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Abstract

We study the role of interaction in the Common Randomness Generation (CRG) and Secret
Key Generation (SKG) problems. In the CRG problem, two players, Alice and Bob, respec-
tively get samples X1, X2, . . . and Y1, Y2, . . . with the pairs (X1, Y1), (X2, Y2), . . . being drawn
independently from some known probability distribution µ. They wish to communicate so as to
agree on L bits of randomness. The SKG problem is the restriction of the CRG problem to the
case where the key is required to be close to random even to an eavesdropper who can listen to
their communication (but does not have access to the inputs of Alice and Bob). In this work,
we study the relationship between the amount of communication and the number of rounds
of interaction in both the CRG and the SKG problems. Specifically, we construct a family of
distributions µ = µr,n,L, parametrized by integers r, n and L, such that for every r there exists
a constant b = b(r) for which CRG (respectively SKG) is feasible when (Xi, Yi) ∼ µr,n,L with
r+ 1 rounds of communication, each consisting of O(log n) bits, but when restricted to r/2− 3
rounds of interaction, the total communication must exceed Ω(n/ logb(n)) bits. Prior to our
work no separations were known for r ≥ 2.
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1 Introduction

1.1 Problem Definition

In this work, we study the Common Randomness Generation (CRG) and Secret Key Generation
(SKG) problems — two central questions in information theory, distributed computing and cryp-
tography — and study the need for interaction in solving these problems.

In the CRG problem, two players, Alice and Bob, have access to correlated randomness, with
Alice being given X1, X2, . . . , and Bob being given Y1, Y2, . . . , where (X1, Y1), (X2, Y2), . . . are
drawn i.i.d from some known probability distribution µ. Their goal is to agree on L bits of entropy
with high probability while communicating as little as possible. In the SKG problem, the generated
random key is in addition required to be secure against a third player, Eve, who does not have
access to the inputs of Alice and Bob but who can eavesdrop on their conversation. The CRG and
SKG settings are illustrated in Figures 1 and 2 respectively.

Common random keys play a fundamental role in distributed computing and cryptography.
They can often be used to obtain significant performance gains that would otherwise be impos-
sible using deterministic or private-coin protocols. Under the additional secrecy constraints, the
generated keys are of crucial importance as they can be used for encryption – a central goal of
cryptography.

Figure 1: Common Randomness Generation (CRG)

Figure 2: Secret Key Generation (SKG)

This paper investigates the tradeoff between rounds and communication for protocols for com-
mon randomness and secret key generation: We start with some terminology needed to describe
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our problem. We say that a communication protocol Π is an (r, c)-protocol if it involves at most r
rounds of interaction with Alice starting and with the total length of all the messages being at most
c bits. Let H∞(·) denote the min-entropy function. A protocol is said to be an (L, ε)-CRG scheme
for a correlation source µ if Alice and Bob get a finite number of i.i.d. samples of µ, and after the
final round of Π, Alice outputs a key KA and Bob outputs a key KB, with KA and KB belonging to
a finite set, satisfying min{H∞(KA), H∞(KB)} ≥ L, and with KA and KB being equal with proba-
bility at least 1−ε. A protocol is said to be an (L, ε)-SKG scheme for µ if it is an (L, ε)-CRG scheme
for µ and satisfies the additional security guarantee that max{I(Π;KA), I(Π;KB)} = o(1) where
Π is also used to denote the protocol transcript and I(·; ·) is the mutual information. Then, we
define the r-round communication complexity of (L, ε)-CRG of a correlation source µ, denoted by
CCr(CRGL,ε(µ)), as the smallest c for which there is an (r, c)-protocol that is an (L, ε)-CRG scheme
for µ. We similarly define the r-round communication complexity of (L, ε)-SKG of µ and denote it
by CCr(SKGL,ε(µ)). In terms of the above notation we study the functions CCr(CRGL,ε(µ)) and
CCr(SKGL,ε(µ)) as we vary r.

1.2 History

The CRG and SKG problems have been well-studied in information theory and theoretical computer
science. In information theory, they go back to the seminal work of Shannon on secrecy systems
[Sha49], which was followed by the central works of Maurer [Mau93] and Ahlswede and Csiszár
[AC93, AC98]. A crucial motivation for the study of SKG is the task of secure encryption, where a
common secret key can potentially be used to encrypt/decrypt messages over an insecure channel.
It turns out that without correlated inputs (and even allowing each party an unlimited amount of
private randomness), efficiently generating common randomness is infeasible: agreeing on L bits of
randomness with probability γ can be shown to require communicating at least L − O(log(1/γ))
bits 1. Since the original work of Shannon, the questions of how much randomness can be agreed on,
with what probability, with what type of correlation and with how many rounds of interaction have
attracted significant effort in both the information theory and theoretical computer science com-
munities (e.g., [Mau93, AC93, AC98, CN00, GK73, Wyn75, CN04, ZC11, Tya13, LCV15, LCV16,
BM11, CMN14, GR16, GJ18] to name a few). In particular, Ahlswede and Csiszár studied the CRG
and SKG problems in the case of one-way communication where they gave a characterization of the
ratio of the entropy of the key to the communication in terms of the strong data processing constant
of the source (which is closely related to its hypercontractive properties [AG76, AGKN13]).

We point out that the aforementioned results obtained in the information theory community
hold for the amortized setup where the aim is to characterize the achievable (H,C) pairs for which
for every positive δ, there is a large enough N , such that there is a CRG/SKG scheme taking as
input N i.i.d. copies from the source and generating (H−δ)·N bits of entropy while communicating
at most (C + δ) ·N bits. Moreover, these results mostly focus on the regime where the agreement
probability gets arbitrarily close to one for sufficiently large N . The non-amortized setup, where
the entropy of the keys and the communication are potentially independent of the number of i.i.d.
samples drawn from the source, as well as the setting where the agreement probability is not
necessarily close to one, have been studied in several works within theoretical computer science.
In particular, for the doubly symmetric binary source, Bogdanov and Mossel gave a CRG protocol

1This fact is a special case of several known results in the literature on CRG. In particular, it follows from the
proof of the agreement distillation lower bound of [CGMS17]
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with a nearly tight agreement probability in the zero-communication case where Alice and Bob are
not allowed to communicate [BM11]. This CRG setup can be viewed as an abstraction of practical
scenarios where hardware-based procedures are used for extracting a unique random ID from process
variations [LLG+05, SHO08, YLH+09] that can then be used for authentication [LLG+05, SD07].
Guruswami and Radhakrishnan generalized the study of Bogdanov and Mossel to the case of one-
way communication (in the non-amortized setup) where they gave a protocol achieving a near-
optimal tradeoff between (one-way) communication and agreement probability [GR16]. Later,
[GJ18] gave explicit and sample-efficient CRG (and SKG) schemes matching the bounds of [BM11]
and [GR16] for the doubly symmetric binary source and the bivariate Gaussian source.

Common randomness is thus a natural model for studying how shared keys can be generated
in settings where only weaker forms of correlation are available. It is one of the simplest and most
natural questions within the study of correlation distillation and the simulation of joint distributions
[GK73, Wyn75, Wit75, MO04, MOR+06, KA15, GKS16b, DMN18, GKR17].

Moreover, when studying the setup of communication with imperfectly shared randomness,
Canonne et al. used lower bounds for CRG as a black box when proving the existence of func-
tions having small communication complexity with public randomness but large communication
complexity with imperfectly shared randomness [CGMS17]. Their setup – which interpolates be-
tween the extensively studied public-coin and private-coin models of communication complexity –
was first also independently introduced by [BGI14] and further studied in [GKS16a, GJ18].

Despite substantial work having been done on CRG and SKG, some very basic questions
remained open such as the the quest of this paper, namely the role of interaction in generat-
ing common randomness (or secret keys). Recently, Liu, Cuff and Verdu generalized the CRG
and SKG characterizations of Ahlswede and Csiszár to the case of multi-round communication
[LCV15, LCV16, Liu16]. Their characterization has been shown by [GJ18] to be intimately con-
nected to the notions of internal and external information costs of protocols which were first defined
by [BJKS04, BBCR13] and [CSWY01] respectively (who were motivated by the study of direct-sum
questions arising in theoretical computer science). However their work does not yield sources for
which randomness generation requires many rounds of interaction (to be achieved with low com-
mununication). Their work does reveal sources where interaction does not help. For example, in
the case where the agreement probability tends to one, Tyagi had shown that for binary symmetric
sources, interaction does not help, and conjectured the same to be true for any (possibly asym-
metric) binary source [Tya13]– a conjecture which was proved by Liu, Cuff and Verdu [LCV16].
Morever, Tyagi constructed a source on ternary alphabets for which there is a constant factor gap
between the 1-round and 2-round communication complexity for Common Randomness and Secret
Key Generation. This seems to be the strongest tradeoff known for communication complexity of
CRG or SKG till our work.

1.3 Our Results

In this work, we study the relationship between the amount of communication and the number of
rounds of interaction in each of the CRG and SKG setups, namely: can Alice and Bob communicate
less and still generate a random/secret key by interacting for a larger number rounds?

For every constant r and parameters n and L, we construct a family of probability distributions
µ = µr,n,L for which CRG (respectively SKG) is possible with r rounds of communication, each
consisting of O(log n) bits, but when restricted to r/2 rounds, the total communication of any
protocol should exceed n/ logω(1)(n) bits. Formally, we show that CCr+1(CRGL,0(µ)) ≤ (r+1) log n
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while for every constant ε < 1 we have that CCr/2−3(CRG`,ε) ≥ min{Ω(`), n/poly log n} (and
similarly for SKG).

Theorem 1.1 (Communication-Rounds Tradeoff for Common Randomness Generation). For all
ε < 1, r ∈ Z+, there exist η > 0, n0, β < ∞, such that for all n ≥ n0, L there exists a source µr,n,L
for which the following hold:

1. There exists an ((r + 1), (r + 1)dlog ne)-protocol for (L, 0)-CRG from µr,n,L.

2. For every ` ∈ Z+ there is no (r/2 − 2,min{η` − β, n/ logβ n})-protocol for (`, ε)-CRG from
µr,n,L.

We also get an analogous theorem for SKG, with the same source!

Theorem 1.2 (Communication-Rounds Tradeoff for Secret Key Generation). For all ε < 1, r ∈ Z+,
there exist η > 0, n0, β < ∞, such that for all n ≥ n0, L there exists a source µr,n,L for which the
following hold:

1. There exists an ((r + 1), (r + 1)dlog ne)-protocol for (L, 0)-SKG from µr,n,L.

2. For every ` ∈ Z+ there is no (r/2 − 2,min{η` − β, n/ logβ n})-protocol for (`, ε)-SKG from
µr,n,L.

In particular, our theorems yield a gap in the amount of communication that is almost expo-
nentially large if the number of rounds of communication is squeezed by a constant factor. Note
that every communication protocol can be converted to a two-round communication protocol with
an exponential blowup in communication - so in this sense our bound is close to optimal. Prior to
our work, no separations were known for any number of rounds larger than two!

1.4 Brief Overview of Construction and Proofs

Our starting point for constructing the source µ is the well-known “pointer-chasing” problem
[NW93] used to study tradeoffs between rounds of interaction and communication complexity.
In (our variant of) this problem Alice and Bob get a series of permutations π1, π2, . . . , πr : [n]→ [n]
along with an initial pointer i0 and their goal is to “chase” the pointers, i.e., compute ir where
ij = πj(ij−1) for every j ∈ {1, . . . , r}. Alice’s input consists of the odd permutations π1, π3, . . . ,
and Bob gets the initial pointer i0 and the even permutations π2, π4, . . .. The natural protocol to
determine ir takes r+ 1 rounds of communication with the jth round involving the message ij (for
j = 0, . . . , r). Nisan and Wigderson show that any protocol with r rounds of interaction requires
Ω(n) bits of communication [NW93].

To convert the pointer chasing instance into a correlated source, we let the source include 2n
strings A1, . . . , An and B1, . . . , Bn ∈ {0, 1}L where (A1, . . . , Bn) is uniform in {0, 1}2nL conditioned
onAir = Bir . Thus the source outputsX = (π1, π3, . . . ;A1, . . . , An) and Y = (i0, π2, π4, . . . ;B1, . . . , Bn)
satisfy Air = Bir with ij = πj(ij−1) for every j ∈ {1, . . . , r}. (See Definition 2.1 and Figure 3 for
more details.) The natural protocol for the pointer chasing problem also turns into a natural pro-
tocol for CRG and SKG with r + 1 rounds of communication, and our challenge is to show that
protocols with few rounds cannot extract randomness.

The lower bound does not follow immediately from the lower bound for the pointer chasing
problem — and indeed we do not even give a lower bound for r −O(1) rounds of communication.
We explain some of the challenges here and how we overcome them.

4



Our first challenge is that there is a low-complexity “non-deterministic protocol” for common
randomness generation in our setting. The players somehow guess ir and then verify Air = Bir
(by exchanging the first log 1/ε bits of these strings) and if they do, then they output Air and
Bir respectively. While the existence of a non-deterministic protocol does not imply the existence
of a deterministic one, it certainly poses hurdles to the lower bound proofs. Typical separations
between non-deterministic communication complexity and deterministic ones involve lower bounds
such as those for “set-disjointness” [KS92, Raz92, BJKS04] which involve different reasoning than
the “round-elimination” arguments in [NW93]. Our lower bound would somehow need to combine
the two approaches.

We manage to do so “modularly” at the expense of a factor of 2 in the number of rounds
of communication by introducing an intermediate “pointer verification (PV)” problem. In this
problem Alice and Bob get permutations π1, . . . , πr (with Alice getting the odd ones and Bob the
even ones) and additionally Bob gets pointers i and j. Their goal is to decide if the final pointer ir
equals j given that the initial pointer i0 is equal to i. The usefulness of this problem comes from
the fact that we can reduce the common randomness generation problem to the complexity of the
pointer verification problem on a specific (and natural) distribution: Specifically if PV is hard on
this distribution with r′ rounds of communication, then we can show (using the hardness of set
disjointness as a black box) that the common randomness generation problem is hard with r′ − 1
rounds of communication.

We thus turn to showing lower bounds for PV. We first note that we cannot expect a lower
bound for r rounds of communication: PV can obviously be solved in r/2 rounds of communication
with Alice and Bob chasing both the initial and final pointers till they meet in the middle. We also
note that one can use the lower bound from [NW93] as a black box to get a lower bound of r/2− 1
rounds of communication for PV but it is no longer on the “natural” distribution we care about
and thus this is not useful for our setting.

The bulk of this paper is thus devoted to proving an r/2−O(1) round lower bound for the PV
problem on our distribution. We get this lower bound by roughly following the “round elimination”
strategy of [NW93]. A significant challenge in extending these lower bounds to our case is that we
have to deal with distributions where Alice and Bob’s inputs are dependent. This should not be
surprising since the CRG problem provides Alice and Bob with correlated inputs, and so there is
resulting dependency between Alice and Bob even before any messages are sent. The dependency
gets more complex as Alice and Bob exchange messages, and we need to ensure that the resulting
mutual information is not correlated with the desired output, i.e., the PV value of the game. We do
so by a delicate collection of conditions (see Definition 5.6) that allow the inputs to be correlated
while guaranteeing sufficient independence to carry out a round elimination proof. See Section 5
for details.

Organization of Rest of the Paper. In Section 2, we present our construction of the distri-
bution µ alluded to in Theorem 1.1 and Theorem 1.2. In Section 3 we reduce the task of proving
communication lower bounds for CRG with few rounds to the task of proving lower bounds for
distinguishing some distributions. We then introduce our final problem, the Pointer Verification
problem, and the distribution on which we need to analyze it in Section 4. This section includes
the statement of our main technical theorem about the pointer verification problem (Theorem 4.2)
and the proofs of Theorem 1.1 and Theorem 1.2 assuming this theorem. Finally in Section 5, we
prove Theorem 4.2.
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2 Construction

We start with some basic notation used in the rest of the paper. For any positive integer n, we
denote by [n] the set {1, . . . , n}. We use log to denote the logarithm to the base 2. For a distribution
D on a universe Ω we use the notation X ∼ D to denote a random variable X sampled according to
D. For any positive integer t, we denote by Dt the distribution obtained by sampling t independent
identically distributed samples from D. We use the notation X |= Y to denote that X is independent
of Y and X |= Y |Z to denote that X and Y are independent conditioned on Z. We denote by
EX∼D[X] the expectation of X and for an event E ⊆ Ω, we denote by PrX [E] the probability
of the event E. For i ∈ Ω, Di (and sometimes D(i)) denotes the probability of the element i,
i.e., Di = D(i) = PrX∼D[X = i]. For distributions P and Q on Ω, the total variation distance

∆(P,Q)
def
= 1

2

∑
i∈Ω |Pi −Qi|. The entropy of X ∼ P is the quantity H(X) = EX∼P [− logPX ]. The

min-entropy of X ∼ P is the quantity H∞(X) = minx∈Ω{− logPx}. For a pair of random variables
(X,Y ) ∼ P , PX denotes the marginal distribution on X and PX|y denotes the distribution of X

conditioned on Y = y. The conditional entropy H(X|Y )
def
= Ey∼PY [H(Xy)], where Xy ∼ PX|Y=y.

The mutual information between X and Y , denoted I(X;Y ), is the quantity H(X) − H(X|Y ).
The conditional mutual information between X and Y conditioned on Z, denoted I(X;Y |Z), is
the quantity Ez∼PZ [H(Xz) − H(Xz|Yz)] where (Xz, Yz) ∼ PX,Y |Z=z. We use standard properties
of entropy and information such as the Chain rules and the fact “conditioning does not increase
entropy”. For further background material on information theory and communication complexity,
we refer the reader to the books [CT12] and [KN97] respectively.

We start by describing the family of distributions µr,n,L that we use to prove Theorem 1.1 and
Theorem 1.2. For a positive integer n, we let Sn denote the family of all permutations of [n].

Definition 2.1 (The Pointer Chasing Source µr,n,L). For positive integers r, n and L, the support of

µ = µr,n,L is (S
dr/2e
n ×{0, 1}nL)×([n]×Sbr/2cn ×{0, 1}nL). Denoting X = (π1, π3, . . . , π2dr/2e−1, A1, . . . , An)

and Y = (i, π2, π4, . . . , π2br/2c, B1, . . . , Bn), a sample (X,Y ) ∼ µ is drawn as follows:

• i ∈ [n] and π1, . . . , πr ∈ Sn are sampled uniformly and independently.

• Let j = πr(πr−1(· · ·π1(i) · · · )).

• Aj = Bj ∈ {0, 1}L is sampled uniformly and independently of i and π’s.

• For every k 6= j, Ak ∈ {0, 1}L and Bk ∈ {0, 1}L are sampled uniformly and independently.

See Figure 3 for an illustration of the inputs to the Pointer Chasing Source.

Informally, a sample from µ contains a common hidden block of randomness Aj = Bj ∈ {0, 1}L
that Alice and Bob can find by following a sequence of pointers, where Alice holds the odd pointers
in the sequence and Bob holds the even pointers. The next lemma gives (the obvious) upper bound
on the r-round communication needed to generate common randomness from µ.

Lemma 2.2 (Upper bound on r-round communication of SKG). For every r, n and L, there exists
an (r + 1, dlog ne)-protocol for (L, 0)-SKG (and hence also for (L, 0)-CRG) from µr,n,L with Bob
speaking in the first round.

Proof. The protocol Π is the obvious one in which Bob and Alice alternate by sending a pointer to
each other starting with i and culminating in j, and the randomness they “agree on” is Aj = Bj .
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𝜋𝜋1

𝜋𝜋2

𝜋𝜋3

𝜋𝜋𝑟𝑟

𝑖𝑖

⋮

𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴𝑛𝑛 𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝐵𝐵𝑛𝑛… …

Alice’s Inputs
= (𝜋𝜋1,𝜋𝜋3, … ;𝐴𝐴1, … ,𝐴𝐴𝑛𝑛)

Bob’s Inputs
= (𝑖𝑖;𝜋𝜋2,𝜋𝜋4, … ;𝐵𝐵1, … ,𝐵𝐵𝑛𝑛)

Figure 3: The Pointer Chasing Source

Formally, for t ∈ [r], let it = πt(it−1) with i0 = i. In odd round t + 1, Bob sends it to Alice
and in even round t+ 1, Alice sends it to Bob. At the end of r+ 1 rounds of communication Alice
outputs Air and Bob outputs Bir .

Note that by the construction of µ, we have that ir = j and Aj = Bj . Note further that at the
beginning of the (t + 1)st round of communication both Alice and Bob know it−1. Furthermore
if t + 1 is odd, then Bob also knows πt and hence can compute it = πt(it−1) (and similarly Alice
knows her message in even rounds).

Thus we conclude that the above is a valid (r+1, dlog ne)-protocol for (L, 0)-CRG. Furthermore
since Air = Bir is independent of i0, . . . , ir it follows that I((i0, . . . , ir);Air) = I(Π;KA) = 0 (and
similarly for I(Π;KB)) and so this is also a valid protocol (L, 0)-SKG.

In the rest of the paper we show that no r/2−O(1) round protocol can solve CRG from µr,n,L
with non-trivial communication.

3 Related Indistinguishability Problems

Our lower bound on the number of rounds needed to generate common randomness comes from
an “indistinguishability argument”. We show that to protocols with a small number of rounds and
small amount of communication, the distribution µ is indistinguishable from the distribution µX ×
µY , where Alice and Bob’s inputs are independent. Using the well-known fact that generating L bits
of common randomness essentially requires L bits of communication in the absence of correlated
inputs, this leads us to conclude that CRG is hard with limited number of rounds of communication.
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In this section we simply set up the stage by defining the notion of indistinguishability and
connecting it to the task of common randomness generation, leaving the task of proving the indis-
tinguishability to later sections.

3.1 The Main Distributions and Indistinguishability Claims

We start by defining the indistinguishability of inputs to protocols.

Definition 3.1. We say that two distributions D1 and D2 on (X,Y ) are ε-indistinguishable to
a protocol Π if the distributions of transcripts (the sequence of messages exchanged by Alice and
Bob) generated when (X,Y ) ∼ D1 has total variation distance at most ε from the distribution of
transcripts when (X,Y ) ∼ D2.

We say that distributions D1 and D2 are (ε, c, r)-indistinguishable if they are ε-indistinguishable
to every (r, c)-protocol Π using public randomness. Conversely, we say that the distributions D1

and D2 are (ε, c, r)-distinguishable if they are not (ε, c, r)-indistinguishable.

Fix r, n, L and let µ = µr,n,L. Now let µX denote the marginal distribution of X under µ, i.e.,
X = (π1, π3, . . . , π2dr/2e−1, A1, . . . , An) have all coordinates chosen independently and uniformly
from their domains. Similarly let µY denote the marginal on Y , and let µX × µY denote the
distribution where X ∼ µX and Y ∼ µY are chosen independently.

Our main technical result (Theorem 4.2 and in particular its implication Lemma 4.5) shows
that µ and µX ×µY are (ε, r/2−O(1), n/poly log n)-indistinguishable, even to protocols with com-
mon randomness. In the rest of this section, we explain why this rules out common randomness
generation.

3.2 Reduction to Common Randomness Generation

Proposition 3.2. There exists a constant η > 0 such that for every r, r′, n, L, `, t and ε < 1, there
is no (r′, η` − log(1/1 − ε))-protocol for (`, ε)-CRG from µtX × µtY , where µ = µr,n,L with µX and
µY being its marginals.

Proof. This is essentially folklore. For instance it follows immediately from [CGMS17, Theorem
2.6] using ρ = 0 (which corresponds to private-coin protocols).

Proposition 3.3. There is an absolute constant ξ such that the following holds. Let η be the
constant from Proposition 3.2. If there exists an (r′, c)-protocol that solves the (`, 1 − γ)-CRG
problem from µ = µr,n,L with c < η(` − 3) − log 1/γ, then there exists some positive integer t for
which µt and µtX × µtY are (γ/10, r′ + 1, c+ ξ log 1/γ)-distinguishable.

Proof. Let Π be an (r′, c) protocol with private randomness for (`, 1− γ)-CRG from µ and let D1

denote the distribution of KA conditioned on KA = KB. Let t be the number of samples of µ
used by Π. Let I = 1[KA = KB] be the indicator variable determining if KA = KB. Let DA

1 be
the distribution of (KA, I) when Π is run on samples from µt. Let DA

2 be the distribution of the
(KA, I) when Π is run on samples from µtX × µtY . Define DB

1 and DB
2 analogously. We distinguish

between the cases where ∆(DA
1 , D

A
2 ) and ∆(DB

1 , D
B
2 ) are both small from the cases where one of

them is large.

Case 1: DA
1 is γ/4-far from DA

2 (in total variation distance). We argue that in this case, µt and
µtX × µtY are distinguishable. Let T be the optimal distinguisher of DA

1 from DA
2 (i.e., T is a
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0/1 valued function with E(KA,I)∼DA1
[T (KA, I)] − E(KA,I)∼DA2

[T (KA, I)] ≥ γ/4). Let α denote

E(KA,I)∼DA2
[T (KA, I)]. We now describe a protocol Π′ which uses public randomness and augments

Π by including a bit I ′ (which is usually equal to I) and T (KA, I
′) as part of the transcript. We

consider two subcases: (1) If Bob is the last speaker in Π, then Π′ executes Π and then at the
conclusion of Π, Bob sends a random hash hB = h(KB) which is O(log 1/γ) bits long (so that
for KA 6= KB we have Prh[h(KA) = h(KB)] ≤ γ/20). Alice then sends I ′ = 1[h(KA) = hB]
and the bit bI′ = T (KA, I

′). (2) If Alice is the last speaker in Π, then Π′ executes Π and then
Alice sends hA = h(KA) to Bob, as well as b0 = T (KA, 0) and b1 = T (KA, 1). Bob then sends
I ′ = 1[hA = h(KB)] and bI′ .

Note that in both cases Π′ has r′ + 1 rounds of communication and the total number of
bits of communucation is c + O(log 1/γ). We now show that Π′ distinguishes µt from µtX × µtY
with probability Ω(γ). To see this note that Pr(KA,I)∼DA1

[bI′ = 1] ≥ Pr(KA,I)∼DA1
[T (KA, I) =

1] − Prh[I ′ 6= 1[KA = KB]] ≥ (α + γ/4) − γ/20 = α + γ/5. On the other hand we also have
Pr(KA,I)∼DA2

[bI′ = 1] ≤ Pr(KA,I)∼DA2
[T (KA, I) = 1] + Prh[I ′ 6= 1[KA = KB]] ≤ α + γ/20. We

conclude that Pr(KA,I)∼DA1
[bI′ = 1]−Pr(KA,I)∼DA2

[bI′ = 1] ≥ γ/5− γ/20 ≥ γ/10. And since bI′ is a

part of the transcript of Π′ we conclude that the two distributions are γ/10-distinguished by Π′.

Case 2: DB
1 is γ/4-far from DB

2 . This is similar to the above and yields that µt and µtX × µtY are
(γ/10, r′ + 1, c+O(log 1/γ))-distinguishable.

Case 3: ∆(DA
1 , D

A
2 ) ≤ γ/4 and ∆(DB

1 , D
B
2 ) ≤ γ/4. We argue that this case can not happen

since this allows a low-communication protocol to solve CRG with private randomness, thereby
contradicting Proposition 3.2. The details are the following.

Our main idea here is to run Π on µtX × µtY (which, being a product distribution involves only
private randomness). The proximity of DA

1 to DA
2 implies that the probability that KA = KB

when Π is run on µtX × µtY is at least 3γ/4 (since the probability that KA = KB on µt is at
least γ and the probability that I = 1[KA = KB] is different under µt than under µtX × µtY
is at most γ/4). But we are not done since the min-entropy of KA or KB when Π is run on
µtX × µtY might not be lower-bounded by `. So we modify Π to get a protocol Π′ as follows: Run
Π and let (KA,KB) be the output of Π. (The output of Π′ will be different as we see next.)
If the probability of outputting KA is more than 4 · 2−` then let K ′A be a uniformly random
string in {0, 1}`, else let K ′A = KA. Similarly if the probability of outputting KB is more than
4 · 2−` then let K ′B be a uniformly random string in {0, 1}`, else let K ′B = KB. (Note that when
K ′A 6= KA then K ′A and K ′B are independent.) Let (K ′A,K

′
B) be the outputs of Π′. We claim

below that Π′ solves the (`− 3, 1− γ/12)-CRG from µtX × µtY which contradicts Proposition 3.2 if
c < η(`− 3)− log(12/γ). First note that by design the probability of outputting any fixed output
k′A is at most 4 · 2−` + 2−` < 2−(`−3). (If Pr[KA = k′A] ≥ 4 · 2−` then Pr[K ′A = k′A] ≤ 2−`, else
Pr[K ′A = k′A] ≤ Pr[KA = k′A] + 2−`.) It remains to see that Pr[K ′A = K ′B] ≥ γ/12. First note that
Pr[KA 6= K ′A] ≤ γ/3. This is so since every k′A such that Pr[KA = k′A] ≥ 4 · 2−` contributes at least
Pr[KA = k′A]−2−` ≥ (3/4)·Pr[KA = k′A] to ∆(DA

1 , D
A
2 ) (the probability of k′A on µt is at most 2−`).

Thus using ∆(DA
1 , D

A
2 ) ≤ γ/4, we conclude Pr[KA 6= K ′A] ≤ (4/3)∆(DA

1 , D
A
2 ) ≤ γ/3. But now we

have Pr[K ′A = K ′B] ≥ Pr[KA = KB]− (Pr[KA 6= K ′A] + Pr[KB 6= K ′B]) ≥ 3γ/4− 2γ/3 = γ/12.
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3.3 Reduction to the Case t = 1

Next we show that we can work with the case t = 1 without loss of generality. Roughly the intuition
is that all permutations look the same, and so chasing one series of pointers π1, . . . , πr is not harder
than chasing a sequence of t pointers of the form (π′1,τ . . . , π

′
r,τ )τ∈[t]. Informally, even if the players

in latter problem are given the extra information (π′`,τ )−1π`, for every ` ∈ [r] and τ ∈ [t], they still
have to effectively chase the pointers π1, . . . , πr. This intuition is formalized in the reduction below.

Proposition 3.4. Fix r, n, L and let µ = µr,n,L and µX and µY be its marginals. If there exists
ε, r′, c, t such that µt and µtX × µtY are (ε, r′, c)-distinguishable, then µ′ = µr,n,Lt and (µ′)X × (µ′)Y
are (ε, r′, c)-distinguishable.

Proof. Suppose Π is a (r′, c)-protocol that ε-distinguishes µt from µtX × µtY . We show how to
distinguish µ′ from (µ′)X × (µ′)Y using Π. Let (X,Y ) be an instance of the µ′ vs. (µ′)X ×
(µ′)Y distinguishability problem. We now show how Alice and Bob can use common random-
ness to generate (X ′1, Y

′
1), . . . , (X ′t, Y

′
t ) such that ((X ′1, Y

′
1), . . . , (X ′t, Y

′
t )) ∼ µt if (X,Y ) ∼ µ′

and ((X ′1, Y
′

1), . . . , (X ′t, Y
′
t )) ∼ µtX × µtY if (X,Y ) ∼ µ′X × µ′Y . It follows that by applying Π to

((X ′1, Y
′

1), . . . , (X ′t, Y
′
t )), Alice and Bob can distinguish µ′ from µ′X × µ′Y .

Let X = (π1, π3, . . . , π2dr/2e−1, A1, . . . , An) and Y = (i, π2, π4, . . . , π2br/2c, B1, . . . , Bn), where

π` ∈ Sn and Ak, Bk ∈ {0, 1}Lt. Further, let Ak = Ak,1 ◦ · · · ◦ Ak,t and Bk = Bk,1 ◦ · · · ◦ Bk,t
where Ak,τ , Bk,τ ∈ {0, 1}L and ◦ denotes concatenation. Alice and Bob use their common ran-
domness to generate permutations σ`,τ , for ` ∈ {0, . . . , r} and τ ∈ [t], uniformly and indepen-
dently from Sn. Now let π′`,τ = σ`τ · π` · σ−1

`−1,τ . Let i′τ = σ0,τ (i). And let A′k,τ = Aσr,τ (k),τ

and B′k,τ = Bσr,τ (k),τ . Finally, let X ′τ = (π′1,τ , π
′
3,τ , . . . , π

′
2dr/2e−1,τ , A

′
1,τ , . . . , A

′
n,τ ) and Y ′τ =

(i′τ , π
′
2,τ , π

′
4,τ , . . . , π

′
2br/2c,τ , B

′
1,τ , . . . , B

′
n,τ ). We claim that this sequence (X ′τ , Y

′
τ ) has the claimed

properties.
First note that the permutations π′`,τ are uniform and independent from Sn due to the fact that

the σ`,τ ’s are uniform and independent. Similarly i′τ ’s are uniform and independent of the π′`,τ s.
If (X,Y ) ∼ µ′X × µ′Y then the A′k,τ ’s and B′k,τ ’s are also uniform and independent of i′s and π′’s,

estabilishing that ((X ′1, Y
′

1), . . . , (X ′t, Y
′
t )) ∼ µtX×µtY if (X,Y ) ∼ µ′X×µ′Y . If (X,Y ) ∼ µ′ then note

that j′τ = π′r,τ (· · · (π′1,τ (i′τ ))) = σr,τ (πr(· · · (π1(i)))) = σr,τ (j). We thus have that A′j′τ ,τ = Aj,τ =

Bj,τ = B′j′τ and otherwise the A′k,τ ’s and B′k,τ ’s are uniform and independent. This establishes that

((X ′1, Y
′

1), . . . , (X ′t, Y
′
t )) ∼ µt if (X,Y ) ∼ µ′, and thus the proposition is proved.

4 The Pointer Verification Problem

When L is very large compared to n, there are two possible natural options for trying to distinguish
µ from µX ×µY . One option is for Alice and Bob to ignore the pointers (π1, . . . , πr) and simply try
to see if there exists j ∈ [n] such that Aj = Bj . The second option is for Alice and Bob to ignore
the A′s and the B′s while communicating and simply try to find the end of the chain of pointers
i0 = i, . . . , i` = π`(i`−1), . . . , ir and then check to see if Air = Bir .

The former turns out to be a problem that is at least as hard as Set Disjointness on n bit inputs
(and so requires Ω(n) bits of communication). The latter requires Ω̃(n) bits of communication
with fewer than r rounds. But combining the two lower bounds seems like a non-trivial challenge.
In this section we introduce an intermediate problem, that we call the pointer verification (PV)
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problem, that allows us to modularly use lower bounds on the set disjointness problem and on the
(small-round) communication complexity of PV, to prove that µ is indistinguishable from µX×µY .

The main difference between PV and pointer chasing is that here Alice and Bob are given both
a source pointer i0 and a target pointer j0 and simply need to decide if chasing pointers from i0
leads to j0. We note that the problem is definitely easier than pointer chasing in that for a sequence
of r pointers, Alice and Bob can decide PV in r/2 rounds (by “chasing i0 forward and j0 backwards
simultaneously”). This leads us to a bound that is weaker in the round complexity by a factor of 2,
but allows us the modularity alluded to above. Finally the bulk of the paper is devoted to proving
a communication lower bound for r/2 − O(1) round protocols for solving PV (or rather again, an
indistinguishability result for two distributions related to PV). This lower bound is similar to the
lower bound of Nisan and Wigderson [NW93] though the proofs are more complex due to the fact
that we need to reason about settings where Alice’s input and Bob’s input are correlated.

We start with the definition of a distributional version of the Pointer Verification Problem and
then relate it to the complexity of distinguishing µ from µX × µY .

Definition 4.1. For integers r and n with r being odd, the distributions DY
PV = DY

PV(r, n) and

DN
PV = DN

PV(r, n) are supported on ((S
dr/2e
n )× ([n]2× Sbr/2cn ). DN

PV is just the uniform distribution
over this domain. On the other hand, (X,Y ) ∼ DY

PV is sampled as follows: Sample π1, . . . , πr
uniformly and independently from Sn and further sample i0 ∈ [n] uniformly and independently.
Finally let j0 = πr(· · · (π1(i0))), and let X = (π1, π3, . . . , πr) and Y = (i0, j0, π2, π4, . . . , πr−1).

Our main theorem about Pointer Verification is the following:

Theorem 4.2. For every ε > 0 and odd r there exists β, n0 such for every n ≥ n0, DY
PV(r, n) and

DN
PV(r, n) are (ε, (r − 1)/2, n/ logβ n)-indistinguishable.

The proof of Theorem 4.2 is developed in the following sections and proved in Section 5. We
now show that this suffices to prove our main theorem. First we prove in Lemma 4.5 below that
µ is indistinguishable from µX × µY . This proof uses the theorem above, and the fact that set
disjointness cannot be solved with o(n) bits of communication, that we recall next.

Theorem 4.3 ([Raz92]). For every ε > 0 there exists δ > 0 such that for all n the following
holds: Let DisjY, respectively DisjN, be the uniform distribution on pairs (U, V ) with U, V ⊆ [n]
and |U | = |V | = n/4 such that |U ∩ V | = 1 (respectively |U ∩ V | = 0). Then DisjY and DisjN are
(ε, δn, δn)-indistinguishable to Alice and Bob, if Alice gets U and Bob gets V as inputs.

Remark 4.4. We note that the theorem in [Raz92] explicitly only rules out (1 − ε0,Ω(n),Ω(n))-
distinguishability of DisjY and DisjN for some ε0 > 0. But we note that the distinguishability
gap of any protocol can be amplified in this case (even though we are in the setting of distributional
complexity) since by applying a random permutation to [n], Alice and Bob can simulate independent
inputs from DisjY (or DisjN) given any one input from its support. Thus an (r, c) protocol that
ε-distinguishes DisjY from DisjN can be converted to an (r, (c/ε2) log(1/ε0))-protocol that (1 − ε0)-
distinguishes DisjY from DisjN, implying the version of the theorem above.

Lemma 4.5. There exists a positive integer a such that for every ε > 0 and odd r there exists
β such for every n and L, the distributions µ = µr,n,L and µX × µY are (2ε, r/2 − a, n/ logβ n)
indistinguishable.
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Proof. We use a new distribution µmid which is a hybrid of µ and µX × µY where (X,Y ) ∼
µmid is sampled as follows: Sample π1, . . . , πr ∈ Sn independently and uniformly. Further sam-
ple i, j ∈ [n] uniformly and independently (of each other and the π’s). Finally sample Aj =
Bj ∈ {0, 1}L uniformly and A−j and B−j uniformly and independently from {0, 1}(n−1)L. Let
X = (π1, π3, . . . , πr, A1, . . . , An) and Y = (i, π2, π4, . . . , πr−1, B1, . . . , Bn). (So µmid does force a
correlation between A and B, but the permutations do not lead to this correlated point.)

We show below that µmid and µX × µY are indistinguishable to low-communication protocols
(due to the hardness of Set Disjointness), while µ and µmid are indistinguishable to low-round
low-communication protocols, due to Theorem 4.2. The lemma follows by the triangle inequality
for indistinguishability (which follows from the triangle inequality for total variation distance).

We now use the fact (Theorem 4.3) that disjointness is hard, and in particular o(n)-bit pro-
tocols cannot distinguish between (U, V ) ∼ DisjY and (U, V ) ∼ DisjN. Note in particular that
DisjY is supported on pairs (U, V ) such that U ∩ V = {j} where j ∈ [n] is distributed uniformly.
Specifically, we have that for every ε > 0 there exists δ > 0 such that DisjY and DisjN are (ε, δn, δn)-
indistinguishable.

We now show how to reduce the above to the task of distinguishing µmid and µX × µY (us-
ing shared randomness and no communication). Alice and Bob share W1, . . . ,Wn ∈ {0, 1}L dis-
tributed uniformly and independently. Given U ⊆ [n], Alice picks π1, π3, . . . uniformly and in-
dependently, lets A` = W` if ` ∈ U and samples A` ∈ {0, 1}L uniformly otherwise, and lets
X = (π1, π3, . . . , πr, A1, . . . , An). Similarly Bob samples i ∈ [n] uniformly, and π2, π4, . . . , πr−1 ∈ Sn
uniformly and independently. Let B` = X` if ` ∈ V and let B` be drawn uniformly from {0, 1}L
otherwise. Let Y = (i, π2, π4, . . . , πr−1, B1, . . . , Bn). It can be verified that (X,Y ) ∼ µmid if
(U, V ) ∼ DisjY and (X,Y ) ∼ µX ×µY if (U, V ) ∼ DisjN. Thus we conclude that µmid and µX ×µY
are (ε, δn, δn)-indistinguishable.

Next we turn to the (in)distinguishability of µ vs. µmid. We reduce the task of distinguishing
DY

PV and DN
PV to distinguishing µ and µmid. Given an instance (X,Y ) of pointer verification with

X = (π1, π3, . . . , πr) and Y = (i, j, π2, π4, . . . , πr−1), we generate an instance (X ′, Y ′) as follows: Let
W1, . . . ,Wn be uniformly and independently chosen elements of {0, 1}L shared by Alice and Bob.
Alice lets A` = W` for every ` and lets X ′ = (π1, . . . , πr, A1, . . . , An). Bob lets Bj = Wj and samples
B` uniformly and independently for ` ∈ [n] − {j}, and lets Y ′ = (i, π2, . . . , πr−1, B1, . . . , Bn). It
can be verified that (X ′, Y ′) ∼ µ if (X,Y ) ∼ DY

PV and (X ′, Y ′) ∼ µmid if (X,Y ) ∼ DN
PV. It follows

from Theorem 4.2 that µ and µmid are (ε, r/2− a, n/ logβ n)-indistinguishable with a = 1.
Combining the two we get that µ and µX × µY are (2ε, r/2 − a, n/ logβ n)-indistinguishable

(assuming r/2− a < δn and n/ logβ n < δn).

We are ready to prove Theorem 1.1, which says that we cannot generate ` bits of common
randomness from µr,n,L in r/2− 2 rounds using only min(O(`), n/ logβ n) communication.

Proof of Theorem 1.1. We start with the case of odd r. We use the distribution µ = µr,n,L in this
case. Part (1) of the theorem which says that one can generate common randomness using an
(r + 1, r + 1dlog ne) protocol, follows from Lemma 2.2. Part (2) of Theorem 1.1 claims that using
r/2 rounds and insufficient communication one cannot generate common randomness. This follows
by combining Lemma 4.5 with Proposition 3.4 and Proposition 3.3. In particular, let η be the
constant from Proposition 3.3 (and also Proposition 3.2), ξ be the constant from Proposition 3.3,
and β0 be the constant β from Lemma 4.5 given the number of rounds r and (1 − ε)/40 for the
variational distance parameter. Finally let β be a constant such that β ≥ max{β0, 3η+log 1/(1−ε)}
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and n/ logβ n + ξ log 1/(1 − ε) ≤ n/ logβ0 n, which is possible for sufficiently large n. Suppose for
the purpose of contradiction that for some ` ∈ Z+, there were a ((r− 3)/2,min{η`−β, n/ logβ n})-
protocol for (`, ε)-CRG from µr,n,L. By Proposition 3.3, there is some positive integer t for which
µt and µtX ×µtY are ((1− ε)/10, (r− 1)/2,min{η`, n/ logβ n}+ ξ log 1/(1− ε))-distinguishable. But
now let µ′ = µr,n,Lt. Then by Proposition 3.4 and our assumption on β, µ′ and (µ′)X × (µ′)Y are
((1−ε)/10, (r−1)/2, n/ logβ0 n)-distinguishable. But this contradicts Lemma 4.5, which states that
µ′ and (µ′)X × (µ′)Y are ((1− ε)/20, (r − 1)/2, n/ logβ0 n)-indistinguishable.

For even r, we just use the distribution µr−1,n,L. Part (1) continues to follow from Lemma 2.2.
And for Part (2) we can reason as above, with the caveat that the bound on round complexity from
Lemma 4.5 now is “only” ((r − 1) − 1)/2. The additional loss from Proposition 3.3 is one more
round, leading to a final lower bound of r/2− 2.

Proof of Theorem 1.2. Part (1) of the theorem follows from Lemma 2.2. Part (2) follows from Part
(2) of Theorem 1.1 since SKG is a strictly harder task.

5 Proof of Theorem 4.2

In this section we prove our main technical theorem Theorem 4.2 showing that the distributions
DY

PV(r, n) and DN
PV(r, n) are indistinguishable to (r/2 − O(1), n/poly log n)-protocols (i.e., r/2 −

O(1) round protocols communicating n/poly log n bits). We start with some information-theoretic
preliminaries.

5.1 Preliminaries: Information-Theoretic Inequalities

We introduce here some simple information theoretic inequalities that we use in our proofs. Pinsker’s
inequality gives an upper bound on the total variation distance between two distributions in terms
of their KL-divergence. Recall that the KL-divergence between two discrete distributions P and Q
is defined as DKL(P ||Q) =

∑
x∈Ω P (x) log(P (x)/Q(x)) where Ω is the support of P .

Theorem 5.1 (Pinsker’s Inequality). Let P and Q be two distributions defined on the universe U .
Then,

∆(P,Q) ≤
√
DKL(P ||Q)

2
,

where ∆(P,Q) ∈ [0, 1] is the total variation distance.

In the case that Q is uniform, Theorems 5.2 and 5.3 below give a sort of reverse inequality
to Pinsker’s inequality. In particular, when Q = UM , the uniform distribution on [M ], then
DKL(P ||Q) = log(M)−H(P ) = H(Q)−H(P ), so an upper bound on H(Q)−H(P ) corresponds
to an upper bound on DKL(P ||Q). A similar line of reasoning applies to the case that Q is
approximately uniform.

Theorem 5.2 ([HY10], Theorem 6). Suppose that P,Q are distributions on [M ], for some M ∈ N.
If moreover ∆(P,Q) ≤ ε, then

|H(P )−H(Q)| ≤

{
h (ε) + ε log(M − 1), 0 < ε ≤ M−1

M

log(M), ε ≥ M−1
M ,
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where h(·) denotes the binary entropy.

We remark that [HY10] showed that the above inequality is tight, i.e., that there are distribu-
tions P,Q supported on [M ] such that ∆(P,Q) ≤ ε and P,Q attain the above upper bound for all
values of ε.

The following slightly weaker theorem is also well-known:

Theorem 5.3 ([CT06], Theorem 17.3.3). Suppose that P,Q are distributions on [M ] and ∆(P,Q) ≤
ε ≤ 1/2. Then

|H(P )−H(Q)| ≤ ε · log

(
M

ε

)
.

5.2 A Reformulation of Theorem 4.2

In this section we state Lemma 5.5 which is a slight reformulation of Theorem 4.2 and then show
how Theorem 4.2 follows from Lemma 5.5. The remaining subsections will then be devoted to the
proof of Lemma 5.5.

We first introduce some additional notation for the pointer verification problem. For s < t, let
πts = πt◦πt−1◦· · ·πs and (π−1)st = π−1

s ◦· · ·◦π−1
t . Also let is = πs1(i0), js = (π−1)r−s+1

r (j0). Then over
the distribution DY

PV, jr = i0 and ir = j0 with probability 1. We also write πA = (π1, π3, . . . , πr)
and πB = (π2, π4, . . . , πr−1). Recall that Alice holds the permutations πA while Bob holds the
permutations πB. For technical reasons, in this section, we consider protocols that get inputs
sampled from a single “mixed” distribution, DMix

PV = 1
2(DY

PV + DN
PV) and outputs a bit (last bit

of the transcript) that aims to guess whether the input is a YES input to Pointer Verification
(πr1(i0) = j0) or a NO input (πr1(i0) 6= j0). The success of a protocol is the probability with which
this bit is guessed correctly. These terms are formally defined below.

Definition 5.4. For any odd integer r and any integer n, the distribution DMix
PV = DMix

PV (r, n) is

supported on (S
dr/2e
n )× ([n]2×Sbr/2cn ), and is defined by drawing DN

PV(r, n) with probability 1/2 and
drawing DY

PV(r, n) with probability 1/2.
A protocol Π is said to achieve success on a pair of inputs drawn from DMix

PV if the last bit of
the transcript of Π, which we take as the output bit, is 1 if and only if πr1(i0) = j0.

In Lemma 5.5 we show that Alice and Bob cannot achieve success with probability significantly
greater than 1/2 when their inputs are drawn from DMix

PV . Theorem 4.2 follows fairly easily from
Lemma 5.5.

Lemma 5.5. For every ε > 0 and every r, there exists β, n0 such that for every n ≥ n0 the
following holds: Every ((r + 1)/2, n/ logβ(n)) protocol on DMix

PV achieves success with probability at
most 1/2 + ε.

We defer the proof of Lemma 5.5 but first show how Theorem 4.2 follows from it.

Proof of Theorem 4.2. Lemma 5.5 gives that there exists β, n0 such that for every n ≥ n0, no
((r + 1)/2, n/ logβ(n)) protocol Π on DMix

PV (r, n) achieves success with probability greater than
1/2 + ε/4. Suppose for the purpose of contradiction that there were an ((r − 1)/2, n/ logβ(n)− 1)
protocol that ε-distinguishesDY

PV(r, n) andDN
PV(r, n). Then by the definition of ε-distinguishability,

by modifying this protocol to output an extra bit (which we interpret as the output bit), we get
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an ((r + 1)/2, n/ logβ(n)) protocol Π′ which outputs 1 with probability pY when the inputs are
drawn from DY

PV(r, n) and which outputs 1 with probability pN when the inputs are drawn from
DN

PV(r, n), where pY ≥ pN + ε. Therefore, Π′ has probability of success of at least 1/2 + ε/2 when
the inputs are drawn from DMix

PV (r, n), which contradicts Lemma 5.5.

5.3 Proof of the Main Lemma (Lemma 5.5): Setting up the Induction

Our approach to the proof of Lemma 5.5 is based on the “round-elimination” approach of [NW93].
Roughly, given inputs drawn from DMix

PV (n, r), the approach here is to show that after a single
message m = m(πA) from Alice to Bob, Alice and Bob are still left with essentially a problem
from DMix

PV (n, r − 2) (with their roles reversed). Note that the distribution of (π2, . . . , πr−1; i1, j1),
where i1 = π1(i0) and j1 = π−1

r (j0), is exactly DMix
PV (n, r − 2) (with the roles of Alice and Bob

switched). The crux of the [NW93] approach is to show that this roughly remains the case even
when conditioned on the message m = m(πA) sent in the first round. If implemented correctly,
this would lead to an inductive strategy for proving the lower bound, with the induction asserting
that an additional (r − 2)/2 rounds of communication do not lead to non-trivially high success
probability. Of course the distributions of the inputs after conditioning on m are not exactly the
same as DMix

PV (n, r− 2). Bob can definitely learns a lot of information about Alice’s input πA from
m. So the inductive hypothesis needs to deal with distributions that retain some of the features of
DMix

PV (n, r) while allowing Alice and Bob to have a fair amount of information about each others
inputs. In Definition 5.6 we present the exact class of distributions with which we work. While
most of the properties are similar to those used in [NW93] the exact definition is not immediate
since we need to ensure that the bit “Is πr1(i0) = j0” is not determinable even after a few rounds of
communication. (In our definition, Item 3 in particular is the non-trivial ingredient.) In Lemma 5.9
we then show that this definition supports induction on the number of rounds of communication.
Finally in Lemma 5.11 we show that the base-case of the induction with r = 1 does not achieve non-
trivial success probability. The proofs of Lemma 5.11 and Lemma 5.9 are deferred to Section 5.4
and Section 5.5 respectively. We conclude the current section with a proof of Lemma 5.5 assuming
these two lemmas.

We start with our definition of the class of “noisy” distributions, containing DMix
PV . In particular,

for n, r, δ, C satisfying 0 ≤ δ < 1 and 0 ≤ C < n, we define the class of distributions DMix
PV (n, r, δ, C)

in Definition 5.6 below.

Definition 5.6. The set of noisy distributions, denoted DMix
PV (n, r, δ, C), consists of those distribu-

tions D supported on ((S
dr/2e
n )× ([n]2 × Sbr/2cn ), satisfying the following properties. If we denote a

sample from D as (i0, j0, π1, . . . , πr), then

1. (a) H(i0|π1, . . . , πr) ≥ log(n)− δ
(b) H(j0|π1, . . . , πr) ≥ log(n)− δ.

2. H(π1, . . . , πr) ≥ r log(n!)− C.

3. (a) H(1[πr1(i0) = j0]|i0, π1, . . . , πr) ≥ 1− δ.
(b) H(1[πr1(i0) = j0]|j0, π1, . . . , πr) ≥ 1− δ.

4. (a) H(j0|i0, π1, . . . , πr, π
r
1(i0) 6= j0) ≥ log(n)− δ.
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(b) H(i0|j0, π1, . . . , πr, π
r
1(i0) 6= j0) ≥ log(n)− δ.

5. For all odd 1 ≤ t ≤ r, the following conditional independence properties hold. For all
i′0, . . . , i

′
t, j
′
0, . . . , j

′
t ∈ [n], π′t+2, π

′
t+4, . . . , π

′
r−t−1 ∈ Sn,

πA ∩ (π1, . . . , πt, πr−t+1, . . . , πr) |= πB | (i0, . . . , it) = (i′0, . . . , i
′
t), (j0, . . . , jt) = (j′0, . . . , j

′
t),

(πt+2, πt+4, . . . , πr−t−1) = (π′t+2, π
′
t+4, . . . , π

′
r−t−1).

and for all even t, 0 ≤ t ≤ r, i′0, i′1, . . . , i′t, j′0, j′1, . . . , j′t ∈ [n], π′t+2, π
′
t+4, . . . , π

′
r−t−1 ∈ Sn,

πB ∩ (π2, . . . , πt, πr−t+1, . . . , πr−1) |= πA | (i0, . . . , it) = (i′0, . . . , i
′
t), (j0, . . . , jt) = (j′0, . . . , j

′
t),

(πt+2, πt+4, . . . , πr−t−1) = (π′t+2, π
′
t+4, . . . , π

′
r−t−1).

The set of noisy-on-average distributions, DMix+
PV (n, r, δ, C), consists of those distributions D+ sup-

ported on ((S
dr/2e
n )×([n]2×Sbr/2cn )×Z where Z is some finite set and a sample (i0, j0, π1, . . . , πr, Z) ∼

D+ satisfies Properties (1)-(5) when all quantities above are additionally conditioned on Z. (In
particular the conditional entropies are additionally conditioned on Z and the independences hold
when conditioned on Z.)

We first state a version of Lemma 5.5 for every distribution D ∈ DMix
PV (n, r, δ, C), for sufficiently

small δ, C. We also show that DMix
PV belongs to this set for the permissible δ, C, and thus Lemma 5.7

implies Lemma 5.5.

Lemma 5.7. For every ε > 0 and odd r, there exists β and n0 such that for every n ≥ n0, and
every D ∈ DMix

PV (n, r, 1/ logβ n, n/ logβ n) it is the case that every ((r + 1)/2, n/ logβ(n))-protocol
achieves success with probability at most 1/2 + ε on D.

Remark 5.8. In the lemma statement we have suppressed the dependence of β on r. (The depen-
dence of β on ε is minimal. Essentially only n0 is affected by ε.) A careful analysis (based on the
remarks after Lemma 5.11 and Lemma 5.9) yields that β grows exponentially in r, though we omit
the simple but tedious bookkeeping.

The proof of Lemma 5.7 is via induction on r; the below lemma gives the main inductive step,
which says that if one cannot solve the pointer verification problem with r − 2 permutations then
one cannot hope to solve the problem on r permutations even with an additional round of (not too
long) communication.

Lemma 5.9 (Inductive step). For every ε1 > ε2 > 0, odd r and β2 there exists β1 and n0 such
that for every n ≥ n0 the following holds: Suppose there exists D ∈ DMix

PV (n, r, 1/ logβ1 n, n/ logβ1 n)
and an ((r + 1)/2, n/ logβ1 n)-protocol Π that achieves success 1/2 + ε1 on D. Then there exists
D̃ ∈ DMix

PV (n, r − 2, 1/ logβ2 n, n/ logβ2 n) and an ((r − 1)/2, n/ logβ2 n)-protocol Π̃ that achieves
success 1/2 + ε2 on D̃.

Remark 5.10. A careful analysis of the proof yields that β2 grows linearly with β1 with some mild
conditions on n0 and ε1 − ε2.

The proof of Lemma 5.7 proceeds by using Lemma 5.9 repeatedly, to reduce the case with
general r to the case with r = 1. In the case r = 1, Alice is given one permutation π1, Bob is given
indices i0, j0, and Alice can communicate one message to Bob, who has to then decide whether
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π1(i0) = j0 or not. The next lemma, Lemma 5.11, asserts that the pointer verification problem
with r = 1 cannot be solved in one round with less than n/ logO(1)(n) communication. In fact the
lemma is a stronger one, where we show that if all the statements hold conditioned on a random
variable Z, then the entropy of the indicator of the outcome is large even when conditioned on Z.
Setting Z to be a constant immediately yields the base case of the induction with r = 1, as noted
in Corollary 5.13. (We note that we need the stronger version stated in the lemma, i.e., with a
general random variable Z, in the proof of Lemma 5.9.)

Lemma 5.11 (Base case). There exists 0 < ε∗1 < 1 and ε∗2 such that for every β̃ there is n0 such
that the following holds for every n ≥ n0. Let β = (β̃ + ε∗2)/ε∗1, δ = 1/ logβ n and C,C ′ = n/ logβ n.
Suppose (i, j, π, Z) are drawn from a distribution D, where Z is a random variable that takes on
finitely many values, such that the following properties hold:

1. H(i|π, Z) ≥ log(n)− δ.

2. H(π|Z) ≥ log(n!)− C.

3. H(1[π(i) = j]|π, i, Z) ≥ 1− δ.

4. H(j|π, i,1[π(i) 6= j], Z) ≥ log(n)− δ.

Then for every deterministic function m = m(π, Z) with m ∈ {0, 1}C′ we have the following:

H(π(i)|i,m,Z) ≥ log n− 1/ logβ̃ n (1)

and H(1[π(i) = j]|m, i, j, Z) ≥ 1− 1/ logβ̃ n. (2)

Remark 5.12. The proof shows that β grows linearly with β̃ provided that n0 is sufficiently large
(as a function of β̃).

Corollary 5.13. For every ε > 0, there exists β0 and n0 such that for every n ≥ n0, and every D ∈
DMix

PV (n, 1, 1/ logβ0 n, n/ logβ0 n) it is the case that every (1, n/ logβ0(n))-protocol achieves success
with probability at most 1/2 + ε on D.

Proof. Recall that a 1-round distribution D ∈ DMix
PV (n, 1, δ, C) is supported on triples (π, i, j) and

the goal is to determine if π(i) = j. We apply Lemma 5.11 with Z = 0 (i.e., a constant). Given
ε > 0 we let β̃ = 1 and let β be as given by Lemma 5.11. Further let n′0 denote the lower bound
on n returned by Lemma 5.11. Let ε′ be such that a binary variable of entropy at least 1 − ε′ is
Bernoulli with bias in the range [1/2− ε, 1/2+ ε] (ε′ = O(ε2) works). We prove the claim for β0 = β

and n0 = max{n′0, 21/(ε′)} (so that logβ̃ n ≤ ε′ for all n ≥ n0).
By definition of DMix

PV (n, 1, 1/ logβ0 n, n/ logβ0 n), we have that for (π, i, j) ∼ D, the conditions
(1)-(4) of Lemma 5.11 hold for (π, i, j, Z) (where Z is simply the constant 0). Thus Lemma 5.11

asserts that H(1[π(i) = j]|m, i, j, Z) ≥ 1− 1/ logβ̃ n ≥ 1− ε′ for any message m = m(π) ∈ {0, 1}C′

sent by Alice. Let Π(m, i, j) denote the output bit of the protocol output by Bob. Since this is
a deterministic function of m, i, j we have, by the data processing inequality, that H(1[π1(i0) =
j0]|Π(m1, i0, j0)) ≥ 1 − ε′. By the choice of ε′ and Jensen’s inequality (to average over the condi-
tioning on Π(m, i, j)) we have that

Pr [1[π(i) = j] = Π(m, i, j)] ≤ 1/2 + ε,

which verifies that the success probability of the protocol Π is at most 1/2 + ε as asserted.
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Armed with Lemma 5.9 and Corollary 5.13 we are now ready to prove Lemma 5.7.

Proof of Lemma 5.7. We prove the lemma by induction on r. If r = 1, then Corollary 5.13 gives
us the lemma. Assume now that the lemma holds for all odd r′ < r. In particular, let βr−2 and
n0,r−2 be the parameters given by the lemma for r − 2 rounds and parameter ε/2. We now apply
Lemma 5.9 with parameters ε1 = ε, ε2 = ε/2, r rounds and β2 = βr−2. Let n′0 and β1 be the
parameters given to exist by Lemma 5.9. We verify the inductive step with n0,r = max{n0,r−2, n

′
0}

and βr = β1. Fix D ∈ DMix
PV (n, r, 1/ logβr n, n/ logβr n) and assume for contradiction that an

((r + 1)/2, n/ logβr n)-protocol achieves success 1/2 + ε on D. Then by Lemma 5.9 we have that
there exists D̃ ∈ DMix

PV (n, r−2, 1/ logβr−2 n, n/ logβr−2 n) and an ((r−1)/2, n/ logβr−2 n)-protocol Π̃
that achieves success 1/2 + ε/2 on D̃, which contradicts the inductive hypothesis.

We finally show how Lemma 5.5 follows from Lemma 5.7 (which amounts to verifying the DMix
PV

satisfies the requirements of membership in DMix
PV for appropriate choice of parameters).

Proof of Lemma 5.5. We claim that for each odd integer r, DMix
PV (r, n) ∈ DMix

PV (n, r, 2/n, 0) for
sufficiently large n. To verify this, note that if (π1, . . . , πr, i0, j0) are drawn from DMix

PV (r, n), then

1. H(i0|π1, . . . , πr) = H(j0|π1, . . . , πr) = log(n).

2. H(π1, . . . , πr) = r · log(n!).

3. H(1[πr1(i0) = j0]|i0, π1, . . . , πr) = H(1[πr1(i0) = j0]|j0, π1, . . . , πr) = h(1/2 + 1/(2n)) ≥ 1 −
1/n2.

4. H(j0|i0, π1, . . . , πr, π
r
1(i0) 6= j0) = H(i0|j0, π1, . . . , πr, π

r
1(i0) 6= j0) = log(n−1) ≥ log(n)−2/n,

for sufficiently large values of n.

5. To verify the conditional independence properties (5) from Definition 5.6, first fix any odd t
such that 1 ≤ t ≤ r, and pick any i′0, . . . , i

′
t, j
′
0, . . . , j

′
t ∈ [n] and π′t+2, π

′
t+4, . . . , π

′
r−t−2 ∈ Sn.

Given that

{(i0, . . . , it) = (i′0, . . . , i
′
t), (j0, . . . , jt) = (j′0, . . . , j

′
t), (πt+2, πt+4, . . . , πr−t−1) = (π′t+2, π

′
t+4, . . . , π

′
r−t−1)},

and regardless of the choice of πB, note that the permutations in πA∩(π1, . . . , πt, πr−t−1, . . . , πr)
are uniformly random subject to πs(i

′
s−1) = i′s for s ∈ {1, 3, . . . , t} and π−1

r−s+1(j′s) = j′s−1 for
s ∈ {1, 3, . . . , t}. A similar argument verifies the analogous statement for even t.

In particular, it follows that for every β > 0 and every odd r, for sufficiently large n, we have
that DMix

PV (r, n) ∈ DMix
PV (n, r, 1/ logβ(n), n/ logβ(n)), and in particular this holds for the parameter

β guaranteed to exist by Lemma 5.7. The lemma now follows immediately from the conclusion of
Lemma 5.7, which asserts that every ((r + 1)/2, n/ logβ(n))-protocol achieves success with proba-
bility at most 1/2 + ε on D.

Thus the main lemma is proved assuming Lemma 5.11 and Lemma 5.9. In the rest of this
section we prove these two lemmas.
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5.4 The Base Case: Proof of Lemma 5.11

In the following we will fix β and argue that if β̃ ≤ ε∗1 · β − ε∗2 then the conditions (1) and (2) of
Lemma 5.11 hold. Specifically we will prove (1) first and then derive (2) as a consequence. For
(1), we will first bound H(π(i)|i) when π is a nearly uniform function instead of a nearly random
permutation, and then extend it to case that π is a nearly uniform permutation. Then using this
result, we will bound H(π(i)|i,m), where m is a short message that depends on π.

In the below Lemma 5.14, we will take i ∈ [k] and π : [k]→ [n] to be a nearly uniformly random
function. We allow that k 6= n in order to deal with the case that π is a nearly uniformly random
permutation later on (in our application we will always have k ≤ n).

Lemma 5.14. For every k, n ∈ Z+ and every δ, C ∈ R+ the following holds: Suppose (i, π) are
drawn from a distribution D such that the resulting random variables, i ∈ [k], π : [k]→ [n] have the
following properties:

1. H(i|π) ≥ log(k)− δ, with δ ∈ [1/n, 1/8).

2. H(π) ≥ k log n− C, with C ≤ k.

Then

H(π(i)|i) ≥ log(n)− C

k
− 2
√

2δ log(n).

Proof. Let D be the joint distribution on (π, i) that satisfies (1),(2) and let Di, Dπ be its marginals
on i and π respectively. Unless specified, all the following probability statements are with respect
to D. Let Uk denote the random variable that is uniform on [k].

We will first make a few observations and then bound H(π(i)|i). Firstly, since H(i) ≥ log k− δ,
by Pinsker’s inequality, we have that,

∆(Di, Uk) =
1

2

k∑
i′=1

|Pr[i = i′]− 1/k| ≤
√
δ/2. (3)

Let Dπ ⊗Di denote the joint distribution over (π, i), where π and i are independently drawn
from their marginals Dπ and Di respectively. By Pinsker’s inequality, we have that,

∆(D,Dπ ⊗Di) ≤
√
I(π; i)/2 ≤

√
δ/2.

It then follows that,∑
i′∈[k],j′∈[n]

∣∣Pr[π(i′) = j′, i = i′]− Pr[π(i′) = j′] · Pr[i = i′]
∣∣ ≤ √2δ. (4)

Now, for each i′ ∈ [k], define,

εi′ =
∑
j′∈[n]

∣∣Pr[π(i′) = j′, i = i′]− Pr[π(i′) = j′] · Pr[i = i′]
∣∣ ,

so that
∑

i′∈[k] εi′ ≤
√

2δ. We get that

∆((π(i′)|i = i′), π(i′)) =
1

2

∑
j′∈[n]

∣∣Pr[π(i′) = j′|i = i′]− Pr[π(i′) = j′]
∣∣ =

εi′

2 Pr[i = i′]
,
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which by Theorem 5.2 then gives,

∣∣H(π(i′)|i = i′)−H(π(i′))
∣∣ ≤ h( εi′

2 Pr[i = i′]

)
+

(
εi′

2 Pr[i = i′]

)
log(n− 1) := βi′ . (5)

We have that

H(π(i)|i) =
∑
i′∈[k]

Pr[i = i′] ·H(π(i)|i = i′)

≥
∑
i′

Pr[i = i′](H(π(i′))− βi′) (6)

≥
∑
i′

1

k
H(π(i′))−

√
δ/2 log n−

∑
i′

Pr[i = i′]βi′ , (7)

where (6) follows from (5), and (7) follows from (3) and the fact that H(π(i′)) ≤ log n.
Using the chain rule for entropy we get that

log n− C/k ≤ 1

k
H(π) =

1

k

k∑
i′=1

H(π(i′)|π({1, . . . , i′ − 1})) ≤ 1

k

k∑
i′=1

H(π(i′)). (8)

Recall that
∑

i′ εi′ ≤
√

2δ and we have that h(
∑

i′ εi′) ≤ h(
√

2δ), since δ < 1/8. Since the binary
entropy function h(·) is concave, by Jensen’s inequality, we have that,

k∑
i′=1

Pr[i = i′]βi′ =
∑
i′

Pr[i = i′]h

(
εi′

2 Pr[i = i′]

)
+
∑
i′

Pr[i = i′]

(
εi′

2 Pr[i = i′]

)
log(n− 1)

≤ h

(∑
i′

Pr[i = i′] · εi′

2 Pr[i = i′]

)
+
√
δ/2 log n

≤ h
(√

δ/2
)

+
√
δ/2 log n. (9)

Note that h(x) ≤ 2x log(1/x) for x→ 0, so h(
√
δ/2) ≤

√
2δ log n. Using this, and plugging (8)

and (9) into (7), we get that

H(π(i)|i) ≥ log n− C

k
− 2
√
δ/2 log n ≥ log(n)− C

k
− 2
√

2δ log(n).

Now we are ready to prove an analogous lemma for random permutations instead of random
functions. We note that we cannot replicate the proof above since for a typical i′ the conditional
entropy H(π(i′)|π({1, . . . , i′ − 1})) is actually log n − Θ(1) and this Θ(1) loss is too much for us.
In the proof below we condition instead on i being contained in some smaller set S ⊆ [n], with
|S| = k = o(n), where S itself is randomly chosen. This “conditioning” turns out to help with the
application of the chain rule and this allows us to reproduce a bound that is roughly as strong as
the bound above.

Lemma 5.15. There exists constants ε∗1 > 0, ε∗2 such that for every β there exists n0 such that for
all n ≥ n0 the following holds: Suppose i ∈ [n], π ∈ Sn are random variables such that:
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1. H(i|π) ≥ log(n)− δ, with δ ∈ [1/n, 1/ logβ n].

2. H(π) ≥ log(n!)− C, with C ≤ n/ logβ(n).

Then
H(π(i)|i) ≥ log n− 1/ logβ̃ n,

where β̃ = ε∗1 · β − ε∗2.

Proof. We will prove the lemma with ε∗1 = 1/16, ε∗2 = 4. Note that for β ≤ 8, β̃ = ε∗1β − ε∗2 ≤ −3,
so by non-negativity of entropy, the lemma statement follows immediately. We therefore assume
β > 8 for the remainder of the proof.

Let D be the distribution of (π, i) given in the lemma statement, where Dπ, Di are its marginals
on i, π respectively. Let k be a parameter to be fixed later. We start by defining a joint distribution
D′ on triples (π, i, S) with π ∈ Sn and i ∈ S ⊂ [n], |S| = k that satisfies the condition that its
marginal on (π, i) equals D while at the same time the distribution of (π, i) conditioned on S = S′

when (π, i, S) ∼ D′ is the same as the distribution of (π, i) ∼ D conditioned on i ∈ S′. D′ is defined
as follows:

Let DS be the distribution of (π, i), conditioned on i ∈ S. Now let E be the distribution over

subsets S ⊂ [n] of size k where the probability of PrS∼E [S = S′] =
∑
i′∈S′ PrD[i=i′]

(n−1
k−1)

. Now define the

joint distribution D′ of (π, i, S) of π′ ∈ Sn, i′ ∈ S′ ⊂ [n], |S′| = k so that

Pr
D′

[π = π′, i = i′, S = S′] = Pr
E

[S = S′] · Pr
D

[π = π′, i = i′|i ∈ S′]

= Pr
E

[S = S′] · Pr
DS′

[π = π′, i = i′].

We claim that the marginal distribution of (π, i), where (π, i, S) ∼ D′, is equal to D. To see this,

Pr
D′

[π = π′, i = i′] =
∑

S′⊂[n],|S′|=k,S′3i′
Pr
E

[S = S′] · Pr
D

[π = π′, i = i′|i ∈ S′]

=
∑

S′⊂[n],|S′|=k,S′3i′

(∑
i′′∈S′

PrD[i = i′′](
n−1
k−1

) )
· PrD[π = π′, i = i′]

PrD[i ∈ S′]

=
1(
n−1
k−1

) · ∑
S′⊂[n],|S′|=k,S′3i′

Pr
D

[π = π′, i = i′]

= Pr
D

[π = π′, i = i′].

Recall we wish to lower bound HD(π(i)|i). But notice that

HD(π(i)|i) = HD′(π(i)|i) ≥ HD′(π(i)|i, S) = ES′∼E [HD′(π(i)|i, S = S′)].

Hence it suffices to show that for every set S′, |S′| = k, HD′(π(i)|i, S = S′) ≥ log n − log(ε∗2−βε∗1) n
and we do so below.

Fix a subset S′ ⊂ [n], of size k, where k also satisfies

δ1/4 · n/k ≤
√

2− 1, δ1/4n log n/k ≤ 1/10, nC/k2 ≤ 1/10, k ≤ n/10. (10)
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We remark that for each β > 4, there is some n0 such that for n ≥ n0, such a k satisfying (10)
always exists. (Recall our assumption above that β > 8.)

We will specify the exact value of k below, but for now we note that our argument holds for
any k satisfying (10). By the definition of D′, we have that HD′(π(i)|i, S = S′) = HDS′ (π(i)|i). We
show below that (π(S′), i) where (π, i) ∼ DS′ satisfies the preconditions of Lemma 5.14. To show
this, we need to choose γ(n, k, δ) ∈ [1/n, 1/8) and Γ(n, k, δ, C) ≤ k satisfying the following:

1. HDS′ (i|π) = HD(i|π, i ∈ S′) ≥ log k − γ(n, k, δ).

2. HDS′ (π(S′)) = HD(π(S′)|i ∈ S′) ≥ k log n− Γ(n, k, δ, C).

The following claim helps with the choice of γ(n, k, δ).

Claim 5.16. Suppose that i ∈ [n] is a random variable such that H(i) ≥ log n− τ with n
√
τ/k ≤√

2− 1. Then HD(i|i ∈ S′) ≥ log k − n
√
τ

k log
(

k2

n
√
τ

)
.

Proof of Claim 5.16. Let Un denote the uniform distribution on [n]. By Pinsker’s inequality we
have that, ∆(Di, Un) ≤

√
τ/2, which in turn implies that |PrDi [i ∈ S′]− k/n| ≤

√
τ/2. Let US′ be

the uniform distribution over S′. We have that

∆((Di|i ∈ S′), US′) ≤
√
τ/2 · 1

k/n−
√
τ/2
≤ n
√
τ

k
,

since n
√
τ/k ≤

√
2− 1. By Theorem 5.3, we get that,

HD(i|i ∈ S′) ≥ log k − n
√
τ

k
log

(
k

(n
√
τ/k)

)
= log k − n

√
τ

k
log

(
k2

n
√
τ

)

By Markov’s inequality, with probability at least 1−
√
δ when π′ ∼ Dπ, we have H(i|π = π′) ≥

log k −
√
δ. For such π′, by Claim 5.16 applied to the distribution i|π = π′ and τ =

√
δ (note that

the condition nδ1/4/k = n
√
τ/k ≤ 1− 1/

√
2 holds by the conditions on k), we obtain

HD(i|i ∈ S′, π = π′) ≥ log k − nδ1/4

k
log

(
k2

δ1/4n

)
≥ log k − nδ1/4

k
log

(
k

δ1/4

)
.

Hence

HD(i|i ∈ S′, π) ≥ (1−
√
δ)

(
log k − nδ1/4

k
log

(
k

δ1/4

))
≥ log k − γ(n, k, δ),

where γ(n, k, δ) =
√
δ log n+ nδ1/4

k log(n2), where we have used k ≤ n and δ ≥ 1/n.
Now we turn to determining Γ(n, k, δ, C) such that HDS′ (π(S′)) ≥ k log n− Γ(n, k, δ, C). Note

that H(π|1[i ∈ S′]) ≥ log n! − C − 1. Applying Pinsker’s inequality to the condition H(i) ≥
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H(i|π) ≥ log n− δ yields that ∆(i, Un) ≤
√
δ/2, meaning that |k/n− PrD[i ∈ S′]| ≤

√
δ/2. Hence

HD(π|i ∈ S′) ≥
log(n!) · (k/n−

√
δ/2)− C − 1

k/n+
√
δ/2

= log(n!) ·
1−

√
δ/2n/k

1 +
√
δ/2n/k

− C + 1

k/n+
√
δ/2

≥ log(n!) · (1−
√

2δ · n/k)− C + 1

k/n+
√
δ/2

≥ log(n!)− n ·
(√

2δ · n log(n)/k + 2C/k
)
,

where we have used that n! ≤ nn. But since π is a permutation,

HD(π(S′)|i ∈ S′) = HD(π|i ∈ S′)−HD(π([n]\S′)|i ∈ S′, π(S′))

≥ log(n!)− n ·
(√

2δ · n log(n)/k + 2C/k
)
− log((n− k)!)

≥ k log(n− k)− n ·
(√

2δ · n log(n)/k + 2C/k
)

≥ k log n− k ·
(√

2δ · n2 log(n)/k2 + 2nC/k2 +
2k

n

)
,

where we have used that log(1 − x) ≥ −2x for 0 ≤ x ≤ 1/2, as well as k ≤ n/2. Hence with

Γ = Γ(n, k, δ, C) = k ·
(√

2δ · n2 log(n)/k2 + 2nC/k2 + 2k
n

)
≤ k (by our assumption (10)), we have

that H(π(S′)|i ∈ S′) ≥ k log(n)− Γ. It follows from Lemma 5.14 that, writing γ = γ(n, k, δ),

HDS′ (π(i)|i) = HD(π(i)|i, i ∈ S′) ≥ log n− Γ

k
− 2
√

2γ · log n. (11)

Therefore,

HD(π(i)|i) ≥ ES∼E [HDS (π(i)|m, i)] ≥ log n− Γ

k
− 2
√

2γ · log n, (12)

since the inequality is true for each value S′ ⊂ [n], |S′| = k, by (11).
It is now easily verified that for each β > 8, for k = n · log−β/8(n), there is some n0, depending

only on β, so that (10) is satisfied for n ≥ n0. Moreover, for such k,

Γ/k + 2
√

2γ · log n

≤
√

2 log(−β/2+1+2β/8) n+ 2 log(−β+2β/8) n+ 2 log(−β/8) n+ 2
√

2 ·
(

log(−β/4+3/2) n+ 2 log(−β/8+3/2+β/16) n
)

≤ 100 log(3/2−β/16) n

≤ log(4−β/16) n,

where the last inequality holds for sufficiently large n. By (12) this implies that for each β > 8,
there is some n0 such that for n ≥ n0, HD(π(i)|i) ≥ log(n) − log(4−β/16) n, which completes the
proof.

Now we are ready to lower bound the entropy H(π(i)|m, i, Z), that proves Lemma 5.11: Equa-
tion (1), via the following lemma.
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Lemma 5.17. There exists constants ε∗1 > 0, ε∗2 such that for every β > 0 there exists n0 such that
for all n ≥ n0 the following holds: Let δ = 1/ logβ n, C = C ′ = δn, and β̃ = ε∗1 · β − ε∗2. Suppose
(i, j, π, Z) are drawn from a distribution D, with Z taking on finitely many values, such that the
following properties hold:

1. H(i|π, Z) ≥ log(n)− δ.

2. H(π|Z) ≥ log(n!)− C.

Then, for every deterministic function m = m(π, Z) with m ∈ {0, 1}C′, we have

H(π(i)|i,m,Z) ≥ log(n)− 1/ logβ̃ n.

Proof. In Lemma 5.15 we proved a lower bound on H(π(i)|i), given the conditions that H(i|π) ≥
log n − δ and H(π) ≥ log n! − C. We would now like to prove a bound on H(π(i)|i,m,Z), where
m = m(π, Z) is a message of length ≤ C ′ and Z is the random variable in the lemma statement.
Since |m| ≤ C ′, (1) and (2) in the lemma hypothesis, along with the data processing inequality,
imply that,

1. H(i|π,m,Z) ≥ log n− δ.

2. H(π|m,Z) ≥ log n!− C − C ′.

Let γ = (C +C ′)/n, so that γ ≤ 2/ logβ(n). By Markov’s inequality (and the facts that i takes
on at most n values and π takes on at most n! values), we have the following, for every ε > 0:

• With probability at least 1−
√
δ over the choice of (m′, z) ∼ (m,Z), we have that H(i|π,m =

m′, Z = z) ≥ log(n)−
√
δ.

• With probability at least 1−√γ over the choice of (m′, z) ∼ (m,Z), we have that H(π|m =
m′, Z = z) ≥ log(n!)− n · √γ.

Let α = max{δ, γ}. For sufficiently large n we have that
√
α ≤ 1/ log(β/3) n. Then by Lemma 5.15,

there is some n0, depending only on β, such that for all (m′, z) belonging to some set of measure at
least 1−2

√
α, for n ≥ n0 we have that H(π(i)|i,m = m′, Z = z) ≥ log n−η, where η = logµ

∗
2−βµ∗1 n,

for absolute constants µ∗1, µ
∗
2. Then there are suitable absolute constants ε∗1 ∈ (0, 1), ε∗2 > 0 and n′0

(depending only on β) such that for n ≥ n0,

H(π(i)|i,m,Z) = E(m′,z)∼(m,Z)[H(π(i)|i,m = m′, Z = z)]

≥ (1− 2
√
α) · (log(n)− η)

≥ log(n)− log(ε∗2−βε∗1) n.

Next we work towards the proof of (2) in Lemma 5.11. The main difficulty in proving this
inequality is to reason about the conditional entropy of the indicator random variable 1[π(i) = j],
conditioned on the random variable j. Roughly speaking, Lemma 5.18 below allows us to infer a
statement such as H(1[π(i) = j]|j) ≥ 1−o(1) from an analogous statement of the form H(1[π(i) =
j]|π(i)) ≥ 1 − o(1), if π(i), j ∈ [n] satisfy certain regularity conditions. This same argument is
needed in the inductive step presented in Lemma 5.9. In these applications we need to additionally
condition all entropies on some random variable Z.
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Lemma 5.18. There are absolute constants ε∗1 > 0, ε∗2, n0 such that the following holds for every
n ≥ n0: Let X,Y, Z be random variables with X,Y ∈ [n] and Z takes on finitely many values. Let
J = 1[X = Y ]. If there is some constant β > 0 such that δ ≤ 1/ logβ n, and

1. H(X|Z) ≥ log(n)− δ.

2. H(J |X,Z) ≥ 1− δ.

3. H(Y |X,Z, J = 0) ≥ log(n)− δ

Then H(J |Y,Z) ≥ 1− log(ε∗2−βε∗1) n.

Proof. We will first prove the above statement assuming that H(Z) = 0 and then use Markov’s
inequality and a union bound to prove the lemma statement for general Z. That is, we first prove
that if conditions (1), (2), (3) hold without the conditioning on Z then, H(J |Y ) ≥ 1− o(1).

We have that H(X), H(Y ) ≤ log n since X,Y ∈ [n] and H(J) ≤ 1. Also note that, by Pinsker’s
inequality,

Pr[J = 0],Pr[J = 1] ∈ [1/2−
√
δ/2, 1/2 +

√
δ/2].

We also have that

H(J |Y ) = H(J) +H(Y |J)−H(Y )

≥ (1− δ) +H(Y |J)− log(n)

≥ (1− δ) + Pr[J = 0] ·H(Y |J = 0) + Pr[J = 1] ·H(Y |J = 1)− log n

≥ (1− δ) + (1/2−
√
δ/2)(log n− δ +H(Y |J = 1))− log n (13)

But notice that H(Y |J = 1) = H(Y |X = Y ) = H(X|J = 1), so it suffices to bound the latter.
From the lemma hypothesis we get that

H(X|J) = H(X) +H(J |X)−H(J) ≥ (log n− δ) + (1− δ)− 1 ≥ log n− 2δ.

On the other hand we have that

H(X|J) = Pr[J = 0] ·H(X|J = 0) + Pr[J = 1] ·H(X|J = 1)

≤ (1/2 +
√
δ/2) · (log n+H(X|J = 1)). (14)

Combining the upper and lower bounds on H(X|J), we get that

H(X|J = 1) ≥ log(n)− 2δ

1/2 +
√
δ/2
− log n ≥ log(n)− 4δ −

√
8δ log n.

Plugging the above into (13), we get that,

H(J |Y ) ≥ 1− 7δ

2
− 2
√
δ log n.
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To get the lower bound while conditioning on Z, we use Markov’s inequality and a union bound
(in the same manner as Lemma 5.17) to get that

H(J |Y,Z) ≥ (1− 3
√
δ)

(
1− 7

√
δ

2
− 2δ1/4 log n

)
≥ 1− 7

√
δ − 2δ1/4 log n

≥ 1− 9δ1/4 log n

≥ 1− 9 log(1−β/4) n

≥ 1− log(ε∗2−βε∗1) n,

where the final inequality holds for ε∗1 = 1/4, ε∗2 = 2 and n0 = 29 (so that log n ≥ 9).

The proof of Lemma 5.11: Equation (2) follows as a consequence of Lemmas 5.17 and 5.18
above.

Proof of Lemma 5.11. We show that there exist ε∗1 > 0 and ε∗2 such that if β ≥ (β̃ + ε∗2)/ε∗1 (or
equivalently, if β̃ ≤ ε∗1 · β − ε∗2) then Equations (1) and (2) of Lemma 5.11 hold for every n ≥ n0

where n0 = max{n0,1, n0,2} and n0,1 = n0,1(β) is as given by Lemma 5.17 and n0,2 = n0,2(β)
is the constant given by Lemma 5.18. For this choice Lemma 5.17 already gives us (1), that is,
H(π(i)|i,m) ≥ log(n) − log(µ∗2−βµ∗1) n for some absolute constants µ∗1 ∈ (0, 1), µ∗2 > 0. Note in
particular that this implies that for every ε∗2 ≥ µ∗2 and for every ε∗1 ≤ µ∗1 we have H(π(i)|i,m) ≥
log(n)− log(ε∗2−βε∗1) n and we will make such a choice below.

We next apply Lemma 5.18 with Z∗ = (m, i, Z), X = π(i), Y = j, and J = 1[π(i) = j], where
Z∗ refers to the random variable in Lemma 5.18 and Z refers to the one in Lemma 5.11. We verify
that each of the pre-conditions is met.

1. X,Y ∈ [n], J ∈ {0, 1} and Z∗ takes finitely many values.

2. H(X|Z∗) = H(π(i)|i,m,Z) ≥ log(n)− log(µ∗2−µ∗1β) n, by (1).

3. H(J |X,Z∗) = H(1[π(i) = j]|π(i),m, i, Z) ≥ H(1[π(i) = j]|π, i, Z) ≥ 1− δ, by assumption.

4. H(Y |X,Z∗, J = 0) = H(j|π(i),m, i, Z,1[π(i) = j]) ≥ H(j|π, i, Z,1[π(i) = j]) ≥ 1 − δ, by
assumption.

Then by Lemma 5.18, we have that for n ≥ n0,

H(1[π(i) = j]|m, i, j, Z) = H(J |Y,Z∗) ≥ 1− log(ν∗2−(µ∗2−βµ∗1)ν∗1 ) n,

where ν∗1 , ν
∗
2 denote the absolute constants of Lemma 5.18. Thus again we have that if ε∗2 ≥

ν∗2 − µ∗2ν∗1 and ε∗1 ≤ µ∗1ν
∗
1 then we have that H(1[π(i) = j]|m, i, j, Z) ≥ 1 − log(ε∗2−βε∗1) n. Setting

ε∗1 = min{µ∗1, µ∗1ν∗1} and ε∗2 = max{µ∗2, ν∗2 − µ∗2ν∗1} thus ensures that both conditions of the lemma
are satisfied.
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5.5 The Inductive Step: Proof of Lemma 5.9

We will prove the inductive step via a simulation argument. That is, we show that if Alice and
Bob were able to succeed on D ∈ DMix

PV (n, r, δ, C) with non-negligible probability, then they would
also succeed on some D̃ ∈ DMix

PV (n, r − 2, δ′, C ′) by simulating the protocol for D given an instance
from D̃.

Given a distribution D on which Alice and Bob can succeed with non-negligible probability, we
consider the distribution D̃ on the resulting “inner inputs” (i.e. the original inputs minus π1, πr)
after Alice sends a short message to Bob. More precisely, the distribution D̃ is the distribution
of (i1, j1, π2, . . . , πr−1) conditioned on Alice’s first message m1 and Bob’s indices (i0, j0), where
(i1, j1) = (π1(i0), π−1

r (j0)). Moreover, the inputs of D̃ are given to the players as follows: Alice
holds (i1, j1, π3, π5, . . . , πr−2), Bob holds (π2, π4, . . . , πr−1), and it is Bob’s turn to send the next
message. Therefore, this corresponds to an instance of an (r−2)-Pointer Verification Problem with
Alice and Bob’s roles flipped. We will show in Lemma 5.21 that D̃ ∈ DMix

PV (n, r−2, δ′, C ′), for some
δ′, C ′ not too much larger than δ, C, respectively. Then using the protocol for D, we will construct
a protocol that succeeds when the inputs are drawn from D̃, with not much loss in the success
probability. We will now prove two simple lemmas that will be used to prove Lemma 5.21.

Lemma 5.19. There exists ε∗1 > 0 and ε∗2 such that for every β there exists n0 such that for all
n ≥ n0 the following holds: Suppose i, j, σ1, σ2, Z are random variables, where i, j ∈ [n], σ1, σ2 ∈ Sn
and Z takes on finitely many values, satisfying the following conditions:

1. H(i|σ1, σ2, Z) ≥ log(n)− δ, with δ ≤ 1/ logβ n.

2. H(σ1, σ2|Z) ≥ 2 log(n!)− C, with C ≤ n/ logβ n.

3. For each z for which the event {Z = z} has positive probability, there is a permutation
fz : [n]→ [n], such that fz(σ1(i)) = σ2(j) (which implies that σ1(i) = f−1

z (σ2(j)).

Suppose further that m = m(σ1, σ2, Z) is a deterministic function and m ∈ {0, 1}C′, with C ′ ≤
n/ logβ n. Then H(σ1(i)|i, j,m,Z) ≥ log n− log(ε∗2−βε∗1) n.

Proof. Let us write Z ′ = (σ−1
2 ◦ fZ ◦ σ1, Z). Then

1. H(i|σ1, Z
′) = H(i|σ1, σ

−1
2 ◦ fZ ◦ σ1, Z) = H(i|σ1, σ2, Z) ≥ log(n)− δ.

2. H(σ1|Z ′) = H(σ1|σ−1
2 ◦ fZ ◦ σ1, Z) ≥ log(n!)− C, where the last inequality follows from the

following:

2 log(n!)− C ≤ H(σ1, σ2|Z)

= H(σ−1
2 ◦ fZ ◦ σ1, σ2|Z)

= H(σ−1
2 ◦ fZ ◦ σ1|Z) +H(σ1|σ−1

2 ◦ fZ ◦ σ1, Z)

≤ log(n!) +H(σ1|σ−1
2 ◦ fZ ◦ σ1, Z).

Then by Lemma 5.17, H(σ1(i)|i,m,Z ′) = H(σ1(i)|i,m, σ−1
2 ◦ fZ ◦ σ1, Z) ≥ log n− log(ε∗2−βε∗1) n, for

absolute constants ε∗1, ε
∗
2 and for n sufficiently large as a function of β. But since j = σ−1

2 ◦fZ ◦σ1(i),
we obtain that

H(σ1(i)|i, j,m, σ−1
2 ◦ fZ ◦ σ1, Z) ≥ log n− logε

∗
2−βε∗1 n.

Then the desired result follows since conditioning decreases entropy.
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Lemma 5.20. Suppose A,B,C are random variables with finite ranges such that A |= B | C. Let
ΩA denote the domain of A, and f : ΩA → {0, 1}∗ be a function. It follows that

A |= B | {C, f(A)}.

Proof. Pick any x ∈ {0, 1}∗, a ∈ ΩA, b ∈ ΩB, c ∈ ΩC . We have that

Pr[A = a,B = b|C = c, f(A) = x]

=
Pr[A = a,B = b, f(A) = x|C = c]

Pr[f(A) = x|C = c]
. (15)

If f(a) 6= x, then the above is 0, and also

Pr[A = a|C = c, f(A) = x] · Pr[B = b|C = c, f(A) = x] = 0

as well. If f(a) = x, then (15) is equal to

Pr[A = a,B = b|C = c]

Pr[f(A) = x|C = c]
=

Pr[A = a|C = c]

Pr[f(A) = x|C = c]
· Pr[B = b|C = c]

=
Pr[A = a, f(A) = x|C = c]

Pr[f(A) = x|C = c]
· Pr[B = b|f(A) = x,C = c]

= Pr[A = a|f(A) = x,C = c] · Pr[B = b|C = c, f(A) = x],

where the second-to-last inequality follows since

Pr[B = b|C = c] = Pr[B = b|f(A) = x,C = c],

as B is conditionally independent of A given C.

Given a distribution D ∈ DMix
PV (n, r, δ, C) and a deterministic function m = m(πA) we define a

distribution D̃+ on the r−2 permutation pointer verification problem with some auxiliary random-
ness Z as follows: To generate a sample (π2, . . . , πr−2, i1, j1;Y ) according to D̃+ we first sample
(π1, . . . , πr, i0, j0) ∼ D and let i1 = π1(i0), j1 = π−1

r (j0) and Y = (m1(πA), i0, j0).
D̃+ as defined above is a candidate “noisy-on-average’ (i.e., noisy when averaged over Y — see

last paragraph of Definition 5.6) distribution on r − 2 permutations, and the lemma below asserts
that this is indeed the case for slightly larger values of δ and C provided |m| is small. Recall that
πA = (π1, π3, . . . , πr), πB = (π2, π4, . . . , πr−1).

Lemma 5.21. There exist constants ε∗1 > 0, ε∗2 such that for every odd r ≥ 3 and β > 0 there
exists n0 such that for every n ≥ n0 the following holds: Suppose D ∈ DMix

PV (n, r, δ, C), for some
δ ≤ 1/ logβ n and C ≤ n/ logβ n. Also suppose that C ′ ≤ n/ logβ n, and that m = m(πA) is
a deterministic function of πA such that |m| ≤ C ′. Then for δ′ = log(ε∗2−ε∗1·β) n we have D̃+ ∈
DMix+

PV (n, r − 2, δ′, δ′n).

Proof of Lemma 5.21. We need to verify statements (1) – (5) of Definition 5.6 in order to show
that D̃+ ∈ DMix+

PV (n, r − 2, δ′, δ′n), for an appropriate choice of ε∗1, ε
∗
2 and for sufficiently large n

(depending only on β). We will show that statement (5) (which does not depend on δ′) holds for
all n ∈ N. To verify statements (1) – (4), we will show that for each of these statements, there
are some absolute constants ε̂∗1, ε̂

∗
2 and some n̂0 (depending only on β) such that for n ≥ n̂0, the
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statement holds with δ′ = log(ε̂∗2−ε̂∗1β) n. The proof of the lemma will follow by choosing ε∗2 to be
the maximum of the individual ε̂∗2, ε∗1 to be the minimum of the individual ε̂∗1, and n0 to be the
maximum of the individual n̂0.

We now proceed to verify each of the statements (1) – (5). We remark that the values of
ε̂∗1, ε̂

∗
2, n̂0 may change from line to line.

1. We first verify that H(i1|i0, j0, π2, . . . , πr−1,m) ≥ log(n) − δ′. Since conditioning can only
reduce entropy, it suffices to find a lower bound on H(i1|1[πr1(i0) = j0], i0, j0, π2, . . . , πr−1,m),
and in particular, it suffices to find a lower bound on H(i1|πr1(i0) 6= j0, i0, j0, π2, . . . , πr−1,m)
and on H(i1|πr1(i0) = j0, i0, j0, π2, . . . , πr−1,m).

We first bound the former. Consider the distribution of i0, j0, π1, π2, . . . , πr conditioned on
the event πr1(i0) 6= j0, and let Z = (π2, π3, . . . , πr−1, πr). We will now use Lemma 5.17 with
i = i0, π = π1, and with the distribution being D conditioned on πr1(i0) 6= j0. To apply this
lemma, we first verify its preconditions:

(a) H(i0|π1, Z, π
r
1(i0) 6= j0) ≥ log(n) − 5δ as long as n is large enough so that δ ≤ 1/50.

To see this, conditions (1a) and (3a) of the distribution D ∈ DMix
PV (n, r, δ, C) (recall

Definition 5.6) imply that

H((i0,1[πr1(i0) = j0])|π1, π2, . . . , πr) ≥ 1 + log(n)− 2δ,

meaning that

H(i0|1[πr1(i0) = j0], π1, π2, . . . , πr)

= Pr[πr1(i0) = j0] ·H(i0|πr1(i0) = j0, π1, . . . , πr)

+ Pr[πr1(i0) 6= j0] ·H(i0|πr1(i0) 6= j0, π1, . . . , πr)

≥ log(n)− 2δ.

By Pinsker’s inequality and condition (3a) of D we have that |Pr[πr1(i0) = j0]− 1/2| ≤√
δ/2, so for sufficiently small δ (in particular, such that

√
δ/2 ≤ 1/10), it follows that

min {H(i0|πr1(i0) = j0, π1, . . . , πr), H(i0|πr1(i0) 6= j0, π1, . . . , πr)} ≥ log(n)− 5δ. (16)

(b) H(π1|Z, πr1(i0) 6= j0) ≥ log(n!)− 3C − 3δ as long as n is large enough so that δ ≤ 1/18.
The proof is similar to (a) above. In particular, condition (2) of the distribution D
implies that

H(π1|π2, π3, . . . , πr) ≥ log(n!)− C.

Since conditioning can only reduce entropy, condition (3a) of the distribution D implies
that

H((π1,1[πr1(i0) = j0])|π2, . . . , πr) ≥ 1 + log(n!)− C − δ,

meaning that

H(π1|1[πr1(i0) = j0], π2, . . . , πr)

= Pr[πr1(i0) = j0] ·H(π1|πr1(i0) = j0, π2, . . . , πr) + Pr[πr1(i0) 6= j0] ·H(π1|πr1(i0) 6= j0, π2, . . . , πr)

≥ log(n!)− C − δ.
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By Pinsker’s inequality and condition (3a) of D we have that |Pr[πr1(i0) = j0]− 1/2| ≤√
δ/2, so for sufficiently small δ (in particular, such that

√
δ/2 ≤ 1/6), it follows that

min{H(π1|πr1(i0) = j0, π2, . . . , πr), H(π1|πr1(i0) 6= j0, π2, . . . , πr)} ≥ log(n!)− 3C − 3δ.
(17)

Note also that indeed m is a deterministic function of (π, Z) = (π1, π2, . . . , πr). Therefore,
by Lemma 5.17, we obtain that there are absolute constants ε̂∗1, ε̂

∗
2, such that for some n̂0

depending only on β, if n ≥ n̂0,

H(i1|i0, π2, . . . , πr,m, π
r
1(i0) 6= j0) ≥ log(n)− log(ε̂∗2−βε̂∗1) n.

Condition (4a) of the distribution D implies that

H(j0|i0, π1, π2, . . . , πr, π
r
1(i0) 6= j0) = H(j0|i0, i1,m, π1, π2, . . . , πr, π

r
1(i0) 6= j0) ≥ log(n)− δ.

Since conditioning can only reduce entropy we have from the two above equations that

H((i1, j0)|i0,m, π2, π3, . . . , πr, π
r
1(i0) 6= j0) ≥ 2 log(n)− log(ε̂∗2−βε̂∗1) n− δ,

so
H(i1|i0, j0,m, π2, π3, . . . , πr, π

r
1(i0) 6= j0) ≥ log(n)− log(ε̂∗2−βε̂∗1) n− δ,

as desired.

Next we lower bound H(i1|πr1(i0) = j0, i0, j0, π2, . . . , πr−1,m) using Lemma 5.19 with Z =
(π2, π3, . . . , πr−1), σ1 = π1, σ2 = π−1

r , and with the distribution being D conditioned on
πr1(i0) = j0. We first verify that the lemma’s preconditions hold:

(a) The fact that H(i0|π1, πr, Z, π
r
1(i0) = j0) ≥ log(n)− 5δ for δ ≤ 1/50 was proven in (16).

(b) To verify that H(π1, πr|Z, πr1(i0) = j0) ≥ log(n)− 3C − 3δ for δ ≤ 1/18, we may exactly
mirror the proof of (17) except for replacing π1 with (π1, πr) (and removing πr from the
random variables being conditioned on). We omit the details.

(c) Since we are conditioning on πr1(i0) = j0, we have that π−1
r (j0) = πr−1(· · ·π2(π1(i0))),

which means that we may take fZ = πr−1 ◦ · · · ◦ π2.

Note also that indeed m is a deterministic function of (σ1, σ2, Z) = (π1, π2, . . . , πr−1, π
−1
r ).

Then by Lemma 5.19, it follows that for some absolute constants ε̂∗1, ε̂
∗
2, there is some n̂0 (de-

pending only on β) such that for n ≥ n̂0, H(i1|i0, j0,m,Z, πr1(i0) = j0) ≥ log n− log(ε̂∗2−βε̂∗1) n.

By the previous discussion, it then follows that for some absolute constants ε̂∗1, ε̂
∗
2, there is

some n̂0 (depending only on β) such that for n ≥ n̂0, H(i1|i0, j0,m, π2, . . . , πr−1) ≥ log n −
log(ε̂∗2−βε̂∗1) n.

In an identical manner, using conditions (1b), (2), (3b), (4b) of the distributionD ∈ DMix
PV (n, r, δ, C),

we obtain that for the same ε̂∗1, ε̂
∗
2, n̂0, if n ≥ n0 then H(j1|i0, j0,m, π2, . . . , πr) ≥ log(n) −

log(ε̂∗2−βε̂∗1) n.
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2. To prove statement (2) we claim that H(π2, . . . , πr−1|m, i0, j0) ≥ (r − 2) log(n!) − C − C ′ −
2 log(n); to see this note that

H(π2, . . . , πr−1|m, i0, j0) = H(π2, . . . , πr−1) +H(m, i0, j0|π2, . . . , πr−1)−H(m, i0, j0)

≥ H(π2, . . . , πr−1)−H(m, i0, j0)

≥ (r − 2) log(n!)− C − C ′ − 2 log(n),

since |m| ≤ C ′. It readily follows that there exist absolute constants ε̂∗1, ε̂
∗
2 and some n̂0

(depending only on β) such that for n ≥ n̂0, H(π2, . . . , πr−1|m, i0, j0) ≥ (r − 2) log(n!) −
n log(ε̂∗2−ε̂∗1β) n.

3. We will next prove that 3(b) holds by applying Lemma 5.11, with i = i0, j = jr−1, π = π1, Z =
(π2, . . . , πr) (recall that jr−1 = π−1

2 ◦ · · · ◦π−1
r (j0)). We will first verify that the preconditions

of Lemma 5.11 hold:

(a) H(i|π, Z) = H(i0|π1, π2, . . . , πr) ≥ log(n)− δ, by condition (1) of the distribution D.

(b) H(π|Z) = H(π1|π2, . . . , πr) ≥ log n!− C, by condition (2) of the distribution D.

(c) H(1[π(i) = j]|π, i, Z) = H(1[π1(i0) = jr−1]|π1, i0, π2, . . . , πr)

= H(1[πr1(i0) = j0]|i0, π1, π2, . . . , πr)

≥ 1− δ,
by condition (3) of the distribution D.

(d) H(j|π, i, π(i) 6= j, Z) = H(jr−1|π1, i0, π1(i0) 6= jr−1, π2, . . . , πr)

= H(j0|i0, π1, . . . , πr, π
r
1(i0) 6= j0)

≥ log(n)− δ,
by condition (4) of the distribution D,

where by assumption, there exists β > 0 such that δ, C,C ′ are such that max{δ, C/n,C ′/n} ≤
1/ logβ(n). Moreover, m is a deterministic function of (π, Z) = (π1, . . . , πr). Therefore by
Lemma 5.11 we get that, for some absolute constants ε̂∗1, ε̂

∗
2, and for some n̂0 (depending only

on β),

H(1[π1(i0) = jr−1]|π2, . . . , πr,m, i0, jr−1) = H(1[π(i) = j]|m, i, j, Z) (18)

≥ 1− log(ε̂∗2−βε̂∗1) n, (19)

Since j0 = πr ◦ · · · ◦ π2(jr−1) and j1 = πr−1 ◦ · · · ◦ π2(jr−1), by the data processing inequality,
we get that for n ≥ n̂0,

H(1[πr−2
2 (i1) = j1]|j1, π2, . . . , πr−1,m, i0, j0) ≥ H(1[π1(i0) = jr−1]|π2, . . . , πr,m, i0, jr−1)

≥ 1− log(ε̂∗2−βε̂∗1) n.

The proof of 3(a) (with the same ε̂∗1, ε̂
∗
2, n̂0) follows in a symmetric manner.

4. Next we lower bound H(j1|i1, π2, . . . , πr−1, π
r
1(i0) 6= j0,m, i0, j0). We apply Lemma 5.17 with

Z = (i0, π1, π2, . . . , πr−1), i = j0, π = π−1
r , with the distribution given by D conditioned on

πr1(i0) 6= j0. We first verify that the preconditions are met:
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(a) H(j0|πr, Z, πr1(i0) 6= j0) = H(j0|i0, π1, π2, . . . , πr, π
r
1(i0) 6= j0) ≥ log(n)− δ, by condition

(4a) of the distribution D.

(b) As long as n is large enough so that δ ≤ 1/18,

H(πr|Z, πr1(i0) 6= j0) = H(πr|i0, π1, π2, . . . , πr−1, π
r
1(i0) 6= j0) ≥ log(n!)−3C−3δ− log n,

by an argument identical to that used to prove (17), as well as the fact that i0 ∈ [n],
meaning that its entropy is at most log n.

Moreover, m is a deterministic function of (π, Z) = (π1, π2, . . . , πr, i0). Then by Lemma 5.17,
it follows that there are absolute constants ε̂∗1, ε̂

∗
2 and some n̂0 (depending only on β) such

that for n ≥ n̂0,

H(j1|i0, π1, π2, . . . , πr−1, j0,m, π
r
1(i0) 6= j0)

= H(j1|i1, π1, π2, . . . , πr−1,m, i0, j0, π
r
1(i0) 6= j0)

≥ log(n)− log(ε̂∗2−βε̂∗1) n,

which proves the desired statement since conditioning can only reduce entropy. Similarly, con-
ditions (2), (3b), (4b) ofD imply in a symmetric manner that for n ≥ n̂0, H(i1|j1, π2, π3, . . . , πr−1, π

r
1(i0) 6=

j0,m, i0, j0) ≥ log(n)− log(ε̂∗2−βε̂∗1) n.

5. To prove statement (5), first take t odd, and let X = πA∩(π1, π2, . . . , πt, πr−t+1, . . . , πr−1, πr),
Y = πB, and note that condition (5) of the distribution D states that conditioned on:

E := {(i0, . . . , it) = (i′0, . . . , i
′
t), (j0, . . . , jt) = (j′0, . . . , j

′
t), (πt+2, πt+4, . . . , πr−t−1) = (π′t+2, π

′
t+4, . . . , π

′
r−t−1)},

we have that X is independent of Y . Note that conditioned on E, m = m(π1, π3, . . . , πr) is
a deterministic function of (π1, π3, . . . , πt, πr−t+1, πr−t+3, . . . , πr) = X. It follows by Lemma
5.20 that X |= Y |E,m = m′, which implies that

πA ∩ (π2, . . . , πt, πr−t+1, . . . , πr−1) |= πB|E,m = m′.

Next take t even, take X = πA, Y = πB ∩ (π1, π2, . . . , πt, πr−t+1, . . . , πr), and conditioned on:

E := {(i0, . . . , it) = (i′0, . . . , i
′
t), (j0, . . . , jt) = (j′0, . . . , j

′
t), (πt+2, πt+4, . . . , πr−t−1) = (π′t+2, π

′
t+4, . . . , π

′
r−t−1)},

X is independent of Y . Note that conditioned on E, m = m(π1, π3, . . . , πr) is a deterministic
function of X. It follows by Lemma 5.20 that X |= Y |E,m = m′, which implies that

πB ∩ (π2, . . . , πt, πr−t+1, . . . , πr−1) |= πA|E,m = m′.

Lemma 5.21 establishes that the “inner input” (after removing the π1 and πr and pushing
pointers inwards) is from a noisy distribution (according to Definition 5.6) when averaged over the
auxiliary variable Y . Intuitively this should imply that the pointer verification problem remains as
hard (with one fewer round of communication), but this needs to be shown formally. In particular,
Alice and Bob do have additional information such as π1, πr, i0, j0,m and all of this might help
determine 1[πr−1

2 (i1) = j1].
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In Lemma 5.9 we formalize this intuition by creating an (r − 1)/2 round protocol for a noisy
distribution D̃ on r − 2 permutations, using an (r + 1)/2 round protocol for a related noisy dis-
tribution D solving the pointer verification problem on r permutations. This argument makes use
of Property (5) of Definition 5.6, which we have not really used yet (except to argue that it holds
inductively).

Proof of Lemma 5.9. Let ε∗1, ε
∗
2 be the absolute constants from Lemma 5.21. We will show that we

can take β1 = max
{
β2,

2β2+ε∗2
ε∗1

}
.

Let D ∈ DMix
PV (n, r, 1/ logβ1 n, n/ logβ1 n) and let Π be a protocol for D with communica-

tion at most n/ logβ1 n. For sufficiently large n, we will give a distribution D̃ ∈ DMix
PV (n, r −

2, 1/ logβ2 n, n/ logβ2 n), and will construct a protocol Π̃ for D̃, which uses no more communication
than Π, and crucially uses one less round of communication than Π.

Definition of D̃. We denote the messages in each round of Π by m1, . . . ,m(r+1)/2. Recall that
Alice sends m1 = m1(π1, π3, . . . , πr), Bob sends m2 = m2(m1, i0, j0, π2, π4, . . . , πr−1), Alice sends
m3 = m3(m1,m2, π1, π3, . . .), and so on. Let (m′1, i

′
0, j
′
0) be a fixed instantiation of the random vari-

ables (m1, i0, j0). Given the distribution D on (i0, i1, j0, j1π1, . . . , πr), consider the conditional dis-
tribution Dm′1,i

′
0,j
′
0

:= D|(m1 = m′1, i0 = i′0, j0 = j′0) on (i1, j1, π1, . . . , πr). Furthermore, let D̃m′1,i
′
0,j
′
0

denote the marginal distribution of Dm′1,i
′
0,j
′
0

on the inner inputs, that is, (i1, j1, π2, . . . , πr−1). One

can interpret D̃m′1,i
′
0,j
′
0
, as an (r− 2)-PV problem, and we will show how, for each tuple (m′1, i

′
0, j
′
0),

Alice and Bob can simulate the protocol Π, given an instance from D̃m′1,i
′
0,j
′
0
. We will then show

how it follows that for some tuple (m′1, i
′
0, j
′
0) this simulation will have success probability at least

1/2 + ε2 and moreover for this tuple D̃m′1,i
′
0,j
′
0
∈ DMix

PV (n, r − 2, 1/ logβ2 n, n/ logβ2 n).

The protocol Π̃. Consider any tuple (m′1, i
′
0, j
′
0), and an instance of (r − 2)-PV drawn from

D̃ = D̃m′1,i
′
0,j
′
0
. We use the symbol˜ for the random variables drawn from D̃. We label the r − 2

permutations drawn from D̃ as π̃2, . . . , π̃r−1 (instead of π1, . . . , πr−2), the initial indices as (̃i1, j̃1)
(instead of (i0, j0)). The roles of Alice and Bob are also flipped, in that Bob receives π̃2, π̃4, . . . , π̃r−1,
and Alice receives ĩ1, j̃1, π̃3, . . . , π̃r−2. The goal is to determine whether π̃r−1

2 (̃i1) = j̃1. The protocol
Π̃ for D̃ is constructed as follows:

1. Bob sends the first message m̃2 := m2(m′1, i
′
0, j
′
0, π̃2, . . . , π̃r−1). Recall that m2 was the second

message of the protocol Π.

2. Alice then draws (π̃1, π̃r) from its marginal in Dm′1,i
′
0,j
′
0
, conditioned on the event {i1 = ĩ1, j1 =

j̃1, π3 = π̃3, π5 = π̃5, . . . , πr−2 = π̃r−2}, using private randomness. That is,

(π̃1, π̃r) ∼ [(π1, πr)Dm′1,i′0,j′0
|{i1 = ĩ1, j1 = j̃1, π3 = π̃3, π5 = π̃5, . . . , πr−2 = π̃r−2}]. (20)

3. After receiving m̃2 from Bob, Alice then sends m̃3 := m3(m′1, m̃2, π̃1, π̃3, . . . , π̃r). Starting
with Alice’s m̃3, Alice and Bob just simulate the remaining (r + 1)/2 − 2 rounds of the
protocol Π (as well as an additional output bit at the end), where Alice takes as her input
π̃1, π̃3, . . . , π̃r−2, π̃r and Bob takes as his input i′0, j

′
0, π̃2, . . . , π̃r−1.
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Since the messages of Π̃ are given by m2,m3, . . . ,m(r+1)/2 for appropriate inputs of Π, Π̃ has

(r − 1)/2 rounds, and the communication complexity of Π̃ is no greater than the communication
complexity of Π, namely n/ logβ1 n.

Success Probability. Now we will prove that for each tuple (i′0, j
′
0,m

′
1), the success probability of

Π̃ when inputs are drawn from D̃i′0,j
′
0,m
′
1

is equal to the success probability of Π on the distribution D
conditioned on {m1 = m′1, i0 = i′0, j0 = j′0}. This will ultimately allow us to choose an appropriate
tuple (i′0, j

′
0,m

′
1) for which Π̃ achieves success probability at least 1/2 + ε2 on D̃i′0,j

′
0,m1

.

Notice that the protocol Π̃ induces a distribution on (π̃1, . . . , π̃r, ĩ1, j̃1), which we will denote by
D̃Π, where (̃i1, j̃1, π̃2, . . . , π̃r−1) is drawn from D̃m′1,i

′
0,j
′
0

and Alice draws (π̃1, π̃r) from the conditional
distribution specified in step (2) above, using private randomness.

We claim that the distribution of (̃i1, j̃1, π̃1, . . . , π̃r) under D̃Π is the same as the distribution
of (i1, j1, π1, . . . , πr) under Dm′1,i

′
0,j
′
0
. One can think of drawing (i1, j1, π1, . . . , πr) from Dm′1,i

′
0,j
′
0

as first drawing (i1, j1, π2, . . . , πr−1) from its marginal distribution D̃m′1,i
′
0,j
′
0

and then drawing
(π1, πr) from Dm′1,i

′
0,j
′
0
|{(i1, j1, π2, π3, . . . , πr−1)}. By construction, the marginal distribution of

(̃i1, j̃1, π̃2, . . . , π̃r−1) under D̃Π is the same as the marginal distribution of (i1, j1, π2, . . . , πr−1) un-
der Dm′1,i

′
0,j
′
0
. Formally, for i′1, j

′
1 ∈ [n], π′2, . . . , π

′
r−1 ∈ Sn,

Pr
D̃Π

[̃
i1 = i′1, j̃1 = j′1, π̃2 = π′2, . . . , π̃r−1 = π′r−1

]
= Pr

Dm′1,i
′
0,j
′
0

[
i1 = i′1, j1 = j′1, π2 = π′2, . . . , πr−1 = π′r−1

]
.

(21)
It is not clear a priori that the conditional distributions of (π1, πr) under Dm′1,i

′
0,j
′
0

and of (π̃1, π̃r) un-

der D̃Π are the same, since in D̃Π, Alice draws (π̃1, π̃r) with knowledge of only (̃i1, j̃1, π̃3, π̃5, . . . , π̃r−2),
whereas under Dm′1,i

′
0,j
′
0
, (π1, πr) is drawn from the conditional distribution with knowledge of all

the permutations (π2, π3, . . . , πr−1). Nevertheless we will show that these two distributions are the
same. More formally, for any π′1, . . . , π

′
r ∈ Sn, i′1, j′1 ∈ [n],

Pr
Dm′1,i

′
0,j
′
0

[π1 = π′1, πr = π′r|i1 = i′1, j1 = j′1, π2 = π′2, π3 = π′3, . . . , πr−1 = π′r−1]

= Pr
Dm′1,i

′
0,j
′
0

[π1 = π′1, πr = π′r|i1 = i′1, j1 = j′1, π3 = π′3, π5 = π′5, . . . , πr−2 = π′r−2] (22)

= Pr
D̃Π

[π̃1 = π′1, π̃r = π′r |̃i1 = i′1, j̃1 = j′1, π̃3 = π̃′3, π̃5 = π′5, . . . , π̃r−2 = π′r−2], (23)

where the second equality follows from construction (i.e., (20)), and the first equality follows from
property (5) of the distribution D ∈ DMix

PV (n, r, 1/ logβ1 n, n/ logβ1 n) with t = 1. That is, under the
distribution D, for all m′1, i

′
0, j
′
0, π
′
3, . . . , π

′
r−2,

(π1, πr) |= (π2, π4, . . . , πr−1)|{m1 = m′1, i0 = i′0, j0 = j′0, i1 = i′1, j1 = j′1, π3 = π′3, π5 = π′5, . . . , πr−2 = π′r−2}.

As a consequence, under the distribution Dm′1,i
′
0,j
′
0
,

(π1, πr) |= (π2, π4, . . . , πr−1)|{i1 = i′1, j1 = j′1, π3 = π′3, π5 = π′5, . . . , πr−2 = π′r−2},

which verifies (22) and therefore our claim that the distribution of (̃i1, j̃1, π̃1, . . . , π̃r) under D̃Π is
the same as the distribution of (i1, j1, π1, . . . , πr) under Dm′1,i

′
0,j
′
0
.
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It follows that for each tuple (i′0, j
′
0,m

′
1), Π̃ is a protocol for the (r−2)-PV problem with success

probability equal to:

Pr
D̃m′1,i

′
0,j
′
0

[Π̃(̃i1, j̃1, π̃2, π̃3, . . . , π̃r−1) = 1[π̃r−1
2 (̃i1) = j̃1]]

= Pr
D

[Π(i′0, j
′
0, π1, π2, . . . , πr) = 1[πr1(i0) = j0]|i0 = i′0, j0 = j′0,m1 = m′1]. (24)

Membership in DMix
PV (n, r − 2, 1/ logβ2 n, n/ logβ2 n). By hypothesis, we have that

D ∈ DMix
PV (n, r, 1/ logβ1 n, n/ logβ1 n),

and that |m1| ≤ n/ logβ1 n. By Lemma 5.21, for some n0 that depends only on β1 (which in turn
depends only on β2), for n ≥ n0,

D̃+ ∈ DMix+
PV (n, r, log(ε∗2−ε∗1β1) n, n log(ε∗2−ε∗1β1) n).

By definition of β1, we have that
ε∗1β1−ε∗2

2 ≥ β2, so

√
log(ε∗2−ε∗1β1) n ≤ 1/ logβ2 n. We call the tuple

(i′0, j
′
0,m

′
1) good if the distribution of (i1, j1, π2, . . . , πr−1) under D̃m′1,i

′
0,j
′
0

belongs to DMix
PV (n, r −

2, 1/ logβ2 n, n/ logβ2 n). Recall that this means that

1. H(i1|π2, . . . , πr−1,m1 = m′1, i0 = i′0, j0 = j′0) ≥ log(n)− 1/ logβ2 n.

2. H(π2, . . . , πr−1|m1 = m′1, i0 = i′0, j0 = j′0) ≥ (r − 2) log(n!)− n/ logβ2 n.

3. H(1[πr1(i1) = j1]|i1, π2, . . . , πr−1,m1 = m′1, i0 = i′0, j0 = j′0) ≥ 1− 1/ logβ2 n.

4. H(j1|i1, π2, . . . , πr−1, π
r
1(i0) 6= j0,m1 = m′1, i0 = i′0, j0 = j′0) ≥ log(n)− 1/ logβ2 n,

and analogously the (b) statements in the definition of DMix
PV (n, r, 1/ logβ2 n, n/ logβ2 n) (Defini-

tion 5.6) hold as well.
By Lemma 5.21, Markov’s inequality, and a union bound, if n ≥ n0, with probability at least

1− 7/ logβ2 n over the tuple (i0, j0,m1) drawn from its marginal in D, (i0, j0,m1) is good. (Notice
that there is a coefficient of 7, as opposed to 8, since there is no (b) statement for item (2) above.)

Choosing a good tuple (i′0, j
′
0,m

′
1). Now we will use (24) to choose a good tuple (i′0, j

′
0,m

′
1) for

which Π̃ also achieves success probability at least 1/2+ε2, for all n > max
{
n0, 2

(7/(ε1−ε2))1/β2
}

. For

each tuple (i′0, j
′
0,m

′
1), we have constructed above a protocol Π̃ for (r−2)-PV, with communication

at most n/ logβ1 n ≤ n/ logβ2 n, and where Alice and Bob use (r − 1)/2 rounds of communication.
If moreover (i′0, j

′
0,m

′
1) is good, then the distribution of (i1, j1, π2, . . . , πr−1) under D̃i′0,j

′
0,m
′
1

belongs

to DMix
PV (n, r − 2, 1/ logβ2 n, n/ logβ2 n).

Now suppose for the purpose of contradiction that the probability of success of all ((r −
1)/2, n/ logβ2 n) protocols on any distribution D̃ ∈ DMix

PV (n, r − 2, 1/ logβ2 n, n/ logβ2 n) were at
most 1/2 + ε2. In particular, for any good tuple (i′0, j

′
0,m

′
1), the probability of success of Π̃ on the

distribution D̃m′1,i
′
0,j
′
0

is at most 1/2 + ε2. Then by (24) and since n ≥ n0, the probability of success
of Π would be at most

7/ logβ2 n+ (1− 7/ logβ2 n) · (1/2 + ε2) ≤ 1/2 + 7/ logβ2 n+ ε2.

35



Since we also have n > 2(7/(ε1−ε2))1/β2 , it follows that

ε2 + 7/ logβ2 n < ε1,

which is a contradiction and thus completes the proof of Lemma 5.9.
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[AG76] Rudolf Ahlswede and Peter Gács. Spreading of sets in product spaces and hypercon-
traction of the markov operator. The annals of probability, pages 925–939, 1976. 2

[AGKN13] Venkat Anantharam, Amin Gohari, Sudeep Kamath, and Chandra Nair. On maximal
correlation, hypercontractivity, and the data processing inequality studied by Erkip and
Cover. arXiv preprint arXiv:1304.6133, 2013. 2

[BBCR13] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. SIAM Journal on Computing, 42(3):1327–1363, 2013. 3

[BGI14] Mohammad Bavarian, Dmitry Gavinsky, and Tsuyoshi Ito. On the role of shared ran-
domness in simultaneous communication. In Automata, Languages, and Programming,
pages 150–162. Springer, 2014. 3

[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and
System Sciences, 68(4):702–732, 2004. 3, 5

[BM11] Andrej Bogdanov and Elchanan Mossel. On extracting common random bits from cor-
related sources. Information Theory, IEEE Transactions on, 57(10):6351–6355, 2011.
2, 3

[CGMS17] Clément L Canonne, Venkatesan Guruswami, Raghu Meka, and Madhu Sudan. Com-
munication with imperfectly shared randomness. IEEE Transactions on Information
Theory, 63(10):6799–6818, 2017. 2, 3, 8

36



[CMN14] Siu On Chan, Elchanan Mossel, and Joe Neeman. On extracting common random bits
from correlated sources on large alphabets. Information Theory, IEEE Transactions
on, 60(3):1630–1637, 2014. 2

[CN00] Imre Csiszár and Prakash Narayan. Common randomness and secret key generation
with a helper. Information Theory, IEEE Transactions on, 46(2):344–366, 2000. 2

[CN04] Imre Csiszár and Prakash Narayan. Secrecy capacities for multiple terminals. IEEE
Transactions on Information Theory, 50(12):3047–3061, 2004. 2

[CSWY01] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao. Informational com-
plexity and the direct sum problem for simultaneous message complexity. In Foun-
dations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages
270–278. IEEE, 2001. 3

[CT06] T. M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience,
Hoboken, N.J, 2nd ed edition, 2006. OCLC: ocm59879802. 14

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2012. 6

[DMN18] Anindya De, Elchanan Mossel, and Joe Neeman. Non interactive simulation of corre-
lated distributions is decidable. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2728–2746. SIAM, 2018. 3

[GJ18] Badih Ghazi and TS Jayram. Resource-efficient common randomness and secret-key
schemes. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 1834–1853. Society for Industrial and Applied Mathematics,
2018. 2, 3
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with limited interaction. CoRR, abs/1601.00899, 2016. 2, 3

[Liu16] Jingbo Liu. Rate region for interactive key generation and common randomness gen-
eration. Manuscript available at http://www.princeton.edu/~jingbo/preprints/

RateRegionInteractiveKeyGen120415.pdf (visited on 02/13/2017), 2016. 3

[LLG+05] Daihyun Lim, Jae W Lee, Blaise Gassend, G Edward Suh, Marten Van Dijk, and
Srinivas Devadas. Extracting secret keys from integrated circuits. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 13(10):1200–1205, 2005. 3

[Mau93] Ueli M Maurer. Secret key agreement by public discussion from common information.
Information Theory, IEEE Transactions on, 39(3):733–742, 1993. 2

[MO04] Elchanan Mossel and Ryan O’Donnell. Coin flipping from a cosmic source: On error
correction of truly random bits. arXiv preprint math/0406504, 2004. 3

[MOR+06] Elchanan Mossel, Ryan O’Donnell, Oded Regev, Jeffrey E Steif, and Benny Sudakov.
Non-interactive correlation distillation, inhomogeneous markov chains, and the reverse
bonami-beckner inequality. Israel Journal of Mathematics, 154(1):299–336, 2006. 3

[NW93] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM
Journal on Computing, 22(1):211–219, 1993. 4, 5, 11, 15

[Raz92] Alexander A. Razborov. On the distributional complexity of disjointness. Theoretical
Computer Science, 106(2):385–390, 1992. 5, 11

[SD07] G Edward Suh and Srinivas Devadas. Physical unclonable functions for device authenti-
cation and secret key generation. In Proceedings of the 44th annual Design Automation
Conference, pages 9–14. ACM, 2007. 3

[Sha49] Claude E Shannon. Communication theory of secrecy systems. Bell system technical
journal, 28(4):656–715, 1949. 2

38

http://www.princeton.edu/~jingbo/preprints/RateRegionInteractiveKeyGen120415.pdf
http://www.princeton.edu/~jingbo/preprints/RateRegionInteractiveKeyGen120415.pdf


[SHO08] Ying Su, Jeremy Holleman, and Brian P Otis. A digital 1.6 pj/bit chip identification
circuit using process variations. IEEE Journal of Solid-State Circuits, 43(1):69–77,
2008. 3

[Tya13] Himanshu Tyagi. Common information and secret key capacity. IEEE Transactions on
Information Theory, 59(9):5627–5640, 2013. 2, 3

[Wit75] Hans S Witsenhausen. On sequences of pairs of dependent random variables. SIAM
Journal on Applied Mathematics, 28(1):100–113, 1975. 3

[Wyn75] Aaron D. Wyner. The common information of two dependent random variables. IEEE
Transactions on Information Theory, 21(2):163–179, 1975. 2, 3

[YLH+09] Haile Yu, Philip Heng Wai Leong, Heiko Hinkelmann, L Moller, Manfred Glesner, and
Peter Zipf. Towards a unique FPGA-based identification circuit using process varia-
tions. In 2009 International Conference on Field Programmable Logic and Applications,
pages 397–402. IEEE, 2009. 3

[ZC11] Lei Zhao and Yeow-Kiang Chia. The efficiency of common randomness generation. In
2011 49th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), 2011. 2

39

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


