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Abstract

A recent work of Chattopadhyay et al. (CCC 2018) introduced a new framework
for the design of pseudorandom generators for Boolean functions. It works under the
assumption that the Fourier tails of the Boolean functions are uniformly bounded for all
levels by an exponential function. In this work, we design an alternative pseudorandom
generator that only requires bounds on the second level of the Fourier tails. It is based
on a derandomization of the work of Raz and Tal (ECCC 2018) who used the above
framework to obtain an oracle separation between BQP and PH.

As an application, we give a concrete conjecture for bounds on the second level of
the Fourier tails for low degree polynomials over the finite field F2. If true, it would
imply an efficient pseudorandom generator for AC0[⊕], a well-known open problem in
complexity theory. As a stepping stone towards resolving this conjecture, we prove
such bounds for the first level of the Fourier tails.

1 Introduction

Pseudorandom generators are widely studied in computational complexity theory. The main
focus of this paper is a new framework for the design of pseudorandom generators (abbrv.
PRGs) based on Fourier tails, introduced recently by Chattopadhyay et al. [CHHL18]. We
refer to the survey of Vadhan [Vad12] for an introduction to pseudorandomness in complexity
theory, and assume basic knowledge with common concepts.
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Let F be a family of n-variate Boolean functions, which is closed under restrictions.
Namely, for any f ∈ F , if we restrict some of the inputs of f to Boolean values, then
the restricted function is also in F . Nearly all classes of Boolean functions studied in the
literature satisfy this property.

Given an n-variate Boolean function f , its level-k Fourier tails for k = 1, . . . , n are defined
as

L1,k(f) =
∑

S⊂[n]:|S|=k

|f̂(S)|.

For a function class F of n-variate Boolean functions define

L1,k(F) = max
f∈F

L1,k(f).

Chattopadhyay et al. [CHHL18] proved a general theorem, which constructs an explicit
PRG for functions in F , assuming that F has bounded k-level Fourier tails for all k. This
property is known to hold for many classes of interest (read-once branching programs of
bounded width, low-depth circuits, low sensitivity functions, and more; see [CHHL18] for
details).

Theorem 1.1 ([CHHL18]). Let F be a family of n-variate Boolean functions that is closed
under restrictions. Assume that for some a, b ≥ 1 it holds that

L1,k(F) ≤ a · bk ∀k = 1, . . . , n.

Then for any ε > 0, there exists an explicit PRG for F with error ε and seed length s =
b2 · polylog(an/ε).

Note that for any n-variate Boolean function one can take a = 1, b =
√
n, and hence the

quadratic dependence on b in the seed length is optimal.
The main objective of this current work is to investigate whether PRGs can also be

obtained from weaker assumptions on the Fourier tail. Specifically, whether it suffices that
L1,k(F) is bounded for a few values of k, instead of for the full regime of k = 1, . . . , n as was
required by [CHHL18]. Our main result is that this is indeed the case: it suffices to obtain
bounds for the second level of the Fourier tail.

Theorem 1.2 (Main result, informal version). Let F be a family of n-variate Boolean func-
tions closed under restrictions. Assume that for some t ≥ 1 it holds that

L1,2(F) ≤ t.

Then for any ε > 0, there exists an explicit PRG for F with error ε and seed length
poly(t, log n, 1/ε).

For a more precise formula for the seed length see Theorem 2.1. We note that the
dependence on the error parameter ε in Theorem 1.2 is much worse compared to Theorem
1.1 — polynomial instead of poly-logarithmic. We discuss this in Section 4.
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1.1 A potential PRG for F2-polynomials and AC0[⊕]

There are known deep relationships between the ability to construct explicit pseudorandom
generators, and the ability to prove correlation bounds, for many classes of Boolean functions.
One of the few classes where the latter is known but the former is not is AC0[⊕], which is
the classes of constant-depth polynomial-size Boolean circuits with AND, OR, NOT and
PARITY gates. Classical works of Razborov [Raz87] and Smolensky [Smo93] prove that this
class cannot approximate the MAJORITY function. On the other hand, the problem of
constructing explicit PRGs for AC0[⊕] is a well-known open problem in complexity theory.
We refer to the survey of Viola [Vio09] for further discussion on this challenge.

We give a concrete (and plausible in our minds) conjecture which, combined with Theo-
rem 1.2, would imply such a PRG. Let Polyn,d denote the class of n-variate Boolean functions
which are computed by F2-polynomials of degree at most d. This class is clearly closed under
restrictions.

Conjecture 1.3. L1,2(Polyn,d) = O(d2). That is, if p : Fn2 → F2 is a polynomial of degree d,

and f(x) = (−1)p(x), then ∑
i,j∈[n],i<j

|f̂({i, j})| = O(d2).

A corollary of Conjecture 1.3, when combined with Theorem 1.2, is the construction of
explicit PRGs for degree-d polynomials over F2 with seed length poly(log n, d, 1/ε). This
would be a major breakthrough in complexity theory, as currently no PRGs are known for
polynomials of degree d = Ω(log n). We note that a similar seed length would follow from
a weaker version of Conjecture 1.3 with the bound L1,2(Polyn,d) ≤ poly(log n, d). However,
we conjecture that O(d2) is the correct bound.

We further note that such PRGs would directly imply PRGs for AC0[⊕].

Claim 1.4. Assume that Conjecture 1.3 holds. Then for any ε > 0, there exists an explicit
PRG for AC0[⊕] with error ε and seed length poly(log n, 1/ε).

Proof sketch. Let f : {0, 1}n → {0, 1} be computed by an AC0[⊕] circuit of size s = poly(n)
and depth e = O(1). Razborov [Raz87] and Smolensky [Smo87] proved that there exists a
distribution over polynomials p : Fn2 → F2 of degree d = log(s/ε)O(e) = polylog(n/ε) such
that for each x ∈ {0, 1}n, Prp[p(x) 6= f(x)] ≤ ε. Theorem 1.2 gives a PRG for polynomials
of degree d with error ε and seed length poly(log n, d, 1/ε). By the Razborov-Smolensky
result, this PRG is also a PRG for f with error 3ε.

As a stepping stone towards resolving Conjecture 1.3, we prove a bound on the first level
of the Fourier tail of low degree polynomials over F2.

Theorem 1.5. L1,1(Polyn,d) ≤ 4d.

Organization. We prove Theorem 1.2 in Section 2. We prove Theorem 1.5 in Section 3.
We discuss further research in Section 4.
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2 PRG from level two Fourier bounds

The main result of this section is an explicit pseudorandom generator for Boolean functions
that have bounded Fourier tails on the second level.

Theorem 2.1. Let F be a family of n-variate Boolean functions closed under restrictions.
Assume that for some t ≥ 1 it holds that

L1,2(F) ≤ t.

Then for any ε > 0, there exists an explicit PRG for F with error ε and seed length
O
(
(t/ε)2+o(1) · polylog(n)

)
.

The framework to construct the PRG is similar to the one used in [CHHL18]. The first
step is to construct a fractional PRG for F that is p-noticeable. Now using the polarizing
random walk technique used in [CHHL18], we convert this fractional PRG into the required
standard PRG. Our fractional PRG is based on ideas developed in [RT18]. We first recall
the basic framework of [CHHL18].

Pseudorandom generators. Let f : {−1, 1}n → {−1, 1} be a Boolean function. A PRG
for f with error ε is a random variable X ∈ {−1, 1}n such that

|E[f(X)]− E[f(Un)]| ≤ ε,

where Un is the uniform distribution in {−1, 1}n. It has seed length s if X can be sampled
as

X = G(Us)

where G : {−1, 1}s → {−1, 1}n is an explicit function1.

Fractional pseudorandom generators. Let f : {−1, 1}n → {−1, 1} be a Boolean func-
tion. It has a unique multi-linear extension as f : [−1, 1]n → [−1, 1]. A fractional PRG for
f with error ε is a random variable X ∈ [−1, 1]n such that

|E[f(X)]− f(~0)| ≤ ε.

Note that f(~0) = E[f(Un)]. It has seed length s if X can be sampled as

X = G(Us)

where G : {−1, 1}s → [−1, 1]n is an explicit function. The fractional PRG X is p-noticeable
if

E[X2
i ] ≥ p ∀i = 1, . . . , n.

1There are various notions of explicitness used in the complexity literature. For our purposes any notion
would do.
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From fractional PRGs to PRGs. The following is the main result of [CHHL18], which
converts a fractional PRG into a standard PRG.

Theorem 2.2 ([CHHL18]). Let F be a family of n-variate Boolean functions that is closed
under restrictions. Let X be a p-noticeable fractional pseudorandom generator for F with
seed length s and error ε. Then, there exists a pseudorandom generator for F with seed
length O(s · log(n/ε)/p) and error O(ε · log(n/ε)/p).

Given, the above theorem, the missing piece to get the desired PRG in Theorem 2.1 is
to construct an appropriate fractional PRG. The following lemma achieves exactly this.

Lemma 2.3. Let F be a family of n-variate Boolean functions closed under restrictions.
Assume that for some t ≥ 1 it holds that

L1,2(F) ≤ t.

Then for any ε > 0, there exists an explicit p-noticeable fractional PRG for F with error ε
and seed length s where:

1/p = O(log(n/ε))

s = O((t/ε)2+o(1) · log(n) · log(n/ε)).

It is direct to obtain Theorem 2.1 from Theorem 2.2 and Lemma 2.3. We prove Lemma
2.3 in the remainder of this section.

As mentioned before, the fractional PRG is constructed based on ideas developed in
[RT18]. In particular, our fractional PRG can be seen as a derandomization of the main
distribution used in [RT18].

We first abstract and restate one of the main arguments in [RT18]. This abstraction
appeared in a blog post of Boaz Barak and Jaros law B lasiok [BB18]. Below, we abbreviate
a Multi-Variate Gaussian as MVG. Given a random variable Z ∈ Rn, we denote by trnc(Z)
its truncation to [−1, 1]n. That is, trnc(Z)i = min(1,max(−1, Zi)) for i ∈ [n].

Theorem 2.4 ([RT18], restated). Let n, t ≥ 1, δ ∈ (0, 1). Let Z ∈ Rn be a zero-mean MVG
random variable with the following two properties:

(i) For i ∈ [n]: Var[Zi] ≤ 1
8 ln(n/δ)

.

(ii) For i, j ∈ [n], i 6= j: |Cov[Zi, Zj]| ≤ δ.

Let F be a class of n-variate Boolean functions which is closed under restrictions. Assume
that L1,2(F) ≤ t. Then for any f ∈ F it holds that |E[f(trnc(Z))]− f(~0)| ≤ O(δ · t).

For completeness, we prove Theorem 2.4 in the appendix – the proof basically repeats
the argument in [RT18] but for a general multivariate Gaussian distribution, instead of the
Forrelation distribution considered there. We now show how to use Theorem 2.4 to construct
a p-noticeable fractional PRG for F with error ε and seed length s, where 1/p = O(log(n/ε))
and s = poly(t, log(n), 1/ε).
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I. We show that a MVG distribution with the parameters needed in Theorem 2.4 can
be of rank ` = poly(log(n), t, 1/ε). That is, we sample ` independent N (0, 1) random
variables and apply an explicit linear transformation T : R` → Rn to get a random
variable in Rn that satisfies the two conditions of Theorem 2.4.

II. We discretized the above process.

Step I: Dimension Reduction. Let δ = ε/t and let ` be a parameter to be determined
soon. Let C be a code on {0, 1}` with at least n codewords, such that C is δ-balanced.
Namely, every codeword in C has Hamming weight between (1

2
− δ)` and (1

2
+ δ)`. Such a

code can be obtained from explicit constructions of small-biased spaces over {0, 1}`. The
best known construction is by Ta-Shma [Ta-17] which achieves ` = (log n)/δ2+o(1).

Set p = 1/(8 ln(n/δ)). Let c1, . . . , cn ∈ C be distinct codewords. Define an n × ` matrix
A given by

Ai,j =

√
p

`
· (−1)c

i
j ,

where ci = (ci1, . . . , c
i
`). Let Y be a random vector in R` where each Yi is an independent

N (0, 1) Gaussian. Define
Z = AY.

It is straightforward to verify from the construction that Z is a multivariate Gaussian dis-
tribution over Rn with mean zero which satisfies that Var[Zi] = p for all i ∈ [n], and
|Cov[Zi, Zj]| ≤ δ for all distinct i, j ∈ [n].

Step II: Discretizing the Randomness. We prove the following lemma, which allows
to approximately sample a standard MVG Y ∈ R` as needed above using a few random bits.

Lemma 2.5. For any `, η > 0 there exists s = O(` · log(`/η)) and an explicit generator
G : {0, 1}s → R` such that the following holds.

Let f : [−1, 1]n → [−1, 1] be a multi-linear function, A ∈ [−1, 1]n×` and Y be a random
variable over R` where each Yi is an independent N (0, 1) Gaussian. Then

|E[f(trnc(AY ))]− E[f(trnc(AG(Us)))]| ≤ η(n+ 1).

We say that a random variable W ∈ R is a λ-approximate Gaussian if there is a correlated
standard Gaussian W ′ ∼ N (0, 1) such that Pr[|W −W ′| > λ] < λ. We will use the following
lemma of Kane [Kan15] which shows how to approximate a Gaussian in a randomness efficient
way.

Lemma 2.6 ([Kan15]). There is an explicit construction of a λ-approximate Gaussian ran-
dom variable using O(log(1/λ)) bits of randomness.

The generator G would simply be ` independent copies of a λ-approximate Gaussian
given by the above lemma, with λ = η

`
. We denote by Y ′ = G(Us) and by Y the coupled

standard MVG in R`.
Let E denote the event that ‖Y − Y ′‖∞ ≤ λ. By a union bound, Pr(E) ≥ 1 − η.

Conditioned on E it is easy to check that ‖trnc(AY )− trnc(AY ′)‖∞ ≤ η. Finally, we use the
multi-linearity and boundedness of f in the following lemma to finish the proof.
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Lemma 2.7. Let f : [−1, 1]n → [−1, 1] be a multi-linear function. Then for every x, y ∈
[−1, 1]n we have |f(x)− f(y)| ≤ n · ‖x− y‖∞.

Proof. For every i ∈ {0, 1, . . . , n} define z(i) := (x1, ..., xi, yi+1, ..., yn), note that z(n) = x and
z(0) = y. We have

f(x)− f(y) =
n∑
i=1

f(z(i))− f(z(i−1)).

Now note that since f is a multilinear function, for every i,

|f(z(i))− f(z(i−1))| = |hi(xi)− hi(yi)| ≤ |xi − yi|,

where hi(z) = f(x1, . . . , xi−1, z, yi+1, . . . , yn). The above inequality holds as hi is an affine
function mapping [−1, 1] to [−1, 1]. We thus obtain that

|f(x)− f(y)| ≤
n∑
i=1

|xi − yi| ≤ n · ‖x− y‖∞.

Using Lemma 2.7 and condition on the event E we have

|f(trnc(AY ))− f(trnc(AY ′))| ≤ ηn.

As f is bounded in [−1, 1] we obtain the bound

|E[f(trnc(AY ))]− E[f(trnc(AY ′))]| ≤ ηn+ 2Pr[¬E ] ≤ η(n+ 2).

Completing the proof. We put things together to finish the proof of Lemma 2.3. Set
p = 1/(8 ln(n/δ)) = 1/(8 ln(nt/ε)). Let A ∈ [−1, 1]n×` be the matrix constructed in step I.
Set η = ε/(n+ 2) and let G : {0, 1}s → R` be the generator constructed in step II. We take

X = AG(Us).

The arguments above show that X is a fractional PRG for F with error O(ε). In addition,
X is p-noticeable. To conclude we compute the seed length s:

s = O(` · log(`/η)) = O
(
(t/ε)2+o(1) · log n · log(n/ε)

)
.

3 Level one Fourier bounds for polynomials

In this section we bound the level one Fourier tail of low degree polynomials over F2.

Theorem 3.1. Let p : Fn2 → F2 be a polynomial of degree d, and let f(x) = (−1)p(x). Then

L1,1(f) =
n∑
i=1

|f̂(i)| ≤ 4d.
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Proof. We assume for simplicity that n is even; the proof is analogous for odd n. We have
n∑
i=1

|f̂(i)| =
n∑
i=1

si · E
x

[f(x)(−1)xi ] ,

where si = sign(f̂(i)). We may assume without loss of generality that si = 1 for all i, by
replacing xi with 1− xi whenever si = −1. Thus, it suffices to upper bound

E := E
x

[
f(x)

n∑
i=1

(−1)xi

]
.

For t = 1, . . . , n/2 define the functions Tt : {0, 1}n → {−1, 0, 1} as follows:

Tt(x) :=


−1 if

∑
xi ≥ n/2 + t

1 if
∑
xi ≤ n/2− t

0 otherwise

.

Then

E = 2

n/2∑
t=1

E
x

[f(x)Tt(x)] .

We need a few more definitions. Let Ut := {x ∈ {0, 1}n : |
∑
xi − n/2| ≥ t}. Define

Mt : Ut → F2 as Mt(x) = 0 if
∑
xi ≥ n/2 + t, and Mt(x) = 1 if

∑
xi ≤ n/2− t. Note that

Tt(x) = (−1)Mt(x) for x ∈ Ut, and Tt(x) = 0 for x /∈ Ut. Let At := {x ∈ Ut : p(x) = Mt(x)}.
Then

et := E
x

[f(x)Tt(x)] =
2|At| − |Ut|

2n
.

We next apply a dimension argument similar to that used by Razborov [Raz87] and
Smolensky [Smo93] (we adopt a Kopparty’s presentation of the argument [Kop11, Lemma 6]).
Consider the space of functions g : At → F2. On the one hand, its dimension is |At|. On the
other hand, any function g : Ut → F2 can be decomposed as

g(x) = g1(x)Mt(x) + g2(x),

where g1, g2 are polynomials over F2 of degree ≤ n/2 − t. Thus, any function g : At → F2

can be expressed as a polynomial g(x) = g1(x)p(x) + g2(x) which is of degree ≤ n/2− t+ d.
Thus, we can bound |At| by the dimension of this linear space of polynomials,

|At| ≤
n/2−t+d∑
i=0

(
n

i

)
.

Using the fact that |Ut| = 2
∑n/2−t

i=0

(
n
i

)
we can upper bound et by

et ≤
2
∑d

i=1

(
n

n/2−t+i

)
2n

.

We thus can bound E by

E = 2

n/2∑
t=1

et ≤ 4

n/2∑
t=1

d∑
i=1

(
n

n/2−t+i

)
2n

= 4
d∑
i=1

n/2−1∑
j=0

(
n
j+i

)
2n
≤ 4d.
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3.1 Level two Fourier bounds from level one bounds

We present a simple argument showing that for any family F of n-variate Boolean functions
that is closed under restrictions, a bound of L1,1(F) ≤ t implies L1,2(F) ≤ O(t ·

√
n log n).

Using this connection, we get that polynomials of degree polylog(n) have L1,2(·) at most√
n · polylog(n). Recall that we conjecture that the right bound should be polylog(n) (i.e.,

exponentially smaller). Nevertheless, even improving this bound slightly to n1/2−o(1) would
imply a non-trivial PRG fooling polylog(n)-degree F2-polynomials and AC0[⊕] circuits with
seed-length n1−o(1). In comparison, the current state of the art PRG for AC0[⊕] circuits has
seed-length n− n/polylog(n) [FSUV13].

Claim 3.2. Let F be a class of n-variate Boolean functions that is closed under restrictions.
Let t ≥ 1. Assume that L1,1(F) ≤ t. Then, L1,2(F) ≤ t ·O(

√
n log n).

Proof. Let f : {−1, 1}n → {−1, 1} be some Boolean function in F . We bound L1,2(f) =∑
i<j |f̂(i, j)|. We begin by partitioning the set of coordinates of f into two disjoint parts

[n] = X ∪ Y and summing only the cross-terms L1(X, Y ) =
∑

i∈X
∑

j∈Y |f̂(i, j)|. We note
that there exists a partition [n] = X ∪ Y such that L1(X, Y ) ≥ L1,2(f)/2. This holds since
a random partition has on expectation

E
X,Y

[L1(X, Y )] =
∑
i<j

|f̂(i, j)| · (Pr[i ∈ X, j ∈ Y ] + Pr[i ∈ Y, j ∈ X]) = L1,2(f) · 1

2
.

Fix a partition (X, Y ) for which L1(X, Y ) ≥ L1,2(f) · 1
2
. In the remainder, we bound

L1(X, Y ) =
∑

i∈X,j∈Y

|f̂({i, j})| =
∑

i∈X,j∈Y

si,j · f̂({i, j})

for some sign matrix s ∈ {−1, 1}X×Y . For any fixed x ∈ {−1, 1}X we denote by fx :
{−1, 1}Y → {−1, 1} the function defined by fx(y) = f(x, y). Note that fx is a restriction of
f thus by our assumption, its L1,1 is at most t. We get

L1(X, Y ) = E
x∈{−1,1}X ,
y∈{−1,1}Y

[ ∑
i∈X,j∈Y

si,j · f(x, y) · xi · yj

]

= E
x∈{−1,1}X

[ ∑
i∈X,j∈Y

si,j · xi · E
y∈{−1,1}Y

[f(x, y) · yj]

]

= E
x∈{−1,1}X

[ ∑
i∈X,j∈Y

si,j · xi · f̂x({j})

]
= E

x∈{−1,1}X

[∑
j∈Y

(
f̂x({j}) ·

∑
i∈X

si,j · xi
)]

≤ E
x∈{−1,1}X

[∑
j∈Y

|f̂x({j})| ·
∣∣∣∑
i∈X

si,j · xi
∣∣∣] ≤ E

x∈{−1,1}X

[
t ·max

j∈Y

∣∣∣∑
i∈X

si,j · xi
∣∣∣]

By Chernoff’s bounds, the expectation of maxj∈Y |
∑

i∈X si,j · xi| is at most O(
√
n log n).

Thus overall L1,2(f) ≤ 2 · L1(X, Y ) ≤ 2t ·O(
√
n · log n).
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4 Further research

A clear advantage of Theorem 1.2 over Theorem 1.1 is that only bounds on the second level
of the Fourier tails are needed, instead of bounds for all levels. However, we pay a price,
as the dependence on the error parameter ε is polynomial instead of poly-logarithmic. This
raises a natural problem: can a better dependency on ε be obtained if the Fourier tails are
assumed to be bounded for several levels k? In particular, information on how many levels
is needed in order to obtain poly-logarithmic dependency on the error ε? We leave these
questions to future work.

Acknowledgements

We would like to thank Gil Cohen, Russell Impagliazzo, Valentine Kabanets, James Lee, Ran
Raz, Rahul Santhanam, Roy Schwartz and Srikanth Srinivasan for very helpful conversations.

References

[BB18] Boaz Barack and Jaros law B lasiok. On the Raz-Tal oracle sepa-
ration of BQP and PH. https://windowsontheory.org/2018/06/17/

on-the-raz-tal-oracle-separation-of-bqp-and-ph/, 2018.

[CHHL18] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseu-
dorandom generators from polarizing random walks. In 33rd Computational Com-
plexity Conference, CCC 2018, pages 1:1–1:21, 2018.

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On
beating the hybrid argument. Theory of Computing, 9:809–843, 2013.

[Iss18] Leon Isserlis. On a formula for the product-moment coefficient of any order
of a normal frequency distribution in any number of variables. Biometrika,
12(1/2):134–139, 1918.

[Kan15] Daniel M. Kane. A polylogarithmic PRG for degree 2 threshold functions in
the gaussian setting. In Conference on Computational Complexity, volume 33 of
LIPIcs, pages 567–581, 2015.

[Kop11] Swastik Kopparty. On the complexity of powering in finite fields. In STOC, pages
489–498. ACM, 2011.

[MP10] Peter Mörters and Yuval Peres. Brownian motion, volume 30. Cambridge Uni-
versity Press, 2010.

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over
a complete basis with logical addition. Mathematical Notes of the Academy of
Sciences of the USSR, 41(4):333–338, 1987.

10

https://windowsontheory.org/2018/06/17/on-the-raz-tal-oracle-separation-of-bqp-and-ph/
https://windowsontheory.org/2018/06/17/on-the-raz-tal-oracle-separation-of-bqp-and-ph/


[RT18] Ran Raz and Avishay Tal. Oracle separation of BQP and PH. Electronic Collo-
quium on Computational Complexity (ECCC), 25:107, 2018.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In STOC, pages 77–82. ACM, 1987.

[Smo93] R. Smolensky. On representations by low-degree polynomials. In FOCS, pages
130–138, 1993.

[Ta-17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In STOC,
pages 238–251, 2017.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1-3):1–336, 2012.

[Vio09] Emanuele Viola. Guest column: correlation bounds for polynomials over {0 1}.
ACM SIGACT News, 40(1):27–44, 2009.

A Proof of Theorem 2.4

Throughout this section we take G to be a multivariate Gaussian distribution with zero
mean, covariances at most δ and variances at most 1. That is, if G = (G1, . . . , Gn) then
E[Gi] = 0,E[G2

i ] ≤ 1 and |E[GiGj]| ≤ δ for i 6= j.

A.1 Preliminaries

Let f : Rn → R be a multi-linear function, defined by

f(z) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

zi, (1)

where f̂(S) ∈ R. We bound the difference between Ez∼G[f(trnc(pz))] and Ez∼G[f(pz)] for a
small p ∈ (0, 1). Note that whenever z′ ∈ [−1, 1]n, there is no difference between f(z′) and
f(trnc(z′)), and we only need to bound the difference when z′ is outside [−1, 1]n. The next
claim bounds the value of |f(z′)| when z′ is outside [−1, 1]n.

Claim A.1 ([RT18, Claim 5.1]). Let f : Rn → R be a multi-linear function that maps
{−1, 1}n to [−1, 1]. Let z′ ∈ Rn. Then, |f(z′)| ≤

∏n
i=1 max(1, |z′i|).

For α ∈ (0, 1), z ∈ Rn, we get that the value of |f(αz)| is bounded by
∏

i max(1, |αzi|).
The following claim bounds the latter times the indicator that αz 6= trnc(αz).

Claim A.2. Let α ∈ (0, 1/
√

4n]. Then,

E
z∼G

[ n∏
i=1

max(1, |αzi|) · 1αz 6=trnc(αz)

]
≤

∞∑
k=1

e−k/(4α
2n) · nk.

11



Proof. For i ∈ [n] and ai ∈ N, we consider the event

ai ≤ |α · zi| < ai + 1,

denoted by Ei,ai . Since each zi is a Gaussian with mean 0 and variance at most 1, we have
Pr[Ei,ai ] ≤ e−a

2
i /(2α

2). Using Claim A.1 we have

(∗) = E
z∼G

[ n∏
i=1

max(1, |αzi|) · 1αz 6=trnc(αz)

]
≤

∑
~a∈Nn,~a6=0n

Pr[∧ni=1Ei,ai ] ·
n∏
i=1

(1 + ai)

≤
∑

~a∈Nn,~a6=0n

min
i∈[n]
{Pr[Ei,ai ]} ·

n∏
i=1

(1 + ai)

≤
∑

~a∈Nn,~a6=0n

n∏
i=1

Pr[Ei,ai ]1/n ·
n∏
i=1

(1 + ai) (2)

We bound
Pr[Ei,ai ]1/n · (1 + ai) ≤ e−a

2
i /(2α

2n) · (1 + ai) ≤ e−a
2
i /(4α

2n)

since 1 + ai ≤ eai ≤ ea
2
i /(4α

2n) for α2 ≤ 1/4n. We plug this estimate in Equation (2):

(∗) ≤
∑

~a∈NN ,~a6=0n

e−
∑

i a
2
i /(4α

2n)

≤
∞∑
k=1

e−k/(4α
2n) ·

∣∣∣{~a ∈ Nn :
∑
i

ai = k
}∣∣∣

=
∞∑
k=1

e−k/(4α
2n) ·

(
n+ k − 1

k

)
≤

∞∑
k=1

e−k/(4α
2n) · nk.

Claim A.3. Let p ≤ 1/4
√
n. Let f : Rn → R be a multi-linear function that maps {−1, 1}n

to [−1, 1]. Let v ∈ [−1/2, 1/2]n. Then,

E
z∼G

[|f(trnc(v + p · z))− f(v + p · z)|] ≤ 2 ·
∞∑
k=1

e−k/(16p
2n) · nk.

Proof. Let E be the event that (trnc(v + p · z) 6= v + p · z). Note that E implies the event
2pz 6= trnc(2pz) since v ∈ [−1/2, 1/2]n. Using Claim A.1, we get

E
z∼G

[|f(trnc(v + p · z))− f(v + p · z)|] ≤ E
z∼G

[(1 + |f(v + p · z)|) · 1E ]

≤ E
z∼G

[(1 + |f(v + p · z)|) · 12pz 6=trnc(2pz)]

≤ E
z∼G

[(
1 +

n∏
i=1

max(1, |vi + p · zi|)
)
· 12pz 6=trnc(2pz)

]
≤ E

z∼G

[
2 ·

n∏
i=1

max(1, |vi + p · zi|) · 12pz 6=trnc(2pz)

]
.

12



However,
∏n

i=1 max(1, |vi + p · zi|) ≤
∏n

i=1 max(1, 1/2 + p|zi|) ≤
∏n

i=1 max(1, 2p|zi|). Using
Claim A.2 with α = 2p, we get

E
z∼G

[|f(trnc(v + p · z))− f(v + p · z)|] ≤ E
z∼G

[
2 ·

n∏
i=1

max(1, 2p|zi|) · 12pz 6=trnc(2pz)

]
≤ 2 · E

z∼G

[ n∏
i=1

max(1, α|zi|) · 1αz 6=trnc(αz)

]
≤ 2 ·

∞∑
k=1

e−k/(4α
2n) · nk.

Claim A.4 (Application of Isserlis’ Theorem). Let G be a MVG distribution over Rn with

zero-mean and covariances at most δ. For S ⊆ [n], let Ĝ(S) = EZ∼G[
∏

i∈S Zi]. Then,

1. Ĝ(S) = 0 if |S| is odd.

2. |Ĝ(S)| ≤ (k − 1)!! · δk/2 if |S| = k is even.

Proof. Both items rely on Isserlis’ Theorem [Iss18] (See also http://en.wikipedia.org/

wiki/Isserlis’_theorem) that gives a formula for the moments of any zero-mean multi
Gaussian distribution. Isserlis’ Theorem [Iss18] states that in a zero-mean multivariate Gaus-
sian distribution Z1, . . . , Zn, for a sequence of indices (i1, . . . , ik) ∈ [n], we have E[Zi1 · · ·Zik ] =
0 if k is odd and E[Zi1 · · ·Zik ] =

∑∏
E[ZirZi` ], where the notation

∑∏
means summing

over all distinct ways of partitioning Zi1 , . . . , Zik into pairs and each summand is the product
of the k/2 pairs. If |S| = k is even, since the covariance of each pair in G is at most δ in abso-

lute value and there are at most (k−1)!! partitions to pairs, we get |Ĝ(S)| ≤ (k−1)!!·δk/2.

The next claim expresses the difference of a multi-linear function f on two vectors, v
and v + z, as the expected difference of random restrictions of f on 0 and 2z, provided that
v ∈ [−1/2, 1/2]n. Applying this lemma when the entries of z are infinitesimally small means
that bounded variation of random restrictions of f around 0 implies bounded variation of f
around any v ∈ [−1/2, 1/2]n.

Claim A.5 ([CHHL18, Claim 3.3], restated in [BB18]). Let f be a multi-linear function on
Rn and v ∈ [−1/2, 1/2]n. There exists a distribution over random restrictions ρ such that
for any z ∈ Rn,

f(v + z)− f(v) = E
ρ

[fρ(2 · z)− fρ(~0)].

Proof. Given v ∈ [−1/2, 1/2]n, we define a distribution Rv over restrictions ρ ∈ {−1, 1, ∗}n,
as follows. For each entry i ∈ [n] independently, we set ρi = 1 with probability 1/4 + vi/2,
ρi = −1 with probability 1/4 − vi/2, and ρi = ∗ with probability 1/2. Note that since
v ∈ [−1/2, 1/2]n all these probabilities are indeed non-negative.

Let ρ ∼ Rv. For any vector z ∈ Rn, we define a vector z̃ = z̃(z, ρ) ∈ Rn, as follows:

z̃i =

{
ρi if ρi ∈ {−1, 1}
2 · zi otherwise
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Thus, for a fixed z ∈ Rn, the vector z̃ is a random variable that depends on ρ. We show
that for any fixed z ∈ Rn, the distribution of the random variable z̃ is a product distribution
(over inputs in Rn), and the expectation of z̃ is the vector v + z. Indeed, each coordinate z̃i
is independent of the other coordinates, and its expected value is

E
ρ∼Rv

[z̃i] = vi + zi.

Hence, since f is multi-linear and z̃ has a product distribution, by Equation (1), Eρ∼Rv [f(z̃)] =
f(v + z). We get

f(v + z)− f(v) = E
ρ∼Rv

[f(z̃(z, ρ))]− E
ρ∼Rv

[f(z̃(~0, ρ))] = E
ρ∼Rv

[f(z̃(z, ρ))− f(z̃(~0, ρ))]

However, for any fixed ρ, we have f(z̃(z, ρ)) = fρ(2z), where fρ is attained from f by fixing
the coordinates that were fixed in ρ, according to ρ. Thus,

f(v + z)− f(v) = E
ρ∼Rv

[fρ(2 · z)− fρ(~0)].

A.2 The Proof

Claim A.6. Let f : {−1, 1}n → {−1, 1} be a Boolean function with L1,2(f) ≤ t. Let
p ≤ 1/2n. Then, ∣∣∣ E

Z∼G
[f(pZ)]− f(~0)

∣∣∣ ≤ p2 · t · δ +O(p4 · n4 · δ2) .

Proof. By Equation (1) and since f(~0) = f̂(∅),∣∣∣∣ E
Z∼G

[f(pZ)]− f(~0)

∣∣∣∣ =

∣∣∣∣ E
Z∼G

[ ∑
∅6=S⊆[n]

f̂(S) ·
∏
i∈S

(p · Zi)
]∣∣∣∣

=

∣∣∣∣ ∑
∅6=S⊆[n]

f̂(S) · p|S| · E
Z∼G

[∏
i∈S

Zi

]∣∣∣∣
≤

n∑
k=1

pk ·
(

max
S:|S|=k

|Ĝ(S)|
)
·

∑
S⊆[n],|S|=k

|f̂(S)|

For odd k, Claim A.4 gives maxS:|S|=k |Ĝ(S)| = 0. For even k, we have maxS:|S|=k |Ĝ(S)| ≤
(k − 1)!! · δk/2 by Claim A.4. Plugging these bounds in the above expression gives∣∣∣ E

Z∼G
[f(pZ)]− f(~0)

∣∣∣ ≤ p2 · δ ·
∑

S:|S|=2

|f̂(S)|+
∑

k≥4,k even

pk · δk/2 · (k − 1)!! ·
∑

S:|S|=k

|f̂(S)|

≤ p2 · δ · t+
∑

k≥4,k even

pk · δk/2 · (k − 1)!! ·
(
n

k

)
(L1,2(f) ≤ t and ∀S : |f̂(S)| ≤ 1)

≤ p2 · δ · t+
∑

k≥4,k even

pk · δk/2 · nk

≤ p2 · δ · t+O(p4 · n4 · δ2) (p ≤ 1/2n)
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Theorem A.7 (Theorem 2.4, restated). Let n ∈ N, δ, σ ∈ (0, 1). Let G be a zero-mean
multivariate Gaussian distribution over Rn where Z ∼ G has the following two properties:

1. For i ∈ [n]: Var[Zi] ≤ σ2

2. For i, j ∈ [n], i 6= j: |Cov[Zi, Zj]| ≤ δ.

Let F be a class of n-variate Boolean functions which is closed under restrictions. Assume
that L1,2(F) ≤ t. Then for any f ∈ F it holds that |E[f(trnc(Z))]−f(~0)| ≤ 4δ·t+4n·e−1/8σ2

.

Proof. Let m ∈ N be sufficiently large (in particular m ≥ (4n)4) and p = 1/
√
m. Let

Z(1), . . . , Z(m) ∼ G. We define m+ 1 hybrids H0, . . . , Hm. Let H0 = ~0. For i = 1, . . . ,m, let
Hi = p · (Z(1) + . . .+Z(i)). We observe that Hm ∼ G. This is true since Hm is a multivariate
Gaussian with the same expectation and the same covariance matrix as Z ∼ G. We can
think of H0, H1, . . . , Hm as a n-dimensional random walk. We bound∣∣∣E[f(trnc(Hm))]− f(~0)]

∣∣∣
by considering two cases depending on whether or not at some point in the random walk we
stepped outside of [−1/2, 1/2]n.

For i ∈ {0, . . . ,m}, let Ei be the event that Hi ∈ [−1/2, 1/2]n. We show that Ei happens
with high probability. In fact, we show that E = E1 ∧ E2 ∧ . . . ∧ Em happens with high
probability, with no dependency on the number of steps m. The claim follows from known
properties of Brownian motions. For j ∈ [n], let D(j) be the event that there exists an i ∈ [m]
with |(Hi)j| > 1/2. Clearly ¬E ≡ D(1) ∨ D(2) ∨ . . . ∨ D(n).

We show that for each j ∈ [n], Pr[D(j)] ≤ 4 · e−8/σ2
and then apply a union bound.

Each {(Hi)j}mi=0 is a random walk with m steps, which can be viewed as a discretization
of a one-dimensional Brownian motion. A standard one-dimensional Brownian motion (or
Wiener process) is a random process {B(t)}t≥0 with the properties: (1) B(0) = 0, (2) for
all t, s ≥ 0, B(t + s) − B(t) is independent of the past {B(t′)}t′≤t (3) for all t, s ≥ 0,
B(t + s) − B(t) ∼ N (0, s). Let σ2

j := Var[zj]. We observe that if B is a standard one-
dimensional Brownian motion, then {B(σ2

j · i/m)}mi=0 is distributed exactly as {(Hi)j}mi=0.
Let M(t) = sup0≤s≤tB(s) and M ′(t) = inf0≤s≤tB(s). It suffices to show that M(σ2

j ) ≤ 1/2
and M ′(σ2

j ) ≥ −1/2 with high probability. Known results on Brownian motions state that
Pr[M ′(t) < −1/2] = Pr[M(t) > 1/2] = Pr[|B(t)| > 1/2] (cf. [MP10, Theorem 2.21]). The
latter is at most e−1/8t since B(t) ∼ N (0, t). Overall, we get

Pr[¬E ] ≤
n∑
j=1

Pr[D(j)] ≤
n∑
j=1

(
Pr[M ′(σ2

j ) < −1/2] + Pr[M(σ2
j ) > 1/2]

)
≤ 2n · e−1/8σ2

Next, we bound |EZ(i+1) [f(trnc(Hi + p ·Z(i+1)))− f(trnc(Hi))]| conditioned on the event
Ei, for i = 0, 1, . . . ,m− 1. Let v = Hi. Condition on the event Ei, and in fact condition on
the entire history in the first i steps, which in particular fixes v. By Claim A.5, we have∣∣∣∣ E

Z(i+1)
[f(v + p · Z(i+1))− f(v)]

∣∣∣∣ =

∣∣∣∣ E
Z(i+1)

E
ρ

[fρ(2p · Z(i+1))− fρ(~0)]

∣∣∣∣
≤ E

ρ

∣∣∣∣ E
Z(i+1)

[fρ(2p · Z(i+1))− fρ(~0)]

∣∣∣∣ .
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By Claim A.6 we have that the latter is at most (2p)2tδ + O(p4n4δ2) as long as 2p ≤
1/2n. We wish to show a similar bound on the truncated version of Hi + p · Z(i+1). Note
that conditioned on Ei, we have Hi = trnc(Hi), but this is not necessarily the case for
Hi + p ·Z(i+1). Using Claim A.3 we get

∣∣EZ(i+1) [f(p · Z(i+1) + v)− f(trnc(p · Z(i+1) + v))]
∣∣ ≤

2 ·
∑∞

k=1 e
−k/(16p2n) · nk. By the triangle inequality we get∣∣∣ E

Z(i+1)
[f(trnc(v + p · Z(i+1)))− f(trnc(v))]

∣∣∣
≤
∣∣∣ E
Z(i+1)

[f(trnc(v + p · Z(i+1)))− f(v + p · Z(i+1))]
∣∣∣

+
∣∣∣ E
Z(i+1)

[f(v + p · Z(i+1))− f(trnc(v))]
∣∣∣

≤
(

2 ·
∞∑
k=1

e−k/(16p
2n) · nk

)
+
(

4p2 · δ · t+O(p4n4δ2)
)
. (3)

To finish the proof, using triangle inequality we have∣∣∣E[f(trnc(Hm))− f(~0)]
∣∣∣ ≤ ∣∣∣E[f(trnc(Hm)) · 1E − f(~0)]

∣∣∣+ |E[f(trnc(Hm)) · 1¬E ]|

We bound the second summand by Pr[¬E ] since f is bounded in [−1, 1] on truncated vectors,
whereas the first summand is bounded using a telescopic sum of the m+ 1 hybrids:∣∣∣E[f(trnc(Hm)) · 1E)− f(~0)]

∣∣∣
≤

m−1∑
i=0

|E[f(trnc(Hi+1)) · 1E1∧...∧Ei+1
− f(trnc(Hi)) · 1E1∧...∧Ei ]|

≤
m−1∑
i=0

|E[f(trnc(Hi+1)) · 1E1∧...∧Ei − f(trnc(Hi)) · 1E1∧...∧Ei)]|

+ |E[f(trnc(Hi+1)) · (1E1∧...∧Ei+1
− 1E1∧...∧Ei)]|

≤
m−1∑
i=0

(
2 ·

∞∑
k=1

e−k/(16p
2n) · nk

)
+
(

4p2 · δ · t+O(p4n4δ2)
)

+ E[|1E1∧...∧Ei+1
− 1E1∧...∧Ei|]

(Eq. (3), f is bounded)

≤ m ·
((

2 ·
∞∑
k=1

e−k/(16p
2n) · nk

)
+ 4p2 · δ · t+O(p4n4δ2)

)
+ Pr[¬E ].

Overall,∣∣∣E[f(trnc(Hm))− f(~0)]
∣∣∣ ≤ m ·

((
2 ·

∞∑
k=1

e−k/(16p
2n) · nk

)
+ 4p2 · δ · t+O(p4n4δ2)

)
+ 2Pr[¬E ]

= m ·
((

2 ·
∞∑
k=1

e−km/(16n) · nk
)

+ 4m−1 · δ · t+O(m−2n4δ2)
)

+ 2Pr[¬E ]

Taking m→∞ gives the upper bound 4δ · t+2Pr[¬E ] ≤ 4δ · t+4n ·e−1/8σ2
as promised.
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