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We give new quantum algorithms for evaluating composed functions whose
inputs may be shared between bottom-level gates. Let f be an m-bit Boolean
function and consider an n-bit function F obtained by applying f to conjunctions
of possibly overlapping subsets of n variables. If f has quantum query complexity
Q(f), we give an algorithm for evaluating F using Õ(

√
Q(f) · n) quantum queries.

This improves on the bound of O(Q(f) ·
√
n) that follows by treating each con-

junction independently, and our bound is tight for worst-case choices of f . Using
completely di�erent techniques, we prove a similar tight composition theorem for
the approximate degree of f .

By recursively applying our composition theorems, we obtain a nearly optimal
Õ(n1−2−d) upper bound on the quantum query complexity and approximate degree
of linear-size depth-d AC0 circuits. As a consequence, such circuits can be PAC
learned in subexponential time, even in the challenging agnostic setting. Prior
to our work, a subexponential-time algorithm was not known even for linear-size
depth-3 AC0 circuits.

As an additional consequence, we show that AC0 ◦ ⊕ circuits of depth d + 1
require size Ω̃(n1/(1−2−d)) ≥ ω(n1+2−d) to compute the Inner Product function
even on average. The previous best size lower bound was Ω(n1+4−(d+1)) and only
held in the worst case (Cheraghchi et al., JCSS 2018).

A preliminary version of this manuscript appeared in ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2019 [BKT19]. That version did not contain the lower bound for AC0 ◦⊕ circuits computing the Inner
Product function.
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1 Introduction
In the query, or black-box, model of computation, an algorithm aims to evaluate a known
Boolean function f : {0, 1}n → {0, 1} on an unknown input x ∈ {0, 1}n by reading as few
bits of x as possible. One of the most basic questions one can ask about query complexity,
or indeed any complexity measure of Boolean functions, is how it behaves under composition.
Namely, given functions f and g, and a method of combining these functions to produce a new
function h, how does the query complexity of h depend on the complexities of the constituent
functions f and g?

The simplest method for combining functions is block composition, where the inputs to f are
obtained by applying the function g to independent sets of variables. That is, if f : {0, 1}m →
{0, 1} and g : {0, 1}k → {0, 1}, then the block composition (f ◦ g) : {0, 1}m·k → {0, 1} is
de�ned by (f ◦ g)(x1, . . . , xm) = f(g(x1), . . . , g(xm)) where each xi is a k-bit string. In most
reasonable models of computation, one can evaluate f ◦ g by running an algorithm for f , and
using an algorithm for g to compute the inputs to f as needed. Thus, the query complexity
of f ◦ g is at most the product of the complexities of f and g.1

For many query models, including those capturing deterministic and quantum computation,
this is known to be tight. In particular, letting Q(f) denote the bounded-error quantum query
complexity of a function f , it is known that Q(f ◦g) = Θ(Q(f) ·Q(g)) for all Boolean functions
f and g [HL�07, Rei11]. This result has the �avor of a direct sum theorem: When computing
many copies of the function g (in this case, as many as are needed to generate the necessary
inputs to f), one cannot do better than just computing each copy independently.

1.1 Quantum algorithms for shared-input compositions
While we have a complete understanding of the behavior of quantum query complexity under
block composition, little is known for more general compositions. What is the quantum query
complexity of a composed function where inputs to f are generated by applying g to over-
lapping sets of variables? We call these more general compositions shared-input compositions.
Not only does answering this question serve as a natural next step for improving our under-
standing of quantum query complexity, but it may lead to more uni�ed algorithms and lower
bounds for speci�c functions of interest in quantum computing. Many of the functions that
have played an in�uential role in the study of quantum query complexity can be naturally
expressed as compositions of simple functions with shared inputs, including k-distinctness,
k-sum, surjectivity, triangle �nding, and graph collision.

In this work, we study shared-input compositions between an arbitrary function f and the
function g = AND. If f : {0, 1}m → {0, 1}, then we let h : {0, 1}n → {0, 1} be any function
obtained by generating each input to f as an AND over some subset of (possibly negated)
variables from x1, . . . , xn, as depicted in Figure 1.

Of course, one can compute the function h by ignoring the fact that the AND gates depend
on shared inputs, and instead regard each gate as depending on its own set of copies of the
input variables. Using the quantum query upper bound for block compositions, together with

1In some “reasonable models,” such as those with bounded error, one must take care to ensure that errors in
computing each copy of g do not propagate, but we elide these issues for this introduction. Addressing this
concern typically adds at most a logarithmic overhead.
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Figure 1: A depth-2 circuit h : {0, 1}5 → {0, 1} where the top gate is a function f : {0, 1}6 → {0, 1} and
the bottom level gates are AND gates on a subset of the input bits and their negations. More generally, we
consider h : {0, 1}n → {0, 1}, with top gate f : {0, 1}m → {0, 1}.

the fact that Q(ANDn) = Θ(
√
n) [Gro96, BBBV97], one obtains

Q(h) = O(Q(f) ·Q(ANDn)) = O(Q(f) ·
√
n). (1)

Observe that this bound on Q(h) is non-trivial only if Q(f) �
√
n. A priori, one may

conjecture that this bound is tight in the worst case for shared-input compositions. After
all, if the variables overlap in some completely arbitrary way with no structure, it is unclear
from the perspective of an algorithm designer how to use the values of already-computed AND
gates to reduce the number of queries needed to compute further AND gates. It might even
be the case that every pair of AND gates shares very few common input bits, suggesting that
evaluating one AND gate yields almost no information about the output of any other AND
gate. This intuition even suggests a path for proving a matching lower bound: Using a random
wiring pattern, combinatorial designs, etc., construct the set of inputs to each AND gate so
that evaluating any particular gate leaks almost no useful information that could be helpful
in evaluating the other AND gates.

In this work, we show that this intuition is wrong: the overlapping structure of the AND
gates can always be exploited algorithmically (so long as Q(f)� n).

Results. Our main result shows that a shared-input composition between a function f and
the AND function always has substantially lower quantum query complexity than the block
composition f ◦ANDn. Speci�cally, instead of having quantum query complexity which is the
product Q(f) ·

√
n, a shared-input composition has quantum query complexity which is, up

to logarithmic factors, the geometric mean
√
Q(f) · n between Q(f) and the number of input

variables n. This bound is nontrivial whenever Q(f) is signi�cantly smaller than n.

Theorem 1. Let h : {0, 1}n → {0, 1} be computed by a depth-2 circuit where the top gate is
a function f : {0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the
input bits and their negations (as depicted in Figure 1). Then we have

Q(h) = O
(√

Q(f) · n · log2(mn)
)
. (2)
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Note that Theorem 1 is nearly tight for every possible value of Q(f) ∈ [n].2 For a pa-
rameter t ≤ n, consider the block composition (i.e., the composition with disjoint inputs)
PARITYt ◦ANDn/t. Since Q(PARITYt) = dt/2e [BBC+01], this function has quantum query
complexity

Q
(
PARITYt ◦ANDn/t

)
= Θ

(
t ·
√
n/t

)
= Θ

(√
Q(PARITYt) · n

)
, (3)

matching the upper bound provided by Theorem 1 up to log factors. This shows that Theo-
rem 1 cannot be signi�cantly improved in general.

The proof of Theorem 1 makes use of an optimal quantum algorithm for computing f and
Grover's search algorithm for evaluating AND gates. Surprisingly, it uses no other tools from
quantum computing. The core of the argument is entirely classical, relying on a recursive gate
and wire-elimination argument for evaluating AND gates with overlapping inputs.

At a high level, the algorithm in Theorem 1 works as follows. The overall goal is to query
enough input bits such that the resulting circuit is simple enough to apply the composition
upper bound Q(f ◦ g) = O(Q(f)Q(g)). To apply this upper bound and obtain the claimed
upper bound in Theorem 1, we require Q(g) to be O(

√
n/Q(f)). Since g is just an AND gate

on some subset of inputs, this means we want the fan-in of each AND gate in our circuit to be
O(n/Q(f)). If we call AND gates with fan-in ω(n/Q(f)) �high fan-in� gates, then the goal is
to eliminate all high fan-in gates. Our algorithm achieves this by judiciously querying input
bits that would eliminate a large number of high fan-in gates if they were set to 0.

Besides the line of work on the quantum query complexity of block compositions, our result
is also closely related to work of Childs, Kimmel, and Kothari [CKK12] on read-many formulas.
Childs et al. showed that any formula on n inputs consisting of G gates from the de Morgan
basis {AND,OR,NOT} can be evaluated using O(G1/4 ·

√
n) quantum queries. In the special

case of DNF formulas, our result coincides with theirs by taking the top function f to be the
OR function. However, even in this special case, the result of Childs et al. makes critical use
of the top function being OR. Speci�cally, their result uses the fact that the quantum query
complexity of the OR function is the square root of its formula size. Our result, on the other
hand, applies without making any assumptions on the top function f . This level of generality
is needed when using Theorem 1 to understand circuits (rather than just formulas) of depth
3 and higher, as discussed in Section 1.3.

1.2 Approximate degree of shared-input compositions
We also study shared-input compositions under the related notion of approximate degree.
For a Boolean function f : {0, 1}n → {0, 1}, an ε-approximating polynomial for f is a real
polynomial p : {0, 1}n → R such that |p(x)− f(x)| ≤ ε for all x ∈ {0, 1}n. The ε-approximate

degree of f , denoted degε(f), is the least degree among all ε-approximating polynomials for
f . We use the term approximate degree without quali�cation to refer to choice ε = 1/3, and
denote it d̃eg(f) = deg1/3(f).

A fundamental observation due to Beals et al. [BBC+01] is that any T -query quantum al-
gorithm for computing a function f implicitly de�nes a degree-2T approximating polynomial

2Theorem 1 is not tight for every function f , of course. For example if f is an AND on many inputs, the
composed function will have quantum query complexity O(

√
n) but the upper bound of Theorem 1 can be

larger than this.
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for f . Thus, d̃eg(f) ≤ 2Q(f). This relationship has led to a number of successes in proving
quantum query complexity lower bounds via approximate degree lower bounds, constituting
a technique known as the polynomial method in quantum computing. Conversely, quantum
algorithms are powerful tools for establishing the existence of low-degree approximating poly-
nomials that are needed in other applications to theoretical computer science. For example,
the deep result that every de Morgan formula of size s has quantum query complexity, and
hence approximate degree, O(

√
s) [FGG08, CCJYM09, ACR+10, Rei11] underlies the fastest

known algorithm for agnostically learning formulas [KKMS08, Rei11] (See Section 1.4 and
Section 5 for details on this application). It has also played a major role in the proofs of the
strongest formula and graph complexity lower bounds for explicit functions [Tal17].

Results. We complement our result on the quantum query complexity of shared-input com-
positions with an analogous result for approximate degree.

Theorem 2. Let h : {0, 1}n → {0, 1} be computed by a depth-2 circuit where the top gate is
a function f : {0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the
input bits and their negations (as depicted in Figure 1). Then

degε(h) = O

(√
degε(f) · n · logm+

√
n log(1/ε)

)
. (4)

In particular, d̃eg(h) = O

(√
d̃eg(f) · n logm

)
.

Note that our result for approximate degree is incomparable with Theorem 1, even for
bounded error, since both sides of the equation include the complexity measure under consid-
eration.

Like Theorem 1, Theorem 2 can be shown to be tight by considering the block composi-

tion of PARITY with AND, since d̃eg(PARITYt ◦ANDn/t) = Θ
(√

d̃eg(PARITYt) · n
)
[She13b,

She11b].
Our proof of Theorem 2 abstracts and generalizes a technique introduced by Sherstov [She18],

who very recently proved an O(n3/4) upper bound on the approximate degree of an impor-
tant depth-3 circuit of nearly quadratic size called Surjectivity [She18]. Despite the similarity
between Theorem 2 and Theorem 1, and the close connection between approximating polyno-
mials and quantum algorithms, the proof of Theorem 2 is completely di�erent from Theorem 1,
making crucial use of properties of polynomials that do not hold for quantum algorithms.3 In
our opinion, this feature of the proof of Theorem 2 makes Theorem 1 for quantum algorithms
even more surprising.

We remark that a di�erent proof of the O(n3/4) upper bound for the approximate degree
of Surjectivity was discovered in [BKT18], who also showed a matching lower bound. It is also
possible to prove Theorem 2 by generalizing the techniques developed in that work, but the
techniques of [She18] lead to a shorter and cleaner analysis.

3Any analysis capable of yielding a sublinear upper bound on the approximate degree of Surjectivity requires
moving beyond quantum algorithms, as its quantum query complexity is known to be Ω(n) [BM12, She15].
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1.3 Application: Evaluating and approximating linear-size AC0 circuits
The circuit class AC0 consists of constant-depth, polynomial-size circuits over the de Morgan
basis {AND,OR,NOT} with unbounded fan-in gates. The full class AC0 is known to contain
very hard functions from the standpoint of both quantum query complexity and approximate
degree. The aforementioned Surjectivity function is in depth-3 AC0 and has quantum query
complexity Ω(n) [BM12, She15], while for every positive constant δ > 0, there exists a depth-
O(log(1/δ)) AC0 circuit with approximate degree Ω(n1−δ) [BT17].

Nevertheless, AC0 contains a number of interesting subclasses for which nontrivial quantum
query and approximate degree upper bounds might still hold. Here, we discuss applications
of our composition theorem to understanding the subclass LC0, consisting of AC0 circuits of
linear size.

The class LC0 is one of the most interesting subclasses of AC0. It has been studied
by many authors in various complexity-theoretic contexts, ranging from logical characteri-
zations [KLPT06] to faster-than-brute-force satis�ability algorithms [CIP09, SS12]. LC0 turns
out to be a surprisingly powerful class. For example, the k-threshold function that asks if the
input has Hamming weight greater than k is clearly in AC0 for constant k, by computing the
OR of all

(n
k

)
possible certi�cates. But this yields a circuit of size O(nk), which one might

conjecture is optimal. However, it turns out that k-threshold is in LC0 even when k is as large
as polylog(n) [RW91]. Another surprising fact is that every regular language in AC0 can be
computed by an AC0 circuit of almost linear size (e.g., size O(n log∗ n) su�ces) [Kou09].

By recursively applying Theorem 1, we obtain the following sublinear upper bound on the
quantum query complexity of depth-d LC0 circuits, denoted by LC0

d:

Theorem 3. For all constants d ≥ 0 and all functions h : {0, 1}n → {0, 1} in LC0
d, we have

Q(h) = Õ(n1−2−d).

Our upper bound is nearly tight for every depth d, as shown in [CKK12].

Theorem 4 (Childs, Kimmel, and Kothari). For all constants d ≥ 0, there exists a function
h : {0, 1}n → {0, 1} in LC0

d with Q(h) ≥ n1−2−Ω(d).

By recursively applying Theorem 2, we obtain a similar sublinear upper bound for the
ε-approximate degree of LC0

d, even for subconstant values of ε.

Theorem 5. For all constant d ≥ 0, and any ε > 0, and all functions h : {0, 1}n → {0, 1} in
LC0

d, we have
degε(h) = Õ

(
n1−2−d log2−d(1/ε)

)
. (5)

For constant ε, we prove a lower bound of the same form with quadratically worse depen-
dence on the depth d.

Theorem 6. For all constants d ≥ 0, there exists a function h : {0, 1}n → {0, 1} in LC0
d with

d̃eg(h) ≥ n1−2−Ω(
√
d).

A lower bound of d̃eg(h) = n1−2−Ω(d)
was already known for general AC0 functions f

[BT17, BKT18], but the AC0 circuits constructed in these prior works are not of linear size.
Previously, for any ` ≥ 1, [BKT18] exhibited a circuit C : {0, 1}n → {0, 1} of depth at most 3`,
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size at most n2, and approximate degree d̃eg(C) ≥ Ω̃(n1−2−`). We show how to transform this
quadratic-size circuit C into a linear-size circuit C of depth roughly `2, whose approximate
degree is close to that of C. Our transformation adapts that of [CKK12], but requires a
more intricate construction and analysis. This is because, unlike quantum query complexity,
approximate degree is not known to increase multiplicatively under block composition.

1.4 Application: Agnostically learning linear-size AC0 circuits
The challenging agnostic model [KSS94] of computational learning theory captures the task of
binary classi�cation in the presence of adversarial noise. In this model, a learning algorithm
is given a sequence of labeled examples of the form (x, b) ∈ {0, 1}n × {0, 1} drawn from an
unknown distribution D. The goal of the algorithm is to learn a hypothesis h : {0, 1}n → {0, 1}
which does �almost as well� at predicting the labels of new examples drawn from D as does
the the best classi�er from a known concept class C. Speci�cally, let the Boolean loss of a
hypothesis h be errD(h) = Pr(x,b)∼D[h(x) 6= b]. For a given accuracy parameter ε, the goal of
the learner is to produce a hypothesis h such that errD(h) ≤ minc∈C errD(c) + ε.

Very few concept classes C are known to be agnostically learnable, even in subexponential
time. For example, the best known algorithm for agnostically learning disjunctions runs in
time 2Õ(

√
n) [KKMS08].4 Moreover, several hardness results are known. Proper agnostic

learning of disjunctions (where the output hypothesis itself must be a disjunction) is NP-
hard [KSS94]. Even improper agnostic learning of disjunctions is at least as hard as PAC
learning DNF [LBW95], which is a longstanding open question in learning theory.

The best known general result for more expressive classes of circuits is that all de Morgan
formulas of size s can be learned in time 2Õ(

√
s) [KKMS08, Rei11] (Section 5.1 contains a

detailed overview of prior work on agnostic and PAC learning). Both of the aforementioned
results make use of the well-known linear regression framework of [KKMS08] for agnostic
learning. This algorithm works whenever there is a �small� set of �features� F (where each
feature is a function mapping {0, 1}n to R) such that each concept in the concept class C can
be approximated to error ε in the `∞ norm by a linear combination of features in F . (See
Section 5 for details.) If every function in a concept class C has approximate degree at most
d, then one obtains an agnostic learning algorithm for C with running time 2Õ(d) by taking
F to be the set of all monomials of degree at most d. Applying this algorithm using the
approximate degree upper bound of Theorem 5 yields a subexponential time algorithm for
agnostically learning LC0

d.

Theorem 7. The concept class of n-bit functions computed by LC0 circuits of depth d can be
learned in the distribution-free agnostic PAC model in time 2Õ(n1−2−d ). More generally, size-s
AC0

d circuits can be learned in time 2Õ(
√
ns1/2−2−d ).

Prior to our work, no subexponential time algorithm was known even for agnostically
learning LC0

3. Moreover, since our upper bound on the approximate degree of LC0 circuits
is nearly tight, new techniques will be needed to signi�cantly surpass our results, and in
particular, learn all of LC0 in subexponential time. (Note that standard techniques [She11a]
automatically generalize the lower bound of Theorem 6 from the feature set of low-degree
monomials to arbitrary feature sets. See Section 5.2 for details.)

4Throughout this manuscript, Õ and Ω̃ notation hides factors polylogarithmic in the input size n.
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1.5 Application: New Circuit Lower Bounds
An important frontier problem in circuit complexity is to show that the well-known Inner
Product function cannot be computed by AC0 ◦ ⊕ circuits of polynomial size. Here, AC0 ◦ ⊕
refers to AC0 circuits augmented with a layer of parity gates at the bottom (i.e., closest to
the inputs). Servedio and Viola [SV12] identi�ed this open problem as a �rst step toward
proving matrix rigidity lower bounds, itself a notorious open problem in complexity theory,
and Akavia et al. [ABG+14] connected the problem to the goal of constructing highly e�cient
pseudorandom generators.5 Average-case versions of this question have also been posed, even
just for DNFs with a layer of parity gates at the bottom [CS16, ER21]. Unfortunately, the best
known lower bounds against AC0 ◦ ⊕ circuits computing Inner Product are quite weak. The
state of the art result [CGJ+16] for any constant depth d > 4 is that Inner Product cannot be
computed by any depth-(d+1) AC0 ◦⊕ circuit of size O(n1+4−(d+1)). We show that Theorem 5
implies an improved (if still unsatisfying) lower bound of Ω̃(n1/(1−2−d)) = n1+2−d+Ω(1). More
signi�cantly, unlike prior work our lower bound holds even against circuits that compute the
Inner Product function on slightly more than half of all inputs. Below, when we refer to the
depth of an AC0 ◦⊕ circuit, we count the layer of parity gates toward the depth. For example,
we consider a DNF of parities to have depth 3.

Theorem 8. For any constant integer d ≥ 4, any depth-(d+ 1) AC0 ◦ ⊕ circuit computing the
Inner Product function on n bits on greater than a 1/2 + n− logn fraction of inputs has size
Ω̃
(
n1/(1−2−d)) = n1+2−d+Ω(1).

This application is new and does not appear in the conference version of this paper [BKT19].
The idea of our proof is to use the approximate degree upper bound for LC0

d circuits of Theo-
rem 5 to show that any small AC0◦⊕ circuit has non-trivial (i.e.,� 2−n) correlation under the
uniform distribution with some parity function. Yet it is well-known that the Inner Product
function has correlation at most 2−n with any parity function. As we show, this rules out the
possibility that a small AC0 ◦ ⊕ circuit computes the Inner Product function, even on slightly
more than half of all inputs.

1.6 Discussion and future directions
Summarizing our results, we established shared-input composition theorems for quantum query
complexity (Theorem 1) and approximate degree (Theorem 2), roughly showing that for com-
positions between an arbitrary function f and the function g = AND, it is always possible to
leverage sharing of inputs to obtain algorithmic speedups. We applied these results to obtain
the �rst sublinear upper bounds on the quantum query complexity and approximate degree
of LC0

d.

Generalizing our composition theorems. Although considering the inner function g =
AND is su�cient for our applications to LC0, an important open question is to generalize
our results to larger classes of inner functions. The proof of our composition theorem for
approximate degree actually applies to any inner function g that can be exactly represented

5Superpolynomial lower bounds are known for AC0 ◦ ⊕ circuits computing the Majority function [Raz87] (in
fact, even for AC0[2] circuits, which are AC0 circuits augmented with parity gates at any layer). However, these
techniques do not apply to the Inner Product function, which does have small AC0[2] circuits.
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as a low-weight sum of ANDs (for example, it applies to any strongly unbalanced function g,
meaning that |g−1(1)| = poly(n)). Extending this further would be a major step forward in
our understanding of how quantum query complexity and approximate degree behave under
composition with shared inputs.

While our paper considers the composition scenario where the top function is arbitrary and
the bottom function is AND, the opposite scenario is also interesting. Here the top function
is ANDm and the bottom functions are f1, . . . , fm, each acting on the same set of n input
variables. Now the question is whether we can do better than the upper bound obtained
using results on block composition that treat all the input variables as being independent.
More concretely, for such a function F , the upper bound that follows from block composition
is Q(F ) = O(

√
mmaxiQ(fi)). However, this upper bound cannot be improved in general,

because the Surjectivity function is an example of such a function. Here the bottom functions
fi check if the input contains a particular range element i, and the upper bound obtained from
this argument is O(n), which matches the lower bound [BM12, She15]. Surprisingly, this lower
bound only holds for quantum query complexity, as we know that the approximate degree of
Surjectivity is Θ̃(n3/4). We do not know if the upper bound obtained from block composition
can be improved for approximate degree.

Quantum query complexity of LC0 and DNFs. For quantum query complexity, we obtain
the upper bound Q(LC0

d) = Õ(n1−2−d), nearly matching the lower bound Q(LC0
d) = n1−2−Ω(d)

from [CKK12]. However, the bounds do not match for any �xed value of d. The lack of
matching lower bounds can be attributed to the fact that the Surjectivity function, which
is known to have linear quantum query complexity, is computed by a quadratic-size depth-3
circuit, rather than a quadratic-size depth-2 circuit (i.e., a DNF). If one could prove a linear
lower bound on the quantum query complexity of some quadratic-size DNF, the argument of
[CKK12] would translate this into a Ω̃(n1−2−d) lower bound for LC0

d, matching our upper bound.
Unfortunately, no linear lower bound on the quantum query complexity of any polynomial
size DNFs is known; we highlight this as an important open problem (the same problem was
previously been posed by Troy Lee with di�erent motivations [Lee12]).

Open Problem 1. Is there a polynomial-size DNF with Ω̃(n) quantum query complexity?

The quantum query complexity of depth-2 LC0, or linear-size DNFs also remains open.
The best upper bound is O(n3/4), but the best lower bound is Ω(n0.555) [CKK12]. Any
improvement in the lower bound would also imply, in a black-box way, an improved lower
bound for the Boolean matrix product veri�cation problem. Improving the lower bound all
the way to Ω(n3/4) would imply optimal lower bounds for all of LC0 using the argument in
[CKK12]. We conjecture that there is a linear-size DNF with quantum query complexity
Ω(n3/4), matching the known upper bound.

Approximate degree of LC0 and DNFs. For approximate degree, we obtain the upper
bound d̃eg(LC0

d) = Õ(n1−2−d), and prove a new lower bound of d̃eg(LC0
d) = n1−2−Ω(

√
d)
. The

reason our approximate degree lower bound approaches n more slowly than the quantum query
lower bound from [CKK12] is that, while the quantum query complexity of AC0 is known to
be Ω(n), such a result is not known for approximate degree. This remains an important open
problem.

Open Problem 2. Is there a problem in AC0 with approximate degree Ω̃(n)?
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Our lower bound argument would translate, in a black-box manner, any linear lower bound
on the approximate degree of a general AC0 circuit into a nearly tight lower bound for LC0

d.
Alternatively, it would be very interesting if one could improve our approximate degree

upper bound for LC0
d. Even seemingly small improvements to our upper bound would have

signi�cant implications. Speci�cally, standard techniques (see, e.g., [CR96]) imply that for
any constant δ > 0, there are approximate majority functions6 computable by depth-(2d+ 3)
circuits of size O(n1+2−d+δ).7 This means that, for su�ciently large constant d, if one could
improve our upper bound on the approximate degree of LC0

d from Õ(n1−2−d) to Õ(n1−2−d/2.001),
one would obtain a sublinear upper bound on the approximate degree of some total function
computing an approximate majority. This would answer a question of Srinivasan [FHH+14],
and may be considered a surprising result, as approximate majorities are currently the primary
natural candidate AC0 functions that may exhibit linear approximate degree [BKT18].

1.7 Paper organization and notation
This paper is organized so as to be accessible to readers without familiarity with quantum
algorithms. Section 2 assumes the reader is somewhat familiar with quantum query com-
plexity and Grover's algorithm [Gro96], but only uses Grover's algorithm as a black box. In
Section 2 we show our main result on the quantum query complexity of shared-input composi-
tions (Theorem 1). Section 3 proves our result about the approximate degree of shared-input
compositions (Theorem 2). Section 4 uses the results of these sections (in a black-box manner)
to upper bound the quantum query complexity and approximate degree of LC0 circuits, and
proves related lower bounds. Section 5 uses the results of Section 4 to obtain algorithms to
agnostically PAC learn LC0 circuits. Section 6 derives our average-case lower bounds on the
size of AC0 ◦ ⊕ circuits computing the Inner Product function. This section is new and does
not appear in the conference version of this paper [BKT19].

In this paper we use the Õ(·) and Ω̃(·) notation to suppress logarithmic factors. More for-
mally, f(n) = Õ(g(n)) means there exists a constant k such that f(n) = O(g(n) logk g(n)), and
similarly f(n) = Ω̃(g(n)) means there exists a constant k such that f(n) = Ω(g(n)/ logk g(n)).
For a string x ∈ {0, 1}n, we use |x| = ∑

i xi to denote the Hamming weight of x, i.e., the
number of entries in x equal to 1. For any positive integer n, we use [n] to denote the set
{1, 2, . . . , n}. Given two functions fm, gk, let fm ◦ gk : {0, 1}m·k → {0, 1} denote their block
composition, i.e., (fm ◦ gk)(x) = fm(gk(x1), . . . , gk(xm)), where for every i ∈ [m], xi is a k-bit
string. For non-negative integers n and k, we use

( n
≤k
)
to denote

∑k
i=0

(n
i

)
. A basic fact is that( n

≤k
)
≤ nk.

2 Quantum algorithm for composed functions
2.1 Preliminaries
As described in the introduction, our quantum algorithm only uses variants of Grover's al-
gorithm [Gro96] and is otherwise classical. To make this section accessible to those without

6Here, by an approximate majority function, we mean any total function f on n bits for which there exist
constants 0 < p < 1/2 < q such that |x| ≤ pn =⇒ f(x) = 0 and |x| ≥ qn =⇒ f(x) = 1.

7This precise result has not appeared in the literature; we prove it in Appendix A for completeness.
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familiarity with quantum query complexity, we only state the minimum required preliminaries
to understand the algorithm. Furthermore, we do not optimize the logarithmic factors in our
upper bound to simplify the presentation. For a more comprehensive introduction to quantum
query complexity, we refer the reader to the survey by Buhrman and de Wolf [BdW02].

In quantum or classical query complexity, the goal is to compute some known function
f : {0, 1}n → {0, 1} on some unknown input x ∈ {0, 1}n while reading as few bits of x as
possible. Reading a bit of x is also referred to as �querying� a bit of x, and hence the goal is
to minimize the number of queries made to the input.

For example, the deterministic query complexity of a function f is the minimum number
of queries needed by a deterministic algorithm in the worst case. A deterministic algorithm
must be correct on all inputs, and can decide which bit to query next based on the input bits
it has seen so far. Another example of a query model is the bounded-error randomized query
model. The bounded-error randomized query complexity of a function f , denoted R(f), is
the minimum number of queries made by a randomized algorithm that computes the function
correctly with probability greater than or equal to 2/3 on each input. In contrast to a deter-
ministic algorithm, such an algorithm has access to a source of randomness, which it may use
in deciding which bits to query.

The bounded-error quantum query complexity of f , denoted Q(f), is similar to bounded-
error randomized query complexity, except that the algorithm is now quantum. In particular,
this means the algorithm may query the inputs in superposition. Since quantum algorithms
can also generate randomness, for all functions we have Q(f) ≤ R(f).

An important example of the di�erence between the two models is provided by the ORn
function, which asks if any of the input bits is equal to 1. We have R(ORn) = Θ(n), because
intuitively if the algorithm only sees a small fraction of the input bits and they are all 0, we do
not know whether or not the rest of the input contains a 1. However, Grover's algorithm is a
quantum algorithm that solves this problem with only O(

√
n) queries [Gro96]. The algorithm

is also known to be tight, and we have Q(ORn) = Θ(
√
n) [BBBV97].

There are several variants of Grover's algorithm that solve related problems and are some-
times more useful than the basic version of the algorithm. Most of these can be derived from
the basic version of Grover's algorithm (and this sometimes adds logarithmic overhead).

In this work we need a variant of Grover's algorithm that �nds a 1 in the input faster
when there are many 1s. Let the Hamming weight of the input x be t = |x|. If we know t,
then we can use Grover's algorithm on a randomly selected subset of the input of size O(n/t),
and one of the 1s will be in this set with high probability. Hence the algorithm will have
query complexity O(

√
n/t). With some careful bookkeeping, this can be done even when t is

unknown, and the algorithm will have expected query complexity O(
√
n/t). More formally,

we have the following result of Boyer, Brassard, Høyer, and Tapp [BBHT98].

Lemma 9. Given query access to a string x ∈ {0, 1}n, there is a quantum algorithm that
when t = |x| > 0, always outputs an index i such that xi = 1 and makes O(

√
n/t) queries in

expectation. When t = 0, the algorithm does not terminate.

Note that because we do not know t = |x|, we only have a guarantee on the expected query
complexity of the algorithm, not the worst-case query complexity. Note also that this variant
of Grover's algorithm is a zero-error algorithm in the sense that it always outputs a correct
index i with xi = 1 when such an index exists.
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In our algorithm we use an ampli�ed version of the algorithm of Lemma 9, which adds a
log factor to the query complexity and always terminates after O(

√
n logn) queries.

Lemma 10. Given query access to a string x ∈ {0, 1}n, there is a quantum algorithm that

1. when |x| = 0, the algorithm always outputs “|x| = 0”,

2. when |x| > 0, it outputs an index i with xi = 1 with probability 1− 1
poly(n) , and

3. terminates after O
(√

n
|x|+1 logn

)
queries with probability 1− 1

poly(n) .

Proof. This algorithm is quite straightforward. We simply run O(logn) instances of the
algorithm of Lemma 9 in parallel and halt if any one of them halts. If we reach our budget of
O(
√
n logn) queries, then we halt and output “|x| = 0”.
Let us argue that the algorithm has the claimed properties. First, since the algorithm

of Lemma 9 does not terminate when |x| = 0, our algorithm will correctly output “|x| = 0”
at the end for such inputs. When |x| > 0, we know that the algorithm of Lemma 9 will
find an index i with xi = 1 with high probability after O(

√
n) queries. The probability that

O(logn) copies of this algorithm do not find such an i is exponentially small in O(logn), or
polynomially small in n. Finally, our algorithm makes only O(

√
n logn) queries when |x| = 0

by construction. When |x| > 0, we know that the algorithm of Lemma 9 terminates after an
expected O(

√
n/|x|) queries, and hence halts with high probability after O(

√
n/|x|) queries

by Markov’s inequality. The probability that none of O(logn) copies of the algorithm halt
after making O(

√
n/|x|) queries each is inverse polynomially small in n again.

2.2 Quantum algorithm
We are now ready to present our main result for quantum query complexity, which we restate
below.

Theorem 1. Let h : {0, 1}n → {0, 1} be computed by a depth-2 circuit where the top gate is
a function f : {0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the
input bits and their negations (as depicted in Figure 1). Then we have

Q(h) = O
(√

Q(f) · n · log2(mn)
)
. (2)

While Theorem 1 allows the bottom AND gates to depend on negated variables, it will be
without loss of generality in the proof to assume that all input variables are unnegated. This
is because we can instead work with the function h′ : {0, 1}2n → {0, 1} obtained by treating
the positive and negative versions of a variable separately, increasing our �nal quantum query
upper bound by a constant factor.

We now de�ne some notation that will aid with the description and analysis of the algo-
rithm. We know that our circuit h has m AND gates and n input bits xi. We say an AND gate
has high fan-in if the number of inputs to that AND gate is greater than or equal to n/Q(f).
Note that if our circuit h has no high fan-in gates, then we are done, because we can simply
use the upper bound for block composition, i.e., Q(f ◦ g) = O(Q(f)Q(g)), to compute h, since
we will have Q(h) = O(Q(f)×

√
n/Q(f)) = O(

√
Q(f) · n).
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Our goal is to reduce to this simple case. More precisely, we will start with the given
circuit h, make some queries to the input, and then simplify the given circuit to obtain a new
circuit h′. The new circuit will have no high fan-in gates, but will still have h′(x) = h(x) on
the given input x. Note that h′ and h have the same output only for the given input x, and
not necessarily for all inputs.

For any such circuit h, let S ⊆ [m] be the set of all high fan-in AND gates, and let w(S)
be the total fan-in of S, which is the sum of fan-ins of all gates in S. In other words, it is the
total number of wires incident to the set S. Since the set S only has gates with fan-in at least
n/Q(f), we have

w(S) ≥ n|S|/Q(f). (6)
We now present our �rst algorithm, which is a subroutine in our �nal algorithm. This

algorithm's goal is to take a circuit h, with |S| high fan-in gates and w(S) wires incident on S,
and reduce the size of w(S) by a factor of 2. Ultimately we want to have |S| = w(S) = 0, and
hence if we can decrease the size of w(S) by 2, we can repeat this procedure logarithmically
many times to get |S| = w(S) = 0.

Lemma 11. Let h : {0, 1}n → {0, 1} be a depth-2 circuit where the top gate is a function
f : {0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the input bits
and their negations (as depicted in Figure 1). Let w(S) be the total fan-in of all high fan-in
gates in h (i.e., gates with fan-in ≥ n/Q(f)).

Then there is a quantum query algorithm that makes O(
√
Q(f) · n logn) queries to x ∈

{0, 1}n and outputs a new circuit h′ of the same form such that w(S′) ≤ w(S)/2, where w(S′)
is the total fan-in of all high fan-in gates in h′, and such that with probability 1− 1

poly(n) (over
the internal randomness of the algorithm) we have h(x) = h′(x) for the query input x.8

Proof. The overall structure of the claimed algorithm is the following: We query some well-
chosen input bits, and on learning the values of these bits, we simplify the circuit accordingly.
If an input bit is 0, then we delete all the AND gates that use that input bit. If an input bit is
1, we delete all outgoing wires from that input bit since a 1-input does not affect the output of
an AND gate.

Since the circuit will change during the algorithm, let us define S0 to be the initial set of
high fan-in (i.e., gates with fan-in ≥ n/Q(f)) AND gates in h.

We also define the degree of an input xi, denoted deg(i), to be the number of high fan-in
AND gates that it is an input to. Note that this is not the total number of outgoing wires
from xi, but only those that go to high fan-in AND gates, i.e., gates in the set S. With this
definition, note that∑i∈[n] deg(i) = w(S), for any circuit. We say an input bit xi is high degree
if deg(i) ≥ |S0|/(2Q(f)). This value is chosen since it is at least half the average degree of all
xi in the initial circuit h. As the algorithm progresses, the circuit will change, and some inputs
that were initially high degree may become low degree as the algorithm progresses, but a low
degree input will never become high degree. But note that the definition of a high-degree input
bit does not change, since it only depends on S0 and Q(f), which are fixed for the duration of
the algorithm.

Finally, we call an input bit xi is marked if xi = 0. We are now ready to describe our
algorithm by the following pseudocode (see Algorithm 1).

8The new circuit h′ is only promised to satisfy h(x) = h′(x) on the specific query input x on which this
algorithm is run.
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Algorithm 1 The algorithm of Lemma 11.

1: S0 ← Set of high fan-in AND gates in h
2: repeat
3: M ← Set of high-degree marked inputs . M :=

{
i : xi = 0 ∧ deg(i) ≥ |S0|

(2Q(f))

}
4: Grover Search for an index i in M
5: if we find such an i then
6: Delete all AND gates that use xi as an input
7: end if
8: until Grover Search fails to find an i ∈M
9: Delete all remaining high-degree inputs and all outgoing wires from these inputs

In more detail, we repeatedly use the version of Grover’s algorithm in Lemma 10 to find
a high-degree marked input, which is an input xi such that xi = 0 and deg(i) ≥ |S0|

2Q(f) . If
we find such an input, we delete all the AND gates that use xi as an input, and repeat this
procedure. Note that when we repeat this procedure, the circuit has changed, and hence
the set of high-degree input bits may become smaller. The algorithm halts when Grover’s
algorithm is unable to find any high-degree marked inputs. At this point, all the high-degree
inputs are necessarily unmarked with very high probability, which means they are set to 1. We
can now delete all these input bits and their outgoing wires because AND gates are unaffected
by input bits set to 1.

Let us now argue that this algorithm is correct. Let S′ denote the set of high fan-in AND
gates in the new circuit h′ obtained at the end of the algorithm, and w(S′) be the total fan-in
of gates in S′. Note that when the algorithm terminates, there are no high-degree inputs
(marked or unmarked). Hence every input bit that has not been deleted has deg(i) < |S0|

2Q(f) .
Since there are at most n input bits, we have

w(S′) =
∑
i∈[n]

deg(i) < n

2Q(f) |S0|. (7)

But we also know that we started with w(S) ≥ n|S0|/Q(f), since each gate in S0 has fan-in at
least n/Q(f). Hence w(S′) ≤ w(S)/2, which proves that the algorithm is correct.

We now analyze the query complexity of this algorithm. Let the loop in the algorithm
execute r times. It is easy to see that r ≤ 2Q(f) because each time a high-degree marked input
is found, we delete all the AND gates that use it as an input, which is at least |S0|/(2Q(f))
gates. Since there were at most S0 gates to begin with, this procedure can only repeat 2Q(f)
times.

When we run Grover’s algorithm to search for a high-degree marked input bit xi in the
first iteration of the loop, suppose there are k1 high-degree marked inputs. Then the variant of
Grover’s algorithm in Lemma 10 finds a marked high-degree input and makes O(

√
n/k1 logn)

queries with probability 1− 1
poly(n) . In the second iteration of the loop, the number of high-

degree marked inputs, k2, has decreased by at least one. It can also decrease by more than 1
since we deleted several AND gates, and some high-degree inputs can become low-degree. In
this iteration, our variant of Grover’s algorithm (Lemma 10) makes O(

√
n/k2 logn) queries,

and we know that k1 > k2. This process repeats and we have k1 > k2 > · · · > kr. Since there
was at least one high-degree marked input in the last iteration, kr ≥ 1. Combining these facts
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we have for all j ∈ [r], kj ≥ r − j + 1. Thus the total expected query complexity is

O

 r∑
j=1

√
n

kj
logn

 = O

 r∑
j=1

√
n

r − j + 1 logn

 = O

√n r∑
j=1

1√
j

logn

 = O
(√
nr logn

)
,

(8)
which is O

(√
n ·Q(f) logn

)
. We now have a quantum query algorithm that satisfies the

conditions of the lemma with probability at least 1− 1
poly(n) .

We are now ready to prove Theorem 1.

Proof of Theorem 1. We start by applying the algorithm in Lemma 11 to our circuit as many
times as needed to ensure that set S is empty. Since each run of the algorithm reduces w(S)
by a factor of 2, and w(S) can start off being as large as m · n, where m is the number of AND
gates and n is the number of inputs, we need to run the algorithm log(mn) times. Since the
algorithm of Lemma 11 is correct with probability 1− 1

poly(n) , we do not need to boost the
success probability of the algorithm. The total number of queries needed to ensure S is empty
is O(

√
Q(f) · n log(n) log(mn)).

Now we are left with a circuit h′ with no high fan-in AND gates. That is, all AND gates
have fan-in at most n/Q(f). We now evaluate h′ using the standard composition theorem for
disjoint sets of inputs, which has query complexity

O(Q(f) ·Q(ANDn/Q(f))) = O(Q(f) ·
√
n/Q(f)) = O

(√
Q(f) · n

)
. (9)

The total query complexity is O(
√
Q(f) · n log(n) log(mn)) = O(

√
Q(f) · n log2(mn)).

Note that we have not attempted to reduce the logarithmic factors in this upper bound.
We believe it is possible to make the quantum upper bound match the upper bound for
approximate degree with a more careful analysis and slightly di�erent choice of parameters in
the algorithm.

3 Approximating polynomials for composed functions
3.1 Preliminaries
We now de�ne the various measures of Boolean functions and polynomials that we require
in this section. Since we only care about polynomials approximating Boolean functions, we
focus without loss of generality on multilinear polynomials as any polynomial over the domain
{0, 1}n can be converted into a multilinear polynomial (since it never helps to raise a Boolean
variable to a power greater than 1).

The approximate degree of a Boolean function, commonly denoted d̃eg(f), is the mini-
mum degree of a polynomial that entrywise approximates the Boolean function. It is a basic
complexity measure and is known to be polynomially related to a host of other complexity
measures such as decision tree complexity, certi�cate complexity, and quantum query complex-
ity [BdW02, BT21]. We also use another complexity measure of polynomials, which is the sum
of absolute values of all the coe�cients of the polynomial. This is the query analogue of the
so-called µ-norm used in communication complexity [LS09, De�nition 2.7]. We now formally
de�ne these measures.
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Definition 12. Let p : Rn → R be a multilinear polynomial

p(x1, . . . , xn) =
∑

s∈{0,1}n
αsx

s1
1 · · ·x

sn
n . (10)

We define the following complexity measures of the polynomial p:

deg(p) = max
{∑
i∈[n]
|si| : αs 6= 0

}
and µ(p) =

∑
s∈{0,1}n

|αs|. (11)

For a Boolean function f : {0, 1}n → {0, 1}, we define the following complexity measures:

degε(f) = min{deg(p) : ∀x ∈ {0, 1}n, |f(x)− p(x)| ≤ ε} (12)
µε(f) = min{µ(p) : ∀x ∈ {0, 1}n, |f(x)− p(x)| ≤ ε} (13)

Finally, we define d̃eg(f) = deg1/3(f) and µ̃(f) = µ1/3(f).

We use the following standard relationship between the two measures in our results.

Lemma 13. For any multilinear polynomial p : Rn → R such that |p(x)| = O(1) for all
x ∈ {0, 1}n, we have

logµ(p) = O(deg(p) logn). (14)

Consequently, for any Boolean function f : {0, 1}n → {0, 1} and ε ∈ [0, 1/3], we have

logµε(f) = O(degε(f) logn). (15)

Proof. First let us switch to the {−1, 1} representation instead of the {0, 1} representation we
have used so far. Let yi = (−1)xi , and replace every occurrence of xi in the polynomial p with
1
2(1 + yi) to obtain a multilinear polynomial p(y1, . . . , yn) = ∑

s∈{0,1}n βsy
s1
1 · · · ysnn . In this

representation, a coefficient βs is simply the expectation over the hypercube of the product
of p and a parity function, and hence is at most O(1) in magnitude. Since there are only( n
≤deg(p)

)
≤ ndeg(p) monomials, the sum of absolute values of all coefficients is O(ndeg(p)).

When we switch from this representation back to the {0, 1} representation, we replace
every yi with 2xi − 1. Consider this transformation on a single monomial with coefficient 1.
This converts the monomial of degree d into a polynomial over those d variables, such that the
sum of coefficients in this polynomial is at most 3d. Thus the sum of absolute values of all
coefficients is µ(p) = O(3deg(p)ndeg(p)) = nO(deg(p)), which proves (14).

Now consider any Boolean function f : {0, 1}n → {0, 1}, and a multilinear polynomial p that
minimizes degε(f). We can apply (14) to this polynomial to obtain logµ(p) = O(deg(p) logn).
Since deg(p) = degε(f) by assumption, and µε(f) ≤ µ(p), since µε(f) minimizes over all
ε-approximating polynomials, we get logµε(f) = O(degε(f) logn).

This shows that logµ(p) is at most deg(p) (up to log factors). However, logµ(p) may be
much smaller than deg(p), as evidenced by the polynomial p(x) = x1 · · ·xn. Similarly, log µ̃(f)
may be much smaller than d̃eg(f), as evidenced by the AND function on n bits, which has
d̃eg(ANDn) = Θ(

√
n) [NS94], but µ̃(ANDn) ≤ 1.
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3.2 Polynomial upper bound
In this section we prove Theorem 2, which follows from the following more general composition
theorem.

Theorem 14. Let h : {0, 1}n → {0, 1} be computed by a depth-2 circuit where the top gate is
a function f : {0, 1}m → {0, 1} and the bottom level gates are AND gates on a subset of the
input bits and their negations (as depicted in Figure 1). Then

degε(h) = O

(√
n logµε(f) +

√
n log(1/ε)

)
= O

(√
n degε(f) logm+

√
n log(1/ε)

)
. (16)

Proof. Let us first fix some notation. We will use x ∈ {0, 1}n to refer to the input of the full
circuit h : {0, 1}n → {0, 1}. Let the inputs to the top f : {0, 1}m → {0, 1} gate be called
y1, . . . , ym.

Let p : {0, 1}m → {0, 1} be a polynomial that minimizes µε(f). Thus we have for all
y ∈ {0, 1}m, |p(y)− f(y)| ≤ ε. More explicitly, p(y1, . . . , ym) = ∑

s∈{0,1}m αsy
s1
1 · · · ysnn , where

µε(f) = ∑
s∈{0,1}m |αs|, and each yi is the AND of some subset of bits in x. Since the product

of ANDs of variables is just an AND of all the variables involved in the product, for each
s ∈ {0, 1}m, there is a subset Ts ⊆ [n] such that ys11 · · · ysnn = ∧

i∈Ts xi.
Using this we can replace all the y variables in the polynomial p, to obtain

q(x) =
∑

s∈{0,1}m
αs

∧
i∈Ts

xi. (17)

Since p was an ε approximation to f , q is an ε approximation to h. Now we can re-
place every occurrence of ∧i∈Ts xi with a low error approximating polynomial for the AND
of the bits in Ts. We know that the approximate degree of the AND function to error
δ is O(

√
n log(1/δ)) [BCdWZ99]. If we approximate each AND to error δ = ε/µε(f),

then by the triangle inequality the total error incurred by this approximation is at most∑
s∈{0,1}m |αs|ε/µε(f) = ε. Choosing δ = ε/µε(f), each AND is approximated by a polynomial

of degree O(
√
n log(1/δ)) = O

(√
n logµε(f) +

√
n log(1/ε)

)
. Hence the resulting polynomial

q(x) has this degree and approximates the function h to error 2ε. By standard error reduction
techniques [BNRdW07], we can make this error smaller than ε at a constant factor increase in
the degree. This establishes the first equality in (16), and the second equality follows from
Lemma 13.

4 Applications to linear-size AC0 circuits
4.1 Preliminaries
A Boolean circuit is de�ned via a directed acyclic graph. Vertices of fan-in 0 represent input
bits, vertices of fan-out 0 represent outputs, and all other vertices represent one of the following
logical operations: a NOT operation (of fan-in 1), or an unbounded fan-in AND or OR operation.
The size of the circuit is the total number of AND and OR gates. The depth of the circuit is
the length of the longest path from an input bit to an output bit.

For any constant integer d > 0, AC0
d refers to the class of all such circuits of polynomial size

and depth d. AC0 refers to ∪∞d=1AC0
d. Similarly, LC0

d refers to the class of all such circuits of
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size O(n) and depth d, while LC0 refers to ∪∞d=1LC0
d. We will associate any circuit C with the

function it computes, so for example d̃eg(C) denotes the approximate degree of the function
computed by C.

It will be convenient to assume that any AC0
d circuit is layered, in the sense that it consists

of d levels of gates which alternate between being comprised of all AND gates or all OR gates,
and all negations appear at the input level of the circuit. Any AC0

d circuit of size s can be
converted into a layered circuit of size O(d · s), and hence making this assumption does not
change any of our upper bounds.

4.2 Quantum query complexity
Applying our composition theorem for quantum algorithms (Theorem 1) inductively, we obtain
a sublinear upper bound on the quantum query complexity of LC0

d circuits.

Theorem 3. For all constants d ≥ 0 and all functions h : {0, 1}n → {0, 1} in LC0
d, we have

Q(h) = Õ(n1−2−d).

Proof. We prove this for depth-d LC0 circuits by induction on d. The base case is d = 1,
where the function is either AND or OR on n variables, both of which have quantum query
complexity O(

√
n) [Gro96].

Now consider a function h, which is a layered depth-d AC0 circuit of size O(n). It can be
written as a depth-2 circuit (as in Theorem 1) where the top function is a LC0 circuit f of
depth d− 1 on at most O(n) inputs, and the bottom layer has only AND gates. (If the bottom
layer has OR gates we can consider the negation of the function without loss of generality,
since the quantum query complexity of a function and its negation is the same.)

By the induction hypothesis we know that the quantum query complexity of any depth-
(d− 1), size-O(n) AC0 circuit with O(n) inputs is Õ(n1−2−(d−1)). Invoking Theorem 1, we have
that the quantum query complexity of the depth-d function h is Õ

(
n1−2−d).

4.3 Approximate degree upper bound
We can now prove Theorem 5, restated below for convenience:

Theorem 5. For all constant d ≥ 0, and any ε > 0, and all functions h : {0, 1}n → {0, 1} in
LC0

d, we have
degε(h) = Õ

(
n1−2−d log2−d(1/ε)

)
. (5)

This follows from a more general result:

Theorem 15. For any function h : {0, 1}n → {0, 1} computed by an AC0 circuit of size s ≥ 1
and depth d ≥ 1, we have

degε(h) =

O
(√

n log(1/ε)
)

if ε ≤ 2−s ⇔ log(1/ε) ≥ s
Õ
(√

ns1/2−2−d (log(1/ε))2−d
)

if ε > 2−s ⇔ log(1/ε) < s
. (18)

In particular, for any h ∈ LC0
d, we have d̃eg(h) = Õ

(
n1−2−d).
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Proof. We prove this for depth-d AC0 circuits by induction on d. The base case is d = 1, where
the function is either AND or OR on n variables, both of which have ε-approximate degree
O(
√
n log(1/ε)) [BCdWZ99].

Now consider a function h, which is a general depth-d AC0 circuit of size s. It can be
written as a depth-2 circuit (as in Theorem 2) where the top function is a size-s AC0 circuit f
of depth d− 1 on at most s inputs, and the bottom layer has only AND gates. If the bottom
layer has OR gates we can consider the negation of the function without loss of generality,
since the ε-approximate degree of a function and its negation is the same.

In the first case, if ε ≤ 2−s, then for any function f : {0, 1}s → {0, 1} there is a polynomial
of degree s and sum of coefficients at most 2s that exactly equals f on all Boolean inputs. Hence
we can apply Theorem 2 to get that degε(h) = O(

√
ns+

√
n log(1/ε)) = O(

√
n log(1/ε)).

In the second case, if ε > 2−s, by the induction hypothesis we know that the ε-approximate
degree of any depth-(d−1), size-O(s) AC0 circuit with s inputs is Õ(s1−2−(d−1)(log(1/ε))2−(d−1)).
Invoking Theorem 2, we have that the approximate degree of the depth-d function is

Õ

(√
ns1−2−(d−1)(log(1/ε))2−(d−1) +

√
n log(1/ε)

)
= Õ

(√
ns1/2−2−d(log(1/ε))2−d

)
. (19)

4.4 Approximate degree lower bound
In this section we prove our lower bound on the approximate degree of LC0

d, restated below
for convenience.

Theorem 6. For all constants d ≥ 0, there exists a function h : {0, 1}n → {0, 1} in LC0
d with

d̃eg(h) ≥ n1−2−Ω(
√
d).

Before proving the theorem, we will need to introduce several lemmas. The �rst lemma
follows from the techniques of [ABO84] (see [Kop13] for an exposition).

Lemma 16. There exists a Boolean circuit C with n inputs, of depth 3, and size Õ(n2)
satisfying the following two properties:

• C(x) = 0 for all x of Hamming weight at most n/3.

• C(x) = 1 for all x of Hamming weight at least 2n/3.

We refer to the function computed by the circuit C of Lemma 16 as GAPMAJ, short for a
gapped majority function (such a function is sometimes also called an approximate majority

function).
The following lemma of [BCH+17] says that if f has large ε-approximate degree for ε = 1/3,

then block-composing f with GAPMAJ on O(logn) bits yields a function with just as high
ε′-approximate degree, with ε′ very close to 1/2.

Lemma 17 ([BCH+17]). Let f : {0, 1}n → {0, 1} be any function. Then for ε = 1/2− 1/n2,
degε(GAPMAJ10 logn ◦ f) ≥ d̃eg(f).

The following lemma says that if f has large ε-approximate degree for ε very close to
1/2, then block-composing any function g with f results in a function of substantially larger
approximate degree than g itself.

Accepted in Quantum 2021-09-05, click title to verify. Published under CC-BY 4.0. 19



Lemma 18 ([She13a]). Let g : {0, 1}m → {0, 1} and f : {0, 1}n → {0, 1} be any functions.
Then d̃eg(g ◦ f) ≥ d̃eg(g) · deg1/2−1/m2(f).

Combining Lemmas 17 and 18, we conclude:

Corollary 19. Let g : {0, 1}m → {0, 1} and f : {0, 1}n → {0, 1} be any functions. Then
d̃eg(g ◦ GAPMAJ10 logn ◦ f) ≥ d̃eg(g) · d̃eg(f).

We are now ready to prove Theorem 6, which is restated at the beginning of this section.

Proof of Theorem 6. Let ` ≥ 1 be any constant integer to be specified later (ultimately, we
will set ` = Θ(

√
d), where d is as in the statement of the theorem). [BKT18] exhibit a circuit

family C∗ : {0, 1}n → {0, 1} of depth at most 3`, size at most n2, and approximate degree
satisfying d̃eg(C∗) ≥ D for some D ≥ Ω̃(n1−2−`). We need to transform this quadratic-size
circuit into a circuit C of linear size, without substantially reducing its approximate degree,
or substantially increasing its depth (in particular, the depth of C should be at most d).

To accomplish this, we apply the following iterative transformation. At each iteration i,
we produce a new circuit Ci : {0, 1}n → {0, 1} of linear size, such that d̃eg(Ci) gets closer and
closer to d̃eg(C) as i grows. Our final circuit will be C := C`.

C1 is defined to simply be ORn, which is clearly in LC0
1.

The transformation from Ci−1 into Ci works as follows. Ci feeds
√
n copies of Ci−1√

n/(10 logn)
into the circuit C∗√

n
◦ GAPMAJ10 logn. Here, Ci−1

k denotes the function Ci−1 constructed in
the previous iteration, and defined on k inputs; similarly, C∗k : {0, 1}k → {0, 1}n refers to the
function C∗ constructed by [BKT18], defined on k inputs. That is:

Ci = C∗√n ◦ GAPMAJ10 logn ◦ Ci−1√
n/(10 logn). (20)

Observe that Ci is a function on
√
n · 10 logn · (

√
n/(10 logn)) = n bits. We now establish

the following two lemmas about Ci.

Lemma 20. Ci is computed by a circuit of depth at most (3`+ 3) · i, and size at most 2 · i · n.

Proof. Clearly this is true for i = 1, since C1 is computed by a circuit of size and depth 1.
Assume by induction that it is true for i− 1. Recalling that GAPMAJ10 logn is computed by a
circuit of size O(log2 n) and depth 3, and C∗√

n
is computed by a circuit of size n and depth 3`,

it is immediate from Equation (20) that Ci is computed by a circuit satisfying the following
properties:

• The depth is at most 3`+ 3 + (3`+ 3)(i− 1) = (3`+ 3)i.

• The size is at most n+O(
√
n · log2 n) + (

√
n · 10 logn) · (2 · (i− 1) ·

√
n/(10 logn)). For

large enough n, this is at most 2n+ 2 · (i− 1) · n = 2 · i · n.

Lemma 21. For i > 1, d̃eg(Ci) ≥ Ω
(
d̃eg(C∗√

n
) · d̃eg(Ci−1√

n/(10 logn))
)
.

Proof. Immediate from Corollary 19.
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Since d̃eg(C1) = Ω(
√
n), repeated application of Lemma 21 implies that d̃eg(C2) =

Ω(
√
D ·n1/4), d̃eg(C3) = Ω

(√
D · (
√
D · n1/4)1/2

)
= Ω(D3/4 ·n1/8), and in general, d̃eg(Ci) =

Ω
(
D1−2−i · n2−i

)
.

Setting i = `, we obtain a circuit C` : {0, 1}n → {0, 1} with the following properties:

• By Lemma 20, C` has size at most 2`n and depth at most d := 2`2.

• There is a constant c0 such that C` has approximate degree at least Ω
(
c`0 ·D1−2−`+1 · n2−`

)
≥

Ω(c`0 · n1−2−`+1/2).

Hence, for any constant value of d = 2`2, we have constructed a circuit of depth d, size
O(n), and approximate degree at least Ω(n1−2−Ω(

√
d)), as required by the theorem.

4.5 Sublinear-size circuits of arbitrary depth
Theorem 1 and Theorem 2 also allow us to prove sublinear quantum query complexity and
approximate degree upper bounds for arbitrary circuits of sublinear size.

Theorem 22. Let h : {0, 1}n → {0, 1} be computed by a layered circuit of size s ≤ n. Then h
has quantum query complexity Q(h) = Õ(

√
ns) and approximate degree d̃eg(h) = O(

√
ns).

Proof. Without loss of generality, a function h computed by a layered circuit of size s ≤ n can
be written as a depth-2 circuit with a function f : {0, 1}s → {0, 1} as the top gate and AND
gates at the bottom. (The case where the bottom level consists of OR gates can be handled
by negating the function.) The quantum query upper bound then follows immediately from
Theorem 1, as Q(f) ≤ s. Moreover, for any function f , we have logµ0(f) = O(s), since the
trivial polynomial obtained by adding all conjunctions over yes-inputs of f satisfies this. Hence
from Theorem 2 we have d̃eg(h) = O(

√
ns).

5 Applications to agnostic PAC learning
Our new upper bounds on the approximate degree of LC0 circuits yield new subexponential
time learning algorithms in the agnostic model. In this section, we provide background for,
and the proof of, our main learning result restated below.

Theorem 7. The concept class of n-bit functions computed by LC0 circuits of depth d can be
learned in the distribution-free agnostic PAC model in time 2Õ(n1−2−d ). More generally, size-s
AC0

d circuits can be learned in time 2Õ(
√
ns1/2−2−d ).

PAC and agnostic learning models. In the classic Probably Approximately Correct
(PAC) learning model of Valiant [Val84], we have access to an unknown function f : {0, 1}n →
{0, 1} from a known class of functions C, called the concept class, through samples (x, f(x)),
where x is drawn from an unknown distributionD over {0, 1}n. The goal is to learn a hypothesis
h : {0, 1}n → {0, 1}, such that with probability 1 − δ (over the choice of samples), h(x) has
(Boolean) loss at most ε with respect to D. Here, the Boolean loss errD(h, f) of h is de�ned
to be Prx∼D[h(x) 6= f(x)] ≤ ε.
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Since the learning algorithm does not know D and is required to work for all D, this model
is also called the distribution-independent (or distribution-free) PAC model. Unfortunately,
in the distribution-free setting, very few concept classes are known to be PAC learnable in
polynomial time or even subexponential time (i.e., time 2n1−δ

for some constant δ > 0).
Kearns, Schapire, and Sellie [KSS94] then proposed the more general (and challenging)

agnostic PAC learning model, which removes the assumption that examples are determined
by a function at all, let alone a function in the concept class C. The learner now knows nothing
about how examples are labeled, but is only required to learn a hypothesis h that is at most
ε worse than the best possible classi�er from the class C.

We now describe the agnostic PAC model more formally. Let D be any distribution on
{0, 1}n × {0, 1}, and let C be a concept class, i.e., a set of Boolean functions on {0, 1}n.
De�ne the error of h : {0, 1}n → {0, 1} to be errD(h) := Pr(x,b)∼D[h(x) 6= y], and de�ne
opt := minc∈C errD(c). We say that C is agnostically learnable in time T (n, ε, δ) if there exists
an algorithm which takes as input n and δ and has access to an example oracle EX(D), and
satis�es the following properties. It runs in time at most T (n, ε, δ), and with probability at
least 1 − δ, it outputs a hypothesis h satisfying errD(h) ≤ opt + ε. We say that the learning
algorithm runs in subexponential time if there is some constant η > 0 such that for any
constants ε and δ, the running time T (n, ε, δ) ≤ 2n1−η

for su�ciently large n.
The agnostic model is able to capture a range of realistic scenarios that do not �t within

the standard PAC model. In many situations it is unreasonable to know exactly that f belongs
to some class C, since f may be computed by a process outside of our control. For example, the
labels of f may be (adversarially) corrupted by noise, resulting in a function that is no longer
in C. Alternatively, f may be �well-modeled,� but not perfectly modeled, by some concept in
C. In fact, the agnostic learning model even allows the input sample to not be described by a
function f at all, in the sense that the distribution over the sample may have both (x, 0) and
(x, 1) in its support. This is also realistic when the model being used does not capture all of
the variables on which the true function depends.

5.1 Related work
Since the agnostic PAC model generalizes the standard PAC model, it is (considerably) harder
to learn a concept class in this model. Consequently, even fewer concept classes are known to be
agnostically learnable, even in subexponential time. For example, as mentioned in Section 1.4,
the best known algorithm for agnostically learning the simple concept class of disjunctions,
which are size-1, depth-1 Boolean circuits, runs in time9 2Õ(

√
n) [KKMS08]. In contrast, they

can be learned in polynomial time in the PAC model [Val84]. Meanwhile, several hardness
results are known for agnostically learning disjunctions, including NP-hardness for proper
learning [KSS94], and that even improper learning is as hard as PAC learning DNF [LBW95].

While it is an important and interesting problem to agnostically learn more expressive
classes of circuits in subexponential time, relatively few results are known. The best known
general result is that all de Morgan formulas (formulas over the gate set of AND, OR, and
NOT gates) of size s can be learned in time 2Õ(

√
s) [KKMS08, Rei11]. In particular, linear-size

formulas (i.e., s = Θ(n)) can be learned in time 2Õ(
√
n), which is the same as the best known

upper bound for disjunctions.

9For simplicity, we suppress runtime dependence on ε and δ.
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Even in the relatively easier PAC model, only a small number of circuit classes are known
to be learnable in subexponential time. For the well-studied class of polynomial-size DNFs, or
depth-2 AC0 circuits, we have an algorithm running in time 2Õ(n1/3) [KS04], and we know that
new techniques will be needed to improve this bound [RS10]. Little is known about larger
subclasses of AC0, other than a recent paper that studied depth-3 AC0 circuits with top fan-in
t, giving a PAC learning algorithm of runtime 2Õ(t

√
n) [DRG17], which is only subexponential

when t�
√
n.

Given the current state of a�airs, a subexponential-time algorithm to learn all of AC0 in
the standard PAC model would represent signi�cant progress. Indeed, for d > 2, the fastest
known PAC learning algorithm for depth-d AC0 circuits runs in time 2n−Ω(n/ logd−1 n) [ST17],
which is quite close to the trivial runtime of 2n.

We view our new results for learning LC0 and sublinear-size AC0 circuits as intermediate
steps toward this goal. We clarify that our results are incomparable to the known results
about agnostically learning de Morgan formulas. A simple counting argument [Nis11] shows
that there are linear-size DNFs that are not computable by formulas of size o(n2/ logn), so one
cannot learn even depth-2 LC0 in subexponential time via the learning algorithm for de Morgan
formulas. On the other hand, there are linear-size de Morgan formulas (of superconstant depth)
that are not in LC0, or even AC0.

Motivated by the lack of positive results in the distribution-free PAC learning model,
[ST17] study algorithms for learning various circuit classes, with the goal of �only� achieving
a non-trivial savings over trivial 2n-time algorithms. By achieving non-trivial savings, [ST17]
mean a runtime of 2n−o(n); prior work had already connected non-trivial learning algorithms
to circuit lower bounds [KKO13, OS17]. The subexponential runtimes we achieve in our work
are signi�cantly faster than the 2n−o(n)-time algorithms of [ST17]; in addition, our algorithms
work in the challenging agnostic setting, rather than just the PAC setting. On the other hand,
the algorithms of [ST17] apply to more general circuit classes than LC0.

As mentioned previously, [KS04] gave a 2Õ(n1/3)-time algorithm for PAC learning polyno-
mial size DNF formulas; their algorithm is based on a Õ(n1/3) upper bound on the threshold
degree of such formulas. In unpublished work, [Tal18] has observed that the argument in [KS04,
Theorem 4] can be generalized to show that for constant d ≥ 2, any depth-d LC0 circuit has
threshold degree at most Õ

(
n1−1/(3·2d−3)). This in turn yields a PAC learning algorithm for

LC0 running in time exp
(
Õ
(
n1−1/(3·2d−3))). Note that this is in the standard PAC model, not

the agnostic PAC model. As mentioned in Section 1, prior to our work, no subexponential
time algorithm was known for agnostically learning even LC0

3 in subexponential time.

5.2 Linear regression and the proof of Theorem 7
Our learning algorithm applies the well-known linear regression framework for agnostic learn-
ing that was introduced by [KKMS08]. The algorithm of [KKMS08] works whenever there is
a �small� set of �features� F (where each feature is a function mapping {0, 1}n to R) such that
each concept in the concept class C can be approximated to error ε in the `∞ norm via a linear
combination of the features in F . Roughly speaking, given a su�ciently large sample S from
an (unknown) distribution over {0, 1}n × {0, 1}, the algorithm �nds a linear combination h of
the features of F that minimizes the empirical `1 loss, i.e., h minimizes

∑
(xi,bi)∈S |h(xi)− bi|

among all linear combinations of features from F . An (approximately) optimal h can be found
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in time poly(F) by solving a linear program of size poly(|F|, |S|).

Lemma 23 ([KKMS08]). Let F be a set of functions mapping {0, 1}n to R, and assume
that each φi ∈ F is efficiently computable, in the sense that for any x ∈ {0, 1}n, φi(x) can be
computed in time poly(n). Suppose that for every c ∈ C, there exist coefficients αi ∈ R such
that for all x ∈ {0, 1}n, |c(x)−∑φi∈F αi · φi(x)| ≤ ε. Then there is an algorithm that takes
as input a sample S of size |S| = poly(n, |F|, 1/ε, log(1/δ)) from an unknown distribution D,
and in time poly(|S|) outputs a hypothesis h such that, with probability at least 1− δ over S,
Pr(x,b)∼D[h(x) 6= b] ≤ ε.

A feature set F that is commonly used in applications of Lemma 23 is the set of all
monomials whose degree is at most some bound d. Indeed, an immediate corollary of Lemma 23
is the following.

Corollary 24. Suppose that for every c ∈ C, the ε-approximate degree of c is at most d. Then
for every δ > 0, there is an algorithm running in time poly(nd, 1/ε, log(1/δ)) that agnostically
learns C to error ε with respect to any (unknown) distribution D over {0, 1}n × {0, 1}.

The best known algorithms for agnostically learning disjunctions and de Morgan formulas
of linear size [KKMS08, Rei11] combine Corollary 24 with known approximate degree upper
bounds for disjunctions and de Morgan formulas of bounded size. We use the same strategy:
our results for agnostic learning (Theorem 7) follow from combining Corollary 24 with our
new approximate degree upper bounds. Speci�cally, Theorem 5 shows that the ε-approximate
degree of any LC0

d circuit is at most Õ(n1−2−d log2−d(1/ε)), yielding our new result for agnosti-
cally learning LC0 circuits. Theorem 15 shows that AC0 circuits of size s have ε-approximate
degree Õ(

√
ns1/2−2−d(log(1/ε))2−d), giving our new result for learning sublinear-size AC0.

Furthermore, since our upper bound on the approximate degree of LC0 circuits is nearly
tight, new techniques will be needed to signi�cantly surpass our results. In particular, new
techniques will be needed to agnostically learn all of LC0 in subexponential time. Theorem 6
implies that if F is the set of all monomials of at most a given degree d, then one cannot

use Corollary 24 to learn LC0
d in time less than 2n1−2−Ω(

√
d)
. However, standard techniques

[She11a] automatically generalize the lower bound of Theorem 6 from the feature set of low-
degree monomials to arbitrary feature sets. Speci�cally, we obtain the following theorem.

Theorem 25. Let C = LC0
d, and let F∗ denote the minimum size set of features such that

each c ∈ C can be approximated point-wise to error 1/3 by a linear combination of the features
in F . Then |F∗| ≥ 2n1−2−Ω(

√
d)
.

For completeness, we provide the proof of Theorem 25 below.

Proof. For a matrix F ∈ {0, 1}N×N , the ε-approximate rank of F , denoted rankε(F ), is the
least rank of a matrix A ∈ RN×N such that |Aij −Fij | ≤ ε for all (i, j) ∈ [N ]× [N ]. Sherstov’s
pattern matrix method [She11a] allows one to translate in a black-box manner an approximate
degree lower bound for a function f into an approximate rank lower bound for a related matrix
F , called the pattern matrix of f .

Specifically, invoking Theorem 6, let f be the function in LC0
d−1 satisfying d̃eg(f) ≥ D for

some D = n1−2−Ω(
√
d) . Viewing F as a 24n× 24n matrix in the natural way, the pattern matrix
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method [She11a, Theorem 8.1] implies that the function F : {0, 1}4n × {0, 1}4n → {0, 1} given
by F (x, y) = f

(
. . . ,∨4

j=1 (xi,j ∧ yi,j) . . .
)
satisfies

rank1/3(F ) ≥ 2Ω(D), (21)

where the expression rank1/3(F ) views F as a 24n × 24n matrix.
Let F∗ be a feature set satisfying the hypothesis of Theorem 25, i.e., for every function

c : {0, 1}4n → {0, 1} in LC0
d, there exist constants α1, . . . , α|F| such that

|c(x)−
∑
φj∈F

αjφj(x)| ≤ 1/3 (22)

for all x ∈ {0, 1}4n. We claim that this implies that

rank1/3(F ) ≤ |F∗|. (23)

Theorem 25 then follows by combining Equation (23) with Equation (21).
Let us view each row i of F as a function Fi mapping {0, 1}4n → {0, 1}. Then clearly, if f

is in LC0
d−1, each row Fi is in LC0

d. Hence, there exist constants αi,1, . . . , αi,|F| such that

|Fi(x)−
∑
φj∈F

αi,j · φj(x)| ≤ 1/3 for all x ∈ {0, 1}4n. (24)

Let M denote the 24n × |F| matrix whose (i, j)’th entry is αi,j . And let R denote that
|F| × 24n matrix whose (j, x)’th entry is φj(x), where we associate x with an input in {0, 1}4n.
Then Equation (24) implies that |M ·R− Fij | ≤ 1/3 for all (i, j) ∈ [24n]× [24n]. Since M ·R
is a matrix of rank at most |F|, Equation (23) follows.

6 Circuit Lower Bounds (Proof of Theorem 8)
In this section, we view Boolean functions as mapping domain {−1, 1}n to {−1, 1}. Recall
that

IP(x, y) = ⊕ni=1(xi ∧ yi)

denotes the Boolean inner product on 2n bits. As a warmup, we start by establishing a
worst-case version of Theorem 8.

Proposition 26. The Inner Product function cannot be computed by any depth-(d+1) AC0 ◦⊕
circuit of size Ω̃

(
n1/(1−2−d)).

Proof. Theorem 5 shows that any depth-d AC0 circuit of size s ≥ n on n inputs has approximate
degree at most D = Õ(s1−2−d). Clearly, the approximating polynomial has at most

( s
≤D
)
≤ sD

many monomials.
From this, one can conclude that any depth-(d+ 1) AC0 ◦ ⊕ circuit C on n inputs of size

s ≥ n can be approximated by a polynomial p over {−1, 1}n with at most
( s
D

)
many monomials.

To see why, let us write C(x, y) = C′(h1(x, y), . . . , hN (x, y)), where N ≤ s, C′ is an AC0 circuit
of depth d and size at most s, and each hi is a parity function. Since C′ is an AC0 circuit of
depth d and size at most s on N ≤ s inputs, it has approximate degree at most D. Accordingly,
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let q be a polynomial of degree at most D that point-wise approximates C′ to error at most
1/3. Now obtain p by replacing the i’th input to q with the corresponding parity gate, namely
hi, of C. This yields a polynomial p that point-wise approximates C to error at most 1/3, i.e.,
|p(x, y)− C(x, y)| ≤ 1/3 for all (x, y) ∈ {−1, 1}n × {−1, 1}n. Since q is defined over domain
{−1, 1}N , replacing any number of inputs to q with parity functions preserves the number of
monomials of q.

On the other hand, it is known that that any polynomial p over {−1, 1}n × {−1, 1}n that
point-wise approximates the Inner Product function to any error strictly less than 1 requires
2Ω(n) many monomials [BS92].

Combining the above two facts means that sD must be at least 2Ω(n), which means that s
must be at least Ω̃(n1/(1−2−d)).

We now prove Theorem 8, restated here for convenience.

Theorem 8. For any constant integer d ≥ 4, any depth-(d+ 1) AC0 ◦ ⊕ circuit computing the
Inner Product function on n bits on greater than a 1/2 + n− logn fraction of inputs has size
Ω̃
(
n1/(1−2−d)) = n1+2−d+Ω(1).

Proof Outline. The proof follows a similar outline to Proposition 26, but builds on an
observation of Tal [Tal16, Lemma 4.2]. Roughly, Lemma 4.2 of [Tal16] shows that bipartite
de Morgan formulas of size s cannot compute the Inner Product function on more than a
1/2 + n− logn fraction of inputs unless they have size at least roughly n2. The only property
of de Morgan formulas of size � n2 that Tal uses is that they have sublinear approximate
degree.

Similarly, Theorem 5 shows that an AC0 circuit of size s and depth d on n inputs, for which
n ≤ s� n1/(1−2−d), has sublinear approximate degree.

Any parity function is an example of a bipartite function of size O(1), meaning that the
parity function applied to some subset of an input (x, y) ∈ {−1, 1}n×{−1, 1}n is computable
by a constant-sized circuit with leaves computing a function of only x or y. Hence, Tal's
argument applies with cosmetic changes not only to sub-quadratic size bipartite de Morgan
formulas, but also to AC0 ◦ ⊕ circuits of size s� n1/(1−2−d).

We remark that the entire argument (and hence the lower bound of Theorem 8 itself)
applies not only to AC0 ◦ ⊕ circuits, but more generally to depth-d AC0 circuits augmented
with a layer of low-communication gates above the inputs; we omit this extension for brevity.

Proof of Theorem 8, closely following the proof of Lemma 4.2 of [Tal16]. Let C : {−1, 1}2n →
{−1, 1} be an AC0 ◦ ⊕ circuit of depth (d+ 1) and size s ≥ n, and let

q = Pr
x,y∈{−1,1}n

[C(x, y) = IP(x, y)].

Suppose that q ≥ 1/2 + ε. Our goal is to show that s must be large, even for negligible values
of ε.

Let N ≤ s denote the number of parity gates in C, with the ith parity gate denoted by
hi(x) : {−1, 1}n → {−1, 1}. Then we may write C(x, y) = C′(h1(x, y), . . . , hN (x, y)), where C′
is an AC0 circuit on at most s inputs, of depth d and size at most s. By Theorem 5, there exists
a polynomial p of degree at most D ≤ Õ

(
s1−2−d log2−d(1/ε)

)
such that, for all w ∈ {−1, 1}N ,

|p(w)− C′(w)| ≤ ε.
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Next, we show that under the uniform distribution, the function IP(x, y) correlates well with
p(h1(x), . . . , hN (x)). We decompose the expectation Ex,y∈{−1,1}n [p(x, y) · IP(x, y)] according
to whether or not IP(x, y) = C(x, y):

Ex,y∈{−1,1}n [p(h1(x, y), . . . , hN (x, y)) · IP(x, y)] =
Ex,y∈{−1,1}n [p(h1(x, y), . . . , hN (x, y)) · IP(x, y)|IP(x, y) = C(x, y)] · Pr[IP(x, y) = C(x, y)]+
Ex,y∈{−1,1}n [p(h1(x, y), . . . , hN (x, y)) · IP(x, y)|IP(x, y) 6= C(x, y)] · Pr[IP(x, y) 6= C(x, y)]

≥ (1− ε) · q + (−1− ε) · (1− q)
= 2q − 1− ε ≥ 2 · (1/2 + ε)− 1− ε = ε.

(25)

Next, we write p(z) as a multi-linear polynomial: p(z) = ∑
S⊆[N ],|S|≤D p̂(S) ·∏i∈S zi. Since

p̂(S) = Ez∈{−1,1}N [p(z) ·∏i∈S zi], we have that |p̂(S)| ≤ 1 + ε for every S. Note that there are
at most

( N
≤D
)
monomials in p. Invoking Inequality (25), we have:

ε ≤ Ex,y∈{−1,1}n [p(h1(x, y), . . . , hN (x, y)) · IP(x, y)]

= Ex,y∈{−1,1}n

 ∑
S⊆[N ],|S|≤D

p̂(S)
∏
i∈S

hi(x, y) · IP(x, y)


=

∑
S⊆[N ],|S|≤D

p̂(S) ·Ex,y∈{−1,1}n

[∏
i∈S

hi(x, y) · IP(x, y)
]

≤
∑

S⊆[N ],|S|≤D
(1 + ε)

∣∣∣∣∣Ex,y∈{−1,1}n

[∏
i∈S

hi(x, y) · IP(x, y)
]∣∣∣∣∣ .

Hence there must exist a set S ⊆ [N ] with size at most D such that∣∣∣∣∣Ex,y∈{−1,1}n

[∏
i∈S

hi(x, y) · IP(x, y)
]∣∣∣∣∣ ≥ ε( N

≤D
)

(1 + ε)
≥ (ε/2)·s−D ≥ exp

(
Õ(−s1−2−d log2−d(1/ε))

)
.

It is well-known that IP is 2−Ω(n) correlated with any parity function hi (indeed, IP on 2n
bits is a bent function, meaning that all its Fourier coefficients have magnitude 2−n, and hence
its correlation with any parity is at most 2−n). We conclude that

s1−2−d log2−d(1/ε) ≥ Ω̃(n).

The theorem is an immediate consequence of this inequality.
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A Depth-vs-Size Upper Bounds for Approximate Majorities
In this section, we prove a result alluded to in Section 1.6, namely an upper bound on the size
of small-depth circuits computing approximate majorities.

For 0 < p < q < 1, we use AMAJn,p,q to refer to any total function f on n bits satisfying
the following two properties:

� f(x) = 0 for all x of Hamming weight at most pn.

� f(x) = 1 for all x of Hamming weight at least qn.

We also say that such an f computes AMAJn,p,q.

Theorem 27. For any constant δ > 0, there are positive constants 0 < p < 1/2 < q < 1 such
that the following holds. There is a total function f computing AMAJn,p,q such that f is itself
computable by a depth-(2d+ 3) circuit of size Od,δ(n1+2−d+δ). Here, the Od,δ notation hides a
leading factor that depends only on d and 1/δ.
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Proof. A careful application of well-known arguments yields the following claim, whose proof
we defer to the end of this section.

Claim 28. For any constant δ > 0, there exist constants 0 < p0 < 1/2 < q0 < 1 such that
the following holds. There is a monotone depth-3 AC0 circuit C0 of size O(m2+δ) computing
AMAJm,p0,q0. The top and bottom layers of gates of C0 are AND gates.

To prove Theorem 27, we need to use C0 to construct deeper but smaller circuits that
also compute approximate majorities. More generally, we establish the following iterative
transformation that takes any circuit Ci computing an approximate majority function and
turns it into a smaller and only slightly deeper circuit Ci+1 that also computes an approximate
majority function.10

Lemma 29. Let d > 0 and δ > 0 be fixed constants, and let p0 and q0 be the associated
constants from Claim 28. Suppose that there exists a family of monotone circuits Ci with the
following properties.

• There exist constants pi and qi satisfying 0 < pi ≤ p0 < 1/2 < q0 ≤ qi < 1, such that for
all input sizes m, Ci contains a circuit computing AMAJm,pi,qi.

• Each circuit in Ci has depth 2i+ 3, and the top and bottom layers consist of AND gates.

• There is a constant ki > 0 such that the circuit in Ci defined over inputs of size m has
size at most Od,pi,qi(mki+δ), where the Od,pi,qi notation hides factors depending only on
d, pi, and qi.

Then there exists a family of monotone circuits Ci+1 satisfying the above three properties,
with pi+1 = (1− 1/(10d))pi, qi+1 = 1− (1− qi)(1− 1/(10d)), and ki+1 ≤ (1 + ki)/2.

Proof. Let Ci be the assumed circuit from family Ci on m inputs computing AMAJm,pi,qi . Let

n = m2

and
M = 700d2(1/p2

i + 1/q2
i )m.

Consider generating a circuit Ci+1 on n inputs via the following random process. Ci+1 will
have the form

AMAJM,pi,qi(AMAJm,pi,qi , . . . ,AMAJm,pi,qi), (26)
Here, pi and qi are fixed constants as per the statement of the lemma, and each of the bottom
AMAJ circuits are evaluated on a randomly chosen (size-m) subset of the n inputs of Ci+1.
Since pi ≤ p0 and q0 ≤ qi, we may use a circuit C0 from family C0 (as per Claim 28) to compute
the outer function AMAJM,pi,qi . We use the circuit Ci from family Ci to compute each copy of
the inner function AMAJm,pi,qi .

In summary, we generate the circuit Ci+1 to be the composition C0 ◦ Ci, but where each
copy of Ci is evaluated over a randomly chosen (size-m) subset of the n inputs of Ci+1 (i.e.,
Ci+1 is a shared-input composition of C0 and Ci).

10Not coincidentally, this iterative transformation to reduce circuit size at the expense of depth is reminiscent
of the transformation used to prove the approximate degree lower bound for linear-size circuits given in
Theorem 6.
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We claim that with strictly positive probability, this circuit Ci+1 computes AMAJn,pi+1,qi+1 .
To see this, first fix an input x with Hamming weight at most pi+1 · n, so that the expected
number of 1-inputs to any bottom AMAJm,pi,qi circuit is at most µ := pi+1 ·m. Note that
pi ·m > (1 + 1/(10d))µ. If any AMAJm,pi,qi circuit “makes an error” on x (i.e., evaluates to 1
on x), then at least pi ·m > (1 + 1/(10d)) · µ of the randomly chosen inputs to the gate are 1.
By a Chernoff bound, for each of the bottom AMAJm,pi,qi gates, this happens on input x with
probability at most exp(−µ/(3(10d)2)) ≤ exp(−µ/(300d2)) ≤ exp(−pim/(600d2)).

The probability that more than (700d2/pi)m ≤ pi ·M of these circuits makes an error is
at most 2M · (exp(−pim/(600d2)))(700d2/pi)m � exp(−m2). Thus, with probability at least
1− exp(−m2), the circuit Ci+1 outputs 0 on input x.

An analogous argument holds for inputs x with Hamming weight at least qi+1 · n, so by a
union bound over all at most the 2n inputs to Ci+1 with Hamming weight at most pi+1 · n or
at least qi+1 · n, with strictly positive probability Ci+1 computes AMAJn,pi+1,qi+1 .

The circuit Ci+1 has m2 inputs and has size at most

O(M2+δ) +O(M ·mki+δ) = Od,pi,qi(n1+δ/2 +m1+ki+δ) = Od,pi,qi(nki+1+δ/2),

where recall that ki+1 = (1 + ki)/2.
Equation (26) implies that the top and bottom layers of Ci+1 consist of AND gates, with

Ci+1 inheriting this property directly from Ci and C0. Moreover, by collapsing the bottom
layer of C0 with the top layer of each copy of Ci (which is possible because C0 is monotone),
we find that the depth of Ci+1 is at most most 3 + (2i+ 3)− 1 = 2(i+ 1) + 3. This completes
the proof of the lemma.

Let p0, q0 be as in Claim 28, and let p = p0/e and q = 1− (1− q0)/e. Theorem 27 follows
by iteratively applying Lemma 29 d times (starting with i = 0; the assumptions of the lemma
are satisfied for this value of i by Claim 28) to conclude that AMAJn,p,q is computable by a
circuit of depth 2d+ 3 and size Od(n1+2−d+δ).

Proof of Claim 28. The main idea of the (probabilistic) construction is to have an AND-OR-
AND circuit C, where the top AND gate has fan-in t1 := m, the middle layer (of OR gates) all
have fan-in t2 := m1+δ, and the bottom layer of AND gates all have fan-in t3 = log2(m). Each
bottom AND gate is connected to t3 randomly chosen inputs.

Let p be any constant less than 1/21+δ, and q = 1/2δ. These choices ensure that plog2(m) <
1/(2m1+δ) and qlog2(m) > 1/mδ. We now show that with positive probability, C computes
AMAJm,p,q.

Consider any m-bit input x with Hamming weight at most p · m. Then for any fixed
AND gate at the bottom layer of C, the probability the AND gate evaluates to 1 is at most
pt3 < 1/(2m1+δ). By a union bound, this implies that for any fixed OR gate at the middle
layer of C, the probability the OR gate outputs 1 on x is at most t2 · 1/(2m1+δ) ≤ 1/2. This
implies that the probability the top AND gate outputs 1 on x is at most 1/2t1 = 2−m.

Now consider any m-bit input x with Hamming weight at least q ·m. Then for any fixed
AND gate at the bottom layer of C, the probability the AND gate evaluates to 1 is at least
qt3 > 1/mδ. This implies that for any fixed OR gate at the middle layer of C, the probability
the OR gate outputs 1 on x is least 1− (1− 1/mδ)t2 ≥ 1− e−m ≥ 1− 1/(m2m). This implies
that the probability the top AND gate outputs 1 on x is at least 1− 2−m.
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By a union bound over all the at most 2m inputs x to C, we conclude that with positive
probability C computes AMAJm,p,q.
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