
Quantum algorithms and approximating polynomials
for composed functions with shared inputs

Mark Bun
Boston University

mbun@bu.edu

Robin Kothari
Microsoft Quantum

robin.kothari@microsoft.com

Justin Thaler
Georgetown University

justin.thaler@georgetown.edu

Abstract

We give new quantum algorithms for evaluating composed functions whose inputs may be
shared between bottom-level gates. Let f be a Boolean function and consider a function F
obtained by applying f to conjunctions of possibly overlapping subsets of n variables. If f has
quantum query complexity Q(f), we give an algorithm for evaluating F using Õ(

√
Q(f) · n)

quantum queries. This improves on the bound of O(Q(f) ·
√
n) that follows by treating each

conjunction independently, and is tight for worst-case choices of f . Using completely different
techniques, we prove a similar tight composition theorem for the approximate degree of f .

By recursively applying our composition theorems, we obtain a nearly optimal Õ(n1−2−d)
upper bound on the quantum query complexity and approximate degree of linear-size depth-d
AC0 circuits. As a consequence, such circuits can be PAC learned in subexponential time, even
in the challenging agnostic setting. Prior to our work, a subexponential-time algorithm was not
known even for linear-size depth-3 AC0 circuits.

As an additional consequence, we show that AC0 ◦ ⊕ circuits of depth d + 1 require size
Ω̃(n1/(1−2−d)) ≥ ω(n1+2−d) to compute the Inner Product function even on average. The previous
best size lower bound was Ω(n1+4−(d+1)) and only held in the worst case (Cheraghchi et al., JCSS
2018).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 156 (2018)

1 Introduction
In the query, or black-box, model of computation, an algorithm aims to evaluate a known Boolean
function f : {0, 1}n → {0, 1} on an unknown input x ∈ {0, 1}n by reading as few bits of x as possible.
One of the most basic questions one can ask about query complexity, or indeed any complexity
measure of Boolean functions, is how it behaves under composition. Namely, given functions f and
g, and a method of combining these functions to produce a new function h, how does the query
complexity of h depend on the complexities of the constituent functions f and g?

The simplest method for combining functions is block composition, where the inputs to f are
obtained by applying the function g to independent sets of variables. That is, if f : {0, 1}m → {0, 1}
and g : {0, 1}k → {0, 1}, then the block composition (f ◦ g) : {0, 1}m·k → {0, 1} is defined by
(f ◦ g)(x1, . . . , xm) = f(g(x1), . . . , g(xm)) where each xi is a k-bit string. In most reasonable models
of computation, one can evaluate f ◦ g by running an algorithm for f , and using an algorithm for g
to compute the inputs to f as needed. Thus, the query complexity of f ◦ g is at most the product
of the complexities of f and g.1

For many query models, including those capturing deterministic and quantum computation,
this is known to be tight. In particular, letting Q(f) denote the bounded-error quantum query
complexity of a function f , it is known that Q(f ◦ g) = Θ(Q(f) ·Q(g)) for all Boolean functions f
and g [HLŠ07, Rei11]. This result has the flavor of a direct sum theorem: When computing many
copies of the function g (in this case, as many as are needed to generate the necessary inputs to f),
one cannot do better than just computing each copy independently.

1.1 Quantum algorithms for shared-input compositions

While we have a complete understanding of the behavior of quantum query complexity under
block composition, little is known for more general compositions. What is the quantum query
complexity of a composed function where inputs to f are generated by applying g to overlapping
sets of variables? We call these more general compositions shared-input compositions. Not only does
answering this question serve as a natural next step for improving our understanding of quantum
query complexity, but it may lead to more unified algorithms and lower bounds for specific functions
of interest in quantum computing. Many of the functions that have played an influential role in the
study of quantum query complexity can be naturally expressed as compositions of simple functions
with shared inputs, including k-distinctness, k-sum, surjectivity, triangle finding, and graph collision.

In this work, we study shared-input compositions between an arbitrary function f and the
function g = AND. If f : {0, 1}m → {0, 1}, then we let h : {0, 1}n → {0, 1} be any function obtained
by generating each input to f as an AND over some subset of (possibly negated) variables from
x1, . . . , xn, as depicted in Figure 1.

Of course, one can compute the function h by ignoring the fact that the AND gates depend
on shared inputs, and instead regard each gate as depending on its own set of copies of the input
variables. Using the quantum query upper bound for block compositions, together with the fact
that Q(ANDn) = Θ(

√
n) [Gro96, BBBV97], one obtains

Q(h) = O(Q(f) ·Q(ANDn)) = O(Q(f) ·
√
n). (1)

Observe that this bound on Q(h) is non-trivial only if Q(f)�
√
n. A priori, one may conjecture

that this bound is tight in the worst case for shared-input compositions. After all, if the variables
1In some “reasonable models,” such as those with bounded error, one must take care to ensure that errors in

computing each copy of g do not propagate, but we elide these issues for this introduction. Addressing this concern
typically adds at most a logarithmic overhead.

1

h(x)

f

x1 x1 x2 x2 x3 x3 x4 x4 x5 x5

∧ ∧ ∧ ∧ ∧ ∧

Figure 1: A depth-2 circuit h : {0, 1}5 → {0, 1} where the top gate is a function f : {0, 1}6 → {0, 1}
and the bottom level gates are AND gates on a subset of the input bits and their negations. More
generally, we consider h : {0, 1}n → {0, 1}, with top gate f : {0, 1}m → {0, 1}.

overlap in some completely arbitrary way with no structure, it is unclear from the perspective of an
algorithm designer how to use the values of already-computed AND gates to reduce the number
of queries needed to compute further AND gates. It might even be the case that every pair of
AND gates shares very few common input bits, suggesting that evaluating one AND gate yields
almost no information about the output of any other AND gate. This intuition even suggests a path
for proving a matching lower bound: Using a random wiring pattern, combinatorial designs, etc.,
construct the set of inputs to each AND gate so that evaluating any particular gate leaks almost no
useful information that could be helpful in evaluating the other AND gates.

In this work, we show that this intuition is wrong: the overlapping structure of the AND gates
can always be exploited algorithmically (so long as Q(f)� n).

Results. Our main result shows that a shared-input composition between a function f and the
AND function always has substantially lower quantum query complexity than the block composition
f ◦ANDn. Specifically, instead of having quantum query complexity which is the product Q(f) ·

√
n,

a shared-input composition has quantum query complexity which is, up to logarithmic factors,
the geometric mean

√
Q(f) · n between Q(f) and the number of input variables n. This bound is

nontrivial whenever Q(f) is significantly smaller than n.

Theorem 1. Let h : {0, 1}n → {0, 1} be computed by a depth-2 circuit where the top gate is a
function f : {0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the input bits
and their negations (as depicted in Figure 1). Then we have

Q(h) = O
(√

Q(f) · n · log2(mn)
)
. (2)

Note that Theorem 1 is nearly tight for every possible value of Q(f) ∈ [n]. For a parameter
t ≤ n, consider the block composition (i.e., the composition with disjoint inputs) PARITYt ◦ANDn/t.
Since Q(PARITYt) = dt/2e [BBC+01], this function has quantum query complexity

Q
(
PARITYt ◦ANDn/t

)
= Θ

(
t ·
√
n/t

)
= Θ

(√
Q(PARITYt) · n

)
, (3)

matching the upper bound provided by Theorem 1 up to log factors. This shows that Theorem 1
cannot be significantly improved in general.

2

The proof of Theorem 1 makes use of an optimal quantum algorithm for computing f and
Grover’s search algorithm for evaluating AND gates. Surprisingly, it uses no other tools from
quantum computing. The core of the argument is entirely classical, relying on a recursive gate and
wire-elimination argument for evaluating AND gates with overlapping inputs.

At a high level, the algorithm in Theorem 1 works as follows. The overall goal is to query
enough input bits such that the resulting circuit is simple enough to apply the composition upper
bound Q(f ◦ g) = O(Q(f)Q(g)). To apply this upper bound and obtain the claimed upper bound
in Theorem 1, we require Q(g) to be O(

√
n/Q(f)). Since g is just an AND gate on some subset of

inputs, this means we want the fan-in of each AND gate in our circuit to be O(n/Q(f)). If we call
AND gates with fan-in ω(n/Q(f)) “high fan-in” gates, then the goal is to eliminate all high fan-in
gates. Our algorithm achieves this by judiciously querying input bits that would eliminate a large
number of high fan-in gates if they were set to 0.

Besides the line of work on the quantum query complexity of block compositions, our result
is also closely related to work of Childs, Kimmel, and Kothari [CKK12] on read-many formulas.
Childs et al. showed that any formula on n inputs consisting of G gates from the de Morgan basis
{AND,OR,NOT} can be evaluated using O(G1/4 ·

√
n) quantum queries. In the special case of

DNF formulas, our result coincides with theirs by taking the top function f to be the OR function.
However, even in this special case, the result of Childs et al. makes critical use of the top function
being OR. Specifically, their result uses the fact that the quantum query complexity of the OR
function is the square root of its formula size. Our result, on the other hand, applies without making
any assumptions on the top function f . This level of generality is needed when using Theorem 1 to
understand circuits (rather than just formulas) of depth 3 and higher, as discussed in Section 1.3.

1.2 Approximate degree of shared-input compositions

We also study shared-input compositions under the related notion of approximate degree. For a
Boolean function f : {0, 1}n → {0, 1}, an ε-approximating polynomial for f is a real polynomial
p : {0, 1}n → R such that |p(x) − f(x)| ≤ ε for all x ∈ {0, 1}n. The ε-approximate degree of f ,
denoted degε(f), is the least degree among all ε-approximating polynomials for f . We use the term
approximate degree without qualification to refer to choice ε = 1/3, and denote it d̃eg(f) = deg1/3(f).

A fundamental observation due to Beals et al. [BBC+01] is that any T -query quantum algorithm
for computing a function f implicitly defines a degree-2T approximating polynomial for f . Thus,
d̃eg(f) ≤ 2Q(f). This relationship has led to a number of successes in proving quantum query
complexity lower bounds via approximate degree lower bounds, constituting a technique known
as the polynomial method in quantum computing. Conversely, quantum algorithms are powerful
tools for establishing the existence of low-degree approximating polynomials that are needed
in other applications to theoretical computer science. For example, the deep result that every
de Morgan formula of size s has quantum query complexity, and hence approximate degree,
O(
√
s) [FGG08, CCJYM09, ACR+10, Rei11] underlies the fastest known algorithm for agnostically

learning formulas [KKMS08, Rei11] (See Section 1.4 and Section 5 for details on this application).
It has also played a major role in the proofs of the strongest formula and graph complexity lower
bounds for explicit functions [Tal17].

Results. We complement our result on the quantum query complexity of shared-input compositions
with an analogous result for approximate degree.

Theorem 2. Let h : {0, 1}n → {0, 1} be computed by a depth-2 circuit where the top gate is a
function f : {0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the input bits

3

and their negations (as depicted in Figure 1). Then

degε(h) = O

(√
degε(f) · n · logm+

√
n log(1/ε)

)
. (4)

In particular, d̃eg(h) = O

(√
d̃eg(f) · n logm

)
.

Note that our result for approximate degree is incomparable with Theorem 1, even for bounded
error, since both sides of the equation include the complexity measure under consideration.

Like Theorem 1, Theorem 2 can be shown to be tight by considering the block composition of
PARITY with AND, since d̃eg(PARITYt ◦ANDn/t) = Θ

(√
d̃eg(PARITYt) · n

)
[She13b, She11b].

Our proof of Theorem 2 abstracts and generalizes a technique introduced by Sherstov [She18],
who very recently proved an O(n3/4) upper bound on the approximate degree of an important
depth-3 circuit of nearly quadratic size called Surjectivity [She18]. Despite the similarity between
Theorem 2 and Theorem 1, and the close connection between approximating polynomials and
quantum algorithms, the proof of Theorem 2 is completely different from Theorem 1, making crucial
use of properties of polynomials that do not hold for quantum algorithms.2 In our opinion, this
feature of the proof of Theorem 2 makes Theorem 1 for quantum algorithms even more surprising.

We remark that a different proof of the O(n3/4) upper bound for the approximate degree of
Surjectivity was discovered in [BKT18], who also showed a matching lower bound. It is also possible
to prove Theorem 2 by generalizing the techniques developed in that work, but the techniques of
[She18] lead to a shorter and cleaner analysis.

1.3 Application: Evaluating and approximating linear-size AC0 circuits

The circuit class AC0 consists of constant-depth, polynomial-size circuits over the de Morgan
basis {AND,OR,NOT} with unbounded fan-in gates. The full class AC0 is known to contain very
hard functions from the standpoint of both quantum query complexity and approximate degree.
The aforementioned Surjectivity function is in depth-3 AC0 and has quantum query complexity
Ω(n) [BM12, She15], while for every positive constant δ > 0, there exists a depth-O(log(1/δ)) AC0

circuit with approximate degree Ω(n1−δ) [BT17].
Nevertheless, AC0 contains a number of interesting subclasses for which nontrivial quantum

query and approximate degree upper bounds might still hold. Here, we discuss applications of our
composition theorem to understanding the subclass LC0, consisting of AC0 circuits of linear size.

The class LC0 is one of the most interesting subclasses of AC0. It has been studied by many
authors in various complexity-theoretic contexts, ranging from logical characterizations [KLPT06]
to faster-than-brute-force satisfiability algorithms [CIP09, SS12]. LC0 turns out to be a surprisingly
powerful class. For example, the k-threshold function that asks if the input has Hamming weight
greater than k is clearly in AC0 for constant k, by computing the OR of all

(n
k

)
possible certificates.

But this yields a circuit of size O(nk), which one might conjecture is optimal. However, it turns out
that k-threshold is in LC0 even when k is as large as polylog(n) [RW91]. Another surprising fact is
that every regular language in AC0 can be computed by an AC0 circuit of almost linear size (e.g.,
size O(n log∗ n) suffices) [Kou09].

By recursively applying Theorem 1, we obtain the following sublinear upper bound on the
quantum query complexity of depth-d LC0 circuits, denoted by LC0

d:
2Any analysis capable of yielding a sublinear upper bound on the approximate degree of Surjectivity requires

moving beyond quantum algorithms, as its quantum query complexity is known to be Ω(n) [BM12, She15].

4

Theorem 3. For all constants d ≥ 0 and all functions h : {0, 1}n → {0, 1} in LC0
d, we have

Q(h) = Õ(n1−2−d).

Our upper bound is nearly tight for every depth d, as shown in [CKK12].

Theorem 4 (Childs, Kimmel, and Kothari). For all constants d ≥ 0, there exists a function
h : {0, 1}n → {0, 1} in LC0

d with Q(h) ≥ n1−2−Ω(d).

By recursively applying Theorem 2, we obtain a similar sublinear upper bound for the ε-
approximate degree of LC0

d, even for subconstant values of ε.

Theorem 5. For all constant d ≥ 0, and any ε > 0, and all functions h : {0, 1}n → {0, 1} in LC0
d,

we have
degε(h) = Õ

(
n1−2−d log(1/ε)2−d

)
. (5)

For constant ε, we prove a lower bound of the same form with quadratically worse dependence
on the depth d.

Theorem 6. For all constants d ≥ 0, there exists a function h : {0, 1}n → {0, 1} in LC0
d with

d̃eg(h) ≥ n1−2−Ω(
√
d).

A lower bound of d̃eg(h) = n1−2−Ω(d) was already known for general AC0 functions f [BT17,
BKT18], but the AC0 circuits constructed in these prior works are not of linear size. Previously,
for any ` ≥ 1, [BKT18] exhibited a circuit C : {0, 1}n → {0, 1} of depth at most 3`, size at most
n2, and approximate degree d̃eg(C) ≥ Ω̃(n1−2−`). We show how to transform this quadratic-size
circuit C into a linear-size circuit C of depth roughly `2, whose approximate degree is close to that
of C. Our transformation adapts that of [CKK12], but requires a more intricate construction and
analysis. This is because, unlike quantum query complexity, approximate degree is not known to
increase multiplicatively under block composition.

1.4 Application: Agnostically learning linear-size AC0 circuits

The challenging agnostic model [KSS94] of computational learning theory captures the task of
binary classification in the presence of adversarial noise. In this model, a learning algorithm is
given a sequence of labeled examples of the form (x, b) ∈ {0, 1}n × {0, 1} drawn from an unknown
distribution D. The goal of the algorithm is to learn a hypothesis h : {0, 1}n → {0, 1} which
does “almost as well” at predicting the labels of new examples drawn from D as does the the
best classifier from a known concept class C. Specifically, let the Boolean loss of a hypothesis h
be errD(h) = Pr(x,b)∼D[h(x) 6= b]. For a given accuracy parameter ε, the goal of the learner is to
produce a hypothesis h such that errD(h) ≤ minc∈C errD(c) + ε.

Very few concept classes C are known to be agnostically learnable, even in subexponential
time. For example, the best known algorithm for agnostically learning disjunctions runs in time
2Õ(
√
n) [KKMS08].3 Moreover, several hardness results are known. Proper agnostic learning of

disjunctions (where the output hypothesis itself must be a disjunction) is NP-hard [KSS94]. Even
improper agnostic learning of disjunctions is at least as hard as PAC learning DNF [LBW95], which
is a longstanding open question in learning theory.

The best known general result for more expressive classes of circuits is that all de Morgan
formulas of size s can be learned in time 2Õ(

√
s) [KKMS08, Rei11] (Section 5.1 contains a detailed

3Throughout this manuscript, Õ and Ω̃ notation hides factors polylogarithmic in the input size n.

5

overview of prior work on agnostic and PAC learning). Both of the aforementioned results make use
of the well-known linear regression framework of [KKMS08] for agnostic learning. This algorithm
works whenever there is a “small” set of “features” F (where each feature is a function mapping
{0, 1}n to R) such that each concept in the concept class C can be approximated to error ε in the
`∞ norm by a linear combination of features in F . (See Section 5 for details.) If every function
in a concept class C has approximate degree at most d, then one obtains an agnostic learning
algorithm for C with running time 2Õ(d) by taking F to be the set of all monomials of degree at
most d. Applying this algorithm using the approximate degree upper bound of Theorem 5 yields a
subexponential time algorithm for agnostically learning LC0

d.

Theorem 7. The concept class of n-bit functions computed by LC0 circuits of depth d can be learned
in the distribution-free agnostic PAC model in time 2Õ(n1−2−d). More generally, size-s AC0

d circuits
can be learned in time 2Õ(

√
ns1/2−2−d).

Prior to our work, no subexponential time algorithm was known even for agnostically learning
LC0

3. Moreover, since our upper bound on the approximate degree of LC0 circuits is nearly tight,
new techniques will be needed to significantly surpass our results, and in particular, learn all of LC0

in subexponential time. (Note that standard techniques [She11a] automatically generalize the lower
bound of Theorem 6 from the feature set of low-degree monomials to arbitrary feature sets. See
Section 5.2 for details.)

1.5 Application: New Circuit Lower Bounds

An important frontier problem in circuit complexity is to show that the well-known Inner Product
function cannot be computed by AC0 ◦ ⊕ circuits of polynomial size. Here, AC0 ◦ ⊕ refers to AC0

circuits augmented with a layer of parity gates at the bottom (i.e., closest to the inputs). Servedio
and Viola [SV12] identified this open problem as a first step toward proving matrix rigidity lower
bounds, itself a notorious open problem in complexity theory, and Akavia et al. [ABG+14] connected
the problem to the goal of constructing highly efficient pseudorandom generators.4 Unfortunately,
the best known lower bounds against AC0 ◦ ⊕ circuits computing Inner Product are quite weak.
The state of the art result [CGJ+16] for any constant depth d > 4 is that Inner Product cannot be
computed by any depth-(d+1) AC0◦⊕ circuit of size O(n1+4−(d+1)). We show that Theorem 5 implies
an improved (if still unsatisfying) lower bound of Ω̃(n1/(1−2−d)) = n1+2−d+Ω(1). More significantly,
unlike prior work our lower bound holds even against circuits that compute the Inner Product
function on slightly more than half of all inputs. Below, when we refer to the depth of an AC0 ◦ ⊕
circuit, we count the layer of parity gates toward the depth. For example, we consider a DNF of
parities to have depth 3.

Theorem 8. For any constant integer d ≥ 4, any depth-(d + 1) AC0 ◦ ⊕ circuit computing the
Inner Product function on n bits on greater than a 1/2 + n− logn fraction of inputs has size
Ω̃
(
n1/(1−2−d)) = n1+2−d+Ω(1).

1.6 Discussion and future directions

Summarizing our results, we established shared-input composition theorems for quantum query
complexity (Theorem 1) and approximate degree (Theorem 2), roughly showing that for compositions

4Superpolynomial lower bounds are known for AC0 ◦ ⊕ circuits computing the Majority function [Raz87] (in fact,
even for AC0[2] circuits, which are AC0 circuits augmented with parity gates at any layer). However, these techniques
do not apply to the Inner Product function, which does have small AC0[2] circuits.

6

between an arbitrary function f and the function g = AND, it is always possible to leverage sharing
of inputs to obtain algorithmic speedups. We applied these results to obtain the first sublinear
upper bounds on the quantum query complexity and approximate degree of LC0

d.

Generalizing our composition theorems. Although considering the inner function g = AND
is sufficient for our applications to LC0, an important open question is to generalize our results to
larger classes of inner functions. The proof of our composition theorem for approximate degree
actually applies to any inner function g that can be exactly represented as a low-weight sum of ANDs
(for example, it applies to any strongly unbalanced function g, meaning that |g−1(1)| = poly(n)).
Extending this further would be a major step forward in our understanding of how quantum query
complexity and approximate degree behave under composition with shared inputs.

While our paper considers the composition scenario where the top function is arbitrary and the
bottom function is AND, the opposite scenario is also interesting. Here the top function is ANDm

and the bottom functions are f1, . . . , fm, each acting on the same set of n input variables. Now
the question is whether we can do better than the upper bound obtained using results on block
composition that treat all the input variables as being independent. More concretely, for such a
function F , the upper bound that follows from block composition is Q(F) = O(

√
mmaxiQ(fi)).

However, this upper bound cannot be improved in general, because the Surjectivity function is an
example of such a function. Here the bottom functions fi check if the input contains a particular
range element i, and the upper bound obtained from this argument is O(n), which matches the lower
bound [BM12, She15]. Surprisingly, this lower bound only holds for quantum query complexity,
as we know that the approximate degree of Surjectivity is Θ̃(n3/4). We do not know if the upper
bound obtained from block composition can be improved for approximate degree.

Quantum query complexity of LC0 and DNFs. For quantum query complexity, we obtain
the upper bound Q(LC0

d) = Õ(n1−2−d), nearly matching the lower bound Q(LC0
d) = n1−2−Ω(d) from

[CKK12]. However, the bounds do not match for any fixed value of d. The lack of matching
lower bounds can be attributed to the fact that the Surjectivity function, which is known to have
linear quantum query complexity, is computed by a quadratic-size depth-3 circuit, rather than a
quadratic-size depth-2 circuit (i.e., a DNF). If one could prove a linear lower bound on the quantum
query complexity of some quadratic-size DNF, the argument of [CKK12] would translate this into a
Ω̃(n1−2−d) lower bound for LC0

d, matching our upper bound. Unfortunately, no linear lower bound
on the quantum query complexity of any polynomial size DNFs is known; we highlight this as an
important open problem (the same problem was previously been posed by Troy Lee with different
motivations [Lee12]).
Open Problem 1. Is there a polynomial-size DNF with Ω̃(n) quantum query complexity?

The quantum query complexity of depth-2 LC0, or linear-size DNFs also remains open. The
best upper bound is O(n3/4), but the best lower bound is Ω(n0.555) [CKK12]. Any improvement in
the lower bound would also imply, in a black-box way, an improved lower bound for the Boolean
matrix product verification problem. Improving the lower bound all the way to Ω(n3/4) would imply
optimal lower bounds for all of LC0 using the argument in [CKK12]. We conjecture that there is a
linear-size DNF with quantum query complexity Ω(n3/4), matching the known upper bound.

Approximate degree of LC0 and DNFs. For approximate degree, we obtain the upper bound
d̃eg(LC0

d) = Õ(n1−2−d), and prove a new lower bound of d̃eg(LC0
d) = n1−2−Ω(

√
d) . The reason our

approximate degree lower bound approaches n more slowly than the quantum query lower bound
from [CKK12] is that, while the quantum query complexity of AC0 is known to be Ω(n), such a
result is not known for approximate degree. This remains an important open problem.

7

Open Problem 2. Is there a problem in AC0 with approximate degree Ω̃(n)?

Our lower bound argument would translate, in a black-box manner, any linear lower bound on
the approximate degree of a general AC0 circuit into a nearly tight lower bound for LC0

d.
Alternatively, it would be very interesting if one could improve our approximate degree upper

bound for LC0
d. Even seemingly small improvements to our upper bound would have significant

implications. Specifically, standard techniques (see, e.g., [CR96]) imply that for any constant
δ > 0, there are approximate majority functions5 computable by depth-(2d + 3) circuits of size
O(n1+2−d+δ).6 This means that, for sufficiently large constant d, if one could improve our upper
bound on the approximate degree of LC0

d from Õ(n1−2−d) to Õ(n1−2−d/2.001), one would obtain a
sublinear upper bound on the approximate degree of some total function computing an approximate
majority. This would answer a question of Srinivasan [FHH+14], and may be considered a surprising
result, as approximate majorities are currently the primary natural candidate AC0 functions that
may exhibit linear approximate degree [BKT18].

1.7 Paper organization and notation

This paper is organized so as to be accessible to readers without familiarity with quantum algorithms.
Section 2 assumes the reader is somewhat familiar with quantum query complexity and Grover’s
algorithm [Gro96], but only uses Grover’s algorithm as a black box. In Section 2 we show our main
result on the quantum query complexity of shared-input compositions (Theorem 1). Section 3 proves
our result about the approximate degree of shared-input compositions (Theorem 2). Section 4 uses
the results of these sections (in a black-box manner) to upper bound the quantum query complexity
and approximate degree of LC0 circuits, and proves related lower bounds. Section 5 uses the results
of Section 4 to obtain algorithms to agnostically PAC learn LC0 circuits. Section 6 derives our
average-case lower bounds on the size of AC0 ◦ ⊕ circuits computing the Inner Product function.

In this paper we use the Õ(·) and Ω̃(·) notation to suppress logarithmic factors. More formally,
f(n) = Õ(g(n)) means there exists a constant k such that f(n) = O(g(n) logk g(n)), and similarly
f(n) = Ω̃(g(n)) means there exists a constant k such that f(n) = Ω(g(n)/ logk g(n)). For a
string x ∈ {0, 1}n, we use |x| = ∑

i xi to denote the Hamming weight of x, i.e., the number of
entries in x equal to 1. For any positive integer n, we use [n] to denote the set {1, 2, . . . , n}.
Given two functions fm, gk, let fm ◦ gk : {0, 1}m·k → {0, 1} denote their block composition, i.e.,
(fm ◦ gk)(x) = fm(gk(x1), . . . , gk(xm)), where for every i ∈ [m], xi is a k-bit string.

2 Quantum algorithm for composed functions

2.1 Preliminaries

As described in the introduction, our quantum algorithm only uses variants of Grover’s algo-
rithm [Gro96] and is otherwise classical. To make this section accessible to those without familiarity
with quantum query complexity, we only state the minimum required preliminaries to understand
the algorithm. Furthermore, we do not optimize the logarithmic factors in our upper bound to
simplify the presentation. For a more comprehensive introduction to quantum query complexity, we
refer the reader to the survey by Buhrman and de Wolf [BdW02].

5Here, by an approximate majority function, we mean any total function f on n bits for which there exist constants
0 < p < 1/2 < q such that |x| ≤ pn =⇒ f(x) = 0 and |x| ≥ qn =⇒ f(x) = 1.

6This precise result has not appeared in the literature; we prove it in Appendix A for completeness.

8

In quantum or classical query complexity, the goal is to compute some known function f :
{0, 1}n → {0, 1} on some unknown input x ∈ {0, 1}n while reading as few bits of x as possible.
Reading a bit of x is also referred to as “querying” a bit of x, and hence the goal is to minimize the
number of queries made to the input.

For example, the deterministic query complexity of a function f is the minimum number of
queries needed by a deterministic algorithm in the worst case. A deterministic algorithm must be
correct on all inputs, and can decide which bit to query next based on the input bits it has seen
so far. Another example of a query model is the bounded-error randomized query model. The
bounded-error randomized query complexity of a function f , denoted R(f), is the minimum number
of queries made by a randomized algorithm that computes the function correctly with probability
greater than or equal to 2/3 on each input. In contrast to a deterministic algorithm, such an
algorithm has access to a source of randomness, which it may use in deciding which bits to query.

The bounded-error quantum query complexity of f , denoted Q(f), is similar to bounded-error
randomized query complexity, except that the algorithm is now quantum. In particular, this means
the algorithm may query the inputs in superposition. Since quantum algorithms can also generate
randomness, for all functions we have Q(f) ≤ R(f).

An important example of the difference between the two models is provided by the ORn function,
which asks if any of the input bits is equal to 1. We have R(ORn) = Θ(n), because intuitively if the
algorithm only sees a small fraction of the input bits and they are all 0, we do not know whether or
not the rest of the input contains a 1. However, Grover’s algorithm is a quantum algorithm that
solves this problem with only O(

√
n) queries [Gro96]. The algorithm is also known to be tight, and

we have Q(ORn) = Θ(
√
n) [BBBV97].

There are several variants of Grover’s algorithm that solve related problems and are sometimes
more useful than the basic version of the algorithm. Most of these can be derived from the basic
version of Grover’s algorithm (and this sometimes adds logarithmic overhead).

In this work we need a variant of Grover’s algorithm that finds a 1 in the input faster when
there are many 1s. Let the Hamming weight of the input x be t = |x|. If we know t, then we can
use Grover’s algorithm on a randomly selected subset of the input of size O(n/t), and one of the 1s
will be in this set with high probability. Hence the algorithm will have query complexity O(

√
n/t).

With some careful bookkeeping, this can be done even when t is unknown, and the algorithm will
have expected query complexity O(

√
n/t). More formally, we have the following result of Boyer,

Brassard, Høyer, and Tapp [BBHT98].

Lemma 9. Given query access to a string x ∈ {0, 1}n, there is a quantum algorithm that when
t = |x| > 0, always outputs an index i such that xi = 1 and makes O(

√
n/t) queries in expectation.

When t = 0, the algorithm does not terminate.

Note that because we do not know t = |x|, we only have a guarantee on the expected query
complexity of the algorithm, not the worst-case query complexity. Note also that this variant of
Grover’s algorithm is a zero-error algorithm in the sense that it always outputs a correct index i
with xi = 1 when such an index exists.

In our algorithm we use an amplified version of the algorithm of Lemma 9, which adds a log
factor to the running time and always terminates in O(

√
n logn) time.

Lemma 10. Given query access to a string x ∈ {0, 1}n, there is a quantum algorithm that

1. when |x| = 0, the algorithm always outputs “|x| = 0”,

2. when |x| > 0, it outputs an index i with xi = 1 with probability 1− 1
poly(n) , and

9

3. terminates after O
(√

n
|x|+1 logn

)
queries with probability 1− 1

poly(n) .

Proof. This algorithm is quite straightforward. We simply run O(logn) instances of the algorithm
of Lemma 9 in parallel and halt if any one of them halts. If we reach our budget of O(

√
n logn)

queries, then we halt and output “|x| = 0”.
Let us argue that the algorithm has the claimed properties. First, since the algorithm of Lemma 9

does not terminate when |x| = 0, our algorithm will correctly output “|x| = 0” at the end for such
inputs. When |x| > 0, we know that the algorithm of Lemma 9 will find an index i with xi = 1 with
high probability after O(

√
n) time. The probability that O(logn) copies of this algorithm do not

find such an i is exponentially small in O(logn), or polynomially small in n. Finally, our algorithm
makes only O(

√
n logn) queries when |x| = 0 by construction. When |x| > 0, we know that the

algorithm of Lemma 9 terminates after an expected O(
√
n/|x|) queries, and hence halts with high

probability after O(
√
n/|x|) queries by Markov’s inequality. The probability that none of O(logn)

copies of the algorithm halt after making O(
√
n/|x|) queries each is inverse polynomially small in n

again.

2.2 Quantum algorithm

We are now ready to present our main result for quantum query complexity, which we restate below.

Theorem 1. Let h : {0, 1}n → {0, 1} be computed by a depth-2 circuit where the top gate is a
function f : {0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the input bits
and their negations (as depicted in Figure 1). Then we have

Q(h) = O
(√

Q(f) · n · log2(mn)
)
. (2)

While Theorem 1 allows the bottom AND gates to depend on negated variables, it will be without
loss of generality in the proof to assume that all input variables are unnegated. This is because
we can instead work with the function h′ : {0, 1}2n → {0, 1} obtained by treating the positive and
negative versions of a variable separately, increasing our final quantum query upper bound by a
constant factor.

We now define some notation that will aid with the description and analysis of the algorithm.
We know that our circuit h has m AND gates and n input bits xi. We say an AND gate has high
fan-in if the number of inputs to that AND gate is greater than or equal to n/Q(f). Note that
if our circuit h has no high fan-in gates, then we are done, because we can simply use the upper
bound for block composition, i.e., Q(f ◦ g) = O(Q(f)Q(g)), to compute h, since we will have
Q(h) = O(Q(f)×

√
n/Q(f)) = O(

√
Q(f) · n).

Our goal is to reduce to this simple case. More precisely, we will start with the given circuit h,
make some queries to the input, and then simplify the given circuit to obtain a new circuit h′. The
new circuit will have no high fan-in gates, but will still have h′(x) = h(x) on the given input x. Note
that h′ and h have the same output only for the given input x, and not necessarily for all inputs.

For any such circuit h, let S ⊆ [m] be the set of all high fan-in AND gates, and let w(S) be the
total fan-in of S, which is the sum of fan-ins of all gates in S. In other words, it is the total number
of wires incident to the set S. Since the set S only has gates with fan-in at least n/Q(f), we have

w(S) ≥ n|S|/Q(f). (6)

We now present our first algorithm, which is a subroutine in our final algorithm. This algorithm’s
goal is to take a circuit h, with S high fan-in gates and w(S) wires incident on S, and reduce the

10

size of w(S) by a factor of 2. Ultimately we want to have |S| = w(S) = 0, and hence if we can
decrease the size of w(S) by 2, we can repeat this procedure logarithmically many times to get
|S| = w(S) = 0.

Lemma 11. Let h : {0, 1}n → {0, 1} be a depth-2 circuit where the top gate is a function f :
{0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the input bits and their
negations (as depicted in Figure 1). Let w(S) be the total fan-in of all high fan-in gates in h (i.e.,
gates with fan-in ≥ n/Q(f)).

Then there is a quantum query algorithm that makes O(
√
Q(f) · n logn) queries to x ∈ {0, 1}n

and outputs a new circuit h′ of the same form such that w(S′) ≤ w(S)/2, where w(S′) is the total
fan-in of all high fan-in gates in h′, and such that with probability 1− 1

poly(n) we have h(x) = h′(x).

Proof. The overall structure of the claimed algorithm is the following: We query some well-chosen
input bits, and on learning the values of these bits, we simplify the circuit accordingly. If an input
bit is 0, then we delete all the AND gates that use that input bit. If an input bit is 1, we delete all
outgoing wires from that input bit since a 1-input does not affect the output of an AND gate.

Since the circuit will change during the algorithm, let us define S0 to be the initial set of high
fan-in (i.e., gates with fan-in ≥ n/Q(f)) AND gates in h.

We also define the degree of an input xi, denoted deg(i), to be the number of high fan-in AND
gates that it is an input to. Note that this is not the total number of outgoing wires from xi, but
only those that go to high fan-in AND gates, i.e., gates in the set S. With this definition, note that∑
i∈[n] deg(i) = w(S), for any circuit. We say an input bit xi is high degree if deg(i) ≥ |S0|/(2Q(f)).

This value is chosen since it is at least half the average degree of all xi in the initial circuit h. As
the algorithm progresses, the circuit will change, and some inputs that were initially high degree
may become low degree as the algorithm progresses, but a low degree input will never become
high degree. But note that the definition of a high-degree input bit does not change, since it only
depends on S0 and Q(f), which are fixed for the duration of the algorithm.

Finally, we call an input bit xi is marked if xi = 0. We are now ready to describe our algorithm
by the following pseudocode (see Algorithm 1).

Algorithm 1 The algorithm of Lemma 11.

1: S0 ← Set of high fan-in AND gates in h
2: repeat
3: M ← Set of high-degree marked inputs . M :=

{
i : xi = 0 ∧ deg(i) ≥ |S0|

(2Q(f))

}
4: Grover Search for an index i in M
5: if we find such an i then
6: Delete all AND gates that use xi as an input
7: end if
8: until Grover Search fails to find an i ∈M
9: Delete all remaining high-degree inputs and all outgoing wires from these inputs

In more detail, we repeatedly use the version of Grover’s algorithm in Lemma 10 to find a
high-degree marked input, which is an input xi such that xi = 0 and deg(i) ≥ |S0|

2Q(f) . If we find
such an input, we delete all the AND gates that use xi as an input, and repeat this procedure.
Note that when we repeat this procedure, the circuit has changed, and hence the set of high-degree
input bits may become smaller. The algorithm halts when Grover’s algorithm is unable to find any
high-degree marked inputs. At this point, all the high-degree inputs are necessarily unmarked with

11

very high probability, which means they are set to 1. We can now delete all these input bits and
their outgoing wires because AND gates are unaffected by input bits set to 1.

Let us now argue that this algorithm is correct. Let S′ denote the set of high fan-in AND gates in
the new circuit h′ obtained at the end of the algorithm, and w(S′) be the total fan-in of gates in S′.
Note that when the algorithm terminates, there are no high-degree inputs (marked or unmarked).
Hence every input bit that has not been deleted has deg(i) < |S0|

2Q(f) . Since there are at most n input
bits, we have

w(S′) =
∑
i∈[n]

deg(i) < n

2Q(f) |S0|. (7)

But we also know that we started with w(S) ≥ n|S0|/Q(f), since each gate in S0 has fan-in at least
n/Q(f). Hence w(S′) ≤ w(S)/2, which proves that the algorithm is correct.

We now analyze the query complexity of this algorithm. Let the loop in the algorithm execute r
times. It is easy to see that r ≤ 2Q(f) because each time a high-degree marked input is found, we
delete all the AND gates that use it as an input, which is at least |S0|/(2Q(f)) gates. Since there
were at most S0 gates to begin with, this procedure can only repeat 2Q(f) times.

When we run Grover’s algorithm to search for a high-degree marked input bit xi in the first
iteration of the loop, suppose there are k1 high-degree marked inputs. Then the variant of Grover’s
algorithm in Lemma 10 finds a marked high-degree input and makes O(

√
n/k1 logn) queries with

probability 1− 1
poly(n) . In the second iteration of the loop, the number of high-degree marked inputs,

k2, has decreased by at least one. It can also decrease by more than 1 since we deleted several AND
gates, and some high-degree inputs can become low-degree. In this iteration, our variant of Grover’s
algorithm (Lemma 10) makes O(

√
n/k2 logn) queries, and we know that k1 > k2. This process

repeats and we have k1 > k2 > · · · > kr. Since there was at least one high-degree marked input in
the last iteration, kr ≥ 1. Combining these facts we have for all j ∈ [r], kj ≥ r − j + 1. Thus the
total expected query complexity is

O

 r∑
j=1

√
n

kj
logn

 = O

 r∑
j=1

√
n

r − j + 1 logn

 = O

√n r∑
j=1

1√
j

logn

 = O
(√
nr logn

)
, (8)

which is O
(√

n ·Q(f) logn
)
. We now have a quantum query algorithm that satisfies the conditions

of the lemma with probability at least 1− 1
poly(n) .

We are now ready to prove Theorem 1.

Proof of Theorem 1. We start by applying the algorithm in Lemma 11 to our circuit as many times
as needed to ensure that set S is empty. Since each run of the algorithm reduces w(S) by a factor of
2, and w(S) can start off being as large as m · n, where m is the number of AND gates and n is the
number of inputs, we need to run the algorithm log(mn) times. Since the algorithm of Lemma 11 is
correct with probability 1− 1

poly(n) , we do not need to boost the success probability of the algorithm.
The total number of queries needed to ensure S is empty is O(

√
Q(f) · n log(n) log(mn)).

Now we are left with a circuit h′ with no high fan-in AND gates. That is, all AND gates have
fan-in at most n/Q(f). We now evaluate h′ using the standard composition theorem for disjoint
sets of inputs, which has query complexity

O(Q(f) ·Q(ANDn/Q(f))) = O(Q(f) ·
√
n/Q(f)) = O

(√
Q(f) · n

)
. (9)

The total query complexity is O(
√
Q(f) · n log(n) log(mn)) = O(

√
Q(f) · n log2(mn)).

12

Note that we have not attempted to reduce the logarithmic factors in this upper bound. We
believe it is possible to make the quantum upper bound match the upper bound for approximate
degree with a more careful analysis and slightly different choice of parameters in the algorithm.

3 Approximating polynomials for composed functions

3.1 Preliminaries

We now define the various measures of Boolean functions and polynomials that we require in this
section. Since we only care about polynomials approximating Boolean functions, we focus without
loss of generality on multilinear polynomials as any polynomial over the domain {0, 1}n can be
converted into a multilinear polynomial (since it never helps to raise a Boolean variable to a power
greater than 1).

The approximate degree of a Boolean function, commonly denoted d̃eg(f), is the minimum
degree of a polynomial that entrywise approximates the Boolean function. It is a basic complexity
measure and is known to be polynomially related to a host of other complexity measures such
as decision tree complexity, certificate complexity, and quantum query complexity [BdW02]. We
also use another complexity measure of polynomials, which is the sum of absolute values of all
the coefficients of the polynomial. This is the query analogue of the so-called µ-norm used in
communication complexity [LS09, Definition 2.7]. We now formally define these measures.

Definition 12. Let p : Rn → R be a multilinear polynomial

p(x1, . . . , xn) =
∑

s∈{0,1}n
αsx

s1
1 · · ·x

sn
n . (10)

We define the following complexity measures of the polynomial p:

deg(p) = max
{∑
i∈[n]
|si| : αs 6= 0

}
and µ(p) =

∑
s∈{0,1}n

|αs|. (11)

For a Boolean function f : {0, 1}n → {0, 1}, we define the following complexity measures:

degε(f) = min{deg(p) : ∀x ∈ {0, 1}n, |f(x)− p(x)| ≤ ε} (12)
µε(f) = min{µ(p) : ∀x ∈ {0, 1}n, |f(x)− p(x)| ≤ ε} (13)

Finally, we define d̃eg(f) = deg1/3(f) and µ̃(f) = µ1/3(f).

We use the following standard relationship between the two measures in our results.

Lemma 13. For any multilinear polynomial p : Rn → R such that |p(x)| = O(1) for all x ∈ {0, 1}n,
we have

logµ(p) = O(deg(p) logn). (14)

Consequently, for any Boolean function f : {0, 1}n → {0, 1} and ε ∈ [0, 1/3], we have

logµε(f) = O(degε(f) logn). (15)

Proof. First let us switch to the {−1, 1} representation instead of the {0, 1} representation we have
used so far. Let yi = (−1)xi , and replace every occurrence of xi in the polynomial p with 1

2(1 + yi)
to obtain a multilinear polynomial p(y1, . . . , yn) = ∑

s∈{0,1}n βsy
s1
1 · · · ysnn . In this representation,

13

a coefficient βs is simply the expectation over the hypercube of the product of p and a parity
function, and hence is at most O(1) in magnitude. Since there are only

(n
deg(p)

)
monomials, the sum

of absolute values of all coefficients is O(ndeg(p)).
When we switch from this representation back to the {0, 1} representation, we replace every

yi with 2xi − 1. Consider this transformation on a single monomial with coefficient 1. This
converts the monomial of degree d into a polynomial over those d variables, such that the sum of
coefficients in this polynomial is at most 3d. Thus the sum of absolute values of all coefficients is
µ(p) = O(3deg(p)ndeg(p)) = nO(deg(p)), which proves (14).

Now consider any Boolean function f : {0, 1}n → {0, 1}, and a multilinear polynomial p that
minimizes degε(f). We can apply (14) to this polynomial to obtain logµ(p) = O(deg(p) logn). Since
deg(p) = degε(f) by assumption, and µε(f) ≤ µ(p), since µε(f) minimizes over all ε-approximating
polynomials, we get logµε(f) = O(degε(f) logn).

This shows that logµ(p) is at most deg(p) (up to log factors). However, logµ(p) may be
much smaller than deg(p), as evidenced by the polynomial p(x) = x1 · · ·xn. Similarly, log µ̃(f)
may be much smaller than d̃eg(f), as evidenced by the AND function on n bits, which has
d̃eg(ANDn) = Θ(

√
n) [NS94], but µ̃(ANDn) ≤ 1.

3.2 Polynomial upper bound

In this section we prove Theorem 2, which follows from the following more general composition
theorem.

Theorem 14. Let h : {0, 1}n → {0, 1} be computed by a depth-2 circuit where the top gate is a
function f : {0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the input bits
and their negations (as depicted in Figure 1). Then

degε(h) = O

(√
n logµε(f) +

√
n log(1/ε)

)
= O

(√
n degε(f) logm+

√
n log(1/ε)

)
. (16)

Proof. Let us first fix some notation. We will use x ∈ {0, 1}n to refer to the input of the full circuit
h : {0, 1}n → {0, 1}. Let the inputs to the top f : {0, 1}m → {0, 1} gate be called y1, . . . , ym.

Let p : {0, 1}m → {0, 1} be a polynomial that minimizes µε(f). Thus we have for all y ∈
{0, 1}m, |p(y)− f(y)| ≤ ε. More explicitly, p(y1, . . . , ym) = ∑

s∈{0,1}m αsy
s1
1 · · · ysnn , where µε(f) =∑

s∈{0,1}m |αs|, and each yi is the AND of some subset of bits in x. Since the product of ANDs of
variables is just an AND of all the variables involved in the product, for each s ∈ {0, 1}m, there is a
subset Ts ⊆ [n] such that ys11 · · · ysnn = ∧

i∈Ts xi.
Using this we can replace all the y variables in the polynomial p, to obtain

q(x) =
∑

s∈{0,1}m
αs

∧
i∈Ts

xi. (17)

Since p was an ε approximation to f , q is an ε approximation to h. Now we can replace every
occurrence of ∧i∈Ts xi with a low error approximating polynomial for the AND of the bits in Ts. We
know that the approximate degree of the AND function to error δ is O(

√
n log(1/δ)) [BCdWZ99].

If we approximate each AND to error δ = ε/µε(f), then by the triangle inequality the total error
incurred by this approximation is at most ∑s∈{0,1}m |αs|ε/µε(f) = ε. Choosing δ = ε/µε(f), each
AND is approximated by a polynomial of degree O(

√
n log(1/δ)) = O

(√
n logµε(f) +

√
n log(1/ε)

)
.

Hence the resulting polynomial q(x) has this degree and approximates the function h to error 2ε.
By standard error reduction techniques [BNRdW07], we can make this error smaller than ε at a

14

constant factor increase in the degree. This establishes the first equality in (16), and the second
equality follows from Lemma 13.

4 Applications to linear-size AC0 circuits

4.1 Preliminaries

A Boolean circuit is defined via a directed acyclic graph. Vertices of fan-in 0 represent input bits,
vertices of fan-out 0 represent outputs, and all other vertices represent one of the following logical
operations: a NOT operation (of fan-in 1), or an unbounded fan-in AND or OR operation. The size
of the circuit is the total number of AND and OR gates. The depth of the circuit is the length of
the longest path from an input bit to an output bit.

or any constant integer d > 0, AC0
d refers to the class of all such circuits of polynomial size and

depth d. AC0 refers to ∪∞d=1AC0
d. Similarly, LC0

d refers to the class of all such circuits of size O(n)
and depth d, while LC0 refers to ∪∞d=1LC0

d. We will associate any circuit C with the function it
computes, so for example d̃eg(C) denotes the approximate degree of the function computed by C.

It will be convenient to assume that any AC0
d circuit is layered, in the sense that it consists of d

levels of gates which alternate between being comprised of all AND gates or all OR gates, and all
negations appear at the input level of the circuit. Any AC0

d circuit of size s can be converted into a
layered circuit of size O(d · s), and hence making this assumption does not change any of our upper
bounds.

4.2 Quantum query complexity

Applying our composition theorem for quantum algorithms (Theorem 1) inductively, we obtain a
sublinear upper bound on the quantum query complexity of LC0

d circuits.

Theorem 3. For all constants d ≥ 0 and all functions h : {0, 1}n → {0, 1} in LC0
d, we have

Q(h) = Õ(n1−2−d).

Proof. We prove this for depth-d LC0 circuits by induction on d. The base case is d = 1, where
the function is either AND or OR on n variables, both of which have quantum query complexity
O(
√
n) [Gro96].
Now consider a function h, which is a layered depth-d AC0 circuit of size O(n). It can be written

as a depth-2 circuit (as in Theorem 1) where the top function is a LC0 circuit f of depth d− 1 on at
most O(n) inputs, and the bottom layer has only AND gates. (If the bottom layer has OR gates
we can consider the negation of the function without loss of generality, since the quantum query
complexity of a function and its negation is the same.)

By the induction hypothesis we know that the quantum query complexity of any depth-(d− 1),
size-O(n) AC0 circuit with O(n) inputs is Õ(n1−2−(d−1)). Invoking Theorem 1, we have that the
quantum query complexity of the depth-d function h is Õ

(
n1−2−d).

4.3 Approximate degree upper bound

We can now prove Theorem 5, restated below for convenience:

Theorem 5. For all constant d ≥ 0, and any ε > 0, and all functions h : {0, 1}n → {0, 1} in LC0
d,

we have
degε(h) = Õ

(
n1−2−d log(1/ε)2−d

)
. (5)

15

This follows from a more general result:

Theorem 15. For any function h : {0, 1}n → {0, 1} computed by an AC0 circuit of size s ≥ 1 and
depth d ≥ 1, we have

degε(h) =

O
(√

n log(1/ε)
)

if ε ≤ 2−s ⇔ log(1/ε) ≥ s
Õ
(√

ns1/2−2−d (log(1/ε))2−d
)

if ε > 2−s ⇔ log(1/ε) < s
. (18)

In particular, for any h ∈ LC0
d, we have d̃eg(h) = Õ

(
n1−2−d).

Proof. We prove this for depth-d AC0 circuits by induction on d. The base case is d = 1, where
the function is either AND or OR on n variables, both of which have ε-approximate degree
O(
√
n log(1/ε)) [BCdWZ99].

Now consider a function h, which is a general depth-d AC0 circuit of size s. It can be written as
a depth-2 circuit (as in Theorem 2) where the top function is a size-s AC0 circuit f of depth d− 1
on at most s inputs, and the bottom layer has only AND gates. If the bottom layer has OR gates we
can consider the negation of the function without loss of generality, since the ε-approximate degree
of a function and its negation is the same.

In the first case, if ε ≤ 2−s, then for any function f : {0, 1}s → {0, 1} there is a polynomial of
degree s and sum of coefficients at most 2s that exactly equals f on all Boolean inputs. Hence we
can apply Theorem 2 to get that degε(h) = O(

√
ns+

√
n log(1/ε)) = O(

√
n log(1/ε)).

In the second case, if ε > 2−s, by the induction hypothesis we know that the ε-approximate
degree of any depth-(d − 1), size-O(s) AC0 circuit with s inputs is Õ(s1−2−(d−1)(log(1/ε))2−(d−1)).
Invoking Theorem 2, we have that the approximate degree of the depth-d function is

Õ

(√
ns1−2−(d−1)(log(1/ε))2−(d−1) +

√
n log(1/ε)

)
= Õ

(√
ns1/2−2−d(log(1/ε))2−d

)
. (19)

4.4 Approximate degree lower bound

In this section we prove our lower bound on the approximate degree of LC0
d, restated below for

convenience.

Theorem 6. For all constants d ≥ 0, there exists a function h : {0, 1}n → {0, 1} in LC0
d with

d̃eg(h) ≥ n1−2−Ω(
√
d).

Before proving the theorem, we will need to introduce several lemmas. The first lemma follows
from the techniques of [ABO84] (see [Kop13] for an exposition).

Lemma 16. There exists a Boolean circuit C with n inputs, of depth 3, and size Õ(n2) satisfying
the following two properties:

• C(x) = 0 for all x of Hamming weight at most n/3.

• C(x) = 1 for all x of Hamming weight at least 2n/3.

We refer to the function computed by the circuit C of Lemma 16 as GAPMAJ, short for a gapped
majority function (such a function is sometimes also called an approximate majority function).

The following lemma of [BCH+17] says that if f has large ε-approximate degree for ε = 1/3, then
block-composing f with GAPMAJ on O(logn) bits yields a function with just as high ε′-approximate
degree, with ε′ very close to 1/2.

16

Lemma 17 ([BCH+17]). Let f : {0, 1}n → {0, 1} be any function. Then for ε = 1/2 − 1/n2,
degε(GAPMAJ10 logn ◦ f) ≥ d̃eg(f).

The following lemma says that if f has large ε-approximate degree for ε very close to 1/2, then
block-composing any function g with f results in a function of substantially larger approximate
degree than g itself.

Lemma 18 ([She13a]). Let g : {0, 1}m → {0, 1} and f : {0, 1}n → {0, 1} be any functions. Then
d̃eg(g ◦ f) ≥ d̃eg(g) · deg1/2−1/m2(f).

Combining Lemmas 17 and 18, we conclude:

Corollary 19. Let g : {0, 1}m → {0, 1} and f : {0, 1}n → {0, 1} be any functions. Then d̃eg(g ◦
GAPMAJ10 logn ◦ f) ≥ d̃eg(g) · d̃eg(f).

Proof of Theorem 6. Let ` ≥ 1 be any constant integer to be specified later (ultimately, we will
set ` = Θ(

√
d), where d is as in the statement of the theorem). [BKT18] exhibit a circuit family

C∗ : {0, 1}n → {0, 1} of depth at most 3`, size at most n2, and approximate degree satisfying
d̃eg(C∗) ≥ D for some D ≥ Ω̃(n1−2−`). We need to transform this quadratic-size circuit into a
circuit C of linear size, without substantially reducing its approximate degree, or substantially
increasing its depth (in particular, the depth of C should be at most d).

To accomplish this, we apply the following iterative transformation. At each iteration i, we
produce a new circuit Ci : {0, 1}n → {0, 1} of linear size, such that d̃eg(Ci) gets closer and closer to
d̃eg(C) as i grows. Our final circuit will be C := C`.

C1 is defined to simply be ORn, which is clearly in LC0
1.

The transformation from Ci−1 into Ci works as follows. Ci feeds
√
n copies of Ci−1√

n/(10 logn)
into the circuit C∗√

n
◦ GAPMAJ10 logn. Here, Ci−1

k denotes the function Ci−1 constructed in the
previous iteration, and defined on k inputs; similarly, C∗k : {0, 1}k → {0, 1}n refers to the function
C∗ constructed by [BKT18], defined on k inputs. That is:

Ci = C∗√n ◦ GAPMAJ10 logn ◦ Ci−1√
n/(10 logn). (20)

Observe that Ci is a function on
√
n · 10 logn · (

√
n/(10 logn)) = n bits. We now establish the

following two lemmas about Ci.

Lemma 20. Ci is computed by a circuit of depth at most (3`+ 3) · i, and size at most 2 · i · n.

Proof. Clearly this is true for i = 1, since C1 is computed by a circuit of size and depth 1. Assume
by induction that it is true for i− 1. Recalling that GAPMAJ10 logn is computed by a circuit of size
O(log2 n) and depth 3, and C∗√

n
is computed by a circuit of size n and depth 3`, it is immediate

from Equation (20) that Ci is computed by a circuit satisfying the following properties:

• The depth is at most 3`+ 3 + (3`+ 3)(i− 1) = (3`+ 3)i.

• The size is at most n+O(
√
n · log2 n) + (

√
n · 10 logn) · (2 · (i− 1) ·

√
n/(10 logn)). For large

enough n, this is at most 2n+ 2 · (i− 1) · n = 2 · i · n.

Lemma 21. For i > 1, d̃eg(Ci) ≥ Ω
(
d̃eg(C∗√

n
) · d̃eg(Ci−1√

n/(10 logn))
)
.

Proof. Immediate from Corollary 19.

17

Since d̃eg(C1) = Ω(
√
n), repeated application of Lemma 21 implies that d̃eg(C2) = Ω(

√
D ·n1/4),

d̃eg(C3) = Ω
(√

D · (
√
D · n1/4)1/2

)
= Ω(D3/4 · n1/8), and in general, d̃eg(Ci) = Ω

(
D1−2−i · n2−i

)
.

Setting i = `, we obtain a circuit C` : {0, 1}n → {0, 1} with the following properties:

• By Lemma 20, C` has size at most 2`n and depth at most d := 2`2.

• There is a constant c0 such that C` has approximate degree at least Ω
(
c`0 ·D1−2−`+1 · n2−`

)
≥

Ω(c`0 · n1−2−`+1/2).

Hence, for any constant value of d = 2`2, we have constructed a circuit of depth d, size O(n),
and approximate degree at least Ω(n1−2−Ω(

√
d)), as required by the theorem.

4.5 Sublinear-size circuits of arbitrary depth

Theorem 1 and Theorem 2 also allow us to prove sublinear quantum query complexity and approxi-
mate degree upper bounds for arbitrary circuits of sublinear size.

Theorem 22. Let h : {0, 1}n → {0, 1} be computed by a layered circuit of size s ≤ n. Then h has
quantum query complexity Q(h) = Õ(

√
ns) and approximate degree d̃eg(h) = O(

√
ns).

Proof. Without loss of generality, a function h computed by a layered circuit of size s ≤ n can be
written as a depth-2 circuit with a function f : {0, 1}s → {0, 1} as the top gate and AND gates at
the bottom. (The case where the bottom level consists of OR gates can be handled by negating
the function.) The quantum query upper bound then follows immediately from Theorem 1, as
Q(f) ≤ s. Moreover, for any function f , we have logµ0(f) = O(s), since the trivial polynomial
obtained by adding all conjunctions over yes-inputs of f satisfies this. Hence from Theorem 2 we
have d̃eg(h) = O(

√
ns).

5 Applications to agnostic PAC learning
Our new upper bounds on the approximate degree of LC0 circuits yield new subexponential time
learning algorithms in the agnostic model. In this section, we provide background for, and the proof
of, our main learning result restated below.

Theorem 7. The concept class of n-bit functions computed by LC0 circuits of depth d can be learned
in the distribution-free agnostic PAC model in time 2Õ(n1−2−d). More generally, size-s AC0

d circuits
can be learned in time 2Õ(

√
ns1/2−2−d).

PAC and agnostic learning models. In the classic Probably Approximately Correct (PAC)
learning model of Valiant [Val84], we have access to an unknown function f : {0, 1}n → {0, 1} from
a known class of functions C, called the concept class, through samples (x, f(x)), where x is drawn
from an unknown distribution D over {0, 1}n. The goal is to learn a hypothesis h : {0, 1}n → {0, 1},
such that with probability 1 − δ (over the choice of samples), h(x) has (Boolean) loss at most ε
with respect to D. Here, the Boolean loss errD(h, f) of h is defined to be Prx∼D[h(x) 6= f(x)] ≤ ε.

Since the learning algorithm does not know D and is required to work for all D, this model is
also called the distribution-independent (or distribution-free) PAC model. Unfortunately, in the
distribution-free setting, very few concept classes are known to be PAC learnable in polynomial
time or even subexponential time (i.e., time 2n1−δ for some constant δ > 0).

18

Kearns, Schapire, and Sellie [KSS94] then proposed the more general (and challenging) agnostic
PAC learning model, which removes the assumption that examples are determined by a function at
all, let alone a function in the concept class C. The learner now knows nothing about how examples
are labeled, but is only required to learn a hypothesis h that is at most ε worse than the best
possible classifier from the class C.

We now describe the agnostic PAC model more formally. Let D be any distribution on
{0, 1}n × {0, 1}, and let C be a concept class, i.e., a set of Boolean functions on {0, 1}n. Define the
error of h : {0, 1}n → {0, 1} to be errD(h) := Pr(x,b)∼D[h(x) 6= y], and define opt := minc∈C errD(c).
We say that C is agnostically learnable in time T (n, ε, δ) if there exists an algorithm which takes as
input n and δ and has access to an example oracle EX(D), and satisfies the following properties.
It runs in time at most T (n, ε, δ), and with probability at least 1 − δ, it outputs a hypothesis h
satisfying errD(h) ≤ opt + ε. We say that the learning algorithm runs in subexponential time if there
is some constant η > 0 such that for any constants ε and δ, the running time T (n, ε, δ) ≤ 2n1−η for
sufficiently large n.

The agnostic model is able to capture a range of realistic scenarios that do not fit within the
standard PAC model. In many situations it is unreasonable to know exactly that f belongs to
some class C, since f may be computed by a process outside of our control. For example, the
labels of f may be (adversarially) corrupted by noise, resulting in a function that is no longer in C.
Alternatively, f may be “well-modeled,” but not perfectly modeled, by some concept in C. In fact,
the agnostic learning model even allows the input sample to not be described by a function f at all,
in the sense that the distribution over the sample may have both (x, 0) and (x, 1) in its support.
This is also realistic when the model being used does not capture all of the variables on which the
true function depends.

5.1 Related work

Since the agnostic PAC model generalizes the standard PAC model, it is (considerably) harder
to learn a concept class in this model. Consequently, even fewer concept classes are known to be
agnostically learnable, even in subexponential time. For example, as mentioned in Section 1.4, the
best known algorithm for agnostically learning the simple concept class of disjunctions, which are
size-1, depth-1 Boolean circuits, runs in time7 2Õ(

√
n) [KKMS08]. In contrast, they can be learned

in polynomial time in the PAC model [Val84]. Meanwhile, several hardness results are known for
agnostically learning disjunctions, including NP-hardness for proper learning [KSS94], and that
even improper learning is as hard as PAC learning DNF [LBW95].

While it is an important and interesting problem to agnostically learn more expressive classes of
circuits in subexponential time, relatively few results are known. The best known general result is
that all de Morgan formulas (formulas over the gate set of AND, OR, and NOT gates) of size s can
be learned in time 2Õ(

√
s) [KKMS08, Rei11]. In particular, linear-size formulas (i.e., s = Θ(n)) can

be learned in time 2Õ(
√
n), which is the same as the best known upper bound for disjunctions.

Even in the relatively easier PAC model, only a small number of circuit classes are known to be
learnable in subexponential time. For the well-studied class of polynomial-size DNFs, or depth-2 AC0

circuits, we have an algorithm running in time 2Õ(n1/3) [KS04], and we know that new techniques
will be needed to improve this bound [RS10]. Little is known about larger subclasses of AC0, other
than a recent paper that studied depth-3 AC0 circuits with top fan-in t, giving a PAC learning
algorithm of runtime 2Õ(t

√
n) [DRG17], which is only subexponential when t�

√
n.

7For simplicity, we suppress runtime dependence on ε and δ.

19

Given the current state of affairs, a subexponential-time algorithm to learn all of AC0 in the
standard PAC model would represent significant progress. Indeed, for d > 2, the fastest known PAC
learning algorithm for depth-d AC0 circuits runs in time 2n−Ω(n/ logd−1 n) [ST17], which is quite close
to the trivial runtime of 2n.

We view our new results for learning LC0 and sublinear-size AC0 circuits as intermediate steps
toward this goal. We clarify that our results are incomparable to the known results about agnostically
learning de Morgan formulas. A simple counting argument [Nis11] shows that there are linear-size
DNFs that are not computable by formulas of size o(n2/ logn), so one cannot learn even depth-2
LC0 in subexponential time via the learning algorithm for de Morgan formulas. On the other hand,
there are linear-size de Morgan formulas (of superconstant depth) that are not in LC0, or even AC0.

Motivated by the lack of positive results in the distribution-free PAC learning model, [ST17]
study algorithms for learning various circuit classes, with the goal of “only” achieving a non-trivial
savings over trivial 2n-time algorithms. By achieving non-trivial savings, [ST17] mean a runtime of
2n−o(n); prior work had already connected non-trivial learning algorithms to circuit lower bounds
[KKO13, OS17]. The subexponential runtimes we achieve in our work are significantly faster than
the 2n−o(n)-time algorithms of [ST17]; in addition, our algorithms work in the challenging agnostic
setting, rather than just the PAC setting. On the other hand, the algorithms of [ST17] apply to
more general circuit classes than LC0.

As mentioned previously, [KS04] gave a 2Õ(n1/3)-time algorithm for PAC learning polynomial
size DNF formulas; their algorithm is based on a Õ(n1/3) upper bound on the threshold degree of
such formulas. In unpublished work, [Tal18] has observed that the argument in [KS04, Theorem 4]
can be generalized to show that for constant d ≥ 2, any depth-d LC0 circuit has threshold degree
at most Õ

(
n1−1/(3·2d−3)). This in turn yields a PAC learning algorithm for LC0 running in time

exp
(
Õ
(
n1−1/(3·2d−3))). Note that this is in the standard PAC model, not the agnostic PAC model.

As mentioned in Section 1, prior to our work, no subexponential time algorithm was known for
agnostically learning even LC0

3 in subexponential time.

5.2 Linear regression and the proof of Theorem 7

Our learning algorithm applies the well-known linear regression framework for agnostic learning
that was introduced by [KKMS08]. The algorithm of [KKMS08] works whenever there is a “small”
set of “features” F (where each feature is a function mapping {0, 1}n to R) such that each concept
in the concept class C can be approximated to error ε in the `∞ norm via a linear combination
of the features in F . Roughly speaking, given a sufficiently large sample S from an (unknown)
distribution over {0, 1}n×{0, 1}, the algorithm finds a linear combination h of the features of F that
minimizes the empirical `1 loss, i.e., h minimizes ∑(xi,bi)∈S |h(xi)− bi| among all linear combinations
of features from F . An (approximately) optimal h can be found in time poly(F) by solving a linear
program of size poly(|F|, |S|).

Lemma 23 ([KKMS08]). Let F be a set of functions mapping {0, 1}n to R, and assume that each
φi ∈ F is efficiently computable, in the sense that for any x ∈ {0, 1}n, φi(x) can be computed in time
poly(n). Suppose that for every c ∈ C, there exist coefficients αi ∈ R such that for all x ∈ {0, 1}n,
|c(x) −∑φi∈F αi · φi(x)| ≤ ε. Then there is an algorithm that takes as input a sample S of size
|S| = poly(n, |F|, 1/ε, log(1/δ)) from an unknown distribution D, and in time poly(|S|) outputs a
hypothesis h such that, with probability at least 1− δ over S, Pr(x,b)∼D[h(x) 6= b] ≤ ε.

A feature set F that is commonly used in applications of Lemma 23 is the set of all monomials
whose degree is at most some bound d. Indeed, an immediate corollary of Lemma 23 is the following.

20

Corollary 24. Suppose that for every c ∈ C, the ε-approximate degree of c is at most d. Then for
every δ > 0, there is an algorithm running in time poly(nd, 1/ε, log(1/δ)) that agnostically learns C
to error ε with respect to any (unknown) distribution D over {0, 1}n × {0, 1}.

The best known algorithms for agnostically learning disjunctions and de Morgan formulas of
linear size [KKMS08, Rei11] combine Corollary 24 with known approximate degree upper bounds
for disjunctions and de Morgan formulas of bounded size. We use the same strategy: our results
for agnostic learning (Theorem 7) follow from combining Corollary 24 with our new approximate
degree upper bounds. Specifically, Theorem 5 shows that the ε-approximate degree of any LC0

d

circuit is at most Õ(n1−2−d log(1/ε)2−d), yielding our new result for agnostically learning LC0 circuits.
Theorem 15 shows that AC0 circuits of size s have ε-approximate degree Õ(

√
ns1/2−2−d(log(1/ε))2−d),

giving our new result for learning sublinear-size AC0.
Furthermore, since our upper bound on the approximate degree of LC0 circuits is nearly tight,

new techniques will be needed to significantly surpass our results. In particular, new techniques will
be needed to agnostically learn all of LC0 in subexponential time. Theorem 6 implies that if F is
the set of all monomials of at most a given degree d, then one cannot use Corollary 24 to learn LC0

d

in time less than 2n1−2−Ω(
√
d)
. However, standard techniques [She11a] automatically generalize the

lower bound of Theorem 6 from the feature set of low-degree monomials to arbitrary feature sets.
Specifically, we obtain the following theorem.

Theorem 25. Let C = LC0
d, and let F∗ denote the minimum size set of features such that each

c ∈ C can be approximated point-wise to error 1/3 by a linear combination of the features in F .
Then |F∗| ≥ 2n1−2−Ω(

√
d)
.

For completeness, we provide the proof of Theorem 25 below.

Proof. For a matrix F ∈ {0, 1}N×N , the ε-approximate rank of F , denoted rankε(F), is the least
rank of a matrix A ∈ RN×N such that |Aij − Fij | ≤ ε for all (i, j) ∈ [N]× [N]. Sherstov’s pattern
matrix method [She11a] allows one to translate in a black-box manner an approximate degree lower
bound for a function f into an approximate rank lower bound for a related matrix F , called the
pattern matrix of f .

Specifically, invoking Theorem 6, let f be the function in LC0
d−1 satisfying d̃eg(f) ≥ D for

some D = n1−2−Ω(
√
d) . Viewing F as a 24n × 24n matrix in the natural way, the pattern matrix

method [She11a, Theorem 8.1] implies that the function F : {0, 1}4n × {0, 1}4n → {0, 1} given by
F (x, y) = f

(
. . . ,∨4

j=1 (xi,j ∧ yi,j) . . .
)
satisfies

rank1/3(F) ≥ 2Ω(D), (21)

where the expression rank1/3(F) views F as a 24n × 24n matrix.
Let F∗ be a feature set satisfying the hypothesis of Theorem 25, i.e., for every function

c : {0, 1}4n → {0, 1} in LC0
d, there exist constants α1, . . . , α|F| such that

|c(x)−
∑
φj∈F

αjφj(x)| ≤ 1/3 (22)

for all x ∈ {0, 1}4n. We claim that this implies that

rank1/3(F) ≤ |F∗|. (23)

21

Theorem 25 then follows by combining Equation (23) with Equation (21).
Let us view each row i of F as a function Fi mapping {0, 1}4n → {0, 1}. Then clearly, if f is in

LC0
d−1, each row Fi is in LC0

d. Hence, there exist constants αi,1, . . . , αi,|F| such that

|Fi(x)−
∑
φj∈F

αi,j · φj(x)| ≤ 1/3 for all x ∈ {0, 1}4n. (24)

Let M denote the 24n × |F| matrix whose i, j’th entry is αi,j . And let R denote that |F| × 24n

matrix whose (j, x)’th entry is φj(x), where we associate x with an input in {0, 1}4n. Then Equation
(24) implies that |M ·R− Fij | ≤ 1/3 for all (i, j) ∈ [24n]× [24n]. Since M ·R is a matrix of rank at
most |F|, Equation (23) follows.

6 Circuit Lower Bounds (Proof of Theorem 8)
As a warmup, we start by establishing a worst-case version of Theorem 8.

Proposition 26. The Inner Product function on n bits cannot be computed by any depth-(d+ 1)
AC0 ◦ ⊕ circuit of size Ω̃

(
n1/(1−2−d)).

Proof. Theorem 5 shows that any depth-d AC0 circuit of size s ≥ n on n inputs has approximate
degree at most D = Õ(s1−2−d). Clearly, the approximating polynomial has at most

(s
D

)
many

monomials.
From this, one can conclude that any depth-(d+ 1) AC0 ◦ ⊕ circuit C on n inputs of size s ≥ n

can be approximated by a polynomial p over {−1, 1}n with at most
(s
D

)
many monomials. To see

why, let q approximate the “AC0 part” of C. This is an AC0 circuit of depth d and size s on at most
s inputs, and hence has approximate degree at most D. Now obtain p by replacing each input to q
with the corresponding ⊕ gate of C. Since q is defined over domain {−1, 1}n, replacing any input to
q with an XOR function preserves the number of monomials of q.

On the other hand, it is known that well-known that any polynomial p over {−1, 1}n that
uniformly approximates the Inner Product function (to any error strictly less than 1) requires 2Ω(n)

many monomials [BS92].
Combining the above two facts means that

(s
D

)
must be at least 2Ω(n), which means that s must

be at least Ω̃(n1/(1−2−d)).

We now prove Theorem 8, restated here for convenience.

Theorem 8. For any constant integer d ≥ 4, any depth-(d + 1) AC0 ◦ ⊕ circuit computing the
Inner Product function on n bits on greater than a 1/2 + n− logn fraction of inputs has size
Ω̃
(
n1/(1−2−d)) = n1+2−d+Ω(1).

Proof Outline. The proof follows a similar outline to Proposition 26, but builds on an observation
of Tal [Tal16, Lemma 4.2]. Roughly, Lemma 4.2 of [Tal16] shows that bipartite de Morgan formulas
of size s cannot compute the Inner Product function on more than a 1/2 + n− logn fraction of inputs
unless they have size at least roughly n2. The only property of de Morgan formulas of size � n2

that Tal uses is that they have sublinear approximate degree.
Similarly, Theorem 5 shows that an AC0 circuit of size s and depth d on n inputs, for which

n ≤ s� n1/(1−2−d), has sublinear approximate degree.

22

Any parity function is an example of a bipartite function of size O(1), meaning that the parity
function applied to some subset of an input (x, y) ∈ {−1, 1}n×{−1, 1}n is computable by a constant-
sized circuit with leaves computing a function of only x or y. Hence, Tal’s argument applies with
cosmetic changes not only to sub-quadratic size bipartite de Morgan formulas, but also to AC0 ◦ ⊕
circuits of size s� n1/(1−2−d).

We remark that the entire argument (and hence the lower bound of Theorem 8 itself) applies
not only to AC0 ◦ ⊕ circuits, but more generally to depth-d AC0 circuits augmented with a layer of
low-communication gates above the inputs; we omit this extension for brevity.

Proof of Theorem 8, closely following the proof of Lemma 4.2 of [Tal16]. Let

IP(x, y) = ⊕ni=1(xi ∧ yi)

denote the Boolean inner product on 2n bits. Let C : {−1, 1}2n → {−1, 1} be an AC0 ◦ ⊕ circuit of
depth (d+ 1) and size s ≥ n, and let

q = Pr
x,y∈{−1,1}n

[C(x, y) = IP(x, y)].

Suppose that q ≥ 1/2 + ε. Our goal is to show that s must be large, even for negligible values of ε.
Let N ≤ s denote the number of parity gates in C, with the ith parity gate denoted by

hi(x) : {−1, 1}n → {−1, 1}. Let C′ denote just the AC0 part of the circuit, i.e., C(x, y) =
C′(h1(x, y), . . . , hN (x, y)). Note that C′ is an AC0 circuit on at most s inputs, of depth d and size at
most s. By Theorem 5, there exists a polynomial p of degree at most D ≤ Õ

(
s1−2−d log(1/ε)2−d

)
such that, for all w ∈ {−1, 1}N , |p(w)− C′(w)| ≤ ε.

Next, we show that under the uniform distribution, the function IP(x, y) correlates well with
p(h1(x), . . . , hN (x)). We decompose the expectation Ex,y∈{−1,1}n [p(x, y) · IP(x, y)] according to
whether or not IP(x, y) = C(x, y):

Ex,y∈{−1,1}n [p(h1(x, y), . . . , hN (x, y)) · IP(x, y)] =
Ex,y∈{−1,1}n [p(h1(x, y), . . . , hN (x, y)) · IP(x, y)|IP(x, y) = C(x, y)] · Pr[IP(x, y) = C(x, y)]+

Ex,y∈{−1,1}n [p(h1(x, y), . . . , hN (x, y)) · IP(x, y)|IP(x, y) 6= C(x, y)] · Pr[IP(x, y) 6= C(x, y)]
≥ (1− ε) · q + (−1− ε) · (1− q)

= 2q − 1− ε ≥ 2 · (1/2 + ε)− 1− ε = ε. (25)

Next, we write p(z) as a multi-linear polynomial: p(z) = ∑
S⊆[N],|S|≤D p̂(S) · ∏i∈S zi. Since

p̂(S) = Ez∈{−1,1}N [p(z) ·∏i∈S zi], we have that |p̂(S)| ≤ 1 + ε for every S. Note that there are at
most

(N
D

)
monomials in p. Invoking Inequality (25), we have:

ε ≤ Ex,y∈{−1,1}n [p(h1(x, y), . . . , hN (x, y)) · IP(x, y)]

= Ex,y∈{−1,1}n

 ∑
S⊆[N],|S|≤D

p̂(S)
∏
i∈S

hi(x, y) · IP(x, y)

=

∑
S⊆[N],|S|≤D

p̂(S) ·Ex,y∈{−1,1}n

[∏
i∈S

hi(x, y) · IP(x, y)
]

≤
∑

S⊆[N],|S|≤D
(1 + ε)

∣∣∣∣∣Ex,y∈{−1,1}n

[∏
i∈S

hi(x, y) · IP(x, y)
]∣∣∣∣∣ .

23

Hence there must exist a set S ⊆ [N] with size at most D such that∣∣∣∣∣Ex,y∈{−1,1}n

[∏
i∈S

hi(x, y) · IP(x, y)
]∣∣∣∣∣ ≥ ε(N

D

)
(1 + ε)

≥ (ε/2) · s−D ≥ exp
(
Õ(−s1−2−d log2−d(1/ε))

)
.

It is well-known that IP is 2−Ω(n) correlated with any parity function hi (indeed, IP on 2n bits
is a bent function, meaning that all its Fourier coefficients have magnitude 2−n, and hence its
correlation with any parity is at most 2−n). We conclude that

s1−2−d log2−d(1/ε) ≥ Ω̃(n).

The theorem is an immediate consequence of this inequality.

Acknowledgements
We thank Ronald de Wolf for comments on an earlier draft of this paper. R.K. thanks Luke Schaeffer
for comments on the proof of Theorem 1.

References
[ABG+14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Candidate

weak pseudorandom functions in AC0 ◦MOD2. In Proceedings of the 5th conference
on Innovations in theoretical computer science, ITCS ’14, pages 251–260, 2014. doi:
10.1145/2554797.2554821. [p. 6]

[ABO84] Miklos Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth compu-
tations. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
STOC ’84, pages 471–474, 1984. doi:10.1145/800057.808715. [p. 16]

[ACR+10] Andris Ambainis, Andrew M. Childs, Ben W. Reichardt, Robert Špalek, and Shengyu
Zhang. Any AND-OR formula of size N can be evaluated in time N1/2+o(1) on
a quantum computer. SIAM Journal on Computing, 39(6):2513–2530, 2010. doi:
10.1137/080712167. [p. 3]

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–1523,
1997. doi:10.1137/S0097539796300933. [pp. 1, 9]

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.
Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001.
doi:10.1145/502090.502097. [pp. 2, 3]

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on
quantum searching. Fortschritte der Physik, 46(4-5):493–505, 1998. doi:10.1002/
(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P. [p. 9]

[BCdWZ99] Harry Buhrman, Richard Cleve, Ronald de Wolf, and Christof Zalka. Bounds for small-
error and zero-error quantum algorithms. In 40th Annual Symposium on Foundations
of Computer Science, pages 358–368, 1999. doi:10.1109/sffcs.1999.814607. [pp. 14,
16]

24

https://doi.org/10.1145/2554797.2554821
https://doi.org/10.1145/2554797.2554821
https://doi.org/10.1145/800057.808715
https://doi.org/10.1137/080712167
https://doi.org/10.1137/080712167
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1145/502090.502097
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1109/sffcs.1999.814607

[BCH+17] Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and Prashant Nalini
Vasudevan. On the power of statistical zero knowledge. In 58th Annual Sym-
posium on Foundations of Computer Science (FOCS 2017), pages 708–719, 2017.
doi:10.1109/focs.2017.71. [pp. 16, 17]

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree
complexity: a survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:
10.1016/S0304-3975(01)00144-X. [pp. 8, 13]

[BKT18] Mark Bun, Robin Kothari, and Justin Thaler. The polynomial method strikes back:
Tight quantum query bounds via dual polynomials. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 297–310, 2018.
doi:10.1145/3188745.3188784. [pp. 4, 5, 8, 17]

[BM12] Paul Beame and Widad Machmouchi. The quantum query complexity of AC0. Quantum
Information & Computation, 12(7-8):670–676, 2012. [pp. 4, 7]

[BNRdW07] Harry Buhrman, Ilan Newman, Hein Röhrig, and Ronald de Wolf. Robust polynomials
and quantum algorithms. Theory of Computing Systems, 40(4):379–395, 2007. doi:
10.1007/s00224-006-1313-z. [p. 14]

[BS92] Jehoshua Bruck and Roman Smolensky. Polynomial threshold functions, AC0 functions,
and spectral norms. SIAM Journal on Computing, 21(1):33–42, 1992. doi:10.1137/
0221003. [p. 22]

[BT17] Mark Bun and Justin Thaler. A nearly optimal lower bound on the approximate
degree of AC0. In IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS 2017), pages 1–12, 2017. doi:10.1109/FOCS.2017.10. [pp. 4, 5]

[CCJYM09] Andrew M. Childs, Richard Cleve, Stephen P. Jordan, and David Yonge-Mallo. Discrete-
query quantum algorithm for NAND trees. Theory of Computing, 5:119–123, 2009.
doi:10.4086/toc.2009.v005a005. [p. 3]

[CGJ+16] Mahdi Cheraghchi, Elena Grigorescu, Brendan Juba, Karl Wimmer, and Ning Xie.
AC0 ◦ MOD2 lower bounds for the boolean inner product. In LIPIcs-Leibniz Interna-
tional Proceedings in Informatics, volume 55. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.35. [p. 6]

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of
satisfiability of small depth circuits. In International Workshop on Parameterized and
Exact Computation, pages 75–85, 2009. doi:10.1007/978-3-642-11269-0_6. [p. 4]

[CKK12] Andrew M. Childs, Shelby Kimmel, and Robin Kothari. The quantum query complexity
of read-many formulas. In 20th Annual European Symposium on Algorithms (ESA
2012), pages 337–348, 2012. doi:10.1007/978-3-642-33090-2_30. [pp. 3, 5, 7]

[CR96] Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in circuit
complexity. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, STOC ’96, pages 30–36, 1996. doi:10.1145/237814.237824. [p. 8]

[DRG17] Ning Ding, Yanli Ren, and Dawu Gu. Pac learning depth-3 AC0 circuits of bounded
top fanin. In Proceedings of the 28th International Conference on Algorithmic Learning

25

https://doi.org/10.1109/focs.2017.71
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1145/3188745.3188784
https://doi.org/10.1007/s00224-006-1313-z
https://doi.org/10.1007/s00224-006-1313-z
https://doi.org/10.1137/0221003
https://doi.org/10.1137/0221003
https://doi.org/10.1109/FOCS.2017.10
https://doi.org/10.4086/toc.2009.v005a005
https://doi.org/10.4230/LIPIcs.ICALP.2016.35
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1007/978-3-642-33090-2_30
https://doi.org/10.1145/237814.237824

Theory, volume 76 of Proceedings of Machine Learning Research, pages 667–680, 2017.
URL: http://proceedings.mlr.press/v76/ding17a.html. [p. 19]

[FGG08] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum algorithm for the
Hamiltonian NAND tree. Theory of Computing, 4(1):169–190, 2008. doi:10.4086/toc.
2008.v004a008. [p. 3]

[FHH+14] Yuval Filmus, Hamed Hatami, Steven Heilman, Elchanan Mossel, Ryan O’Donnell,
Sushant Sachdeva, Andrew Wan, and Karl Wimmer. Real analysis in computer
science: A collection of open problems, 2014. URL: https://simons.berkeley.edu/
sites/default/files/openprobsmerged.pdf. [p. 8]

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 212–219, 1996. doi:10.1145/237814.237866. [pp. 1, 8, 9, 15]

[HLŠ07] Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger.
In Proceedings of the 39th Symposium on Theory of Computing (STOC 2007), pages
526–535, 2007. doi:10.1145/1250790.1250867. [p. 1]

[KKMS08] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio.
Agnostically learning halfspaces. SIAM Journal on Computing, 37(6):1777–1805, 2008.
doi:10.1137/060649057. [pp. 3, 5, 6, 19, 20, 21]

[KKO13] Adam Klivans, Pravesh Kothari, and Igor C. Oliveira. Constructing hard functions
using learning algorithms. In IEEE Conference on Computational Complexity (CCC
2013), pages 86–97, 2013. doi:10.1109/CCC.2013.18. [p. 20]

[KLPT06] Michal Koucký, Clemens Lautemann, Sebastian Poloczek, and Denis Therien. Circuit
lower bounds via Ehrenfeucht-Fraisse games. In 21st Annual IEEE Conference on
Computational Complexity (CCC 2006), pages 190–201, 07 2006. doi:10.1109/CCC.
2006.12. [p. 4]

[Kop13] Swastik Kopparty. AC0 lower bounds and pseudorandomness. Lecture notes of
“Topics in Complexity Theory and Pseudorandomness (Spring 2013)” at Rutgers Uni-
versity. http://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec4.pdf (Re-
trieved July 12, 2018), 2013. [p. 16]

[Kou09] Michal Koucký. Circuit complexity of regular languages. Theory of Computing Systems,
45(4):865–879, 2009. doi:10.1007/s00224-009-9180-z. [p. 4]

[KS04] Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2Õ(n1/3). Journal of
Computer and System Sciences, 68(2):303–318, 2004. doi:10.1016/j.jcss.2003.07.007.
[pp. 19, 20]

[KSS94] Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient agnostic
learning. Machine Learning, 17(2-3):115–141, 1994. doi:10.1007/bf00993468. [pp. 5,
19]

[LBW95] Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. On efficient agnostic
learning of linear combinations of basis functions. In Proceedings of the eighth annual
conference on Computational learning theory, pages 369–376, 1995. doi:10.1145/
225298.225343. [pp. 5, 19]

26

http://proceedings.mlr.press/v76/ding17a.html
https://doi.org/10.4086/toc.2008.v004a008
https://doi.org/10.4086/toc.2008.v004a008
https://simons.berkeley.edu/sites/default/files/openprobsmerged.pdf
https://simons.berkeley.edu/sites/default/files/openprobsmerged.pdf
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.1137/060649057
https://doi.org/10.1109/CCC.2013.18
https://doi.org/10.1109/CCC.2006.12
https://doi.org/10.1109/CCC.2006.12
http://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec4.pdf
https://doi.org/10.1007/s00224-009-9180-z
https://doi.org/10.1016/j.jcss.2003.07.007
https://doi.org/10.1007/bf00993468
https://doi.org/10.1145/225298.225343
https://doi.org/10.1145/225298.225343

[Lee12] Troy Lee. Slides for the paper “improved quantum query algorithms for triangle
finding and associativity testing” by T. Lee, F. Magniez, M. Santha. Available
at http://research.cs.rutgers.edu/~troyjlee/troy_triangle.pdf (Retrieved July 11,
2018), 2012. [p. 7]

[LS09] Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Foun-
dations and Trends in Theoretical Computer Science, 3(4):263–399, 2009. doi:
10.1561/0400000040. [p. 13]

[Nis11] Noam Nisan. Shortest formula for an n-term monotone CNF. Theoretical Computer
Science Stack Exchange, 2011. https://cstheory.stackexchange.com/q/7087 (version:
2011-06-23). [p. 20]

[NS94] Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4:301–313, 1994. doi:10.1007/BF01263419. [p. 14]

[OS17] Igor C. Carboni Oliveira and Rahul Santhanam. Conspiracies Between Learning
Algorithms, Circuit Lower Bounds, and Pseudorandomness. In 32nd Computational
Complexity Conference (CCC 2017), volume 79 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 18:1–18:49, 2017. doi:10.4230/LIPIcs.CCC.2017.18. [p.
20]

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition. Mathematical Notes of the Academy of Sciences
of the USSR, 41(4):333–338, 1987. [p. 6]

[Rei11] Ben Reichardt. Reflections for quantum query algorithms. In SODA ’11: Proceedings
of the 22nd ACM-SIAM Symposium on Discrete Algorithms, pages 560–569, 2011.
doi:10.1137/1.9781611973082.44. [pp. 1, 3, 5, 19, 21]

[RS10] Alexander A. Razborov and Alexander A. Sherstov. The sign-rank of AC0. SIAM
Journal on Computing, 39(5):1833–1855, 2010. doi:10.1137/080744037. [p. 19]

[RW91] Prabhakar Ragde and Avi Wigderson. Linear-size constant-depth polylog-threshold cir-
cuits. Information Processing Letters, 39(3):143–146, 1991. doi:10.1016/0020-0190(91)
90110-4. [p. 4]

[She11a] Alexander A. Sherstov. The pattern matrix method. SIAM Journal on Computing,
40(6):1969–2000, 2011. doi:10.1137/080733644. [pp. 6, 21]

[She11b] Alexander A. Sherstov. Strong direct product theorems for quantum communication
and query complexity. In Proceedings of the 43rd annual ACM symposium on Theory
of computing (STOC 2011), pages 41–50, 2011. doi:10.1145/1993636.1993643. [p. 4]

[She13a] Alexander A. Sherstov. The intersection of two halfspaces has high threshold degree.
SIAM Journal on Computing, 42(6):2329–2374, 2013. doi:10.1137/100785260. [p. 17]

[She13b] Alexander A. Sherstov. Making polynomials robust to noise. Theory of Computing,
9:593–615, 2013. doi:10.4086/toc.2013.v009a018. [p. 4]

[She15] Alexander A. Sherstov. The power of asymmetry in constant-depth circuits. In IEEE
56th Annual Symposium on Foundations of Computer Science, pages 431–450, 2015.
doi:10.1109/FOCS.2015.34. [pp. 4, 7]

27

http://research.cs.rutgers.edu/~troyjlee/troy_triangle.pdf
https://doi.org/10.1561/0400000040
https://doi.org/10.1561/0400000040
https://cstheory.stackexchange.com/q/7087
https://doi.org/10.1007/BF01263419
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1137/1.9781611973082.44
https://doi.org/10.1137/080744037
https://doi.org/10.1016/0020-0190(91)90110-4
https://doi.org/10.1016/0020-0190(91)90110-4
https://doi.org/10.1137/080733644
https://doi.org/10.1145/1993636.1993643
https://doi.org/10.1137/100785260
https://doi.org/10.4086/toc.2013.v009a018
https://doi.org/10.1109/FOCS.2015.34

[She18] Alexander A. Sherstov. Algorithmic polynomials. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing (STOC 2018), 2018. doi:10.1145/
3188745.3188958. [p. 4]

[SS12] Rahul Santhanam and Srikanth Srinivasan. On the limits of sparsification. In In-
ternational Colloquium on Automata, Languages, and Programming, pages 774–785.
Springer, 2012. doi:10.1007/978-3-642-31594-7_65. [p. 4]

[ST17] Rocco A. Servedio and Li-Yang Tan. What Circuit Classes Can Be Learned with
Non-Trivial Savingsl. In 8th Innovations in Theoretical Computer Science Conference
(ITCS 2017), volume 67 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 30:1–30:21, 2017. doi:10.4230/LIPIcs.ITCS.2017.30. [p. 20]

[SV12] Rocco A Servedio and Emanuele Viola. On a special case of rigidity. Technical Report
TR12-144, Electronic Colloquium on Computational Complexity (ECCC), 2012. URL:
https://eccc.weizmann.ac.il/report/2012/144/. [p. 6]

[Tal16] Avishay Tal. The bipartite formula complexity of inner-product is quadratic. Technical
Report TR16-181, Electronic Colloquium on Computational Complexity (ECCC), 2016.
Merged with Computing Requires Larger Formulas than Approximating, appearing in
STOC 2017. URL: https://eccc.weizmann.ac.il/report/2016/181/. [pp. 22, 23]

[Tal17] Avishay Tal. Formula lower bounds via the quantum method. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pages
1256–1268, 2017. doi:10.1145/3055399.3055472. [p. 3]

[Tal18] Avishay Tal. Personal communication, 2018. [p. 20]

[Val84] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, Nov 1984. doi:10.1145/1968.1972. [pp. 18, 19]

A Depth-vs-Size Upper Bounds for Approximate Majorities
In this section, we prove a result alluded to in Section 1.6, namely an upper bound on the size of
small-depth circuits computing approximate majorities.

For 0 < p < q < 1, we use AMAJn,p,q to refer to any total function f on n bits satisfying the
following two properties:

• f(x) = 0 for all x of Hamming weight at most pn.

• f(x) = 1 for all x of Hamming weight at least qn.

We also say that such an f computes AMAJn,p,q.

Theorem 27. For any constant δ > 0, there are positive constants 0 < p < 1/2 < q < 1 such that
the following holds. There is a total function f computing AMAJn,p,q such that f is itself computable
by a depth-(2d + 3) circuit of size Od,δ(n1+2−d+δ). Here, the Od,δ notation hides a leading factor
that depends only on d and 1/δ.

Proof. A careful application of well-known arguments yields the following claim, whose proof we
defer to the end of this section.

28

https://doi.org/10.1145/3188745.3188958
https://doi.org/10.1145/3188745.3188958
https://doi.org/10.1007/978-3-642-31594-7_65
https://doi.org/10.4230/LIPIcs.ITCS.2017.30
https://eccc.weizmann.ac.il/report/2012/144/
https://eccc.weizmann.ac.il/report/2016/181/
https://doi.org/10.1145/3055399.3055472
https://doi.org/10.1145/1968.1972

Claim 28. For any constant δ > 0, there exist constants 0 < p0 < 1/2 < q0 < 1 such that
the following holds. There is a monotone depth-3 AC0 circuit C0 of size O(m2+δ) computing
AMAJm,p0,q0. The top and bottom layers of gates of C0 are AND gates.

To prove Theorem 27, we need to use C0 to construct deeper but smaller circuits that also
compute approximate majorities. More generally, we establish the following iterative transformation
that takes any circuit Ci computing an approximate majority function and turns it into a smaller
and only slightly deeper circuit Ci+1 that also computes an approximate majority function.8

Lemma 29. Let d > 0 and δ > 0 be fixed constants, and let p0 and q0 be the associated constants
from Claim 28. Suppose that there exists a family of monotone circuits Ci with the following
properties.

• There exist constants 0 < pi ≤ p0 < 1/2 < q0 ≤ qi < 1 such that for all input sizes m, Ci
contains a circuit computing AMAJm,pi,qi.

• Each circuit in Ci has depth 2i+ 3, and the top and bottom layers consist of AND gates.

• There is a constant ki > 0 such that the circuit in Ci defined over inputs of size m has size at
most Od,pi,qi(mki+δ), where the Od,pi,qi notation hides factors depending only on d, pi, and qi.

Then there exists a family of monotone circuits Ci+1 satisfying the above three properties, with
pi+1 = (1− 1/(10d))pi, qi+1 = 1− (1− qi)(1− 1/(10d)), and ki+1 ≤ (1 + ki)/2.

Proof. Let Ci be the assumed circuit from family Ci on m inputs computing AMAJm,pi,qi . Let

n = m2

and
M = 700d2(1/p2

i + 1/q2
i)m.

Consider a random circuit Ci+1 on n inputs of the form

AMAJM,pi,qi(AMAJm,pi,qi , . . . ,AMAJm,pi,qi), (26)

Here, each of the bottom AMAJ circuits are evaluated on a randomly chosen (size-m) subset of the n
inputs of Ci+1. Since pi ≤ p0 and q0 ≤ qi, we may use a circuit C0 from family C0 (as per Claim 28)
to compute the outer function AMAJM,pi,qi . We use the circuit Ci from family Ci to compute each
copy of the inner function AMAJm,pi,qi .

We claim that with strictly positive probability, this circuit Ci+1 computes AMAJn,pi+1,qi+1 .
To see this, first fix an input x with Hamming weight at most pi+1 · n, so that the expected
number of 1-inputs to any bottom AMAJm,pi,qi circuit is at most µ := pi+1 · m. Note that
pi ·m > (1 + 1/(10d))µ. If any AMAJm,pi,qi circuit “makes an error” on x (i.e., evaluates to 1 on
x), then at least pi ·m > (1 + 1/(10d)) · µ of the randomly chosen inputs to the gate are 1. By a
Chernoff bound, for each of the bottom AMAJm,pi,qi gates, this happens on input x with probability
at most exp(−µ/(3(10d)2)) ≤ exp(−µ/(300d2)) ≤ exp(−pim/(600d2)).

The probability that more than (700d2/pi)m ≤ pi ·M of these circuits makes an error is at most
2M · (exp(−pim/(600d2)))(700d2/pi)m � exp(−m2). Thus, with probability at least 1− exp(−m2),
the circuit Ci+1 outputs 0 on input x.

8Not coincidentally, this iterative transformation to reduce circuit size at the expense of depth is reminiscent of the
transformation used to prove the approximate degree lower bound for linear-size circuits given in Theorem 6.

29

An analogous argument holds for inputs x with Hamming weight at least qi+1 · n, so by a union
bound over all at most the 2n inputs to Ci+1 with Hamming weight at most pi+1 · n or at least
qi+1 · n, with strictly positive probability Ci+1 computes AMAJn,pi+1,qi+1 .

The circuit Ci+1 has m2 inputs and has size at most

O(M2+δ) +O(M ·mki+δ) = Od,pi,qi(n1+δ/2 +m1+ki+δ) = Od,pi,qi(nki+1+δ/2),

where recall that ki+1 = (1 + ki)/2.
Equation (26) implies that the top and bottom layers of Ci+1 consist of AND gates, with Ci+1

inheriting this property directly from Ci and C0. Moreover, by collapsing the bottom layer of C0
with the top layer of each copy of Ci (which is possible because C0 is monotone), we find that the
depth of Ci+1 is at most most 3 + (2i + 3) − 1 = 2(i + 1) + 3. This completes the proof of the
lemma.

Let p0, q0 be as in Claim 28, and let p = p0/e and q = 1− (1− q0)/e. Theorem 27 follows by
iteratively applying Lemma 29 d times (starting with i = 0; the assumptions of the lemma are
satisfied for this value of i by Claim 28) to conclude that AMAJn,p,q is computable by a circuit of
depth 2d+ 3 and size Od(n1+2−d+δ).

Proof of Claim 28. The main idea of the (probabilistic) construction is to have an AND-OR-AND
circuit C, where the top AND gate has fan-in t1 := m, the middle layer (of OR gates) all have fan-in
t2 := m1+δ, and the bottom layer of AND gates all have fan-in t3 = log2(m). Each bottom AND
gate is connected to t3 randomly chosen inputs.

Let p be any constant less than 1/21+δ, and q = 1/2δ. These choices ensure that plog2(m) <
1/(2m1+δ) and qlog2(m) > 1/mδ. We now show that with positive probability, C computes AMAJm,p,q.

Consider any m-bit input x with Hamming weight at most p ·m. Then for any fixed AND gate
at the bottom layer of C, the probability the AND gate evaluates to 1 is at most pt3 < 1/(2m1+δ).
By a union bound, this implies that for any fixed OR gate at the middle layer of C, the probability
the OR gate outputs 1 on x is at most t2 · 1/(2m1+δ) ≤ 1/2. This implies that the probability the
top AND gate outputs 1 on x is at most 1/2t1 = 2−m.

Now consider any m-bit input x with Hamming weight at least q ·m. Then for any fixed AND
gate at the bottom layer of C, the probability the AND gate evaluates to 1 is at least qt3 > 1/mδ.
This implies that for any fixed OR gate at the middle layer of C, the probability the OR gate outputs
1 on x is least 1− (1− 1/mδ)t2 ≥ 1− e−m ≥ 1− 1/(m2m). This implies that the probability the
top AND gate outputs 1 on x is at least 1− 2−m.

By a union bound over all the at most 2m inputs x to C, we conclude that with positive
probability C computes AMAJm,p,q.

30
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

