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Abstract

In this paper, we study the Boolean function parameters sensitivity (s), block sensitivity (bs),
and alternation (alt) under specially designed affine transforms and show several applications.
For a function f : Fn2 → {−1, 1}, and A = Mx + b for M ∈ Fn×n2 and b ∈ Fn2 , the result of the
transformation g is defined as ∀x ∈ Fn2 , g(x) = f(Mx+ b).

As a warm up, we study alternation under linear shifts (when M is restricted to be the
identity matrix) called the shift invariant alternation (the smallest alternation that can be
achieved for the Boolean function f by shifts, denoted by salt(f)). By a result of Lin and Zhang
[ICALP 2017], it follows that bs(f) ≤ O(salt(f)2s(f)). Thus, to settle the Sensitivity Conjecture
(∀ f, bs(f) ≤ poly(s(f))), it suffices to argue that ∀ f, salt(f) ≤ poly(s(f)). However, we exhibit
an explicit family of Boolean functions for which salt(f) is 2Ω(s(f)).

Going further, we use an affine transform A, such that the corresponding function g satisfies
bs(f, 0n) ≤ s(g). We apply this in the setting of quantum communication complexity to prove

that for F (x, y)
def
= f(x ∧ y), the bounded error quantum communication complexity of F with

prior entanglement, Q∗
1/3(F ) is Ω(

√
bs(f, 0n)). Our proof builds on ideas from Sherstov [Quan-

tum Information and Computation, 10:435–455, 2010] where we use specific properties of the
above affine transformation. Using this, we show the following.

(a) For a fixed prime p and an ε, 0 < ε < 1, any Boolean function f that depends on all

its inputs with degp(f) ≤ (1 − ε) log n must satisfy Q∗
1/3(F ) = Ω

(
nε/2

logn

)
. Here, degp(f)

denotes the degree of the multilinear polynomial over Fp which agrees with f on Boolean
inputs.

(b) For Boolean function f such that there exists primes p and q with degq(f) ≥ Ω(degp(f)δ)
for δ > 2, the deterministic communication complexity - D(F ) and Q∗

1/3(F ) are polyno-

mially related. In particular, this holds when degp(f) = O(1). Thus, for this class of
functions, this answers an open question (see Buhrman and de Wolf [CCC 2001]) about
the relation between the two measures.

Restricting back to the linear setting, we construct linear transformation A, such that the
corresponding function g satisfies, alt(f) ≤ 2s(g)+1. Using this new relation, we exhibit Boolean
functions f (other than the parity function) such that s(f) is Ω(

√
sparsity(f)) where sparsity(f)

is the number of non-zero coefficients in the Fourier representation of f . This family of Boolean
functions also rule out a potential approach to settle the XOR Log-Rank conjecture via the
recently settled Sensitivity conjecture [Hao Huang, Annals of Mathematics, 190(3): 949-955,
2019].
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1 Introduction

For a Boolean function f : {0, 1}n → {−1, 1}, sensitivity of f on x ∈ {0, 1}n, is the maximum
number of indices i ∈ [n], such that f(x⊕ ei) 6= f(x) where ei ∈ {0, 1}n with exactly the ith bit as
1. The sensitivity of f (denoted by s(f)) is the maximum sensitivity of f over all inputs. A related
parameter is the block sensitivity of f (denoted by bs(f)), where we allow disjoint blocks of indices
to be flipped instead of a single bit. Another parameter is the deterministic decision tree complexity
(denoted by DT(f)) which is the depth of an optimal decision tree computing the function f . The
certificate complexity of f (denoted by C(f)) is the non-deterministic variant of the decision tree
complexity. The parameter s(f) was originally studied by Cook et al. [CDR86] in connection
with the CREW-PRAM model of computation. Subsequently, Nisan and Szegedy [NS94] (see
also [Nis91]) introduced the parameters bs(f) and C(f) and conjectured that for any function f :
{0, 1}n → {−1, 1}, bs(f) ≤ poly(s(f)) - known as the Sensitivity Conjecture. Later developments,
which revealed several connections between sensitivity, block sensitivity and the other Boolean
function parameters, demonstrated the fundamental nature of the conjecture (see [HKP11] for a
survey and several equivalent formulations of the conjecture). This conjecture has recently been
resolved in [Hua19] by showing the following which implies that bs(f) = O(s(f)4).

Theorem 1.1 (Sensitivity Theorem [Hua19]). For every Boolean function f , deg(f) ≤ s(f)2.

Shi and Zhang [ZS10] studied the parity complexity variants of bs(f),C(f) and DT(f) and
observed that such variants have the property that they are invariant under arbitrary invertible
linear transforms (over Fn2 ). They also showed existence of Boolean functions where under all
invertible linear transforms of the function, the decision tree depth is linear while their parity
variant of decision tree complexity is at most logarithmic in the input length.
Our Results : While the existing studies focus on understanding the Boolean function parameters
under the effect of arbitrary invertible affine transforms, in this work, we study the relationship
between the above parameters of Boolean functions f : Fn2 → {−1, 1}, under specific affine trans-
formations over Fn2 . More precisely, we explore the relationship of the above parameters for the
function g : Fn2 → {−1, 1} and f , where g is defined as g(x) = f(Mx + b) for specific M ∈ Fn×n2

and b ∈ Fn2 (where is M not necessarily invertible). We show the following results, and their
corresponding applications, which we explain along with the context in which they are relevant.
Alternation under shifts : We study the parameters when the transformation is very structured
- namely the matrix M is the identity matrix and b ∈ Fn2 is a linear shift. More precisely, we study

fb(x)
def
= f(x+b) where b is the shift. Observe that all the parameters mentioned above are invariant

under shifts. A Boolean function parameter which is neither shift invariant nor invariant under
invertible linear transforms is the alternation, a measure of non-monotonicity of Boolean function
(see Section 2 for a formal definition). To see this for the case of shifts, if we take f as the majority
function on n bits, then there exists shifts b ∈ {0, 1}n where alt(fb) = Ω(n) while alt(f) = 1.

A result related to Sensitivity Conjecture by Lin and Zhang [LZ17] shows that bs(f) ≤ O(s(f)alt(f)2).
This bound for bs(f), implies that to settle the Sensitivity Conjecture, it suffices to show that alt(f)
is upper bounded by poly(s(f)) for all Boolean functions f . However, the authors [DS19] ruled this
out, by exhibiting a family of functions where alt(f) is at least 2Ω(s(f)).

Observing that the parameters s(f), bs(f) are invariant under shifts, we define a new quantity
shift-invariant alternation, salt(f), which is the minimum alternation of any function g obtained
from f upon shifting by a vector b ∈ {0, 1}n (Definition 3.1). By the aforementioned bound on
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bs(f) of [LZ17], it is easy to observe that bs(f) ≤ O(s(f)salt(f)2). We also show that there exists
a family of Boolean functions f with bs(f) = Ω(s(f)salt(f)) (Proposition 3.5).

It is conceivable that salt(f) is much smaller compared to alt(f) for a Boolean function f and
hence that salt(f) can potentially be upper bounded by poly(s(f)) thereby settling the Sensitivity
Conjecture. However, we rule this out by showing the following stronger gap, about the same
family of functions demonstrated in [DS19] (see also [GSW16]).

Proposition 1.2. There exists an explicit family of Boolean functions for which salt(f) is 2Ω(s(f)).

Block Sensitivity under Affine Transformations : We now generalize our theme of study to
the affine transforms over Fn2 . In particular, we explore how to design affine transformations in
such a way that block sensitivity of the original function (f) is upper bounded by the sensitivity of
the new function (g). We use bs(f, a) to denote the number of sensitive blocks of f on the input a.

Lemma 1.3. For any f : Fn2 → {−1, 1} and a ∈ {0, 1}n, there exists an affine transform A : Fn2 →
Fn2 such that for g(x) = f(A(x)),

(a) bs(f, a) ≤ s(g, 0n), and

(b) g(x) = f((xi1 , xi2 , . . . , xin)⊕ a) where i1, . . . , in ∈ [n] are not necessarily distinct.

The above transformation is used in Nisan and Szegedy (see Lemma 7 of [NS94]) to show
that bs(f) ≤ 2deg(f)2. Here, deg(f) is the degree of the multilinear polynomial over reals that
agrees with f on Boolean inputs. We show another application of Lemma 1.3 in the context of
quantum communication complexity, a model for which was introduced by Yao [Yao93]. In this
model, two parties Alice and Bob have to compute a function F : {0, 1}n × {0, 1}n → {−1, 1},
where Alice is given an x ∈ {0, 1}n and Bob is given a y ∈ {0, 1}n. Both the parties have to
come up with a quantum protocol where they communicate qubits via a quantum channel and
compute f while minimizing the number of qubits exchanged (which is the cost of the quantum
protocol) in the process. In this model, we allow protocols to have prior entanglement. We define
Q∗1/3(F ) as the minimum cost quantum protocol computing F with prior entanglement. For more

details on this model, see [Raz03]. The corresponding analog in the classical setting is the bounded
error randomized communication model where the parties communicate with 0, 1 bits and share an
unbiased random source. We define R1/3(F ) as the minimum cost randomized protocol computing
F with error at most 1/3. It can be shown that Q∗1/3(F ) ≤ R1/3(F ) ≤ D(F ).

One of the fundamental goals in quantum communication complexity is to see if there are func-
tions where their randomized communication complexity is significantly larger than their quantum
communication complexity. It has been the conjectured by Shi and Zhu [SZ09] that this is not the
case in general (which they called the Log-Equivalence Conjecture). In this work, we are interested
in the case when F (x, y) is of the form f(x∧ y) where f : {0, 1}n → {−1, 1} and x∧ y is the string
obtained by bitwise AND of x and y.

Question 1.4. For f : {0, 1}n → {−1, 1}, let F : {0, 1}n × {0, 1}n → {−1, 1} be defined as
F (x, y) = f(x ∧ y). Is it true that for any such F , D(F ) ≤ poly(Q∗1/3(F )) ?

Since R1/3(F ) ≤ D(F ), answering the above question in positive would show that the classical
randomized communication model is as powerful as the quantum communication model for the
class of functions F (x, y) = f(x ∧ y). This question for such restricted F has also been proposed
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by Klauck [Kla07] as a first step towards answering the general question (see also [BdW01]). In
this direction, Razborov [Raz03] showed that for the special case when f is symmetric, F (x, y) =
f(x ∧ y) satisfy D(F ) ≤ O(Q∗1/3(F )2). In the process, Razborov developed powerful techniques to

obtain lower bounds on Q∗1/3(F ) which were subsequently generalized by Sherstov [She08], Shi and

Zhu [SZ09]. Subsequently, in a slightly different direction, Sherstov [She10] showed that instead
of computing F (x, y) = f(x ∧ y) alone, if we consider F to be the problem of computing both of
F1(x, y) = f(x∧ y) and F2(x, y) = f(x∨ y), then D(F ) = O(Q∗1/3(F )12) for all Boolean functions f

where Q∗1/3(F ) = max
{
Q∗1/3(F1), Q∗1/3(F2)

}
and D(F ) = max {D(F1),D(F2)}. Using Lemma 1.3,

we build on the ideas of Sherstov [She10] and obtain a lower bound for Q∗1/3(F ) where F (x, y) =

F1(x, y) = f(x ∧ y).

Theorem 1.5. Let f : {0, 1}n → {−1, 1} and F (x, y) = f(x ∧ y), then,

Q∗1/3(F ) = Ω
(√

bs(f, 0n)
)
.

In this context, we make an important comparison1 with a result of Sherstov [She10]. He
proved that for F ′(x, y) = fb(x ∧ y), where b ∈ {0, 1}n is the input on which bs(f, x) is maximum,
Q∗1/3(F ′) = Ω(

√
bs(f)) ≥ Ω(

√
bs(f, 0n)) (Corollary 4.5 of [She10]). Notice that F and F ′ differ

by a linear shift of f with b.2 Moreover, Q∗1/3(F ) can change drastically even under such (special)

linear shifts of f . For example, consider f = ∧n. Since bs(f) is maximized at 1n, b = 1n.
Hence, the function F ′ is the disjointness function for which Q∗1/3(F ′) = Ω(

√
n) [Raz03] whereas,

Q∗1/3(F ) = O(1). The same counterexample also shows that Q∗1/3(F ) = Ω(
√

bs(f)) cannot hold

for all f (see Remark 4.2). Since the lower bounds shown on quantum communication complexity
are on different functions, Theorem 1.5 is incomparable with the result of Sherstov (Corollary 4.5
of [She10]).

Using the above result, for a prime p, we show that if f has small degree when expressed as a
polynomial over Fp (denoted by degp(f)), the quantum communication complexity of F is large.

Theorem 1.6. Fix a prime p. Let f : {0, 1}n → {−1, 1} where f depends on all the variables. Let
F (x, y) = f(x ∧ y). For any 0 < ε < 1 such that degp(f) ≤ (1− ε) log n, we have

Q∗1/3(F ) = Ω

(
nε/2

log n

)
.

Observe that, though Theorem 1.5 does not answer Question 1.4 in positive for all functions,
we could show a class of Boolean function for which D(F ) and Q∗1/3(F ) are polynomially related.
More specifically, we show this for the set of all Boolean functions f such that there exists two
distinct primes p, q with degp(f) and degq(f) are sufficiently far apart (Theorem 1.7).

Theorem 1.7. Let f : {0, 1}n → {−1, 1} with F (x, y) = f(x ∧ y). Fix 0 < ε < 1. If there exists

distinct primes p, q such that degq(f) = Ω(degp(f)
2

1−ε ), then D(F ) = O(Q∗1/3(F )2/ε).

1Recently, it was noticed that Theorem 1.5 had already appeared in arXiv version 1 of [She09] but did not appear
in later versions.

2More importantly, this b in Corollary 4.5 of [She10] cannot be fixed to 0n for all Boolean functions to con-
clude Theorem 1.5. See Section A for details.
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By the result of Gopalan et al. (Theorem 1.2, [GLS09]), any Boolean function f with degp(f) =

o(log n) must have degq(f) = Ω(n1−o(1)) thereby satisfying the condition of Theorem 1.7. Hence
for all such functions, Theorem 1.7 answers Question 1.4 in positive. Observe that the same can
also be derived from Theorem 1.6.
Alternation under Linear Transforms : We now restrict our study to linear transforms. Again,
in this context, the aim is to design special linear transforms for the parameters of interest. In
particular, in this case, we show linear transforms for which we can upper bound the alternation of
the original function in terms of the sensitivity of the resulting function. More precisely, we prove
the following lemma:

Lemma 1.8. For any f : Fn2 → {−1, 1}, there exists an invertible linear transform L : Fn2 → Fn2
such that for g(x) = f(L(x)),

alt(f) ≤ 2s(g) + 1.

We show an application of the above result in the context of the parameter sensitivity. Nisan and
Szegedy [NS94] showed that for any Boolean function f , s(f) ≤ 2deg(f)2. However, the situation
is quite different for deg2(f) - noticing that for f being parity on n variables, deg2(f) = 1 and
s(f) = n - the gap can even be unbounded. Though parity may appear as a corner case, there
are other functions like the Boolean inner product function3 IPn whose F2-degree is constant while
sensitivity is Ω(n) thereby ruling out the possibility that s(f) ≤ deg2(f)2. It is known that if f is
not the parity on n variables (or its negation), deg2(f) ≤ log sparsity(f) [BC99, GOS+11]. Hence, as
a structural question about the two parameters, we ask : for f other than the parity function, is it
true that s(f) ≤ poly(log sparsity(f)).4 In fact, the Sensitivity Theorem (Theorem 1.1) by [Hua19]
implies that for every Boolean function f , log sparsity(f) = O(s(f)2). Hence, if we could answer
our question in affirmative, it would imply that s(f) and log sparsity(f) are polynomially related.
We use Lemma 1.8, which is in the theme of studying alternation and sensitivity in the context of
linear transformations, to show that this is not the case, by exhibiting a family of functions where
the gap is exponential.

Theorem 1.9. There exists a family of functions {gk | k ∈ N} such that

s(gk) ≥
√

sparsity(gk)

2
− 1.

This family of Boolean functions also rules out a potential approach to settle the XOR Log-Rank
conjecture via the recently settled Sensitivity conjecture [Hua19]. We elaborate on this approach
and how our function family rules it out in Section 5.

2 Preliminaries

In this section, we define the notations used. Define [n] = {1, 2, . . . , n}. For S ⊆ [n], define
eS ∈ {0, 1}n to be the indicator vector of the set S. For x, y ∈ {0, 1}n, we denote x∧y (resp. x⊕y)
∈ {0, 1}n as the string obtained by bitwise AND (resp. XOR) of x and y. We use xi to denote the
ith bit of x.

3IPn(x1, x2, . . . , xn, y1, y2, . . . , yn) =
∑
i xiyi mod 2

4Observe that functions like IPn though have low F2-degree similar to parity however have high sparsity and hence
does not rule this out.
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We now define the Boolean function parameters we use. Let f : {0, 1}n → {−1, 1} and a ∈
{0, 1}n, we define, 1) the sensitivity of f on a as s(f, a) = | {i | f(a⊕ ei) 6= f(a), i ∈ [n]} |, 2) the
block sensitivity of f on a, bs(f, a) to be the maximum number of disjoint blocks {Bi | Bi ⊆ [n]}
such that f(a ⊕ eBi) 6= f(a) and 3) the certificate complexity of f on a, C(f, a) to be the size of
the smallest set S ⊆ [n] such that fixing f according to a on the location indexed by S causes
the function to become constant. For φ ∈ {s, bs,C}, we define φ(f) = maxa∈{0,1}n φ(f, a) and are
respectively called the sensitivity, the block sensitivity and the certificate complexity of f . By
definition, the three parameters are shift invariant, by which we mean ∀ b ∈ {0, 1}n, φ(fb) = φ(f)

for φ ∈ {s, bs,C} where fb(x)
def
= f(x⊕ b). Also, it can be shown that s(f) ≤ bs(f) ≤ C(f).

For x, y ∈ {0, 1}n, define x ≺ y if ∀i ∈ [n], xi ≤ yi. We define a chain C on {0, 1}n as
(0n = x(0), x(1), . . . , x(n−1), x(n) = 1n) such that for all i ∈ [n], x(i) ∈ {0, 1}n and x(i−1) ≺ x(i) .
We define alternation of f for a chain C, denoted alt(f, C) as the number of times the value of f
changes in the chain. We define alternation of a function alt(f) as max chain C alt(f, C).

Every Boolean function f can be expressed uniquely as a multilinear polynomial p(x) in
F[x1, . . . , xn] over any field F such that p(x) = f(x) ∀x ∈ {0, 1}n. Fix a prime p. We denote
deg(f) (resp. degp(f)) to be the degree of the multilinear polynomial computing f over reals (resp.
Fp). We define DT(f) as the depth of an optimal decision tree computing f . It is known that for
all Boolean functions f , degp(f) ≤ deg(f) ≤ DT(f) ≤ bs(f)3.

Sparsity of a Boolean function f : {0, 1}n → {−1, 1} (denoted by sparsity(f)) is the number of
non-zero Fourier coefficients in the Fourier representation of f . For more details on this parameter,
see [O’D14]. For more details on DT(f) and other related parameters, see the survey by Buhrman,
de Wolf [BdW02] and Hatami et al. [HKP11].

We consider the two party classical communication model. Given a function f : {0, 1}n ×
{0, 1}n → {−1, 1}, Alice is given an x ∈ {0, 1}n and Bob is given y ∈ {0, 1}n. They can communicate
with each other and their aim is to compute f(x, y) while communicating minimum number of bits.
We call the procedure employed by Alice and Bob to computing f as the protocol. We define
D(f) as the minimum cost of a deterministic protocol computing f . For functions of the form
F (x, y) = f(x ∧ y), it is known that D(F ) ≤ 2DT(f) [MO09]. For more details on communication
complexity of Boolean functions, refer [KN06].

3 Warm up: Alternation under Shifts

In this section, as a warm-up, we study sensitivity and alternation under linear shifts (when the
matrix M is the identity matrix). We introduce a parameter, shift-invariant alternation (salt).
We then show the existence of Boolean functions whose shift-invariant alternation is exponential
in its sensitivity (see Proposition 1.2) thereby ruling out the possibility that salt(f) can be upper
bounded by a polynomial in s(f) for all Boolean functions f .

Recall from the introduction that the parameters s, bs and C are shift invariant while alt is not.
To see that alt is not shift-invariant, for an even number n, consider the Boolean function defined
as Majn(x) = 1 ⇐⇒ ∑

i xi > n/2. For an even n, define ShiftMajn(x) = Majn(x⊕ 1n/20n/2). It is
possible to exhibit a chain σ such that alt(ShiftMajn, σ) = n, while alt(ShiftMajn(x ⊕ 1n/20n/2)) =
alt(Majn) = 1.

We define a variant of alternation which is invariant under shifts.

Definition 3.1 (Shift-invariant Alternation). For f : {0, 1}n → {−1, 1}, the shift-invariant
alternation (denoted by salt(f)) is defined as minb∈{0,1}n alt(fb).
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We remark that salt(ShiftMajn) = 1. Hence the gap between measures alt and salt can be
unbounded.
A family of functions with salt(f) = Ω(2s(f)) : We now exhibit a family of functions F where
for all f ∈ F , salt(f) ≥ 2s(f) thereby ruling out the possibility that salt(f) can be upper bounded
by a polynomial in s(f). The family F is the same class of Boolean functions for which alternation
is at least exponential in sensitivity due to [DS19].

Definition 3.2 (Definition 1 from [DS19]. See also Proof of Lemma A.1 of [GSW16]). Consider
the family defined as follows.

F =
{
fk | fk : {0, 1}2k−1 → {−1, 1}, k ∈ N

}
The Boolean function fk is computed by a decision tree which is a full binary tree of depth k with
2k leaves. A leaf node is labeled as 0 (resp. 1) if it is the left (resp. right) child of its parent. All
the nodes (except the leaves) are labeled by a distinct variable.

We remark that Gopalan et al. [GSW16] demonstrates an exponential lower bound on tree
sensitivity (introduced by them as a generalization of the parameter sensitivity) in terms of decision
tree depth for the same family of functions in Definition 3.2. We remark that, in general, lower
bound on tree sensitivity need not implies a lower bound on alternation. For instance, if we consider
the Majority function Majn, the tree sensitivity can be shown to be Ω(n) while alternation is 1.

The authors [DS19] have shown that for any f ∈ F , there exists of a chain of large alternation
in f . However, this is not sufficient to argue existence of a chain of large alternation under every
linear shift. We now proceed to prove an exponential lower bound on salt(f) in terms of s(f) for
all f ∈ F .

Proposition 1.2. For fk ∈ F , salt(fk) ≥ 2Ω(s(fk)).

Proof. We show5 that for fk ∈ F and n = 2k − 1, for all c ∈ {0, 1}n, alt(fk(x ⊕ c)) ≥ 2k−2. Since
s(fk) ≤ k by construction of fk, the result follows.

Proof is by induction on k. For k = 2, f is a function on 3 variables and it can be verified that
for all c ∈ {−1, 1}3, alt(f(x ⊕ c)) ≥ 1. Now consider an fk+1 ∈ F computed by a decision tree T
with the variable xt as its root. Let h1 and h2 be the left and right subtrees of xt in T . Note that
h1(z′) and h2(z′′) depends on n = 2k − 1 variables and belongs to F by construction. Hence, by
induction, for all c ∈ {−1, 1}n, alt(h1(z′⊕ c)) and alt(h2(z′′⊕ c)) is at least 2k−2. For m = 2k+1−1,
consider any c = (c′, b, c′′) ∈ {−1, 1}m where c′, c′′ ∈ {0, 1}n and b ∈ {−1, 1}. Since h1 and h2 are
variable disjoint, alt(f(x⊕ c)) ≥ alt(h1(z′⊕ c′)) + alt(h2(z′′⊕ c′′)) ≥ 2k−2 + 2k−2 = 2k−1 completing
the induction.

A family of functions with bs(f) = Ω(s(f)salt(f)) : Lin and Zhang [LZ17] showed that for any
Boolean function f : {0, 1}n → {−1, 1},

bs(f) = O(alt(f)2s(f)) (1)

The fact that the measures bs and s are invariant under shifts implies the following proposition.

Proposition 3.3. For any f : {0, 1}n → {−1, 1}, bs(f) ≤ O(salt(f)2s(f)).

5In this proof, for simplicity, we abuse the notation fk(x⊕ c) to denote the function obtained by shifting fk by c.
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Proof. For any b ∈ {0, 1}n, recall that fb(x) is defined to be f(x ⊕ b). Applying Eq. (1) to
fb, we get that bs(fb) = O(alt(f)2s(fb)). Since, bs and s are invariant under shifts, for any b,
bs(f) = bs(fb) = O(alt(fb)

2s(fb)) = O(alt(fb)
2s(f)). Choosing b to be a shift that minimizes the

alternation of fb completes the proof.

We now exhibit a family of functions for which bs(f) is at least s(f)·salt(f)
4 .

Before proceeding, we show a tight composition result for alternation of Boolean functions when
composed with ORk (which is the k bit Boolean OR function).

For functions f1, . . . , fk where each fi : {0, 1}n → {−1, 1}, define the function ORk ◦ f :

{−1, 1}nk → {−1, 1} as ∨ki=1fi(x
(i)) where for each i ∈ [k], x(i) = (x

(i)
1 , . . . , x

(i)
n ) ∈ {0, 1}n is input

to the function fi.

Lemma 3.4. Consider k Boolean functions f1, . . . , fk where each fi : {0, 1}n → {−1, 1} satisfy,
fi(0

n) = fi(1
n) = 0. Then,

alt(ORk ◦ f) =
k∑
i=1

alt(fi).

Proof. Let f = ORk ◦ f and C be a chain in {−1, 1}nk for which alt(f, C) is maximized. Without
loss of generality, let all the functions be non-constant. Let Ci be the chain in {0, 1}n obtained by

restricting C to variables x
(i)
1 , . . . , x

(i)
n of fi. Observe that if f changes it value, it must be that

at least one of the fi’s have changed their evaluation along the chain C. Since the functions are
variable disjoint, such a change must be witnessed in the chain Ci for some i. Hence

alt(f) = alt(f, C) ≤
k∑
i=1

alt(fi, Ci) ≤
k∑
i=1

alt(fi)

To show that alt(f) ≥ ∑k
i=1 alt(fi), we exhibit a chain C in {−1, 1}nk of alternation

∑k
i=1 alt(fi).

Let Ci = (0n = z(i0) ≺ z(i1) ≺ z(i2) ≺ . . . ≺ z(in) = 1n) be a chain in {0, 1}n for which fi achieves
maximum alternation. We construct a chain C by “gluing” together these k chains. More precisely,

let C by the chain such that for all i ∈ [k], when restricted to the variables x
(i)
1 , . . . , x

(i)
n , we get a

chain given by,

n(i−1) times︷ ︸︸ ︷
0n ≺ . . . ≺ 0n ≺ z(i0) ≺ z(i1) ≺ z(i2) ≺ . . . ≺ z(in) ≺

n(k−i) times︷ ︸︸ ︷
1n ≺ . . . ≺ 1n

By construction of C, since fj(0
n) = fj(1

n) = 0 for all j ∈ [k], at any input of the chain C, there is
exactly one fi that causes f to alternate. Hence,

alt(f, C) ≥
k∑
i=1

alt(fi, Ci) =

k∑
i=1

alt(fi)

Proposition 3.5. There exists a family of Boolean functions for which bs(f) ≥ s(f)·salt(f)
4 .
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Proof. We consider the Rubinstein’s function fR : {0, 1}n2 → {0, 1} [Rub95] where the input is
treated as n × n matrix which evaluates to 1 iff there is a row with two consecutive ones starting
at the odd position and rest of the entries being zero. Alternatively, we can view fR as ORn ◦ h
with h : {0, 1}n → {−1, 1} where h(a) = 1 iff there are two consecutive ones starting at the odd
position with rest of the entries as zero in a ∈ {0, 1}n. It can be verified that alt(h) = 2. Since
h(0n) = h(1n) = 0, applying Lemma 3.4 with fi = h for all i ∈ [n], we get that alt(fR) =

alt(h) · n = 2n. It is known that bs(fR) ≥ n2

2 while s(fR) ≤ n [Rub95], thereby showing that

bs(fR) ≥ s(fR)·alt(fR)
4 ≥ s(fR)·salt(fR)

4 .

We remark that the above bound is stronger than what is needed in the context because,
bs(fR) ≥ s(fR)·alt(fR)

4 .

Lower bounding salt : By definition, salt(f) ≤ alt(f) and in addition, we have seen a Boolean
function f for which salt(f) = 1 while alt(f) = Ω(n). This makes alt(f) particularly unsuitable in
obtaining lower bounds on salt(f). We define a modified variant of the measure alternation called
as subcube alternation and show that this new measure is always a lower bound on salt(f).

To define this variant, we define the following notion of restrictions. For any S ⊆ [n], define f |S
as the function f defined on the domain {x|x ≤ eS} and f |S(x) as f(x⊕ eS) for {x|x ≥ eS}.

Definition 3.6 (Subcube alternation). For a Boolean function f , define the subcube alternation
scalt of f as scalt(f) = minB⊆[n](alt(f |B) + alt(f |B)).

More precisely (in Lemma 3.8), we show that ∀ f , salt(f) ≥ scalt(f) . In arguing the same,
we use the following claim which gives an exact expression for maximum alternation of a shifted
functions over all chains that contain the shift.

Lemma 3.7. For f : {0, 1}n → {−1, 1} and any B ⊆ [n], and let CB be the collection of maximal
chains containing eB. Then,

max
σ∈CB

alt(f(x⊕ eB), σ) = alt(f |B) + alt(f |B).

Proof. Let g(x) = f(x⊕ eB). Denote by x the bitwise complement of x. We claim that,

∀x : x ≤ eB, g(x) = f |B(x) (2)

∀x : x ≥ eB, g(x) = f |B(x) (3)

Fig. 1 illustrates the subcubes of interest in the original function and how they change for the
function under shift. Now for any chain σ containing eB in the Boolean hypercube, alt(g, σ) =
alt(f |B) + alt(fB).

To see Eq. (3) observe that for any x ≥ eB, x = y⊕eB with y ≤ eB. Hence g(x) = f(y) = f |B(x).
For Eq. (2), since x ≤ eB, g(x) = f(x ⊕ eB) = f |B(x) as restricted to B, x ⊕ B complements x
(with locations outside B set to 0).

Any maximal chain σ containing eB must completely lie in the subcubes {x | x ≤ eB} and
{x | x ≥ eB}. Hence, maxσ∈CB alt(f(x⊕ eB), σ) ≤ alt(f |B) + alt(f |B). Also, any maximal chain in
the subcubes mentioned can be combined in the natural way to get a maximal chain for the whole
subcube which contains eB. Hence maxσ∈CB alt(f(x⊕ eB), σ) ≥ alt(f |B) + alt(f |B).
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Figure 1: Boolean function f under shift

We can now conclude the lower bound on salt using Lemma 3.7.

Lemma 3.8. For any f : {0, 1}n → {−1, 1}, salt(f) ≥ scalt(f).

Proof. Let S ⊆ [n] be a shift for which alt(f(x ⊕ S)) is minimum and CS denotes the maximal
chains containing eS . Hence,

salt(f) = alt(f(x⊕ eS)) ≥ max
σ∈CS

alt(f(x⊕ eS)) (4)

Combining with Lemma 3.7, we have salt(f) ≥ alt(f |S)+alt(f |S) which is at least minB⊆[n](alt(f |B)+
alt(f |B))

4 Affine Transforms : Lower Bounds on Quantum Communication
Complexity

In this section, we study the affine transformation in its full generality applied to block sen-
sitivity and sensitivity, and use it to prove Theorem 1.6 and Theorem 1.7 from the introduc-
tion. We achieve this using affine transforms as our tool (Section 4.1), by which we derive
a new lower bound for Q∗1/3(F ) in terms of bs(f, 0n) (Section 4.2). Using this and a lower

bound on bs(f, 0n) (Proposition 4.4), we show that for any Boolean function f , and any prime

p, Q∗1/3(F ) ≥ Ω

(√
DT(f)

degp(f)

)
. This immediately implies that if there is a p such that degp(f) is

constant, then D(F ) ≤ 2DT(f) ≤ O(Q∗1/3(F )2) thereby answering Question 1.4 in positive for such
functions. We relax this requirement and show that if there exists distinct primes p and q for which
degp(f) and degq(f) are not very close, then D(F ) ≤ poly(Q∗1/3(F )) (Theorem 1.7).
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4.1 Upper Bound for Block Sensitivity via Affine Transforms

In this section, we describe our main tool. Given an f : {0, 1}n → {−1, 1} and any a ∈ {0, 1}n, we
exhibit an affine transform A : Fn2 → Fn2 such that for g(x) = f(Ax), bs(f, a) ≤ s(g, 0n).

Before describing the affine transform, we note that a linear transform is already known to
achieve a weaker bound of bs(f) ≤ O(s(g)2) due to Sherstov [She10].

Proposition 4.1 (Lemma 3.3 of [She10]). For any f : Fn2 → {−1, 1}, there exists a linear transform
L : Fn2 → Fn2 such that for g(x) = f(Lx), bs(f) = O(s(g)2).

See Observation A.3 in Section A for an explicit description of the linear transform achieving
the bounds in the above proposition.

Now we describe an affine transform which improves the bound on bs(f) in the above proposition
to linear in s(g). This affine transform has already been used in Nisan and Szegedy (see Lemma 7
of [NS94]) to show that bs(f) ≤ 2deg(f)2. Since the exact form of g is relevant in the subsequent
arguments, we explicitly prove it here bringing out the structure of the affine transform that we
require.

Lemma 1.3. For any f : Fn2 → {−1, 1} and a ∈ {0, 1}n, there exists an affine transform A : Fn2 → Fn2
such that for g(x) = f(A(x)),

(a) bs(f, a) ≤ s(g, 0n), and

(b) g(x) = f((xi1 , xi2 , . . . , xin)⊕ a) where i1, . . . , in ∈ [n] are not necessarily distinct.

Proof. Let bs(f, a) = k and {B1, . . . , Bk} be the sensitive blocks on a. Since the blocks are disjoint,
{Bi | i ∈ [k]} viewed as vectors over Fn2 are linearly independent. Hence, there is a linear transform
L : Fn2 → Fn2 such that L(ei) = Bi for i ∈ [k].6 Define A(x) = L(x)⊕ a. For g(x) = f(A(x)),

s(g, 0n) = | {i | g(0n) 6= g(0n ⊕ ei), i ∈ [n]} |
= | {i | f(a) 6= f(a⊕ L(ei)), i ∈ [n]} | = bs(f, a)

which completes the proof of main statement and Item a. Item b holds as the sensitive blocks are
disjoint.

4.2 From Block Sensitivity Lower Bound at 0n to Quantum Communication
Lower Bounds

We now prove a lower bound for Q∗1/3(F ) in terms of bs(f, 0n).

Theorem 1.5. Let f : {0, 1}n → {−1, 1} and F (x, y) = f(x ∧ y), then,

Q∗1/3(F ) = Ω
(√

bs(f, 0n)
)
.

Proof. We first state a weaker version of this result which follows from Theorem 4.2 of Sher-
stov [She10]. The result, which is based on a powerful method of proving quantum communica-
tion lower bounds due to Razborov [Raz03] and Klauck [Kla07], says that for a Boolean function
g : {0, 1}n → {−1, 1} with G(x, y) = g(x ∧ y), if there exists an z ∈ {0, 1}n such that zi = 0 for

6For completeness of definition of L, for i 6∈ [k], we define L(ei) = 0n.
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all i ∈ [k] and g(z ⊕ e1) = g(z ⊕ e2) = . . . = g(z ⊕ ek) 6= g(z), then Q∗1/3(G) = Ω(
√
k). This

immediately implies that for any g : {0, 1}n → {−1, 1},

Q∗1/3(G) = Ω
(√

s(g, 0n)
)

(5)

Given an f , we now describe a g : {0, 1}n → {−1, 1} such that Q∗1/3(F ) ≥ Q∗1/3(G) and Q∗1/3(G) =

Ω(
√

bs(f, 0n)) as follows thereby completing the proof.
Applying Lemma 1.3 with a = 0n to f , we obtain g(x) = f(xi1 , xi2 , . . . , xin). We note that F and

G can be viewed as a 2n×2n matrix with (x, y)th entry being f(x∧y) and g(x∧y) respectively. By
construction of g, using the observation that the matrix G appears as a submatrix of F , Q∗1/3(F ) ≥
Q∗1/3(G). This observation is used in Sherstov (for instance, see proof of Theorem 5.1 of [She10])

without giving details. For completeness, we give the details here. Let S = {i1, . . . in} ⊆ [n] of size
k. For j ∈ S, let Bj = {t | it = j}. Hence g depends only on these k input variables of S and all
the variables with indices in Bj are assigned the variable xj . This implies that

g(x) = f(⊕j∈SxjeBj ) (6)

We now exhibit a submatrix of F containing G. Consider the submatrix of F with rows and
columns restricted to

W =
{
a1eB1 ⊕ a2eB2 ⊕ . . . akeBk | (a1, a2 . . . , ak) ∈ {−1, 1}k

}
.

For u, y ∈W ,

F (u, y) = f(u ∧ y)

= f((u1eB1 ⊕ . . .⊕ ukeBk) ∧ (y1eB1 ⊕ . . .⊕ ykeBk))

= f(u1 ∧ y1eB1 ⊕ . . .⊕ uk ∧ ykeBk) [Bjs are disjoint]

= g(u ∧ y) [By Eq. (6)]

Applying Eq. (5) to the g obtained, we have Q∗1/3(G) ≥ Ω(
√

s(g, 0n)). Hence, by Item a

of Lemma 1.3, as a = 0n, we have Q∗1/3(G) ≥ Ω(
√

bs(f, 0n)).

Remark 4.2. Observe that for an arbitrary a ∈ {0, 1}n for g(x) = f(x ⊕ a), the statement
Q∗1/3(G) ≤ Q∗1/3(F ) does not hold. Otherwise, we would have Q∗1/3(F ) = Ω(

√
bs(f)) for all f

which is not true (see the discussion after Theorem 1.5 in the Introduction).

4.3 Putting Them Together

We are now ready to prove Theorem 1.6 and Theorem 1.7. A critical component of our proof
is the following stronger connection between DT(f) and bs(f, 0n). Buhrman and de Wolf, in
their survey [BdW02], showed the following with the proof attributed to Noam Nisan and Roman
Smolensky.

Lemma 4.3 ([BdW02]). For any Boolean function f : {0, 1}n → {−1, 1}, DT(f) ≤ bs(f) · deg(f)2

The same proof can be adapted to show the following strengthening of their result.
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Proposition 4.4. For any f : {0, 1}n → {−1, 1}, and any prime p,

DT(f) ≤ bs(f, 0n) · degp(f)2.

Proof. We observe that the arguments of Buhrman and de Wolf (more specifically, Lemma 5,
Lemma 6 and Theorem 12 of [BdW02]), can give a stronger upper bound than bs(f) · deg(f)2,
namely bs(f, 0n) · degp(f)2. This is important in our context since we are able to bound Q∗1/3(F )

only by bs(f, 0n).
Let pf (x) ∈ Fp[x1, . . . , xn] be an Fp polynomial representation of f . As pf is a multilinear, we

view monomials as subsets of variables. We define size of a monomial as the number of variables
in it. Let Sf be the collection of all monomials of maximal size in pf . We show that,

Claim 4.5. For any Boolean function f , there is a set of variables of size at most bs(f, 0n) ·degp(f)
which has a non-empty intersection with all the monomials in Sf .

We call this set as a hitting set for Sf . We now assume this claim. Hence, querying these
variables fixes them and results in a function whose Fp-degree is at most degp(f) − 1. We repeat
this on the resulting function to obtain the desired decision tree where at most bs(f, 0n) · degp(f)2

variables gets queried.

Proof of Claim 4.5 We now argue the existence of a hitting set, which has a non-empty inter-
section with all the monomials in Sf , of size at most bs(f, 0n) · degp(f).

Firstly, observe that every monomial m in Sf must have a non-empty set B of indices of variables
in m such that f(0n) 6= f(0n⊕ eB). To see this, restrict f to indices in the monomial m by setting
all variables not in the monomial to 0. Let g be the resulting function. By construction, g is
non-constant as the monomial m appears in the Fp representation of g. Hence there must be some
setting of the input to g such that its evaluation differs from that of the all zero input.

We construct a hitting set H as follows: for each monomial m in Sf , if no variable in H appear
in m, add all the variables in it to H. Since, each such monomial contains a sensitive block on the
input 0n, the number of monomials that gets added to H is at most bs(f, 0n). Since each monomial
is of size at most degp(f), total size of the hitting set is at most bs(f, 0n) · degp(f).

We now give a proof of Theorem 1.6 and Theorem 1.7.

Theorem 1.6. Fix a prime p. Let f : {0, 1}n → {−1, 1} where f depends on all the inputs. Let
F (x, y) = f(x ∧ y). For any 0 < ε < 1 such that degp(f) ≤ (1− ε) log n, we have

Q∗1/3(F ) = Ω

(
nε/2

log n

)
.

Proof. Applying Theorem 1.5 and Proposition 4.4, we have

Q∗1/3(F ) ≥ Ω

(√
DT(f)

degp(f)

)
(7)

As observed in Gopalan et al. [GLS09], by a modification to an argument in the proof of Nisan and
Szegedy (Theorem 1 of [NS94]), it can be shown that deg(f) ≥ n

2degp(f)
. Since, DT(f) ≥ deg(f), we
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have DT(f) ≥ n

2degp(f)
. Hence Eq. (7) gives,

Q∗1/3(F ) = Ω

( √
n

degp(f)2degp(f)/2

)
= Ω

(
nε/2

(1− ε) log n

)

where the last lower bound follows upon applying the bound on degp(f).

As a demonstrative example, we show a weaker lower bound on quantum communication
complexity with prior entanglement for the generalized inner product function GIPn,k(x, y)

def
=

⊕ni=1

∧k
j=1(xij ∧ yij) when k = 1

2 log n. We remark that a lower bound of Ω(n) is known for
the inner product function [CvDNT99].

Note that GIPn,k can be expressed as f ◦ ∧, where f(z)
def
= ⊕ni=1

∧k
j=1 zij , with deg2(f) = k.

Applying Theorem 1.6 with ε = 1/2 and p = 2, we have Q∗1/3(GIPn, 1
2

logn) = Ω
(
n1/4

logn

)
. Though

this bound is arguably weak, Theorem 1.6 gives a non-trivial lower bound for a all those Boolean
functions f with small degp(f) for some prime p.

Theorem 1.7. Let f : {0, 1}n → {−1, 1} with F (x, y) = f(x ∧ y). Fix 0 < ε < 1. If there exists

distinct primes p, q such that degq(f) = Ω(degp(f)
2

1−ε ), then D(F ) = O(Q∗1/3(F )2/ε).

Proof. Applying, Theorem 1.5 and Proposition 4.4, for any prime t, Q∗1/3(F ) ≥ Ω

(√
DT(f)

degt(f)

)
. By

hypothesis, degp(f) ≤ O(degq(f)
1−ε
2 ) ≤ O(DT(f)

1−ε
2 ) implying that for t = p, D(F ) ≤ 2DT(f) ≤

O(Q∗1/3(F )2/ε).

Remark 4.6. For any Boolean function f , if there exists a prime p with degp(f) ≤ c log n for
some c < 1/2, then by main result of [GLS09] relating degree of Boolean functions under different

field characteristics, for any prime q 6= p, degq(f) = Ω( n1−2c

c log p logn) = Ω((log n)2). Hence any such

f satisfies the condition that degq(f) = Ω(degp(f)
2

1−ε ) for some constant ε and by Theorem 1.7,

D(F ) = O(Q∗1/3(F )2/ε).

5 Linear Transforms : Sensitivity versus Sparsity

Continuing in the theme of affine transforms, in this section, we first establish an upper bound on
alternation of a function in terms of sensitivity of the function after application of a suitable linear
transform. Using this, we show the existence of a function whose sensitivity is asymptotically as
large as square root of sparsity (see introduction for a motivation and discussion).

Lemma 1.8. For any f : {0, 1}n → {−1, 1}, there exists an invertible linear transform L : Fn2 → Fn2
such that for g(x) = f(L(x)), alt(f) ≤ 2s(g) + 1.

Proof. Let 0n ≺ x1 ≺ x2 . . . ≺ xn = 1n be a chain C of maximum alternation in the Boolean
hypercube of f . Since chain C has maximum alternation, there must be at least (alt(f) − 1)/2
many zeros and (alt(f)− 1)/2 many ones when the xis are evaluated on f . Note that the set of n
distinct inputs x1, x2, . . . , xn seen as vectors in Fn2 are linearly independent and hence is a basis of
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Fn2 . Hence there exists an invertible7 linear transform L : Fn2 → Fn2 taking standard basis vectors
to the these vectors, i,e. L(ei) = xi for i ∈ [n].

To prove the result, we now show that s(g, 0n) ≥ alt(f)−1
2 . The neighbors of 0n in the hypercube

of g are {ei | i ∈ [n]} and each of them evaluates to g(ei) = f(L(ei)) = f(xi) for i ∈ [n]. Since
there are at least (alt(f)− 1)/2 many zero and at least those many ones among xis when evaluated
by f , there must be at least (alt(f) − 1)/2 many neighbors of 0n which differ in evaluation with

g(0n) (independent of the value of g(0n)). Hence s(g) ≥ s(g, 0n) ≥ alt(f)−1
2 which completes the

proof.

We now describe the family of functions and argue an exponential gap between sensitivity and
logarithm of sparsity, as stated in the following Theorem.

Theorem 1.9. There exists a family of functions {gk | k ∈ N} such that

s(gk) ≥
√

sparsity(gk)

2
− 1.

Proof. For the family of functions fk ∈ F (Definition 3.2), alt(fk) ≥ 2(log sparsity(fk))/2 − 1 [DS19].
We now use this family F to describe the family of functions gk. For every fk ∈ F , let

gk(x) = fk(L(x)) such that alt(fk) ≤ 2s(gk) + 1 as guaranteed by Lemma 1.8. Since, we have
alt(fk) ≥ 2(log sparsity(fk))/2 − 1, it must be that

s(gk) ≥
1

2
(alt(fk)− 1) ≥ 1

2
(2(log sparsity(fk))/2 − 2) ≥

√
sparsity(fk)

2
− 1

As the parameter sparsity does not change under invertible linear transforms (Ex 3.1 [O’D14]),
s(gk) ≥ 0.5

√
sparsity(fk)− 1 = 0.5

√
sparsity(gk)− 1.

We now describe how the family of Boolean functions in Theorem 1.9 rule out a possibility
of settling XOR Log-Rank conjecture, a conjecture in classical communication complexity, using
a recent proof of Sensitivity Conjecture. First, we describe the XOR Log-Rank conjecture and
then give a potential way to prove the XOR Log-Rank conjecture using the recent resolution of
Sensitivity Conjecture [Hua19]. Following this, we argue how the family of Boolean functions
in Theorem 1.9 rules out this possibility.

For an f : {0, 1}n → {−1, 1}, define F⊕ : {0, 1}n × {0, 1}n → {−1, 1} as F⊕(x, y) = f(x ⊕
y). The XOR Log-Rank conjecture says that, for every f , the deterministic communication cost
of computing the corresponding F⊕ must satisfy D(F⊕) = poly(log sparsity(f)). An equivalent
formulation of the Sensitivity Conjecture due to Hatami et al. (Proposition 5.10, [HKP11]) says
that for every f , D(F⊕) = poly(s(f)). With the Sensitivity conjecture now proven [Hua19], one
way to prove the XOR Log-Rank conjecture is to show that for all Boolean functions f , s(f) ≤
poly(log sparsity(f)). Unfortunately, the existence of a family of Boolean functions in Theorem 1.9
rules out this possibility.

7L is actually the change of basis transform from standard basis vectors to xis and hence is bijective.

15



6 Conclusion and Future directions

In this paper, we study the Boolean function complexity measures, namely sensitivity, block sen-
sitivity, and alternation under affine transforms. We showed design of special transforms which
achieves structurally revealing statements about the resulting function. We used their properties
to show lower bounds on the bounded error quantum communication complexity of Boolean func-
tion whose Fp-degree is small. We showed that classical and quantum communication complexity
are polynomially related for certain special class of functions. We also demonstrated Boolean
functions where sensitivity of the function is as large as the square root of its sparsity.

The main open question is to see if the tools developed here can be pushed to remove the
restriction on degp and degq of Boolean functions in Theorem 1.7 thereby proving the Quantum
Classical equivalence (Question 1.4).
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bounds for parallel random access machines without simultaneous writes. SIAM J.
Comput., 15(1):87–97, 1986.

[CvDNT99] Richard Cleve, Wim van Dam, Michael Nielsen, and Alain Tapp. Quantum entangle-
ment and the communication complexity of the inner product function. In Colin P.
Williams, editor, Quantum Computing and Quantum Communications, pages 61–74,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[DS19] Krishnamoorthy Dinesh and Jayalal Sarma. Alternation, sparsity and sensitivity:
Bounds and exponential gaps. Theor. Comput. Sci., 771:71–82, 2019. A preliminary
version appeared in CALDAM 2018.

[GLS09] Parikshit Gopalan, Shachar Lovett, and Amir Shpilka. On the complexity of boolean
functions in different characteristics. In Proceedings of the 24th Annual IEEE Confer-
ence on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages
173–183, 2009.

16



[GOS+11] Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka, and Karl Wim-
mer. Testing fourier dimensionality and sparsity. SIAM J. Comput., 40(4):1075–1100,
2011. A preliminary version appeared in ICALP 2009.

[GSW16] Parikshit Gopalan, Rocco A. Servedio, and Avi Wigderson. Degree and sensitivity:
Tails of two distributions. In 31st Conference on Computational Complexity, CCC
2016, May 29 to June 1, 2016, Tokyo, Japan, pages 13:1–13:23, 2016.

[HKP11] Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the Sensitivity
Conjecture. Number 4 in Graduate Surveys. Theory of Computing Library, 2011.

[Hua19] Hao Huang. Induced subgraphs of hypercubes and a proof of the Sensitivity Conjec-
ture. Annals of Mathematics, 190(3):949–955, 2019.

[Kla07] Hartmut Klauck. Lower bounds for quantum communication complexity. SIAM J.
Comput., 37(1):20–46, 2007.

[KN06] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 2nd edition, 2006.

[LZ17] Chengyu Lin and Shengyu Zhang. Sensitivity conjecture and log-rank conjecture
for functions with small alternating numbers. In 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw,
Poland, pages 51:1–51:13, 2017.

[MO09] Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR
functions. CoRR, abs/0909.3392, 2009.

[Nis91] Noam Nisan. CREW PRAMs and decision trees. SIAM J. Comput., 20(6):999–1007,
1991.

[NS94] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polyno-
mials. Comput. Complex., 4:301–313, 1994. A preliminary version appeared in STOC
1992.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[Raz03] A A Razborov. Quantum communication complexity of symmetric predicates.
Izvestiya: Mathematics, 67(1):145, 2003.

[Rub95] David Rubinstein. Sensitivity vs. block sensitivity of Boolean functions. Combinator-
ica, 15(2):297–299, 1995.

[She08] Alexander A. Sherstov. The pattern matrix method for lower bounds on quantum
communication. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 85–94, 2008.

[She09] Alexander A. Sherstov. On quantum-classical equivalence for composed communica-
tion problems. CoRR, abs/0906.1399v1, 2009.

17



[She10] Alexander A. Sherstov. On quantum-classical equivalence for composed communica-
tion problems. Quantum Information & Computation, 10(5&6):435–455, 2010.

[SZ09] Yaoyun Shi and Yufan Zhu. Quantum communication complexity of block-composed
functions. Quantum Information & Computation, 9(5):444–460, 2009.

[Yao93] Andrew Chi-Chih Yao. Quantum circuit complexity. In 34th Annual Symposium on
Foundations of Computer Science, Palo Alto, California, USA, 3-5 November 1993,
pages 352–361, 1993.

[ZS10] Zhiqiang Zhang and Yaoyun Shi. On the parity complexity measures of Boolean
functions. Theor. Comput. Sci., 411(26-28):2612–2618, 2010.

A Quantum communication lower bound from block sensitivity

Sherstov in [She10] showed the following lower bound on quantum communication cost of an affine
shift of a Boolean function in terms of its block sensitivity.

Corollary A.1 (Corollary 4.5 of [She10]). Let f : {0, 1}n → {−1, 1} be given. Then for some
z ∈ {0, 1}n, the matrix F ′ = [fz(x ∧ y)]x,y = [f(. . . , (xi ∧ yi)⊕ zi, . . .)]x,y obeys

Q∗1/3(F ′) = Ω(
√

bs(f))

In this section, we elaborate on why one cannot set z = 0n for all Boolean functions and
obtain Theorem 1.5. The above corollary crucially uses two results. The first one is Lemma 3.3
of [She10] which shows that there exists a Boolean function g : {0, 1}n → {−1, 1} such that
bs(f) ≤ O(s(g)2) which is similar in spirit to Lemma 1.3. The second one is Theorem 4.2 of [She10]
which shows a lower bound for Q∗1/3(G) in terms of sensitivity of g (where G(x, y) = g(x∧ y)). We
reproduce the respective statements of both below.

Lemma A.2 (Lemma 3.3 of [She10]). Let f : {0, 1}n → {−1, 1}. Then there exists a g : {0, 1}n →
{−1, 1} such that s(g) = Ω(

√
bs(f)) and g(x) = f(xi1 , . . . , xin) for some i1, . . . , in ∈ [n]

The function g is defined as follows.
Let z be the input on which bs(f, z) is maximum and f(z) = 0. Let S1, . . . , Sk ⊆ [n] be the

sensitive blocks on z. Define Ai = {j ∈ Si | zj = 0} and Bi = {j ∈ Si | zj = 1}. Let I be the indices
i ∈ [k] such that both Ai and Bi are both non-empty.

Then

g(x) = f

⊕
i∈I

xminAieAi ⊕
⊕
i∈I

xminBieBi ⊕
⊕
i∈[k]\I

xminSieSi ⊕
⊕

i 6∈S1∪...∪Sk
xiei


Observation A.3. We observe that the above result of Sherstov (Lemma 3.3 of [She10]) can be
seen as applying a suitable linear transform to the Boolean function f to bound the block sensitivity
of f which is similar in spirit to Lemma 1.3.
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More precisely, the g obtained in Lemma 3.3 of [She10] can be described as f(L(x)) where L is
defined as, for j ∈ [n],

L(ej) =


ej if j 6∈ S1 ∪ . . . ∪ Sk
eAi if ∃i ∈ [k], such that j = min{Ai}
eBi if ∃i ∈ [k], such that j = min{Bi}
0n otherwise

By definition g as above, Sherstov showed that s(g, z) = Ω(
√
bs(f)).

Theorem A.4 (Theorem 4.2 of [She10]). For a Boolean function g : {0, 1}n → {−1, 1} with
G(x, y) = g(x ∧ y), if there exists an w ∈ {0, 1}n such that wi = 0 for i ∈ [k] and g(w ⊕ e1) =
g(w ⊕ e2) = . . . = g(w ⊕ ek) 6= g(w), then Q∗1/3(G) = Ω(

√
k).

To use the above result, one way is to start with a function g for which sensitivity is large at 0n.
To achieve, consider the shifted function fz where z is the same input on which block sensitivity is
maximized as before. This is because, by the choice of z, fz will have maximum block sensitivity
at 0n which upon applying Lemma 3.3 of [She10] ensures that the function g obtained has a large
k (i.e. sensitivity) at 0n. This is exactly what is achieved in the proof of Corollary 4.5 of [She10].

Hence the choice is z is tied up with the block sensitivity of function f .
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