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New Bounds for Energy Complexity of Boolean Functions-
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Abstract

For a Boolean function f : {0,1}" — {0,1} computed by a Boolean circuit C over a finite
basis B, the energy complexity of C (denoted by ECz(C)) is the maximum over all inputs {0,1}"
of the number gates of the circuit C (excluding the inputs) that output a one. Energy Complex-

ity of a Boolean function over a finite basis B denoted by EC(f) & minc EC3(C) where Cis a
Boolean circuit over B computing f.

We study the case when B = {A, V2, =}, the standard Boolean basis. It is known that any
Boolean function can be computed by a circuit (with potentially large size) with an energy of at
most 3n(1+ €(n)) for a small e(n)(which we observe is improvable to 3n — 1). We show several
new results and connections between energy complexity and other well-studied parameters of
Boolean functions.

e For all Boolean functions f, EC(f) < O(DT(f)%) where DT(f) is the optimal decision tree
depth of f.

* We define a parameter positive sensitivity (denoted by psens), a quantity that is smaller
than sensitivity [Cook et al., SIAM Journal of Computing, 15(1):87-97, 1986] and defined
in a similar way, and show that for any Boolean circuit C computing a Boolean function
f,EC(C) > psens(f)/3.

e For a monotone function f, we show that EC(f) = Q(KW™(f)) where KW (f) is the
cost of monotone Karchmer-Wigderson game of f.

e Restricting the above notion of energy complexity to Boolean formulas, we show EC(F) =

Q (x/ L(F) — Depth(F)) where L(F) is the size and Depth(F) is the depth of a formula F.

1 Introduction

For a Boolean function f : {0,1}" — {0,1} computed by a Boolean circuit C over a basis B, the
energy complexity of C (denoted by ECz(C)) is the maximum over all inputs {0,1}" the numbers
of gates of the circuit C (excluding the inputs) that outputs a one. The energy complexity of a
Boolean function over a basis B denoted by EC(f) £ minc EC3(C) where C is a Boolean circuit
over B computing f. A particularly interesting case of this measure of Boolean function, is when
the individual gates allowed in the basis B are threshold gates (with arbitrary weights allowed).
In this case, the term energy in the above model captures the number of neurons firing in the
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cortex of the human brain (see [UDMO6] and the references therein). This motivated the study of
upper and lower bounds [UDMO06] on various parameters of energy efficient circuits - in particular
the question of designing threshold circuits which are efficient in terms of energy as well as size
computing various Boolean functions.

Indeed, irrespective of the recently discovered motivation mentioned above, the notion of en-
ergy complexity of Boolean functions, has been studied much before. Historically, the measure of
energy complexity of Boolean functions! was first studied by Vaintsvaig [Vai62] (under the name
“power of a circuit”). Initial research was aimed at understanding the maximum energy needed
to compute any n bit Boolean function for a finite basis B (denoted by ECp(n)). Towards this
end, Vaintsvaig [Vai62] showed that for any finite basis B, the value of EC(n) is asymptotically
between 1 and 2. Refining this result further, Kasim-zade [Kas92] gave a complete characteri-
zation by showing the following remarkable trichotomy: for any finite complete basis B, either
ECs(n) = ©(2"/n) or Q(2"/2) < ECi(n) < O(v/n2"/?) or Q(n) < ECx(n) < O(n?).

An intriguing question about the above trichotomy is where exactly does the standard Boolean
basis B = {A,Vp, —} fits in. By an explicit Boolean circuit construction, Kasim-zade [Kas92]
showed that ECz(n) < O(n?). Recently, Lozhkin and Shupletsov [LS15] states (without proof)
that the Boolean circuit construction by Kasim-zade [Kas92] over the complete Boolean basis is of
energy 4n, thus deriving that ECz(n) < 4n. Lozhkin and Shupletsov improves it to 3n(1 + e¢(n))
by constructing a Boolean circuit of size 2-(1+ €(n)) for an e(n) tending to 0 for large n. We
observe that this bounds can be further improved to be at most 31 — 1 while the size is 2°") by
carefully following the construction in [LS15] (Proposition 2.2).

As mentioned in the beginning, in a more recent work, for the case when the basis is threshold
gates?, Uchizawa et al. [UDMO6] initiated the study of energy complexity for threshold circuits.
More precisely, they defined the energy complexity of threshold circuits and gave some sufficient
conditions for certain functions to be computed by small energy threshold circuits. In a sequence
of works, Uchizawa et al. [UNT10, UTN11] related energy complexity of Boolean functions under
the threshold basis to the other well-studied parameters like circuit size and depth for interest-
ing classes of Boolean functions. In a culminating result, Uchizawa and Takimoto [UT08] showed
that constant depth thresholds circuits of unbounded weights with the energy restricted to n°()
needs exponential size to compute the Boolean inner product function®. This is also important in
the context of circuit lower bounds, where it is an important open question to prove exponential
lower bounds against constant depth threshold circuits in general (without the energy constraints)
for explicit functions.

Our Results: Returning to the context of standard Boolean basis B = {2, V2, =}, we show several
new results and connections between energy complexity and other Boolean function parameters.
Since we are interested only in the standard Boolean basis B, we use EC(f) to denote ECp(f).

Upper bounds for Energy Complexity: As our first and main contribution, we show new bounds
on energy complexity of Boolean functions by two other parameters of functions, one in terms of

LA related notion has been studied in [Kis82] where the energy is the number times the gates in a circuit switches
its value. Recent studies [ABNT 14, BNPS15] looks at the energy of a circuit as a function of the voltage applied to the
gates thereby allowing some gates to fail. We remark that the notion of energy of Boolean circuits studied in this paper
is very different from those studied in the works mentioned.

2With values of the weights and threshold being arbitrary rational numbers, notice that this basis is no longer finite
and hence the bounds and the related trichotomy are not applicable.

*IP(x,y) = Y xy; mod 2



an upper bound and the other in terms of a lower bound.

For a function f : {0,1}" — {0,1}, let DT(f) denote the decision tree complexity of the
Boolean function - the smallest depth of any decision tree computing the function f. We state
our main result:

Theorem 1.1 (Main). For any Boolean function f, EC(f) < O(DT(f)3).

We remark that the size of the Boolean circuit constructed above is exponential in DT(f).
There are several Boolean functions for which the decision trees are very shallow - a demonstra-
tive example is the tree function (see Section 2 for a definition) computable by a decision tree of
depth logn. Our result implies that there is a Boolean circuit computing this function of energy
O(log’ n).

In terms of the energy of the circuit, this improves the bounds of Lozhkin and Shupletsov [LS15]
when DT(f) is strictly smaller than /n.

On a related note, Uchizawa et al. [UDMO06], as a part of their main proof, showed a similar
result for threshold decision trees which are decision trees where each internal node can query
an arbitrary weighted threshold function on input variables. Let DTy, (f) denotes the depth of the
smallest depth threshold decision tree computing f. For a basis 7 consisting of arbitrary threshold
functions, their results implies that EC7(f) < 1+ DTy, (f) (see Proposition 2.5 for details). Since
their construction produces a weighted threshold circuit, it does not directly give us a low energy
Boolean circuit even for Boolean decision trees.

Update after our work [DOS18] in connection with Theorem 1.1: Recently (after the conference
version of our work [DOS18] was published), Sun et al. [SSWX19] improved the upper bound
for EC(f) in Theorem 1.1 from O(DT(f)?) to O(DT(f)?). In addition, they also showed that
EC(f) = Q(1/DT(f)) thereby showing that the two parameters are polynomially related.* While
this improves our main result of the conference version of the paper [DOS18] in terms of the rela-
tionship between energy complexity and decision tree complexity of a Boolean function, in terms
of the lower bound that we can obtain for energy complexity, the improvement really depends on
the function family considered. We demonstrate this in a comparison between the lower bound
methods in Section 6.

Lower Bounds for Energy Complexity : To obtain lower bounds on energy, we define a new
parameter called the positive sensitivity (which is at most the sensitivity of the Boolean func-
tion [CDR86]). Let [n] = {1,...,n}. For a function f : {0,1}" — {0,1} and an input a € {0,1}",
we define the positive sensitivity of f on a (denoted by psens(f,a)) as the number of indices i € [n]
such that a; = 1 and flipping the bit a; causes the function to change its value. We define psens( f)
to be max,¢ (o1} psens(f, ). Using this parameter, we show the following.

Theorem 1.2. For any Boolean function f : {0,1}" — {0,1} computed by a Boolean circuit C, EC(C) >
psens(f)/3.

The main tool in proving the above results is the notion of continuous positive paths which are
paths in a Boolean circuit where all the gates in the path evaluate to 1. Using the same tool,
we show that the monotone Karchmer-Wigderson games can be solved by exchanging at most
EC(C) log ¢ where C is a Boolean circuit with fan-in at most ¢ (see Lemma 4.2 for more details).
This implies the following energy lower bound for computing monotone functions.

“See Section 6 for a discussion and comparison of techniques for proving lower bound on energy complexity.
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Theorem 1.3. Let f : {0,1}" — {0, 1} be a monotone function. Then EC(f) = Q(KW™(f)).

It is known that for the perfect matching function of a graph on n edges, denoted as fpu,
KW (fpm) = Q(y/n) [RW92]. Hence, Theorem 1.3 implies that any Boolean circuit with bounded
fan-in, computing fpys will require energy at least Q(y/n).

All the models considered so far are of fan-in 2. We now relax this requirement and consider
the energy complexity of unbounded fan-in constant depth Boolean circuits computing specific
functions. In this direction, we show the following.

Theorem 1.4. Let C be any unbounded fan-in Boolean circuit of depth 3 computing the parity function on
n variables. Then, EC(C) is Q)(n).

Finally, we show lower bounds on the energy complexity of Boolean functions when restricted
to Boolean formulas (instead of Boolean circuits), in terms of its formula size and depth.

For a formula F, let L(F) be the number of leaves in F and Depth(F) be the length of the longest
path from root to any leaf in F. For a Boolean function f, let L(f) be the minimum L(F) among all
the formulas F computing f. Let ECT(f) be the minimum energy for any bounded fan-in formula
computing f. Intuitively, Boolean formulas can take more energy than a Boolean circuit since we
cannot “reuse” computation. Also, for any formula F, ECF(F) < L(F) — 1. Hence, it would not be
surprising if ECF (F) is also lower bounded by Q(L(F)) giving a tight bound of ECF(f) = @(L(f)).
Towards this direction we show the following result.

Theorem 1.5. For a Boolean function f, computed by a formula F,
ECF(F) = < L(F) — Depth(P)> .

Related work: We discuss recent results on energy complexity of computing Boolean functions
in various circuit models.

Observe that any Boolean circuit is also a threshold circuit since each of gates in B, A, V and —
can be implemented by threshold gates. This implies that, EC(f) > ECy(f). Hence, for a function
f, known lower bound on EC(f) translates to a lower bound on EC(f). In this context, Table 1
summarizes known results on bounds on energy complexity of threshold circuits in terms of the
parameters size, depth and fan-in for certain classes of Boolean functions. For designing energy
efficient circuits, techniques or tools to reduce the energy complexity of circuits is relevant in this
context. Table 2 summarizes known results on energy complexity of Boolean functions on ways
to transform circuits to energy efficient ones.

Energy vs circuit parameters: Table 1 presents the information: “Energy vs Parameter (Param)
trade-off for any circuit C using specific type of gates (Gate) computing the function f”. The parameters
involved are s = Size(f), d = Depth(f), ¢ = fanin of gates in C and e is the optimum energy of a
circuit with gates of type Gate computing f.

By R;(f), we denote the two-sided error public coin randomized communication complexity
of f with error probability . We now describe the two notations af and by used in first two entries
of Table 1 for a symmetric function f. Observe that any symmetric function f : {0,1}" — {0,1}
can be completely described by an 7 + 1 length Boolean vector — v¢ as f(x) = vs(|x|) for all
x € {0,1}" where |x| is the number of ones in x. For b € {0,1}, let g; is maximum length



Param ‘ Function f is ... ‘ Gate ‘ Trade-off Ref.

14 Symmetric any ‘> n%ﬁf [SUZ13]
s Symmetric Unate | s¢ > n+;f_af [UTN11]
d,s any Threshold | Ros_s(f) = O(e?logs), [UT08]
5= —L1_
so("d)

Table 1: Known bounds on energy e of circuits computing Boolean functions

of consecutive b’s in vy. Then, af ' min {go, g1} and by = max {go,g1}. The first two entries
of Table 1 gives an energy fan-in trade-off and size energy trade-off, respectively, for symmetric
functions in terms of a¢ and by. The third entry of Table 1 gives an energy size trade-off for constant
depth threshold circuits for any Boolean function.

Energy of circuits under change of basis Table 2 presents the information: “Given a circuit C
with Energy(C) = e of with gates of type A then, there exists a circuit C' with gates of type B computing
the same function as C with bounds on Size(C’), Depth(C’), Energy(C’).”

A B Size(C') Depth(C’) Energy(C’) Ref.
Any Threshold < O((e+n)Size(C)) Ofe) - [UNT10]
Threshold/Unate Threshold/Unate <2-¢-Size(C)+1 <2-e+1 e [UNT10]

Table 2: Transforming circuit of type A to type B

Organization of the paper. The rest of the paper is organized as follows. We start with preliminar-
ies in Section 2. We show new bounds on energy complexity in terms of the decision tree depth in
Section 3. Then, we show two methods to obtain lower bounds on energy complexity in Section 4.1
and Section 4.2 using the notion of continuous positive paths (introduced in Section 4.1.1). In Sec-
tion 4.3, we show energy lower bounds for depth 3 Boolean circuits computing a specific function.
Following this, in Section 5, we show energy lower bounds for Boolean formulas. In Section 6, we
compare of our lower bound techniques with a recent improvement due to Sun et al. [SSWX19].
We conclude in Section 7 outlining some directions for further exploration.

2 Preliminaries

A Boolean circuit C over the basis B = {/, V2, ~} is a directed acyclic graph (DAG) with a root
node (of out-degree zero), input gates labeled by variables (of in-degree zero) and the non-input
gates (inclusive of root) labeled by functions in B. Define the size to be the number of non-input
gates and, depth to be the length of the longest path from root to any input gate of the circuit
C denoted, respectively, as Size(C) and Depth(C). A Boolean formula is a Boolean circuit where
the underlying DAG is a tree. We call a negation gate that takes input from a variable as a leaf
negation. A Boolean circuit is said to be monotone if it does not use any negation gates. A function
is monotone if it can be computed by a monotone circuit. Equivalently, a function f is monotone if



Vx,ye{0,1}",x <y = f(x) < f(y) where x < yiff x; <y;foralli € [n]. For a Boolean circuit
C, negs(C) denotes the number of NOT gates in the circuit C. Fix an arbitrary ordering among the
gates of C. A firing pattern of a circuit C on a given input is the binary string of evaluation of the
gates on the input as per the fixed ordering. The number of firing patterns of a circuit C is the number
of distinct firing patterns for C over all inputs.

For i € [n], let ¢; denote the n length Boolean vector with the i*" entry alone as 1. For an
a € {0,1}", a ® ¢; denotes the input obtained by flipping the i bit of a. The positive sensitivity of
f on a, denoted by psens(f,a), is the number of i € [n] such thata; = 1 and f(a®e;) # f(a). We
define psens(f) as max,¢ (o1)» psens(f, a).

For a monotone function f : {0,1}" — {0,1}, x € f~!(1) and y € f~1(0), define S}“(x,y) =
{i| x; =1,y; = 0,i € [n]}. The monotone Karchmer-Wigderson cost of f (denoted by KW™ (f)) is
the optimal communication cost of the problem where Alice has x, Bob has y and they have to find
ani € [n] such thati € S}r (x,y). It is known that KW ™ (f) equals the minimum depth monotone
Boolean circuit computing f. For more details about this model, see [KN06]. We now define the
tree function - Definition 3.1 of [DS18].

Definition 2.1 (Tree Function). Let 7 = {fi | k € N} be a family of Boolean functions where for
every k € N, fi : {0,1}21 — {0,1} is defined by the decision tree which is a full binary tree of

depth k with each of the 2¥ — 1 internal node querying a distinct variable and each of the nodes at
level k have left leaf child labeled 0 and right leaf child labeled 1.

Energy Complexity: For a Boolean circuit C and an input 4, the energy complexity of C on the
input a (denoted by EC(C, a)) is defined as the number of non-input gates that outputa 1 in C on
the input a. Define the energy complexity of C (denoted by EC(C)) as max, EC(C,a). The energy
complexity of a function f, (denoted by EC(f)) is the energy of the minimum energy circuit over
the Boolean basis B computing f.

As mentioned in the introduction, Lozhkin and Shupletsov [LS15] showed that EC(f) < 3n(1+
€(n)) by constructing a Boolean circuit of size 2-(1 + €(n)) where €(n) — 0 as n — oo. Their idea
is to construct a Boolean circuit of low energy that outputs all product terms on n variables where
each of them appears exactly once in a negated or unnegated form. We call such terms as minterms.

We slightly improve the above bound using the same idea by constructing a Boolean circuit of size
20(m),

Proposition 2.2. Forany f : {0,1}" — {0,1}, EC(f) <3n —1.

Proof. We show that all minterms in 7 variables can be computed by a Boolean circuit of energy
at most 2n — 1. Assuming this, to compute f, construct an V formula on 2" inputs of depth n
and connect the minterms on which f evaluates to 1 as the leaves of V (and the rest of the inputs
as 0). Since on any input, exactly one of the leaves will evaluate to 1, there is only 1 path to
the output gate where all A gates evaluate to 1. Hence, the overall energy complexity is at most
2n —1+n = 3n — 1. We construct a Boolean circuit of energy 2n — 1 to compute all minterms on
n variables.

Proof is by induction on n. Let x1, ..., x, be the variables. For n = 1, the Boolean circuit is x,
—x1 which has energy 1. Hence, the base case holds.

By induction, we have constructed a circuit C (on n inputs and having 2" outputs) computing
all 2" minterms on x, ..., x,. We modify the Boolean circuit as follows : branch out each output

6



gate into two (left and right branch). Connect the left (resp. right) branch output to x, 41 (resp.
—x,+1) by an A gate. Note that out of all 2"*! outputs created this way, exactly one of them will
output 1 on any input. Also we have computed all 2" ! minterms on x, ..., x,;1. The resulting
circuit has an energy of 2n — 1 for circuit C by induction plus 2 due to the output and the negation
gate of x,,11. Hence, the overall energy is 2n +1 = 2(n + 1) — 1. This completes the induction. [

The upper bound in Proposition 2.2 has been improved by Sun et al. [SSWX19] from 3n — 1 to
3n—2.

Observe that in a Boolean circuit C, for the leaf negation gates, there is always an input where
all of them output a 1. For the non-leaf negation gates, irrespective of the input, either the negation
gate or its input gate will output a one. Due to this reason, we have,

Proposition 2.3. For any circuit C, EC(C) > negs(C).

Model specific variants of energy complexity: We now consider the notion of energy com-
plexity for three other circuit models, namely monotone circuits, Boolean formulas and threshold
circuits.

Energy Complexity and Monotone Boolean circuits: For a monotone Boolean function f, com-
puted by a monotone Boolean circuit C, define ECM(C) as the maximum over all the inputs the
number of non-input gates that output a 1. We define ECM(f) as minc ECM(C) where C is a mono-
tone circuit computing f. The following proposition gives an exact characterization for ECM(f).

Proposition 2.4. For a monotone Boolean function f, let mSize( f) denotes the size of the smallest mono-
tone Boolean circuit computing f. Then, ECM(f) = mSize(f).

Proof. Let C be a monotone Boolean circuit of minimum size computing f. Clearly, ECM(f) <
ECM(C) < mSize(f). Also, for any monotone circuit C' computing f, on the input 1", all the gates
in C" output a 1 implying ECM(C’") > ECM(C’,1") = mSize(C’). In particular, for the monotone
circuit C” of minimum energy computing f, ECM(f) = ECM(C") > Size(C"”) > mSize(f). Hence,
ECM(f) = mSize(f). O

Energy Complexity and Threshold circuits: Let 7 be a basis consisting of all weighted threshold
functions. A threshold circuit is a Boolean circuit where the gates are from the basis 7. Uchizawa et
al. [UDMO6] introduced the notion of energy complexity of threshold circuits denoted by EC1(C),
again defined as the worst energy of the threshold circuit C among all the inputs. Define EC(f)
as minc EC7(C) where C is a threshold circuit over the basis 7 computing f.

A decision tree is a rooted tree with all the non-leaf nodes labeled by variables and leaves labeled
by a 0 or 1. Note that every assignment to the variable in the tree defines a unique path from root
to leaf in the natural way. A Boolean function f is said to be computed by a decision tree if for
every input 4, the path from root to a leaf guided by the input is labeled by f(a). Depth of a
decision tree is the length of the longest path from root to any leaf. Define decision tree depth of
f (denoted by DT(f)) as the depth of the minimum depth decision tree computing f. A threshold
decision tree is similar to the decision tree except that queries at each non-leaf node can be an
arbitrary threshold function on the input variables. We denote the depth of the minimum depth
threshold decision tree computing f by DT, (f).

For an f : {0,1}" — {0,1}, Uchizawa et al. [UDMO06] introduced a measure of energy for
threshold decision tree T computing f, denoted by cost(T) defined as the maximum over all paths



from root to leaf, the number of right turns taken in a path with cost of leaf defined to be zero. As
mentioned in [UDMO06], cost(T) can be seen as a measure of how often does a threshold gate in T
outputa 1.

As a part of their main result they showed, given any threshold decision tree T, (1) how to
construct another threshold decision tree T’ with a bound on cost(T’) (Lemma 2, 3 of [UDMO06])
and (2) how to obtain a low energy threshold circuit C' computing f from T of energy cost(T).
(Lemma 5 of [UDMO6]).

This implies the following relation between EC7(f) and DT, (f).

Proposition 2.5. For any Boolean function f, ECr(f) < DTy,(f) + 1.

Proof. Let T be an optimum threshold decision tree computing f with depth DTy, (f). We first
state the results (1) and (2) formally. Result (1) says that f can be computed by another thresh-
old decision tree T’ with same depth as T, same number of leaves as T and have cost(T') <
log(# leaves of T) (Lemma 2, 3 of [UDMO06]). Result (2) says that there exists a threshold circuit C
computing f with EC(C) < cost(T) + 1 (Lemma 5 of [UDMO06]).

Since T has at most 2°T#(f) many leaves, applying (1), we get a threshold decision tree T’ with
cost(T") < log(#leaves of T) < DTy, (f). The result now follows by applying (2) to T". O

Energy Complexity and Formulas: For a Boolean formula F, define ECT(F) is the worst case
energy complexity of the formula F over the Boolean basis 3. We define, ECT(f) as miny ECF(F)
where F is formula (over the Boolean basis ) computing f. See Section 5 for more details.

In the rest of the sections, by circuits, we refer to Boolean circuits over the Boolean basis B.

3 Energy Complexity and Decision Trees

In this section, we show a new technique to obtain upper bounds on EC(f).

Recall that any 7 bit function f can be computed by a circuit of energy at most 3n — 1 (Proposi-
tion 2.2). In this section, we identify the property of having low depth decision trees as a sufficient
condition to guarantee energy efficient circuits. More precisely, we show that for any Boolean
function £, EC(f) < O(DT(f)3).

One of the challenges in constructing a Boolean circuit is to use as few negation gates as possi-
ble. The reason is that non-leaf negation gates always contribute to the energy since either the gate
or its input will always output a 1 on any input to the circuit. We achieve this in our construction
via an idea inspired by the connector circuit introduced by Markov [Mar58]. Before describing the
construction, we need the following result (Lemma 3.1) which helps in controlling the number of
negation gates in our construction.

Lemma 3.1. Let fo and fy be any two Boolean functions on n variables computed by Boolean circuits Cy
and Cy respectively. Fix an i € [n]. Define f(x) = (—x; A fo(x)) V (x;i A f1(x)). Then, a circuit C
computing f can be obtained using Co and Cy such that negs(C) = 1 + max {negs(Cy), negs(C1)}.

Note that the existence of the circuit in Lemma 3.1 can also be argued using the result of
Markov [Mar58] (see Section 10.2 of Jukna [Juk12]) for an arbitrary f. However, the construc-
tion obtained by directly using the result of Markov can potentially have high energy and hence is
not suitable in our context. Since the Boolean function f which we intent to compute is structured,
we take advantage of this observation to adapt Markov’s construction and obtain a low energy



circuit (with minimal number of negation gates) in Lemma 3.1 which is then used to prove the
main result of this section (Theorem 1.1).

Proof of Lemma 3.1. We start with the circuit A = (—x; A Co(x)) V (x; A C1(x)) which uses 1+
negs(Co) + negs(C1) negations to compute f. If one of negs(Cy) or negs(Cq) is zero, then A is
the required circuit. Otherwise, we modify this circuit in min {negs(Cy), negs(C;)} steps where,
in each step, we reduce the number of negations by 1 such that the resulting circuit computes f
correctly. Hence the resulting circuit C has 1 + negs(Cp) + negs(C;1) — min {negs(Cp), negs(Cy)} =
1+ max {negs(Cp), negs(Cy) } negations.

We describe the modifications starting with A. Let go be a gate in Cy that feeds into a negation
gate such that the function computed at go does not depend on the output of any negation gate.
Let Dy be the sub-circuit rooted at go. Similarly, let g1 be a gate in C; with the similar property and
let D; be the sub-circuit rooted at g;. We remove the negation gates that gop and g; feeds into from
Co and C; respectively and construct the connector circuit (as shown in the box in Fig. 1a). We feed
the output from the selector as output of the negation gates in Cy and C;. Let Dy, (resp. D7) be the
circuit Cy (resp. C;) with the output of selector circuit acting as output of the negation gate with
the negation gate alone removed (Note that we do not completely disconnect the sub-circuits from
the circuit. The wires connecting Dy (resp. D) to D} (resp. D}) are not shown in Fig. 1a to avoid
clutter).

When x; = 0, we claim that this circuit outputs Cp(x). This is because when x; = 0, D gets
—Dy as output of go correctly and hence computes Cy(x) while the output of D] is inhibited by the
A gate which it feeds into. By a similar argument, this circuit computes C; (x) when x; = 1. Hence
the resulting circuit indeed computes f correctly.

Observe that the number of negation goes down by one in each step since we replace two
negations by one. We repeat the previous steps restricted to gates in D, and D; as long as the
negations in at least one of the circuits is exhausted. By the earlier argument, the final circuit C
correctly computes f. O

When x; = 0 (resp. x; = 1) the part of the circuit computing f; (resp. fo) is not necessary
in computing f. Having obtained a circuit construction which minimizes the usage of negations,
we need a way to “turn off” such gates that are not needed in computing f. In Lemma 3.2, we
demonstrate how this is achieved, thereby saving energy, at the cost of increasing the fan-in of A
gates.

Lemma 3.2. For any non-constant Boolean function f, there exists a circuit C computing f with, (1) all V
gates are of fan-in 2 and all A\ gates are of fan-in at most DT (f) + 2, (2) no \/ gate have a negation gate or
a variable directly as its input, (3) negs(C) < DT(f) and, (4) EC(C) < 2DT(f)>2.

Proof. We describe the construction of the circuit by an induction on DT(f).

Base Case: For f with DT(f) = 1, f is either a variable or its negation and hence the trivial circuit
satisfies (1) to (4). For DT(f) = 2, let T be an optimal decision tree with x; as its root. Then, f can
be computed by the circuit C = (—x1 A £1) V (x1 A £2) where ¢4, ¢, could be a variable, negation
of a variable or a constant. Also, if C has 3 negations, we apply Lemma 3.1 to get a circuit with
two negations. Hence, condition (3) is satisfied. In either cases, the conditions (1) and (2) are
also satisfied and it can be verified that the energy of the circuit is at most 5 < 2DT(f)2. Hence,
condition (4) is also satisfied and the base case holds.



Zy

(a) First step in the construction of C in the proof of (b) Circuit C’ in the proof of Lemma 3.2
Lemma 3.1.

Figure 1: Energy efficient circuit construction

Inductive Step: Let f be a Boolean function computed by a decision tree T of depth DT(f) > 3. By
induction, assume that for any Boolean function ¢ with DT(g) < DT(f) — 1 there exists a circuit C
computing g satisfying (1) to (4). Let the root variable of T be x; and T (resp. T) be the left (resp.
right) subtree computing the function fo = f|y,—o (resp. f1 = f|y,=1)- Since fp and f; are computed
by decision trees of depth DT(f) — 1, by induction, there exists circuits Cy and C; computing fo
and f, respectively, satisfying (1) to (4).

Observe that f(x) = (-x1 A fo) V (x1 A f1). Hence by Lemma 3.1, there exists a circuit C
computing f (Fig. 1b omitting the thinly dashed lines) with negs(C) = max {negs(Cy), negs(C1)} +
1. We modify the circuit C as follows: for each A gate which was originally in Cy (resp. C;), we
add —x; (resp. x1) as input thereby increasing its fan-in by 1. We also remove the A gate (shaded
in Fig. 1b) feeding into the top V gate and feed the output of the circuits directly to the top V gate
(shown as dashed in Fig. 1b). Call the resulting circuit C’ and the gates from Cy as C|, (the left part
in Fig. 1b) and the gates from C; as Cj (the right part in Fig. 1b).

We first argue that the conditions (1) and (2) holds true for C’. We then argue that C’ correctly
computes f using which we argue (3) and (4) thereby completing the induction.

We observe that the condition (1) holds since V gate has fan-in 2 by construction and A gate
has fan-in at most max {DT(fo) 4+ 3,DT(f1) + 3} which is at most DT(f) + 2. The removal of the
shaded A gates never causes a variable or a negation to be fed to the top V gate since fy and f;
have a decision tree depth of at least 2 and hence the circuits of the respective functions have top
gate as V which is guaranteed by base case for depth 2 and by induction otherwise. Hence, the
condition (2) holds. We now argue that C’ correctly computes f. When x; = 1, all the A gates in C},
evaluate to 0. Since no input variable or negation gate feeds into any V gate in C|, (condition (2)),
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all the Vv gates and A gates output 0 irrespective of the remaining input bits. Hence, C{, outputs 0.
Since x; = 1, C] behaves exactly same as C;. By Lemma 3.1, the circuit C; correctly computes f
when x; = 1. Hence, the circuit C’ correctly computes f for x; = 1. The same argument with Cy
and C; interchanged can be used to show that C’ correctly computes f with x; = 0.

Since no new negations were added in C’, negs(C’') = negs(C) which, by Lemma 3.1, equals
max {negs(Cp), negs(C1)} +1 < max{DT(f1),DT(f2)} +1 < DT(f). Hence the condition (3)
holds. We show that condition (4) holds for C’. Let x be an input with x; = 1. We have already ar-
gued that when x; = 1, none of the A or V gates of C, output a 1. Hence the gates that can output
alin C’ are the negations in Cj, the gates that output 1 in Cj, the selector gates (in the construction
of Lemma 3.1), the root gate and the negation gate for x; (recall that the shaded A gates are re-
moved). Observe that the negations in C}, is at most negs(Cp) and C; behaves exactly as C; for x; =
1. Also, the number of selector circuits used in Lemma 3.1 is at most max {negs(Cy), negs(C;)}.° In
addition, each such circuit can have at most 2 gates that output 1 on any input (see Fig. 1b). Hence,
EC(C,x) < ap = negs(Cy) + EC(Cq) + 2max {negs(Cp), negs(Cq1)} + 2. For x with x; = 0, by a
similar argument, EC(C’, x) < a7 = negs(Cy) + EC(Cp) + 2max {negs(Cy), negs(C1)} + 2. Hence,
EC(C’) < max{ag, a1} which is at most max {EC(Cp),EC(Cy)} + 3 max {negs(Cp), negs(Cy)} + 2.
By induction, we have EC(C') < 2(DT(f) —1)2+ 3(DT(f) — 1) + 2 which implies EC(C’) <
2DT(f)? as f is non-constant. This completes the induction. O

We prove the main result of this section.
Theorem 1.1. For any Boolean function f, EC(f) < O(DT(f)3).

Proof. If f is constant, the result holds. Otherwise, applying Lemma 3.2, we have a circuit C’
computing f with fan-in of V gate being 2 and fan-in of A gate being at most DT(f) + 2 of energy
at most 2DT(f)2. Without loss of generality, let x; be the variable at the root of the decision tree.
By construction, all the unbounded fan-in A gates of the circuit C’ have x1 or —x; as an input.

To obtain a bounded fan-in circuit from C’, we replace each of the A gates by a fan-in 2 circuit
as follows. Let g be a A gate of the circuit C’ of fan-in ¢ < DT(f) + 2 which takes in ¢ € {x1, —x1}
as one of its input. We replace g by a tree of fan-in 2 A gates of c leaves and of depth ¢ — 1 with ¢
as a leaf at depth ¢ — 1 as shown in Fig. 2.

S

4 L
(a) A gate of fan-in ¢ (b) Tree of depth ¢ — 1

Figure 2: Handling A gates of large fan-in ¢ (for ¢ = 4)

We now argue that this replacement with ¢ reattached as the leftmost leaf can only increase the
overall energy by a factor of at most ¢ — 1. Consider an input for which ¢ = 0. Then, irrespective
of the values of other ¢ — 1 inputs, none of the fan-in 2 A gates output a 1 as ¢ forces all A gates
to output 0. On the other hand if £ = 1, then the added gates can contribute an energy of at most

5While this quantity should be the minimum of the negations of C; and Cy, as seen in the proof of Lemma 3.1, we
upper bound this by the maximum of negations.
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¢ — 1. Hence, for any input, the A gates in C’ that output a 0 does not contribute any energy and
those that output a 1 can contribute of an energy of at most c — 1 < DT(F) + 1. Since, in the worst
case, all the gates that outputa 1 canbe an A,

EC(f) < EC(C) - (DT(f) +1) <2DT(f)* (DT(f) +1) = O(DT(f)?)

4 Lower Bounds on Energy Complexity

In this section, we introduce new methods to show lower bounds on energy complexity of Boolean
functions. We introduce the notion of continuous positive paths (Section 4.1.1) using which we
prove two energy lower bounds. Firstly, we show that the positive sensitivity of a function is
a lower bound on its energy complexity (Section 4.1.2). Secondly, we show that for monotone
Boolean functions, the cost of the monotone Karchmer- Wigderson game for the function is a
lower bound on its energy complexity (Section 4.2). We conclude the section by proving an energy
lower bound of Q)(n) for any depth 3 unbounded fan-in circuit computing parity function on n
bits (Section 4.3).

4.1 Energy Lower Bounds from Positive Sensitivity

In this section, we prove Theorem 1.2 from the introduction. We first describe an outline here. As
a starting case, consider a monotone circuit C computing f evaluates to 1 on an inputa € {0,1}".
Let i € [n] be such that a; = 1 and flipping 4; to 0 causes the circuit to evaluate to 0. We show that
for such an index i on input 4, there is a path from x; to the root such that all the gates in the path
outputs a 1. The latter already implies a weak energy lower bound. We then generalize this idea
to non-monotone circuits as well and use it to prove energy lower bounds. This generalization
also helps us to prove upper bounds for KW' games in Section 4.2.

To keep track of all input indices that are sensitive in the above sense, we introduce the measure
of positive sensitivity denoted by psens(f) (as defined in Section 2). For example, the functions
f € {®n, An} have psens(f) = n while psens(V,) = 1. Let psens(f,a) denote the set of positive
sensitive indices on a.

4.1.1 Continuous Positive Paths

Let C be a Boolean circuit computing f : {0,1}" — {0,1}. For an input a € {0,1}", we call a path
of gates such that every gate in the path output 1 on a as a continuous positive path in C.

Fix an a € {0,1}". We argue that for every positive sensitive index i on 4, either there is a
continuous positive path from x; to the root or it must be broken by a negation gate of the circuit.
Using this we show, in the next section, that energy complexity of a function is lower bounded by
its positive sensitivity.

Lemma 4.1. Let f : {0,1}" — {0,1} and a € {0,1}" be an input such that psens(f,a) # 0 and
i € psens(f,a). Let C be any circuit computing f. Then, either (1) there is a continuous positive path from
x; to root or (2) x; directly feeds into a negation gate or (3) there is a continuous positive path from x; to a
gate which feeds into a negation gate of C.
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Proof. 1t suffices to prove the following stronger statement: for a Boolean function f and an a €
{0,1}" with psens(f,a) # 0 and i € psens(f,a), let C be any circuit such that C(a) = f(a) and
C(a®e;) = f(a®e;). Then, either (1) there is a continuous positive path from x; to root or (2) x;
directly feeds into a negation gate or (3) there is a continuous positive path from x; to a gate which
feeds into a negation gate of C.

Proof is by induction on negs(C). Let C be any circuit such that f(a) = C(a) and f(a®e¢;) =

Clade).
Base Case: For the base case, negs(C) = 0 and C is a monotone circuit. By definition, i € psens(f,a)
implies thata > a @ e;. We claim thatif i € psens(f,a), then C(a) = 1. For a contradiction, suppose
that f(a) = C(a) = 0. Then C(a @ ¢;) = 0 because C is monotone. But then f(a @ ¢;) = 0 which
contradicts the fact thati € psens(f,a).

Since C(a) outputs 1 and since C is a monotone circuit, the root being an \ or A gate must have
a child gate evaluating to 1. Since this gate is again V or A the same argument applies implying
that there exists a series of gates all evaluating to 1 reaching some inputs. For any i € psens(f,a),
we show that there must a path from x; to the root with all the gates in the path evaluating to 1 in
C on input a (implying that (1) holds).

For a contradiction, suppose that every path from x; to the root gate passes via some gate that
evaluates to 0. Among all the paths from x; to the root, collect all the gates that evaluate to 0 for
the first time in the path and call this set as T. We fix all the variables except x; to the values in
a and view each of the gates in ¢ € T as a function of x;. Now, flipping x; from a; = 1 to 0 does
not change the output of any g € T as they compute monotone functions and already evaluate to
0. Since all other values are fixed, the output of the root gate does not change by this flip which
contradicts the fact thati € psens(f,a).

Induction Step: Let C be a circuit with f(a) = C(a) and f(a@®e;) = C(a @ e;) and negs(C) > 1. If
x; feeds directly into a negation gate, then statement (2) holds as required. Otherwise, let g be the
tirst gate that feeds into a negation in the topologically sorted order of the gates of C.

We have the following two possibilities. In both the cases, we argue existence of continuous

positive path in C from the variable x;, thereby completing the induction.

* On input a, flipping a; change the output of g. Denote the function computed at g as f;. Then
f¢ is monotone and i € psens(f,, a) and is non-empty. Hence, applying the argument in the
base case to f; and the monotone circuit rooted at g, we are guaranteed to get a continuous
positive path from x; to g. Since the circuit at g is a sub-circuit of C (that is, it appears as an
induced subgraph), this gives a continuous positive path in C also.

* On input a, flipping a; does not change the output of g. In this case, we remove the negation
gate that ¢ feeds into and hard-wire the output of this negation gate (on input a) in C to get
a circuit C'. Note that all other gates in C are left intact. Observe that C'(a) = f(a). Since
flipping a; did not change the output of g and as all other gates are left intact, C'(a ® ¢;) =
f(a®e;). As negs(C') = negs(C) — 1, by induction, either (1) there is a continuous positive
path from x; to root or (2) there is a continuous positive path from x; to a gate which feeds
into a negation gate of C’. By construction, C’ is same as C except for the negation gate.
Hence, a continuous positive path in C’ is also a continuous positive path in C.

O]
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4.1.2 From Positive Sensitivity to Energy Lower Bounds

We call the negation gates and the root gate of a circuit as target gates. In Lemma 4.1, we have
already shown the existence of continuous positive paths from a positive sensitive index up to
a target gate. Using this, we show an energy lower bound for any circuit of bounded fan-in
computing a Boolean function f in terms of psens(f). Since the fan-in of the circuit is limited,
we exploit the idea that in a connected DAG, the number of internal nodes (in-degree at least 1) is
lower bounded by the number of source nodes (in-degree 0).

Since every such positive sensitive index is reachable via a continuous positive path from a
target gate, we obtain a lower bound on energy by applying this idea on an appropriate subgraph
constructed from our circuit.

Theorem 1.2. For any Boolean function f : {0,1}" — {0,1} computed by a circuit C over the
Boolean basis, EC(C) > psens(f)/3.

Proof. Without loss of generality assume that f is non-constant. Let C be any circuit computing f
of fan-in 2 such that EC(C) = EC(f). We prove that Va € {0,1}", psens(f,a) < 3EC(C).

Let a € {0,1}" by any input. If psens(f,a) = 0, the claim holds. Hence we can assume,
psens(f,a) # 0. Let T be the set of all target nodes in C. For every i € psens(f,a), by Lemma 4.1,
there exists continuous positive paths starting from x; toa gate g € T.

For every ¢ € T, let X, be the set of all gates that lie in a continuous positive path from an x;
to g for some i € psens(f,a). Note that the subgraph induced by vertices in X, is connected and
does not include g. We now obtain a connected DAG with psens( f, a) leaves as follows. Let D be a
full binary tree (with edges directed from child to parent) with |T| many leaves and hence |T| — 1
internal nodes. For each g € T if it is a negation, we attach the gate feeding into g as a leaf of the
D and if it is a root, we attach the root as a leaf of the D. We call the resulting DAG as H.

Let X = UgerXy. We now argue that psens(f,a) < |X|+ |T|. Observe that the number of
internal nodes in the DAG H is |X| + (|T| — 1) where the first term is the gates in X and the
second term is the number of internal nodes of the tree D. Since graph induced on X, is connected
for each g, this results in the DAG H to be connected with psens(f, 2) many source nodes. As H is
connected, the number of leaves, which is psens( f, a), is at most the number of internal nodes +1
whichis |[X| + |T| -1+ 1= |X]| + |T|.

We now give a bound on |X| and |T|. Recall that since the target gates include negations and
the root, |T| = negs(C) + 1. Since negs(C) in any circuit C is at most EC(C) (Proposition 2.3),
|T| < EC(C) + 1. Since all gates in X output 1 as they belong to some continuous positive path
in C, |X| < EC(C). This implies that, psens(f,a) < |X|+ |T| < 2EC(C)+1 < 3EC(C) as f is
non-constant.

Ul

This implies that since psens(A,) = n, for EC(A,,) > n/3 which is asymptotically tight by Propo-
sition 2.2. We observe that even thought A, is symmetric, the result of Suzuki et al. [SUZ13] on
the energy lower bound on threshold circuits computing symmetric functions (which applies to
Boolean circuits too), only yields a trivial lower bound (see Table 1). We remark that both these
bounds does not give any non-trivial energy lower bound for f = V,. Note that Theorem 1.2 uses
the fact that the circuits used have fan-in 2. If fan-in of the circuit C is ¢, then replacing each gate
by a tree of ¢ — 1 gates of fan-in 2, by a similar argument as before, EC(C) > psens(f)/(c + 1).
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4.2 Energy Lower Bounds from Karchmer-Wigderson Games

Proposition 2.4 says that the monotone circuits are not energy efficient for computing monotone
functions. In this section, we explore the limits on how energy efficient can non-monotone circuits
be in computing monotone functions by showing the following.

Theorem 1.3. Let f : {0,1}" — {0,1} be a monotone function. Then EC(f) = Q(KW*(f)).

Our approach is to use Lemma 4.1 and utilize the existence of continuous positive paths to
design a KW protocol of cost EC(C) log(fan-in(C)) in Lemma 4.2 which immediately proves the
above theorem. For the perfect matching function fpys on a graph of n edges since KW™ (fpy) =
Q(y/n) [RW92], this implies that any circuit C with constant fan-in computing fpy require an

energy of Q(/n).

Recall that for x € f~1(1) and y € f~1(0), S}“(x,y) £ {i|x=1,y; =0,i € [n]}. Also, we call
the set of all negation gates, along with the root gate of C as the target gates of C.
Lemma 4.2. For a non-constant monotone Boolean function f, let Alice and Bob hold inputs a € f~1(1)
and b € f~1(0) respectively. Let C be any circuit computing f, and every gate in the circuit is either a A, V

with fan-in of at most ¢ or a negation gate. Then, KW™ (f) < EC(C)logec.

Proof. We argue that, without loss of generality it can be assumed that psens(f,a) = {i | a; = 1}.
Alice finds an a’ < a with f(a’) = f(a) = 1 such that for any a” < @/, f(a"”) = 0. Observe thata’ #
0" for otherwise, f(0") = 1 and since f is monotone, f must be a constant which is a contradiction.
By construction, every bit in a’ which is 1 is sensitive. Since a’ < 4, Sj{ (a',b) C S}’ (a,b), thereby it
suffices to find an index in Sj{ (a',b).

We now describe the protocol. Let a € f~1(1) such that psens(f,a) = {i | a; = 1}. Before
the protocol begins, Alice does the following pre-computation. Let P be the collection of positive
paths one each for every i € psens(f,a), which exists as per Lemma 4.1. Alice computes P =
Uger Py where Pq is the collection of all continuous positive paths ending at the target gate g.
This ends the pre-processing.

Now Alice and Bob fixes an ordering of the target gates. For each target gate g € T in the
order, the following procedure is repeated. For each continuous positive path p € P, ending at g,
Alice sends the address of the previous gate in the path p (using log c bits) until they trace back
to an input index i. Now, Bob checks if b; = 0, and if so, we have found i € ij(a, b), else, they
attempt on the next p € P,.

We argue about the correctness of the protocol. Notice that the above protocol searches through
all i € psens(f,a) by traversing through all P,, for g € T. Since psens(f,a) = {i | a; = 1} and
S}L(a,b) C psens(f,a) the protocol correctly computes i such that a; = 1 and b; = 0. We now
analyze the cost of the protocol. Observe that whenever Alice and Bob encounters a new path in
P with parts of the path already traversed, they can move along the edges without exchange of any
address. Hence, a gate in a path belonging to P gets visited at most once. Since the protocol visits
only those gates that output 1 at most once on the input 2, we have a protocol with communication
cost < EC(C,a) x log(c) < EC(C)logec. O

4.3 Energy Lower Bounds for Depth Three Circuits

We now consider lower bounds on the energy complexity of constant depth (unbounded fan-in)
circuits computing the parity function on n bits. Observe that the energy complexity of circuits

15



of unbounded fan-in can be very small compared to bounded fan-in circuits®. Hence the results
proved in the bounded fan-in setting ( Theorem 1.2) does not directly apply.

For any Boolean function f, the trivial depth 2 circuit of unbounded fan-in computing f has
an energy n + 2 and it can be shown that any depth two Boolean circuit computing the parity on
n bits require an energy of n + 1.

Proposition 4.3. Let C be any depth 2 circuit computing &,. Then EC(C) > n + 1.

Proof. Since C computes @,, no variable or its negation can feed into the root gate, and every
variable or its negation must feed into all gates at depth 2.

We now argue that at least n — 1 variables must be negated in C. Suppose not, then there must
be two variables, say x; and x;, that feeds into all the gates in depth 2 unnegated. Setting x; = 0,
all the A gates at depth 2 must evaluate to 0. Similarly, setting x; = 1, causes all V gates in depth
2 to evaluate to 1. Hence the circuit C evaluates to a fixed value irrespective of the remaining
n — 2 inputs unset which is a contradiction. Thus we conclude that at least n — 1 variables must
be negated. Consider an input x that is 0 on these n — 1 negated variables and 1 on the remaining
variable. On this input, all the negation gates, the A gate which they feed into and the root gate
evaluates to 1. Hence EC(C) > EC(C,x) >n—1+1+1=n+1. O

Santha and Wilson [SW93] showed that for any unbounded fan-in circuit C of depth d comput-
ing @, negs(C) > d([n/2])" — d. Since energy complexity of a circuit C is at least the number
of negation gates in C (Proposition 2.3), this implies that EC(C) > d([n/2])"/% — d for any such
circuit C computing @,,.

While we are unable to prove strong lower bounds for circuits of depth d for an arbitrary con-
stant d, we show that any depth d = 3 unbounded fan-in circuit computing the parity function
requires large energy. We achieve this by appealing to the known lower bounds on size of any con-
stant depth circuit computing @,. Razborov showed that any circuit C of depth d of unbounded
fan-in computing parity on n bits must be of size at least 20(n/4) [Raz87]. Using this result we
show an energy lower bound of Q)(n) for any depth 3 circuit computing &,,.

Theorem 1.4. Let C be any unbounded fan-in circuit of depth 3 computing the parity function on
n variables. Then, EC(C) = Q(n).

Proof. We call the root gate of the circuit as the “top” level and the two level immediately below as
the “middle” and “bottom” levels respectively. Note that negations can appear anywhere in the
circuit and does not count towards the level. Assume without loss of generality that the circuit C
does not have any redundant gates.

Let there be i negated input variables and without loss of generality assume i < n. We set
these variables to 0 and let C’ be the resulting circuit obtained. Let g1, 92, . .., gk be the k gates in
the bottom layer that feed to the layers above via negation gates. We set input variables to these k
gates such that the output of the negations are fixed in the following way: for the gate g;, consider
any input variable, say x;, that feed into g; and set it to 0 if g; is A gate and 1 if g; is V. We also
remove the gates that have become a constant and hardwire their output to get the resulting circuit
C’. Hence, all the gates at the bottom level are not fed negated to the level above.

®For instance, A, has a fan-in 7 circuit of depth 1 and energy 1 computing it while, by Theorem 1.2, energy of any
bounded fan-in circuit computing the same function is Q(n).
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In this process, we have eliminated the k negations leaving us with the circuit C” where all
the gates at bottom and middle layer computes some monotone function on the remaining m =
n — (i+ j) for some j < k variables. Since the resulting circuit must compute parity on m variables,
by [Raz87], size(C") > 22(m"'™)

(m1/12)

. Since C" is of depth 3, the number of bottom and middle gates in
C’ must also be at least 22 . As the gates in the bottom and middle level computes monotone
function, setting all the variables to 1 in C” forces all of them must output 1 (Here we use the
fact that the redundant gates are eliminated in C). Hence in C, there is a setting of input such
that at least i + k > i + j = n — m gates contributes an energy of 1 (since either the input to the
negation or the negation gate itself will be 1) and 20(m'/12)

EC(C) >n—m+ 20(m"2) 1 et ¢ be the smallest integer such that forall t > ¢, 202
There can be two cases:

1. If m > ¢, thenEC(C) >n—m 4+ 20m2) > 4

1/12)

gates in C that evaluate to 1. Hence,

(/1) is at least ¢.

2. Otherwise, m < cand EC(C) > n—m + 20 (m
n.

Hence EC(C) = Q(n). O

>n—c+1=Q(n)ascis independent of

5 Energy Complexity of Boolean Formulas

For a formula F, let L(F) denote the number of leaves in the formula F. For any formula F, we
have ECF(F) < 2L(F) — 1 as F has L(F) — 1 internal nodes and can have at most L(F) negation
gates as leaves (in the worst case). Unlike circuits, any sub-function computed in a formula cannot
be reused which can potentially lead to many gates that output a 1 on some input. For this reason,
one would expect that it is unlikely for Boolean formulas to be energy efficient. As a warm up, we
first implement the above argument for structured Boolean formulas where we prove strong lower
bounds of Q(L(F)) (Section 5.1) and discuss its limitations. Then, using a different approach, we
show a weaker lower bound of Q(y/L(F) — Depth(F)) (Section 5.2) for arbitrary Boolean formulas.

51 A Warm up

We consider the following approach to prove a lower bound on energy complexity of a formula F
by exhibiting an input on which many gates are guaranteed to outputa 1. Suppose t be the number
of gates in a formula which have both its inputs as variables. We call such gates as non-skew gates.
Now, set the n variables to 0 or 1 uniformly at random. Then, each of the t gates evaluate to a 1
with probability at least 1/4. Hence, on expectation, there are at least t/4 such gates evaluating
to 1. This implies the existence of an input on which Q(t) gates fire which gives the following
proposition.

Proposition 5.1. For a formula F, let t be the number of non-skew gates in F. If t = Q(L(F)), then
ECF(F) = O(L(F)).

However, this argument fails” for formulas where the gates are skew (i.e. exactly one of the
input to the gate is a variable) since randomly setting the input does not necessarily guarantee

7In the conference version of this paper [DOS18], it was erroneously claimed that Proposition 5.1 holds for all
Boolean formulas (that is, irrespective of t).
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a constant probability for the skew part to output a 1 (for example, consider formulas whose
underlying graph is the fully right skewed tree). Hence, this approach does not give a lower
bound for ECF(F) for an arbitrary formula F.

Nevertheless, there can be special formulas for which we can prove the lower bound of Q(L(F)).
For instance, consider the read-once formulas with negations at leaf. Similar to the argument of
energy of monotone circuits (Proposition 2.4), the following can be concluded about them (irre-
spective of the formula structure).

Proposition 5.2. For any read-once formula F with negations at the leaf, ECT(F) > L(F) — 1.

5.2 Bounds on Energy Complexity for Boolean Formulas

In this section, we take a different approach and show the following lower bound on the energy
complexity of any Boolean formula.

Theorem 1.5. For a Boolean function f, computed by a formula F,

ECF(F) = O <\/@ - Depth(F)> .

Though the above result applies for any Boolean formula, it does not give any non-trivial lower
bound for formulas that have large depths due to presence of long path of skew gates.

We now describe our approach. The main idea is to use a structural decomposition result for
Boolean formulas due to Guo and Komargodski [GK17] (see also Tal [Tal14]). They showed that
any formula F can be transformed to another “structured formula” F’ without blowing up the
size. More precisely,

Theorem 5.3 (Theorem 3.1 of [GK17]). Let a Boolean function f be computed by a Boolean formula F
with negs(F) > 1. Then, there exists T < 5negs(F) — 2 monotone functions g1 . ..,gt where each g; is
computed by a monotone formula G; and a function h : {0,1}T — {0, 1} computed by a read-once formula

H such that f(x) = h(g1,...,8r) computed by the formula F’ 2 H(Gy,...,Gr) satisfy L(F') < 2L(F).

Before proceeding, we illustrate this result for a simple case (which we use later) when the
formula F has exactly one negation gate which it not at the root.

Fy
z
F
(a) Formula F (b) Sub formulas F; and F, of F

Figure 3: Theorem 3.1 of [GK17] for formula F with negs(F) =1

Fig. 3(a) shows the formula F with exactly one negation gate and Fig. 3(b) shows two sub-
formulas F; and F, with F, and F; being monotone.
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Figure 4: Structured formula F’ obtained when Theorem 3.1 of [GK17] is applied to F in Fig. 3

The resulting formula obtained upon applying Theorem 5.3 is F' = F|,—o V (F2|,—1 A Fy) as
shown in Fig. 4. The monotone formulas Gy, G, and Gj are F|.—o, F2|,—1 and F; respectively. The
read-once formula H is H(y1,v2,¥3) = y1 V (y2 A —y3). Also, L(F’) < 2L(F).

We now describe our proof strategy: firstly, we analyze the energy of the formula F’ obtained

in Theorem 5.3 and show (in Lemma 5.5) that ECF (F’) is upper bounded asymptotically by O(negs(F) x
(ECF(F) + Depth(F)). This implies that the decomposition in Theorem 5.3 is not only size efficient

but also energy efficient. The specific structure of the formula from Theorem 5.3 implies that
ECF(F’) is lower bounded by Q(L(F) — negs(F)) (Lemma 5.6). Finally, comparing the upper and
lower bound for ECF(F’) gives a lower bound on ECF(F) in terms of L(F), Depth(F) and negs(F)
using which we prove Theorem 1.5. Before proceeding, we need the following observation.

Proposition 5.4. Let F be any formula and g be any gate of F other than the root. Let D be a formula
obtained by replacing the subtree at gate g by a variable z. Then for any b € {0,1}, EC(D|,—) <
ECF(F) + Depth(F).

Proof. Fixa b € {0,1} and let a be an input on which D|,_;, achieves the maximum energy. Con-
sider the evaluation of gates in F on this input 4. If we ignore the gates in the subtree rooted at g
in F, as F is a formula, the evaluation of gates on the input a for F and D|,_; can differ only on
those gates that lie in the path from g to the root. Hence,

ECT(F) > ECF(F,a) > EC(D|,—p,a) — Depth(F) = EC(D|,—;) — Depth(F)
which completes the proof. O

Lemma 5.5 (Upper Bound for ECT(F")). Let f : {0,1}" — {0,1} be computed by a Boolean formula
F with negs(F) > 1. Then, the formula F' computing f obtained by applying the decomposition of Theo-
rem 5.3 to F satisfies,

ECF(F") < (5negs(F) —2)(ECT(F) + Depth(F) +1). 1)

Proof. We proceed by tracing the construction in Theorem 3.1 of [GK17] (Theorem 5.3) where we
bound the energy of the resulting formula thereby proving the result.

[By strong induction on negs(F)] For the base case with negs(F) = 1, let F; be the minimal formula
containing all negations of F. If F; = F, then the root gate of F must be a NOT gate and F/ = F
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satisfies Eq. (1). Otherwise, let F, be the formula obtained by replacing F; in F by a new variable
z. As Fj has the only negatlon gate of F, Fz is monotone implying F, = F|,—0 V (F2|,=1 A z). Also

there exists a formula F1 such that F; = —|F1 (see Fig. 3). Now the formula F' = F|,—o V (F2|z=1 A

ﬁFl) computes the same function as F. Since ECF(F’) is upper bounded by the energy of the
individual formulas and the connecting gates,

ECF(F') < ECT(Fa|s_o) + ECT (Bo|s1) + EC(F}) + 3
< 2ECF(F) + 2Depth(F) + EC(F) + 3 [Proposition 5.4]
< 3(ECF(F) + Depth(F) + 1) [Fy is a subformula of F]

For the inductive case, let F be any Boolean formula with t = negs(F) > 1 and the result holds
for all formulas with negations less than t. Let F; be the smallest subformula of F that contains all
the negations of F. There can be two cases.

Case 1. F; is same as F: In this case, we show that there is an F' computing the same function as F

with ECF(F") < (5negs(F) — 4)(ECF(F) + Depth(F) + 1) satisfying Eq. (1). Based on the root
gate of F, there can be two subcases.
Suppose the root of F is a NOT gate. Then, there exists a formula E such that F = —E.
Since negs(E) = negs(F) — 1, by induction, there exists an E’ computing the same function
as E with ECF(E’) < (5negs(E) — 2)(EC(E) + Depth(E) + 1). Now the formula F' = —E’
computes the same function as F. Estimating ECF(F’), we have

ECF(F) < ECF(E) +1
< (5negs(E) — 2)(ECF(E) + Depth(E) +1) +1 [Induction]
< (5(negs(F) — 1) — 2)(ECF(E) 4 Depth(F)) +1  [Depth(E) = Depth(F) — 1]
< (5negs(F) — 4)(ECF(F) + Depth(F) +1) [ECF(E) < ECF(F) +1]

Suppose the root of F is AND/OR. Without loss of generality, let the root be OR gate. A
similar argument holds for the case of AND gate. Then, let F = E, V E,. where E, E, are the
left and right subtrees of the root, respectively. Since E; and E, are subformulas of F, observe
that ECF(E;) < ECF(F) and ECF(E,) < ECF(F). Since F; = F, it must be that negs(E,) > 1
and negs(E;) > 1. Hence, by induction, there exists formulas Ej and E, computing the same
function as Ey and E,, respectively. Consider the formula F' = E} V E;. We now show that F’
satisfies the required energy bound.

ECT(F') < EC(E}) + ECF(E)) +1

(5negs(E;) — 2)(ECF(E;) + Depth(E;) 4 1)

+ (5negs(E,) — 2)(ECF(E,) + Depth(E,) + 1) +1 [Induction]

< (5negs(E;) — 2)(ECF(F) + Depth(F))

<
<

+ (5negs(E,) — 2)(ECF(F) + Depth(F)) +1 [Depth(E;), Depth(E,) < Depth(F) —

< (5negs(F) — 4)(ECF(F) + Depth(F) +1)
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Case 2. F; is not same as F: Let F, be the formula obtained by replacing F; in F by a new variable
z. Similar to the argument in the base case, F' = F|,—¢ V (F2|.=1 A F1) computes the same
function as F. Since F; does not have a smaller subformula containing all its negations, we
can apply Case 1 to F; to get a formula F| computing same function as F; with ECF(F]) <
(5negs(F;) — 4)(ECF(F) + Depth(F;) + 1). Hence,

ECF(F') < ECT(E|,—0) + ECF(F2|,—1) + ECF(F]) 42
< 2ECF(F) 4 2Depth(F) + ECF(F]) +2 [Proposition 5.4]
< (5negs(F;) — 4)(ECT(Fy) + Depth(F;) + 1)
+2(ECF(F) + Depth(F) +1)
< (5negs(F) — 2)(ECF(F) + Depth(F) +1) [F; is a subformula of F]

O]

Lemma 5.6 (Lower Bound for ECT(F')). Let F be a formula and F' be the formula obtained by apply-
ing Theorem 5.3 to F. Then, ECF(F") > L(F) — (5negs(F) — 2).

Proof. By Theorem 5.3 the F’ obtained is a composition of a read-once formula H over monotone
formulas Gy, ...,Gr for T < 5negs(F) — 2. In addition, by tracing the construction of F’ in the
proof of Theorem 5.3, it can be inferred that (1) all leaves of F’ forms a part of some monotone
formula G; and (2) every leaf in F must appear at least once as a leaf of F’. Now,

ECF(F") > ECF(F,1")

T
> Z ECF(Gil 171)
i=1

> i(L(Gi) -1) [G;s are monotone]

i=1
>L(F)-T [By Property (1) and (2)]
> L(F) ~ (5negs(F) ~2)

Theorem 1.5 holds directly from the following cumbersome but slightly stronger claim.

Claim 5.7. For any formula F, ECF(F ( /L(F) + Depth(F)2 + Depth(F) — Depth(F)).

Proof. If negs(F) = 0, then F is monotone and ECF(F)
negs(F) > 1 and applying Lemma 5.5 we have ECF(F’) <
and by Lemma 5.6 the formula F’ obtained satisfy, ECF (F’

= ECF(F,1") = L(F) — 1. Otherwise,
(5negs(F) —2)(ECF(F) + Depth(F) +1)
) = L(F) — (5negs(F) —2).
(F

Combining the two bounds on ECF(F’), we have ECF(F) > Snegs(F)2 Depth(F) — 2. Along
with Proposition 2.3, we have
L(F)
ECF(F) > ——————— — Depth(F) — 2 F
C( )_maX{Snegs(F)—Z epth(F) — 2, negs( )}
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Let « be the largest possible value such that % — Depth(F) —2 > w«. This gives a quadratic

- . e o . 5Depth(F)+12)2+20L (F)— (5Depth(F)+8
equation in « and it can be verified that the maximizing « is / (5Depth(F) +12) +10 ()~ (SDepth(F)+8)

If negs(F) is at least a, then ECF(F) > a. Otherwise, ECT(F) is lower bounded by 5Loff)2 —
Depth(F) — 2 which, by our choice, is at least a. Hence in both cases,

ECF(F) <\/L + Depth(F)?2 + Depth(F) — Depth(F)) .

O]

6 Comparison of Lower Bound Techniques for Energy Complexity and
a Recent Improvement

So far, we have seen two techniques to show lower bound for energy complexity one in terms of
positive sensitivity (Theorem 1.2) for any Boolean function and other in terms of cost of mono-
tone Karchmer-Wigderson game (Theorem 1.3) for monotone Boolean functions. In this section,
we give a comparison of lower bound techniques for energy complexity with regard to a recent
improvement due to Sun et al. [SSWX19].

Theorem 1.1 says that every Boolean function of small decision tree depth has a small energy
circuit computing it. In the context of proving lower bounds on energy complexity, a natural
question to ask is whether a converse of Theorem 1.1 is true. That is, does a circuit of small energy
have a small depth decision tree computing it. More precisely,

Question 6.1. Is it true that for all Boolean functions f, DT(f) < poly(EC(f)) ?

In this context, we give our approach to answer this question using a measure called max-
entropy of a circuit introduced by Uchizawa et al. [UDMO06]. For a circuit C, the max-entropy,
denoted by Hmax(C) is the logarithm of the number of firing patters of the circuit C. As a part
of main result, they showed that for any threshold circuit C computing a Boolean function f,
Hmax(C) > EC7(f) — 1. Hence Himax(C) can be seen as yet another measure of energy complexity
for threshold circuits.

Since the same result does not directly extend to circuits over Boolean basis 13, we ask, in a
spirit similar to the result of Uchizawa et al. [UDMO06], if max-entropy is also a measure of energy
for Boolean circuits. We show in Lemma 6.2 an analogous result for Boolean circuits that for any
Boolean function f, and a circuit C computing f, Hmax(C) = Q(log DT(f)).

Lemma 6.2. Fora Boolean function f : {0,1}" — {0, 1}, let C be any Boolean circuit computing f having
gates computing an arbitrary function of a finite arity. Then, DT(f) is, asymptotically, at most the number
of firing patterns of C. Hence Hymax(C) = Q(log DT(f)).

Proof. Let the number of firing patterns of C be t and ¢ be the maximum arity of gates in C. We
show that there exists a decision tree computing f of depth ¢ - t. Since ¢ is a finite constant, ¢ >
DT(f)/¢ = Q(DT(f)).

Proof is by strong induction on n. For n = 1, DT(f) < 1 and there must be at least one firing
pattern for C. Hence DT(f) < ¢-t. Suppose the claim holds for all Boolean functions on < n
variables. Let f be an n bit Boolean function computed by a circuit C of size s with gates of fan-in at
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most ¢. For the circuit C, let there be t distinct firing patterns p1, pa, . . ., pr where each p; € {0,1}".
Let C’ be the circuit obtained from C by removing all the gates that have the same value in all the
firing patterns. Observe that this transformation does not alter the number of firing patterns and
let p}, p5, . .., p} be the firing patterns of C'. Let ¢ be a gate in C’ whose evaluation depends only on
input variables. Let f’ be the function f after setting the queried variables to the values read. Also
set the queried values in C’ and evaluate the circuit (as far as possible) to get C” which computes
f'. Since f’ is on < n — ¢ variables, by induction, DT(f’) < ¢ x Number of firing patterns of C".
Since the value of gate g is fixed, C” can have at most t — 1 firing patterns (for otherwise, all
the firing patterns have the same value for gate ¢ due to which ¢ would have been removed in
C’, a contradiction). Hence, DT(f) < DT(f’) 4+ ¢ < ¢ x Number of firing patterns of C" + ¢ <
C-(t=1)+L=1(-t O

However, this result does not give a meaningful lower bound for energy complexity of f. To
see this, a circuit with s internal gates and energy e can potentially have };_, (f) < s +1 firing
patterns implying Hmax(C) < elogs. Now, Lemma 6.2 implies that e = Q(logDT(f)/ logs).
However, logDT(f)/logs = O(1) as DT(f) = O(s).

Lemma 6.2 can be seen as constructing a decision tree for f, given the firing patterns of a circuit
computing f. Recently, Sun et al. [SSWX19] directly constructed a decision tree of depth EC(f)?,
thereby implying the following.

Theorem 6.3 (Sun et al. [SSWX19]). For all Boolean functions f,EC(f) > /DT(f).

This answers Question 6.1 in affirmative as DT(f) < EC(f)?. The original statement, Theorem
2 of Sun et al. [SSWX19], states that EC(f) = Q(1/DT(f)). A careful analysis of their proof reveals
that the asymptotic constant is actually 1. In this context, we give two instances where the result
of Sun et al. [SSWX19] can be used to further improve our results from Section 4.1 and Section 4.2.

* We showed that EC(A,) > n/3 based on the measure positive sensitivity (Theorem 1.2).
But it completely fails to give any non-trivial lower bound for EC(V},) since psens(V,) = 1.
Since DT(V,,) = n, by Theorem 6.3 this implies that EC(V,) > /1 (as observed by Sun et al.
[SSWX19]).

* Consider the problem of STCONN which, given a directed graph G on (5) edges and two
vertices s and t, asks if there is a path from s to t in G. It is known that KW' (STCONN) =
O (log? n) [KW90]. Hence, Theorem 1.3 implies that EC(STCONN) = Q(log®#). It can be
argued that DT(STCONN) = Q(n?). One way to see this is to observe that connectivity
is a non-trivial monotone property of graphs and such properties have decision tree depth
of O(n?) [KSS84]. Hence, by Theorem 6.3 we get that EC(STCONN) > /DT(STCONN) =
Q) (n) which vastly improves what could be inferred via our bound.

7 Discussion and Questions

Having studied EC( f) as a Boolean function parameter for different circuit models over the Boolean
basis B, following are some natural questions that are left unanswered.

* For unbounded fan-in circuits of depth 3, we showed an energy lower bound of Q(n) for
parity on n bits (Theorem 1.4). The question here is to extend the same to arbitrary depth
unbounded fan-in circuits.
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* For any Boolean formula F, we showed a lower bound for ECT(F) in terms of its size and
depth (Theorem 1.5). Can we remove the dependence on depth thereby showing that for all
Boolean functions f, ECF(f) = Q(1/L(f)) ?
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