃A,B ∈Mk : v = (Fp∗n ⊗ F−T

0 ) · vec(A⊗B)}

The root gadget is defined to be the following:

Gadgetroot : R1→Mk given by

Gadgetroot(x) = mat(mat((F−1
p∗n ⊗ FT

0 ) · x) ·mat((F−1
p∗n ⊗ FT

0 ) · x)T · vec(C)) )

As shown in Theorem 8 (b), the above gadget can be implemented efficiently.

A.1 Using the Tensor-Product Encoding II

Recall that the encoding scheme produces as output a collection of matrices Pj,z and a root gadget.

A legitimate use of these gadgets is to pick a (not necessarily consistent) assignment x[j] for each
j ∈ [0..p ∗ n] (x[j] ∈ [0..(len(j) − 1)]), and then pick the corresponding masked tensor-product Pj,x[j].
Multiply them all in sequence to get a matrix whose vectorization is in R1. Next, the root gadget is used
to compute the (unmasked) quadratic function (in this case, MMT) of the tensor-products applied to
vec(c). This leads to a dynamic-fence applied to C, with a function of the G matrices (picked according
to assignment x) multiplied on the left and a function of the matched H matrices applied on the right.
We will refer to this value as sandwiched-centerpiece.

The full obfuscated program is as in Section 3.2, and the full evaluation of the obfuscated program
is as in Section 3.3.
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A.2 Security Parameters

We suggest the following parameters for target security level of 80 bits.

• Size of F: The field size should be about 280, prime or otherwise. It is possible that a field size of
about 264 suffices, but this needs more analysis.

• Security parameter k: The parameter k, which is the size of the centerpiece matrices is recom-
mended to be 3. This also means t = k2 = 9 (see Section 6).

• Security parameter p: The repetition parameter16 p can be set to 10.

• The pre-processing parameter p′ = 0 (see Section 3.2).

A.3 Back of the envelope calculations

1. Branching Program Size m = 106.

2. Inputs n = 100.

3. Each step has n ∗ p = 1000 leaves.

4. Obfuscated Program Size

• Each leaf has 4 matrices, two in each track. Total matrices 4000.

• One gadget in each track. Each gadget has size t ∗
(

t+1
2

)2 ≈ 9 ∗ 452. Total gadget size per
step = 36000 field elements.

• Total size per step = 81 ∗ 4000 + 36000 = 360000 field elements.

• Total size of obfuscated program 36 ∗ 109 field elements or 288 GBytes (assuming field size
of 8 bytes).

5. Time to compute using the Obfuscated Program

• Computing using the Gadget: compute Mon2(x)full requires
(

t+1
2

)2
multiplications, which is

about 2000 multiplications. Next, a matrix of size 9 × 2000 is multiplied into this vector,
which is about 9 ∗ 2000 multiplications. So, total 20,000 field multiplications.

• Multiplying the leaf matrices. There are 1000 leaves, so that many matrix multiplications of
size 9× 9. Assuming n2.5 time for multiplication, that means 100 multiplications per matrix
multiplication. Thus, total multiplications is 105, which dominates the gadget computation
time.

• Thus, total multiplications for the whole program is of the order of 1011.

• Assuming a 2GHz modern Intel single core computer, and assuming 64-bit modular multi-
plication (in a near Mersenne-prime field) requires 10 cycles in a pipelined fashion, the total
time is 1011 ∗ 10/(2 ∗ 109), which is 500 secs, or 10 minutes. The more aggresive setting of
p = 1 would result in time of 1 minute.

16A more aggresive implementation can even try p = 1, p′ = 0.
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B Further Details of Proof of Theoerm 8

In the proof of theorem 8, it was claimed that x ∈ R1(F ) iff Mon2(x) = reduced-W ·Mon2(x)full.

For matrices X and Y with the same number of columns we will use X || Y to denote the matrix
where Y is stacked below X . Similarly, if A and B have the same number of rows, then A | B denotes
matrix A appended with columns of B.

First note that if a full-ranked matrix (A | B), such that B is a square matrix, has kernel (X || Y ),
where X is an invertible square matrix, then B is also invertible. Since, X is invertible, the kernel is
also spanned by (I || Y X−1). If B is not invertible then there is a non-zero vector u such that Bu = 0.
then (0 || u) is in the kernel of (A | B), but is not in the span of (I || Y X−1). Contradiction.

Also, note that since AX +BY = 0, we have

B−1A+ Y X−1 = 0. (28)

Thus, (A | B)·Mon2(x) = 0 is equivalent to (I || −B−1A)·(Mon2(x))top = Mon2(x), which is equivalent
to (X || Y ) ·X−1 · (Mon2(x))top = Mon2(x).

If X is not invertible, then since (X || Y ) is the kernel of a matrix it must be full-ranked and hence
there is some subet of indices of rows such that the resulting sub-matrix is invertible. Calling this subset
of indices “full”, the above proof extends to show that (X || Y ) · (X || Y )−1

full · (Mon2(x))full = Mon2(x).

C Diagonalization of Direct Sum of Different Ranked Spaces

In this section we give a polynomial time algorithm to diagonalize Kilian matrices F , when given many
samples Xi of the form F ·Bi ·G, where Bi are block diagonal matrices with two blocks such that the top
block is a random symmetric matrix, and the bottom block is a general random matrix. This algorithm
illustrates that if the XL-methodology gives a polynomial time algorithm then one can usually get an
even faster polynomial time algorithm with direct rank analysis. We leave it as an exercise to the reader
to figure out why this algorithm does not generalize in a straightforward manner to the masked tensor
problems considered in the main sections.

The two diagonal blocks will be called BTLi and BBRi resp. (for top-left and bottom-right resp.).
Let D = F−1 and E = G−1. Thus, Bi = D ·Xi ·E. Letting DT stand for the top half rows of D and RL
stand for the left half columns of E, we have that DT ·Xi ·EL is a symmetric matrix BTLi. Moreover,
DT ·Xi ·ER = 0, where ER is the right half columns of E. Further, let ELT and ELB denote the top
and bottom rows of EL (and similarly for ERT , ERB). Let XLi be the left half columns of Xi and
XRi be the right half columns of Xi. Thus,

DT · XLi ·ELT + DT · XRi · ELB = BTLi.

Also,
DT · XLi ·ERT = −DT · XRi · ERB.

Thus from these two we get,

DT · XLi · ELT − DT · XLi · ERT ·ERB−1 ·ELB = BTLi.

38



Or, letting H stand for ELT − ERT ·ERB−1 ·ELB, we get that

DT · XLi ·H = BTLi (29)

is a symmetric matrix.

To be able to diagonalize F , what we really want is F10 ∗ F−1
00 , where F has blocks F00 etc. This

is equivalent to getting DTR ∗ DTL−1 (again using the above naming convention), or getting linear
relations between columns of DT . If BTLi is an m by m matrix, then we seek m relations between
columns of DT . Focusing on any two rows of DT , say j and k, we have (using the symmetric matrix
property) that

DT j · XLi ·Hk = DT k · XLi ·Hj .

Here superscripts denote row indices, and subscripts denote column indices. Multiplying both sides by
HT

j , we get

DT j · XLi ·HkH
T
j = DT k · XLi ·HjH

T
j .

Now, HjH
T
j is symmetric. For simplicity, we now focus on the casem = 3. The argument and algorithm

generalizes to arbitrary m. We now seek scalars αi, βi such that in the equation (let Si denote





0
αi

βi



),

∑

i

DT j · XLi ·HkH
T
j · Si =

∑

i

DT k · XLi ·HjH
T
j · Si (30)

the right hand side is identically zero, and the left hand side is not identically zero. In other words,
∑

i

XLi ·HjH
T
j · Si

is zero, but
∑

i

XLi ·HkH
T
j · Si

is not zero. This is possible because HjH
T
j is a symmetric matrix and hence has a lower rank, as we

elaborate below. Let XLt,i denote the t-th column of XLi. Then, for the above to hold we necessarily
and sufficiently require that the following hold non-trivially.

∑

i

αiXL0,i = 0, (31)

∑

i

βiXL0,i = 0, (32)

∑

i

αiXL1,i = 0, (33)

∑

i

βiXL2,i = 0, (34)

∑

i

αiXL2,i + βiXL1,i = 0 (35)
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In other words the following matrix needs to be non-full-ranked:

χ =

[

XLT0 0 XLT1 0 XLT2
0 XLT0 0 XLT2 XLT1

]

,

where XLt (t ∈ [0..2]) denotes the matrix composed of columns XLt,i. First note that the rank of the
space of matrices of the form Xi above is m ∗ (m+ 1)/2 +m2 (the two terms coming from symmetric
BTL and general BBR). Thus, for m = 3, the indices i range from [0..14]. We now show that the above
30× 30 matrix has nullity (at least) three (or, m in general).

First, note that XLt,i = F ·Bi ·Gt. Thus, the rank of the above will remain same if we replace XLt,i
by YLt,i = Bi · Gt in the above matrix χ (call this new matrix Ψ). Since, BTLi component of Bi are
symmetric, consider the matrix

K =





GTT
2 0 GTT

1 0 0 0 0 0 −GTT
0 0

0 0 GTT
2 0 0 0 −GTT

0 0 0 0

GTT
1 0 0 0 −GTT

0 0 0 0 0 0



 .

(Here GT is the top half rows of G.) Then, the above matrix Ψ (i.e. the one with YL ) right multiplied
by KT is zero.

So, now let αi, βi be any sequence of scalars from the left-kernel of χ. Note, we have three linearly-
independent choices for such scalars. Then, using equation (30), we have

∑

i

DT j · XLi ·HkH
T
j · Si = 0

Further, we can just take the anti-symmetric part of HkH
T
j in this equation, as the symmetric part

would also annihilate, and hence
∑

i

DT j · XLi · (HkH
T
j −HjH

T
k ) · Si = 0

By taking, j = 1 and k = 2 (recall, t ∈ [0..2]), we have

∑

i

DT 1 · XLi · (H2H
T
1 −H1H

T
2 ) · Si = 0

Again, by properties (31) and (32) above, we get

∑

i

DT 1 · (XL1,i · βi − XL2,i · αi) · (H2,2H1,1 −H1,2H2,1) = 0

And hence,
∑

i

DT 1 · (XL1,i · βi − XL2,i · αi) = 0.

We get three different such equations. The same equations hold for DT 0 and DT 2 as well, and that
diagonalizes D (with some more work).
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