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Abstract

In this work we prove the first Fixed-depth Size-Hierarchy Theorem for uniform AC0[⊕]. In
particular, we show that for any fixed d, the class Cd,k of functions that have uniform AC0[⊕]
formulas of depth d and size nk form an infinite hierarchy. We show this by exibiting the first
class of explicit functions where we have nearly (up to a polynomial factor) matching upper and
lower bounds for the class of AC0[⊕] formulas.

The explicit functions are derived from the δ-Coin Problem, which is the computational
problem of distinguishing between coins that are heads with probability (1 + δ)/2 or (1− δ)/2,
where δ is a parameter that is going to 0. We study the complexity of this problem and make
progress on both upper bound and lower bound fronts.

• Upper bounds. For any constant d ≥ 2, we show that there are explicit monotone
AC0 formulas (i.e. made up of AND and OR gates only) solving the δ-coin problem that
have depth d, size exp(O(d(1/δ)1/(d−1))), and sample complexity (i.e. number of inputs)
poly(1/δ). This matches previous upper bounds of O’Donnell and Wimmer (ICALP 2007)
and Amano (ICALP 2009) in terms of size (which is optimal) and improves the sample
complexity from exp(O(d(1/δ)1/(d−1))) to poly(1/δ).

• Lower bounds. We show that the above upper bounds are nearly tight (in terms of size)
even for the significantly stronger model of AC0[⊕] formulas (which are also allowed NOT
and Parity gates): formally, we show that any AC0[⊕] formula solving the δ-coin prob-
lem must have size exp(Ω(d(1/δ)1/(d−1))). This strengthens a result of Shaltiel and Viola
(SICOMP 2010), who prove a exp(Ω((1/δ)1/(d+2))) lower bound for AC0[⊕], and a result
of Cohen, Ganor and Raz (APPROX-RANDOM 2014), who show a exp(Ω((1/δ)1/(d−1)))
lower bound for the smaller class AC0.

The upper bound is a derandomization involving a use of Janson’s inequality (from proba-
bilistic combinatorics) and classical combinatorial designs; as far as we know, this is the first
such use of Janson’s inequality. For the lower bound, we prove an optimal (up to a constant
factor) degree lower bound for multivariate polynomials over F2 solving the δ-coin problem,
which may be of independent interest.
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1 Size-Hierarchy theorems for AC0[⊕]

Given any natural computational resource, an intuitive conjecture one might make is that access
to more of that resource results in more computational power. Hierarchy theorems make this
intuition precise in various settings. Classical theorems in Computational complexity theory such
as the time and space hierarchy theorems [HS65, SHI65, Coo73, FS04] show that Turing Machine-
based computational models do become strictly more powerful with more access to time or space
respectively.

The analogous questions in the setting of Boolean circuit complexity deal with the complexity
measures of depth and size of Boolean circuits. Both of these have been intensively studied in the
case of AC0 circuits and by now, we have near-optimal Depth and Size-hierarchy theorems for AC0

circuits [Has89, Ros08a, Ama10, HRST17]. Our focus in this paper is on size-hierarchy theorems
for AC0[⊕] circuits.

Essentially, a size-hierarchy theorem for a class of circuits says that there are Boolean functions
f : {0, 1}n → {0, 1} that can be computed by circuits of some size s = s(n) but not by circuits of
size significantly smaller than s, e.g.

√
s. However, stated in this way, such a statement is trivial to

prove, since we can easily show by counting arguments that there are more functions computed by
circuits of size s than by circuits of size

√
s and hence there must be a function that witnesses this

separation. As is standard in the setting of circuits, what is interesting is an explicit separation.
(Equivalently, we could consider the question of separating uniform versions of these circuit classes.)

Strong results in this direction are known in the setting of AC0 circuits (i.e. constant-depth
Boolean circuits made up of AND, OR and NOT gates).

Size hierarchy theorem for AC0. In order to prove a size-hierarchy theorem for AC0, we need
an explicit function that has circuits of size s but no circuits of size less than

√
s. If we fix the

depth of the circuits under consideration, a result of this form follows immediately from the tight
exponential AC0 circuit lower bound of H̊astad [Has89] from the 80s. H̊astad shows that any
depth-d AC0 circuit for the Parity function on n variables must have size exp(Ω(n1/(d−1))); further,
this result is tight, as demonstrated by a folklore depth-d AC0 upper bound of exp(O(n1/(d−1))).
Using both the lower and upper bounds for Parity, we get a separation between circuits of size
s0 = exp(O(n1/(d−1))) and sε0 for some fixed ε > 0. The same separation also holds between s and
sε for any s such that s ≤ s0, since we can always take the Parity function on some m ≤ n variables
so that the above argument goes through. We thus get a Fixed-depth Size-Hierarchy theorem for
AC0 for any s(n) ≤ exp(no(1)).

Even stronger results are known for AC0. Note that the above results do not separate, for
example, size s circuits of depth 2 from size sε circuits of depth 3. However, recent results of
Rossman [Ros08b] and Amano [Ama10] imply the existence of explicit functions1 that have AC0

circuits of depth 2 and size nk (for any constant k) but not AC0 circuits of any constant depth and
size nk−ε.

AC0[⊕] setting. Our aim is to prove size-hierarchy theorems for AC0[⊕] circuits (i.e. constant-
depth Boolean circuits made up of AND, OR, NOT and⊕ gates).2 As for AC0, we have known expo-

1The explicit functions are the k-clique problem and variants.
2Our results also extend straightforwardly to AC0[MODp] gates for any constant prime p (here, a MODp gate

accepts if the sum of its input bits is non-zero modulo p).
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nential lower bounds for this circuit class from the 80s, this time using the results of Razborov [Raz89]
and Smolensky [Smo87]. Unfortunately, however, most of these circuit lower bounds are not tight.
For instance, we know that the Majority function on n variables does not have AC0[⊕] circuits of
depth d and size exp(Ω(n1/2(d−1))), but the best upper bounds are worse than exp(O(n1/(d−1))) (in
fact, the best known upper bound [KPPY84] is an AC0 circuit of size exp(O(n1/(d−1))(log n)1−1/(d−1))).3

As a direct consequence of this fact, we do not even have fixed-depth size-hierarchy theorems of the
above form for AC0[⊕]: the known results only yield a separation between circuits of size s and
circuits of size exp(O(

√
log s)), which is a considerably worse result.

In this work we present the first fixed-depth size-hierarchy theorem for AC0[⊕] circuits. For-
mally, we prove the following.

Theorem 1 (Fixed-depth size-hierarchy theorem). There is an absolute constant ε0 ∈ (0, 1) such
that the following holds. For any fixed depth d ≥ 2, and for infinitely many n and any s = s(n) =
exp(no(1)), there is an explicit monotone depth-d AC0 formula Fn on n variables of size at most s
such that any AC0[⊕] formula computing the same function has size at least sε0 .

In particular, if Cd,k denotes the family of languages that have uniform AC0[⊕] formulas of
depth d and size nk, then the hierarchy Cd,1 ⊆ Cd,2 · · · is infinite.

We can also get a similar result for AC0[⊕] circuits of fixed depth d by using the fact that
circuits of depth d and size s1 can be converted to formulas of depth d and size sd1. Using this idea,
we can get a separation between circuits (in fact formulas) of depth d and size s and circuits of
depth d and size sε0/d.

To get this (almost) optimal fixed-depth size-hierarchy theorem we design an explicit function
f and obtain tight upper and lower bounds for it for each fixed depth d. The explicit function is
based on the Coin Problem, which we define below.

2 The Coin Problem

The Coin Problem is the following natural computational problem. Given a two-sided coin that
is heads with probability either (1 + δ)/2 or (1 − δ)/2, decide which of these is the case. The
algorithm is allowed many independent tosses of the coin and has to accept in the former case with
probability at least 0.9 (say) and accept in the latter case with probability at most 0.1. The formal
statement of the problem is given below.

Definition 2 (The δ-Coin Problem). For any α ∈ [0, 1] and integer N ≥ 1, let DN
α be the product

distribution over {0, 1}N obtained by setting each bit to 1 independently with probability α.
Let δ ∈ (0, 1) be a parameter. Given an N ∈ N, we define the probability distributions µNδ,0 and

µNδ,1 to be the distributions DN
(1−δ)/2 and DN

(1+δ)/2 respectively. We omit the δ in the subscript when
it is clear from context.

Given a function g : {0, 1}N → {0, 1}, we say that g solves the δ-coin problem with error ε if

Pr
x∼µN0

[g(x) = 1] ≤ ε and Pr
x∼µN1

[g(x) = 1] ≥ 1− ε. (1)

In the case that g solves the coin problem with error 0.1, we simply say that g solves the δ-coin
problem (and omit mention of the error).

We say that the sample complexity of g is N .

3A similar fact is also true for the MODp functions, for p an odd prime.
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We think of δ as a parameter that is going to 0. We are interested in both the sample complexity
and computational complexity of functions solving the coin problem. Both these complexities are
measured as a function of the parameter δ.

The problem is folklore, and has also been studied (implicitly and explicitly) in many papers
in the Computational complexity literature [AB84, OW07, Ama09, SV10, BV10, Vio14, Ste13,
CGR14, LV18, RS17]. It was formally introduced in the work of Brody and Verbin [BV10], who
studied it with a view to devising pseudorandom generators for Read-once Branching Programs
(ROBPs).

It is a standard fact that Ω(1/δ2) samples are necessary to solve the δ-coin problem (irrespective
of the computational complexity of the underlying function). Further, the algorithm that takes
O(1/δ2) many independent samples and accepts if and only if the majority of the coin tosses are
heads, does indeed solve the δ-coin problem. We call this the “trivial solution” to the coin problem.

It is not clear, however, if this is the most computationally “simple” method of solving the coin
problem. Specifically, one can ask if the δ-coin problem can be solved in computational models
that cannot compute the Boolean Majority function on O(1/δ2) many input bits. (Recall that the
Majority function on n bits accepts inputs of Hamming weight greater than n/2 and rejects other
inputs.)

Such questions have received quite a bit of attention in the computational complexity literature.
Our focus in this paper is on the complexity of this problem in the setting of AC0 and AC0[⊕]
circuits.

Perhaps surprisingly, the Boolean circuit complexity of the coin problem in the above models
is not the same as the circuit complexity of the Boolean Majority function. We describe below
some of the interesting upper as well as lower bounds known for the coin problem in the setting of
constant-depth Boolean circuits.

Known upper bounds. It is implicit in the results of O’Donnell and Wimmer [OW07] and
Amano [Ama09] (and explicitly noted in the paper of Cohen, Ganor and Raz [CGR14]) that the
complexity of the coin problem is closely related to the complexity of Promise and Approximate
variants of the Majority function. Here, a promise majority is a function that accepts inputs of
relative Hamming weight at least (1 + δ)/2 and rejects inputs of relative Hamming weight at most
(1 − δ)/2; and an approximate majority is a function that agrees with the Majority function on
90% of its inputs.4

O’Donnell and Wimmer [OW07] and Amano [Ama09] show that the AC0 circuit complexity
of some approximate majorities is superpolynomially smaller than the complexity of the Major-
ity function. More specifically, the results in [OW07, Ama09] imply that there are approximate
majorities that are computed by monotone AC0 formulas of depth d and size exp(O(dn1/2(d−1))),
while a well-known result of H̊astad [Has89] implies that any AC0 circuit of depth d for comput-
ing the Majority function must have size exp(Ω(n1/(d−1))). For example, when d = 2, there are
approximate majorities that have formulas of size exp(O(

√
n)) while any circuit for the Majority

function must have size exp(Ω(n)). These upper bounds were slightly improved to AC0 circuits of
size exp(O(n1/2(d−1))) in a recent result of Rossman and Srinivasan [RS17].

The key step in the results of [OW07, Ama09] is to show that the δ-coin problem can be solved

4Unfortunately, both these variants of the Majority function go by the name of “approximate majority” in the
literature.
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by explicit read-once5 monotone AC0 formulas of depth d and size exp(O(d(1/δ)1/(d−1))). (This is
improved to circuits of size exp(O((1/δ)1/(d−1))) in [RS17]. However, these circuits are not explicit.)
Compare this to the trivial solution (i.e. computing Majority on Θ(1/δ2) inputs) that requires AC0

circuit size exp(Ω((1/δ)2/(d−1))), which is superpolynomially worse.

Known lower bounds. Lower bounds for the coin problem have also been subject to a good
deal of investigation. Shaltiel and Viola [SV10] show that if the δ-coin problem can be solved
by a circuit C of size s and depth d, then there is a circuit C ′ of size poly(s) and depth d + 3
that computes the Majority function on n = Ω(1/δ) inputs. Using H̊astad’s lower bound for
Majority [Has89], this implies that any depth-d AC0 circuit C solving the δ-coin problem must
have size exp(Ω((1/δ)1/(d+2)))). Using Razborov and Smolensky’s [Raz89, Smo93] lower bounds,
this also yields the same lower bound for the more powerful circuit class AC0[⊕].6

In a later result, Aaronson [Aar10] observed that a stronger lower bound can be deduced for
AC0 by constructing a circuit C ′′ of depth d+ 2 that only distinguishes inputs of Hamming weight
n/2 from inputs of Hamming weight (n/2)− 1. By H̊astad’s results, this suffices to recover a lower
bound of exp(Ω((1/δ)1/(d+1)))) for AC0, but does not imply anything for AC0[⊕] (since the parity
function can distinguish between inputs of weight n/2 and (n/2)− 1).

Note that these lower bounds for the δ-coin problem, while exponential, do not meet the upper
bounds described above. In fact, they are quasipolynomially weaker.

Lower bounds for the closely related promise and approximate majorities were proved by Vi-
ola [Vio14] and O’Donnell and Wimmer [OW07] respectively. Viola [Vio14] shows that any poly(n)-
sized depth-d AC0 circuit cannot compute a promise majority for δ = o(1/(log n)d−2). O’Donnell
and Wimmer [OW07] show that any depth-d AC0 circuit that approximates the Majority function
on 90% of its inputs must have size exp(Ω(n1/2(d−1)). Using the connection between the coin prob-
lem and approximate majority, it follows that any monotone depth-d AC0 circuit solving the δ-coin
problem must have size exp(Ω((1/δ)1/(d−1))) matching the upper bounds above. The lower bound
of [OW07] is based on the Fourier-analytic notion of the Total Influence of a Boolean function
(see [O’D14, Chapter 2]) and standard upper bounds on the total influence of a Boolean function
computed by a small AC0 circuit [LMN93, Bop97].

Using more Fourier analytic ideas [LMN93], Cohen, Ganor and Raz [CGR14] proved near-
optimal AC0 circuit lower bounds for the δ-coin problem (with no assumptions on monotonicity).
They show that any depth-d AC0 circuit for the δ-coin problem must have size exp(Ω((1/δ)1/(d−1))),
nearly matching the upper bound constructions above.

The Coin Problem and Size Hierarchy Theorems for AC0[⊕]. Recall that to prove size-
hierarchy theorems for AC0[⊕], we need to come up with explicit functions for which we can
prove near-tight lower bounds. One class of functions for which the Razborov-Smolensky proof
technique does yield such a lower bound is the class of approximate majorities defined above.
Unfortunately, however, this does not yield an explicit separation, since the functions constructed
in [OW07, Ama09, RS17] are randomized and not explicit. These circuits are obtained by starting

5i.e. each variable in the formula appears exactly once
6Using [SV10] as a black box will yield a weaker lower bound of exp(Ω((1/δ)1/2(d+2))). However, slightly modifying

the proof of Shaltiel and Viola, we can obtain circuits of depth d + 3 that approximate the Majority function on
1/δ2 inputs instead of computing the Majority function on (1/δ) inputs exactly. This yields the stronger lower bound
given here.
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with explicit large monotone read-once formulas for the coin problem from [OW07, Ama09] and
replacing each variable with one of the n variables of the approximate majority; one can show that
this probabilistic procedure produces an approximate majority with high probability. However,
explicitness is then lost.

Our starting point is that instead of working with approximate majorities, we can directly work
with the explicit formulas solving the coin problem. As shown in [OW07, Ama09], there are explicit
formulas of size exp(O(d(1/δ)1/(d−1))) solving the δ-coin problem. Since these yield optimal-sized
circuits for computing approximate majorities, it follows that the functions computed by these
formulas cannot be computed by much smaller circuits.

While this is true, nevertheless the explicit formulas of [OW07, Ama09] do not yield anything
non-trivial by way of size-hierarchy theorems. This is because, as noted above, these formulas are
read-once. Hence, showing that the underlying functions cannot be computed in smaller size would
prove a separation between size s = O(n) circuits and circuits of size much smaller than n, which
is trivial.

The way we circumvent this obstacle is to construct explicit circuits solving the δ-coin problem
with optimal size and much smaller sample complexity. In fact, we are able to bring down the
sample complexity from exponential to polynomial in (1/δ). This allows us to prove a size hierarchy
theorem for all s up to exp(no(1)).

2.1 Our results for the Coin Problem

We make progress on the complexity of the coin problem on both the upper bound and lower bound
fronts.

Upper bounds. Note that the upper bound results known so far only yield circuit size and depth
upper bounds for the coin problem, and do not say anything about the sample complexity of the
solution. In fact, the explicit AC0 formulas of O’Donnell and Wimmer [OW07] and Amano [Ama09]
are read-once in the sense that each input corresponds to a distinct input variable. Hence, these
results imply explicit formulas of size s = exp(O(d(1/δ)1/(d−1))) and sample size Θ(s) for the δ-coin
problem. (Recall that, in contrast, the trivial solution has sample complexity only O(1/δ2).) The
sample complexity of these formulas can be reduced to O(1/δ2) by a probabilistic argument (as
essentially shown by [OW07, Ama09]; more on this below), but then we no longer have explicit
formulas. The circuit construction of Rossman and Srinivasan [RS17] can be seen to use O(1/δ2)
samples, but is again not explicit.

We show that the number of samples can be reduced to poly(1/δ) (where the degree of the
polynomial depends on the depth d of the circuit), which is the in same ballpark as the trivial
solution, while retaining both the size and the explicitness of the formulas. The result is as follows.

Theorem 3 (Explicit formulas for the coin problem with small sample complexity). Let δ ∈ (0, 1)
be a parameter and d ≥ 2 any fixed constant. There is an explicit depth-d monotone AC0 formula
Γd that solves the δ-coin problem, where Γd has size exp(O(d(1/δ)1/(d−1))) and sample complexity

(1/δ)2O(d)
. (All the constants implicit in the O(·) notation are absolute constants.)

Approximate majority and the coin problem. This result may be interpreted as a “partial
derandomization” of the approximate majority construction of [OW07, Ama09] in the following
sense. It is implicit in [OW07, Ama09] that an approximate majority on n variables can be ob-
tained by starting with a monotone circuit C solving the δ-coin problem for δ = Θ(1/

√
n), and
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replacing each input of C with a random input among the n input bits on which we want an ap-
proximate majority. While, as noted above, the coin-problem-solving circuits of [OW07, Ama09]
have exponential sample-complexity, our circuits only have polynomial sample-complexity, leading
to a much more randomness-efficient way of constructing such an approximate majority.

Indeed, this feature of our construction is crucial for proving the Size-Hierarchy theorem for
AC0[⊕] circuits (Theorem 1).

Lower bounds. As noted above, Shaltiel and Viola [SV10] prove that any AC0[⊕] circuit of depth
d solving the δ-coin problem must have size at least exp(Ω((1/δ)1/(d+2))). For the weaker class of
AC0 circuits, Cohen, Ganor and Raz [CGR14] proved an optimal bound of exp(Ω((1/δ)1/(d−1))).
We are also able to strengthen these incomparable results by proving an optimal lower bound for
AC0[⊕] circuits. More formally, we prove the following.

Theorem 4 (Lower bounds for the coin problem). Say g is a Boolean function solving the δ-coin
problem, then any AC0[⊕] formula of depth d for g must have size exp(Ω(d(1/δ)1/(d−1))). (The
Ω(·) hides an absolute constant.)

While the above result is stated for AC0[⊕] formulas, it easily implies a exp(Ω((1/δ)1/(d−1)))
lower bound for depth-d circuits, since any AC0[⊕] circuit of size s and depth d can be converted to
an AC0[⊕] formula of size sd and depth d. We thus get a direct extension of the results of Shaltiel
and Viola [SV10] and Cohen, Ganor and Raz [CGR14].

The proof of this result is closely related to the results of Razborov [Raz89] and Smolen-
sky [Smo87] (also see [Sze89, Smo93]) that prove lower bounds for AC0[⊕] circuits computing the
Majority function. For monotone functions7, the lower bound immediately follows from the stan-
dard lower bounds of [Raz89] and [Smo87] for approximate majorities8 (actually, we need a slightly
stronger lower bound for AC0[⊕] formulas) and the reduction [OW07, Ama09] from computing ap-
proximate majorities to the coin problem outlined above. This special case is already enough for
the size-hierarchy theorem stated in Section 1.

However, to prove the result in the non-monotone setting, it is not clear how to use the lower
bounds of [Raz89, Smo87] directly. Instead, we use the ideas behind these results, specifically
the connections between AC0[⊕] circuits and low-degree polynomials. We show that if a function
g(x1, . . . , xN ) solves the δ-coin problem, then its degree, as a polynomial from F2[x1, . . . , xN ], must
be at least Ω(1/δ) (independent of its sample complexity). From this statement and Razborov’s [Raz89]
low-degree polynomial approximations for AC0[⊕], it is easy to infer the lower bound. Further, we
think that the statement about polynomials is interesting in its own right.

Note that Theorems 3 and 4 immediately imply the Fixed-depth Size Hierarchy Theorem for
AC0[⊕] (Theorem 1).

7Recall that a function g : {0, 1}m → {0, 1} is monotone if it is non-decreasing w.r.t. the standard partial order
on the hypercube.

8The standard lower bounds of Razborov and Smolensky are usually stated for computing the hard function (e.g.
Majority) exactly. However, it is easily seen that the proofs only use the fact that the circuit computes the function
on most (say 90%) of its inputs (see, e.g. [RS17]). In particular, this yields lower bounds even for approximate
majorities, which, moreover, turn out to be tight. This can be seen as an alternate proof of the (later) lower bound
of O’Donnell and Wimmer [OW07, Theorem 4] for a stronger class of circuits. (The lower bound of [OW07] only
holds for AC0.)
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Independent work of Chattopadhyay, Hatami, Lovett and Tal [CHLT18]. A beautiful
recent paper of Chattopadhyay et al. [CHLT18] proves a result on the Fourier spectrum of low-
degree polynomials over F2 (Theorem 3.1 in [CHLT18]) which is equivalent9 to the degree lower
bound on the coin problem mentioned above. Indeed, the main observation, which is an extension
of the Smolensky [Smo87, Smo93] lower bound for the Majority function, is common to our proof
as well as that of [CHLT18].

2.2 Proof Outline

Upper bounds. We start with a description of the read-once formula construction of [OW07,
Ama09]. In these papers, it is shown that for every d ≥ 2, there is an explicit read-once formula
Fd that solves the δ-coin problem. This formula Fd is defined as follows. We fix a d ≥ 2 and let
m = Θ((1/δ)1/(d−1)), a large positive integer. We define positive integer parameters f1, . . . , fd ≈
exp(m),10 and define the formula Fd to be a read-once formula with alternating AND and OR input
gates where the gates at height i in the formula all have fan-in fi. (It does not matter if we start
with AND gates or OR gates, but for definiteness, let us assume that the bottom layer of gates in
the formula is made up of AND gates.) Each leaf of the formula is labelled by a distinct variable
(or equivalently, the formula is read-once).

The formula Fd is shown to solve the coin problem (for suitable values of f1, . . . , fd). Note
that the size of the formula, as well as its sample complexity, is Θ(f1 · · · fd), which turns out be
exp(Ω(md)) = exp(Ω(d(1/δ)1/(d−1))).

To show that the formula Fd solves the coin problem, we proceed as follows. For each i ∈
{1, . . . , d}, let us define Acc

(0)
i (resp. Rej

(0)
i ) to be the probability that some subformula Fi of height

i accepts (resp. rejects) an input from the distribution µNi0 (where Ni is the sample complexity of

Fi). Similarly, also define Acc
(1)
i and Rej

(1)
i w.r.t. the distribution µi1. Define

p
(b)
i = min{Acc

(b)
i ,Rej

(b)
i }

for each b ∈ {0, 1}. Note that these definitions are independent of the exact subformula Fi of height
i that we choose.

It can be shown via a careful analysis that for each odd i < d and each b ∈ {0, 1}, p(b)
i =

Acc
(b)
i = Θ(1/2m) (i.e. the acceptance probability is smaller than the rejection probability and is

roughly 1/2m) and we have

p
(1)
i

p
(0)
i

= (1 + Θ(miδ)). (2)

(Note that when i < d− 1, the quantity miδ = o(1) and so p
(0)
i and p

(1)
i are actually quite close to

each other.) An analogous fact holds for even i and rejection probabilities, where we now measure

p
(0)
i /p

(1)
i instead. At i = d − 1, we get that the ratio is in fact a large constant. From here, it is

easy to argue that Fd accepts an input from µNd1 w.h.p., and rejects an input from µNd0 w.h.p.. This
concludes the proof of the fact that Fd solves the δ-coin problem.

9We thank Avishay Tal (personal communication) for pointing out to us that the results of [CHLT18] imply the
degree lower bounds for the coin problem using an observation of [CHHL18]. This direction in fact works for any
class of functions closed under restrictions (i.e. setting inputs to constants from {0, 1}).

10These numbers have to be chosen carefully for the proof, but we do not need to know them exactly here.
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We now describe the ideas behind our derandomization. The precise calculations that are
required for the analysis of Fd use crucially the fact that the formulas are read-once. In particular,
this implies that we are considering the AND or OR of distinct subformulas, it is easy to compute
(using independence) the probability that these formulas accept an input from the distributions
µNd0 or µNd1 . In the derandomized formulas that we construct, we can no longer afford read-once
formulas, since the size of our formulas is (necessarily) exponential in (1/δ), but the number of
distinct variables (i.e. the sample complexity) is required to be poly(1/δ). Thus, we need to be
able to carry out the same kinds of precise computations for ANDs or ORs of formulas that share
many variables.

For this, we use a tool from probabilistic combinatorics named Janson’s inequality [Jan90, AS92].
Roughly speaking, this inequality says the following. Say we have a monotone formula F over
n Boolean variables that is the OR of M subformulas F1, . . . , FM , and we want to analyze the
probability that F rejects a random input x from some product distribution over {0, 1}n. Let
pi denote the probability that Fi rejects a random input. If the Fis are variable disjoint, we
immediately have that F rejects x with probability

∏
i pi. However, when the Fis are not variable

disjoint but most pairs of these subformulas are variable disjoint, then Janson’s inequality allows
us to infer that this probability is upper bounded by (

∏
i pi) · (1 + α) where α is quite small.

Furthermore, by the monotonicity of F and the resulting positive correlation between the distinct
Fi, we immediately see that the probability that F rejects is always lower bounded by

∏
i pi and

hence we get ∏
i

pi ≤ Pr
x

[F rejects x] ≤

(∏
i

pi

)
· (1 + α).

In other words, the estimate
∏
i pi, which is an exact estimate of the rejection probability of F in

the disjoint case, is a good multiplicative approximation to the same quantity in the correlated case.
Note that this is exactly the kind of approximation that would allow us to recover an inequality of
the form in (2) and allow an analysis similar to that of [OW07, Ama09] to go through even in the
correlated setting.

Remark 5. While Janson’s inequality has been used earlier in the context of Boolean circuit com-
plexity (for example in the work of Rossman [Ros08b, Ros14]), as far as we know, this is the first
application in the area of the fact that the inequality actually yields a multiplicative approximation
to the probability being analyzed.

This observation motivates the construction of our derandomized formulas (with only poly(1/δ)
variables). At each depth d, we construct the derandomized formula Γd as follows. The structure
(i.e. fan-ins) of the formula Γd is exactly the same as that of Fd. However, the subformulas of Γd
are not variable disjoint. Instead, we use the nd variables of Γd to obtain a family F of fd many sets
of size nd−1 (one for each subformula of depth d−1) in a way that ensures that Janson’s inequality
can be used to analyze the acceptance or rejection probability of Γd.

As mentioned above, to apply Janson’s inequality, this family F must be chosen in a way that
ensures that most pairs of sets in F are disjoint. It turns out that we also need other properties of
this family to ensure that the multiplicative approximation (1 +α) is suitably close to 1. However,
we show that standard designs due to Nisan and Wigderson [Nis91, NW94] used in the construction
of pseudorandom generators already have these properties (though these properties were not needed
in these earlier applications, as far as we know).
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With these properties in place, we can analyze the derandomized formula Γd. For each subfor-

mula Γ of depth i ≤ d, we can define p
(b)
Γ analogously to above. Using a careful analysis, we show

that p
(b)
Γ ∈ [p

(b)
i (1− αi), p(b)

i (1 + αi)] for a suitably small αi. This allows to infer an analogue of (2)

for p
(1)
Γ and p

(0)
Γ , which in turn can be used to show (as in the case of Fd) that Γd solves the δ-coin

problem.

Lower bounds. We now describe the ideas behind the proof of Theorem 4. It follows from the
result of O’Donnell and Wimmer [OW07] that there is a close connection between the δ-coin problem
and computing an approximate majority on n Boolean inputs. In particular, it follows from this
connection that if there is an AC0[⊕] formula F of size s and depth d solving the δ-coin problem
for δ = Θ(1/

√
n) that additionally computes a monotone function,11 then we also have a formula

F ′ of size s and depth d computing an approximate majority on n inputs. (The formula F ′ is
obtained by substituting each input of F with a uniformly random input among the n inputs to the
approximate majority.) Since standard lower bounds for AC0[⊕] formulas [Raz89, Smo87, RS17]
imply lower bounds for computing approximate majorities, we immediately get a lower bound
of exp(Ω(d(1/δ)1/(d−1))) for AC0[⊕] formulas F that solve the δ-coin problem by computing a
monotone function.

For the general case, the above reduction from approximate majorities to the coin problem no
longer works and we have to do something different. Our strategy is to look inside the proof of the
AC0[⊕] formula lower bounds and use these ideas to prove the general lower bound for the coin
problem. In particular, by the polynomial-approximation method due to Razborov [Raz89] (and
a quantitative improvement from [RS17]), it suffices to prove degree lower bounds on polynomials
from F2[x1, . . . , xN ] that solve the δ-coin problem.

We are able to prove the following theorem in this direction, which we believe is independently
interesting.

Theorem 6. Let g ∈ F2[x1, . . . , xN ] solve the δ-coin problem. Then, deg(g) = Ω(1/δ).

Remark 7. 1. Note that the degree lower bound in Theorem 6 is independent of the sample
complexity N of the underlying function g.

2. The lower bound obtained is tight up to a constant factor. This can be seen by using the
fact that this yields tight lower bounds for the coin problem (which we show), or by directly
approximating the Majority function on 1/δ2 bits suitably [BGL06] to obtain a degree O(1/δ)
polynomial that solves the δ-coin problem.

3. A weaker degree lower bound of Ω(1/(δ · (log2(1/δ)))) can be obtained by using an idea of
Shaltiel and Viola [SV10], who show how to use any solution to the coin problem and some
additional Boolean circuitry to approximate the Majority function on 1/δ2 inputs. Unfortu-
nately, this weaker degree lower bound only implies a formula lower bound that is superpoly-
nomially weaker than the upper bound.

4. As mentioned above, an independent recent paper of Chattopadhyay et al. [CHLT18] proves
a result on the Fourier spectrum of low-degree polynomials which can be used to recover the

11Note that we are not restricting the formula F itself to be monotone. We only require that it computes a
monotone function.
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degree bound in Theorem 6 (Avishay Tal (personal communication)). Conversely, Theorem 6
can be used to recover the corresponding result of Chattopadhyay et al. [CHLT18].

The proof of Theorem 6 is inspired by a standard result in circuit complexity that says that any
polynomial P ∈ F2[x1, . . . , xn] that computes an approximate majority must have degree Ω(

√
n).

The basic ideas of this proof go back to Smolensky [Smo87],12 though the result itself was proved in
Szegedy’s PhD thesis [Sze89] and a later paper of Smolensky [Smo93]. Here, we modify a slightly
different “dual” proof of this result which appears in the work of Kopparty and Srinivasan [KS12],
which itself builds on ideas of Aspnes, Beigel, Furst and Rudich [ABFR94] and Green [Gre00]. (The
proof idea of Smolensky [Smo87] can also be made to work.)

The first idea is to note that the proof in [KS12] can be modified to prove a lower bound of
Ω(
√
n) on the degree of any P ∈ F2[x1, . . . , xn] that satisfies the following condition: there exist

constants a > b such that P agrees with the Majority function on n bits on all but an ε fraction of
inputs of Hamming weight in [(n/2)− a

√
n, (n/2)− b

√
n]∪ [(n/2) + b

√
n, (n/2) + a

√
n] (where ε is

suitably small depending on a, b).
Using the sampling argument of O’Donnell and Wimmer [OW07] and the above degree lower

bound, it follows that if g satisfies the property that it accepts w.h.p. inputs from any product
distribution DN

α for α ∈ [(1/2) − aδ, (1/2) − bδ] and rejects w.h.p. inputs from any product
distribution DN

β for β ∈ [(1/2) + bδ, (1/2) + aδ], then the degree of g must be Ω(1/δ).
But g might not satisfy this hypothesis. Informally, solving the δ-coin problem only means that

the acceptance probability of g is small on inputs from DN
(1−δ)/2 and large on inputs from DN

(1+δ)/2.

It is not clear that these probabilities will remain small for α, β in some intervals of length Ω(δ).
For example, it may be that the acceptance probability of the polynomial g on distribution DN

α

oscillates rapidly for α ∈ [(1/2)− aδ, (1/2)− bδ] even for a, b that are quite close to each other. In
this case, however, we observe that g can be used to distinguish DN ′

α′ and DN ′
α′′ for α′, α′′ quite close

to each other. In other words, we are solving a ‘harder’ coin problem (since |α′ − α′′| is small).
Further, we can show that this new distinguisher, say g′, has not much larger degree and sample
complexity than the old one. We can thus try to prove the degree lower bound for g′ instead.

We repeat this argument until we can prove a degree lower bound on the new distinguisher g′

(which implies a degree lower bound on g). We can show that since the sample complexities of
successive distinguishers are not increasing too quickly, but the coin problems that they solve are
getting much harder, this iteration cannot continue for more than finitely many steps. Hence, after
finitely many steps, we will be able to obtain a degree lower bound.

2.3 Other related work

The coin problem has also been investigated in other computational models. Brody and Verbin [BV10],
who formally defined the coin problem, studied the complexity of this model in read-once branching
programs. Their lower bounds were strengthened by Steinberger [Ste13] and Cohen, Ganor and
Raz [CGR14]. Lee and Viola [LV18] studied the problem which has also been studied in the model
of “product tests.” Both these models are incomparable in strength to the constant-depth circuits
we study here.

12Though Razborov [Raz89] was the first to prove an exponential AC0[⊕] circuit lower bound for the Majority
function, he did not explicitly prove a lower bound on the degree of approximating polynomials for the Majority
function. Instead, he worked with a different symmetric function for the polynomial question.
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3 Preliminaries

Throughout this section, let d ≥ 2 be a fixed constant and δ ∈ (0, 1) be a parameter. For any
N ≥ 1, let µN0 and µN1 denote the product distributions over {0, 1}N where each bit is set to 1 with
probability (1− δ)/2 and (1 + δ)/2 respectively.

3.1 Some technical preliminaries

Throughout, we use log(·) to denote logarithm to the base 2 and ln(·) for the natural logarithm.
We use exp(x) to denote ex.

Fact 8. Assume that x ∈ [−1/2, 1/2]. Then we have the following chain of inequalities.

exp(x− (|x|/2)) ≤
(a)

exp(x− x2) ≤
(b)

1 + x ≤
(c)

exp(x) ≤
(d)

1 + x+ x2 ≤
(e)

1 + x+ (|x|/2) (3)

The following is an easy consequence of the Chernoff bound.

Fact 9 (Error reduction). Say g solves the coin problem with error (1/2)− η for some η > 0 and
let N denote the sample complexity of g. Let Gt : {0, 1}N ·t → {0, 1} be defined as follows. On input
x ∈ {0, 1}N ·t,

Gt(x) = Majt(g(x1, . . . , xN ), g(xN+1, . . . , x2N ), . . . , g(x(t−1)N+1, . . . , xt·N )).

Then, for t = O(log(1/ε)/η2), Gt solves the δ-coin problem with error at most ε.

3.2 Boolean formulas

We assume standard definitions regarding Boolean circuits. The size of a circuit always refers to
the total number of gates (including input gates) in the circuit.

We abuse notation and use AC0 formulas of size s and depth d (even for superpolynomial s) to
denote depth d formulas of size s made up of AND, OR and NOT gates. Similar notation is also
used for AC0[⊕] formulas.

Given a Boolean formula F , we use Vars(F ) to denote the set of variables that appear as labels
of input gates of F .

We say that a Boolean formula family {Fn}n≥1 is explicit if there is a deterministic polynomial-
time algorithm which when given as input n (in binary) and the description of two gates g1, g2 of
Fn is able to compute whether there is a wire from g1 to g2 or not. Such a notion of explicitness
has been described as uniformity in [Vol99](see Chapter 2 and definition 2.24).

3.3 Amano’s formula construction

In this section we present the construction of a depth d AC0 formula that solves the δ-coin problem.
The construction presented here is by Amano [Ama09], which works for d ≥ 3. For d = 2, a
construction was presented by O’Donnell and Wimmer [OW07]. We describe their construction in
Section 5.

Define m = d(1/δ)1/(d−1) · (1/ ln 2)e. For i ∈ [d − 2], define δi inductively by δ1 = mδ and
δi = δi−1 · (m ln 2).

Define fan-in parameters f1 = m, f2 = f3 = · · · = fd−2 = dm · 2m · ln 2e, fd−1 = C1 ·m2m and
fd = dexp(C1 ·m)e, where C1 = 50.

Define the formula Fd to be an alternating formula with AND and OR gates such that

11



• Each gate at level i above the variables has fan-in fi.

• The gates at level 1 (just above the variables) are AND gates.

• Each leaf is labelled by a distinct variable.

Note that Fd is a formula on N =
∏
i∈[d] fi ≤ exp(O(dm)) variables of size O(N).

Amano [Ama09] showed that Fd solves the δ-coin problem. We state a more detailed version of
his result below. Since this statement does not exactly match the statement in his paper, we give
a proof in the appendix.

For each i ≤ d, let Fi denote any subformula of Fd of depth i. Let Ni denote |Vars(Fi)| and let

p
(b)
i denote the probability

p
(b)
i = min{ Pr

x∼µNib
[Fi(x) = 0], Pr

x∼µNib
[Fi(x) = 1]}. (4)

Note that the definition of p
(b)
i is independent of the exact subformula Fi chosen: any subformula

of depth i yields the same value.

Theorem 10. Assume d ≥ 3 and Fd is defined as above. Then, for small enough δ, we have the
following.

1. For b, β ∈ {0, 1} and each i ∈ [d− 1] such that i ≡ β (mod 2), we have

p
(b)
i = Pr

x∼µNib
[Fi(x) = β].

In particular, for any i ∈ {2, . . . , d− 2} and any b ∈ {0, 1}

p
(b)
i = (1− p(b)

i−1)fi . (5)

2. For β ∈ {0, 1} and i ∈ [d− 2] such that i ≡ β (mod 2), we have

1

2m
(1 + δi exp(−3δi)) ≤ p(β)

i ≤ 1

2m
(1 + δi exp(3δi))

1

2m
(1− δi exp(3δi)) ≤ p(1−β)

i ≤ 1

2m
(1− δi exp(−3δi))

3. Say d− 1 ≡ β (mod 2). Then

p
(β)
d−1 ≥ exp(−C1m+ C2) and p

(1−β)
d−1 ≤ exp(−C1m− C2)

where C2 = C1/10.

4. For each b ∈ {0, 1}, Prx∼µNb
[Fd(x) = 1−b] ≤ 0.05. In particular, Fd solves the δ-coin problem.

Observation 11. For any i ∈ {2, . . . , d} and b ∈ {0, 1}, p(b)
i−1 · fi ≤ 50m.

Remark 12. A similar construction to Amano’s formula above was used by Rossman, Servedio and
Tan [RST15] to prove an average-case Depth-hierarchy theorem for AC0 circuits. Their construc-
tion was motivated by the Sipser functions used in the work of Sipser [Sip83] and H̊astad [Has89]
to prove worst-case Depth-hierarchy theorems.
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3.4 Janson’s inequality

We state Janson’s inequality [Jan90] in the language of Boolean circuits. The standard proof due
to Boppana and Spencer (see, e.g. [AS92, Chapter 8]) easily yields this statement. Since Janson’s
inequality is not normally presented in this language, we include a proof in the appendix for
completeness.

Theorem 13 (Janson’s inequality). Let C1, . . . , CM be any monotone Boolean circuits over inputs
x1, . . . , xN , and let C denote

∨
i∈[M ]Ci. For each distinct i, j ∈ [M ], we use i ∼ j to denote the

fact that Vars(Ci) ∩ Vars(Cj) 6= ∅. Assume each xj (j ∈ [n]) is chosen independently to be 1 with
probability pi ∈ [0, 1], and that under this distribution, we have maxi∈[M ] Prx[Ci(x) = 1] ≤ 1/2.
Then, we have

∏
i∈[M ]

Pr
x

[Ci(x) = 0] ≤ Pr
x

[C(x) = 0] ≤

 ∏
i∈[M ]

Pr
x

[Ci(x) = 0]

 · exp(2∆) (6)

where ∆ :=
∑

i<j:i∼j Prx[(Ci(x) = 1) ∧ (Cj(x) = 1)].

Remark 14. By using DeMorgan’s law, a similar statement also holds for the probability that the
conjunction C ′ =

∧
i∈[M ]Ci takes the value 1. More precisely, if maxi∈[M ] Prx[Ci(x) = 0] ≤ 1/2,

we have ∏
i∈[M ]

Pr
x

[Ci(x) = 1] ≤ Pr
x

[C ′(x) = 1] ≤

 ∏
i∈[M ]

Pr
x

[Ci(x) = 1]

 · exp(2∆) (7)

where ∆ :=
∑

i<j:i∼j Prx[(Ci(x) = 0) ∧ (Cj(x) = 0)].

4 Design construction

In order to define a derandomized version of the formulas in Section 3.3, we will need a suitable
notion of a combinatorial design. The following definition of a combinatorial design refines the well-
known notion of a Nisan-Wigderson design from the work of [Nis91, NW94]. We give a construction
of our combinatorial design by using a construction of Nisan-Wigderson design from [NW94] and
showing that this construction in fact satisfies the additional properties we need.

Definition 15 (Combinatorial Designs). For positive integers N1, N2,M, ` and γ, η ∈ (0, 1), an
(N1,M,N2, `, γ, η)-Combinatorial Design is a family F of subsets of [N1] such that

1. |F| ≥M,

2. F ⊆
([N1]
N2

)
(i.e. every set in F has size N2),

3. Given any distinct S, T ∈ F we have |S ∩ T | ≤ `,

4. For any a ∈ [N2], we have |{S ∈ F | S 3 a}| ≤ γ ·M,

5. For any i ∈ [`], we have |{{S, T} ⊆ F | S 6= T, |S ∩ T | = i}| ≤ ηi ·M2.

The main result of this section is the following.
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Lemma 16 (Construction of Combinatorial design). Given positive integers N2 and M and real pa-
rameters γ, η ∈ (0, 1) satisfying N2 ≥ (logM)/10, M ≥ 10·N2/η, and γ ≥ η/N2, there exist positive
integers ` = Θ (logM/ log(N2/η)) and Q = O((N2/η)1+1/`) and an (N1 = Q · N2,M,N2, `, γ, η)-
combinatorial design.

Further, the design is explicit in the following sense. Identify [N1] with [N2]×[Q] via the bijection
ρ : [N1]→ [N2]× [Q] such that ρ(i) = (j, k) where i = (k− 1)N2 + j. Then, each set in F is of the
form {(1, k1), . . . , (N2, kN2)} for some k1, . . . , kN2 ∈ [Q]. Finally, there is a deterministic algorithm
A, which when given as input an i ∈ [|F|] and a j ∈ [N2], produces kj ∈ [Q] in poly(logM) time.

Proof. Define ` to be the largest integer such that M1/` ≥ 10 · N2/η: note that ` ≥ 1 by our
assumption that M ≥ 10 ·N2/η. Thus, we have

` ≤ logM

log(10 ·N2/η)
≤ logM

log logM
(8)

and also

M1/(`+1) <
10 ·N2

η
. (9)

Define the parameter Q1 = dM1/`e. We have

10 ·N2

η
≤M1/` ≤ Q1 ≤ 2M1/` ≤ O

((
N2

η

)1+ 1
`

)
(10)

where we used (9) for the last inequality.
Let Q be the smallest power of 2 greater than or equal to Q1 and let FQ be a finite field of

size Q. By a result of Shoup [Sho90], we can construct in time poly(logQ) = poly(logM) time an
implicit representation of FQ where each element of FQ is identified with an element of {0, 1}logQ

and arithmetic can be performed in time poly(logQ). Fix such a representation of FQ.
Let A ⊆ FQ be any subset of size N2 (note that by (10) we have N2 ≤ Q1 which is at most Q)

and let B ⊆ FQ be any fixed subset of size Q1. Let A1 ⊆ A be a set of size ` (note that by (8)
` ≤ (logM)/10 which is at most N2 by assumption).

Fix N1 = Q · N2 and identify [N1] with the set A × FQ in an arbitrary way. Assume that
A = {a1, . . . , aN2} and A1 = {a1, . . . , a`}. We define P to be the set of all polynomials P ∈ FQ[x]
of degree at most `− 1 such that P (a) ∈ B for each a ∈ A1.

We are now ready to define the family F . For each b = (b1, . . . , b`) ∈ A`, we define the
polynomial Pb(x) to be the unique polynomial in P such that P (ai) = bi for each i ∈ [`] (note
that P is uniquely defined since any polynomial of degree at most ` − 1 can be specified by its
evaluations at any ` distinct points). We add the set Sb ⊆ A× FQ to F , where Sb is defined by

Sb = {(ai, Pb(ai)) | i ∈ [N2]}. (11)

In words, Sb is the graph of the polynomial Pb restricted to the domain A.
We now show that F is indeed a (N1,M,N2, `, γ, η)-combinatorial design.

1. For distinct b,b′ ∈ B`, the sets |Sb∩Sb′ | ≤ ` since the graphs of the distinct polynomials Pb

and Pb′ can intersect at at most ` − 1 points. In particular, we have |F| = |B|` = Q`1 ≥ M
(by (10)). Further, we also have that any pair of distinct sets in F have an intersection of at
most `. This proves properties 1 and 3 in Definition 15 above.
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2. Each set in F has size N2, since it is of the form {(ai, bi) | i ∈ [N2]} for some choice of
b1, . . . , bN2 ∈ FQ. This proves property 2.

3. We now consider property 4. Fix any (a, b) ∈ A × FQ. If (a, b) ∈ S ∈ F , then S is the
graph of a polynomial P ∈ P such that P (a) = b. To uniquely specify such a polynomial, it
suffices to provide its evaluations at any `− 1 other points. We choose the evaluation points
to be a fixed set A′1 ⊆ A1 \ {a} of size ` − 1. Since P (a′) ∈ B for each a′ ∈ A′1, there are at
most |B|`−1 = Q`−1

1 many choices for these evaluations, which yields the same bound for the
number of sets S ∈ F such that (a, b) ∈ S.

Hence, we have

|{S ∈ F | S 3 (a, b)}| ≤ Q`1
Q1

=

(
dM1/`e

)`
Q1

≤ η

N2
·M ≤ γ ·M

where the final inequality follows from our assumption that γ ≥ η/N2, and the second last
inequality uses the fact that Q1 ≥ 10 ·N2/η and

(
dM1/`e

)`
≤
(
M1/` + 1

)`
= M ·

(
1 +

1

M1/`

)`
≤M ·

(
1 +

1

`

)`
≤ 3M (12)

(using `` ≤M , which follows from (8), for the second-last inequality).

4. For property 5, we use a similar argument to property 4. Fix distinct sets S, T ∈ F such that
|S ∩ T | = i. The sets S and T are graphs of distinct polynomials P1, P2 ∈ P respectively that
agree in i places. We bound the number of such pairs of polynomials.

The number of choices for S, and hence P1, is exactly |F| = Q`1. Given P1, we can specify P2

as follows.

• Specify a set A′ ⊆ A of size i such that P1 and P2 agree on A′. This gives the evaluation
of P2 at i points. Further, the number of such A′ is

(
N2

i

)
≤ N i

2.

• Specify the evaluation of P2 at the first `−i points from A1\A′. This gives the evaluation
of P2 at `− i points outside A′ and hence specifies P2 exactly. The number of possible
evaluations is |B|`−i = Q`−i.1

Hence, the number of pairs of polynomials (P1, P2) whose graphs agree at i points is at most

Q`1 ·N i
2 ·Q`−i1 = Q2`

1 ·
(
N2

Q1

)i
=
(
dM1/`e

)2`
·
(
N2

Q1

)i
≤ 9M2 ·

(
N2

Q1

)i
≤ 9M2 ·

( η
10

)i
≤ ηi ·M2

where for the first inequality we have used (12) and the second inequality follows from the
fact that Q1 ≥ 10 ·N2/η.

We have thus shown that F is indeed a (N1,M,N2, `, γ, η)-combinatorial design as required.
The explicitness of the design follows easily from its definition.
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5 Proof of Theorem 3 for d = 2

In this section we will present the proof of Theorem 3 for the special case when d = 2. The proof
is quite similar to the case for general d, but is somewhat simpler (as the construction of the AC0

formulas is simpler) and illustrates many of the ideas of the general proof.
Throughout this section, let δ be a parameter going to 0.
We start by stating a result of O’Donnell and Wimmer [OW07], who gave a depth-2 AC0 formula

for solving the δ-coin problem. Formally, they defined a depth-2 circuit as follows.
Let C0 ≥ 10. Let m = 1/δ ·C0, f1 = m, f2 = 2m, where C = 2C0 . The formula F2 is defined as

follows:

• At layer 1 we have AND gates and the fan-in of each AND gate is f1.

• At layer 2 we have a single OR gate with fan-in f2.

• Each leaf is labelled with distinct variables.

For F2 defined as above [OW07] proved the following theorem.

Theorem 17 ([OW07]). Let N = f1 · f2. For each b ∈ {0, 1}

Pr
x∼µNb

[F2(x) = 1− b] ≤ 0.05,

i.e. specifically F2 solves the δ-coin problem.

Here, the number of inputs is N and the size of F2 is also O(N). We now give a construction
of an explicit depth 2 formula of the same size as in the theorem above which solves the δ-coin
problem, but using far fewer inputs. We achieve this by an application of the Janson’s inequality
coupled with our combinatorial design.

We now describe the construction of such a depth 2 formula Γ2. Fix m, f1, f2 as above. Define
parameters γ = 1, η = 1/(16 · (1+δ

2 )m · f2) = 1/(16 · (1 + δ)m). Let F be an (n, f2, f1, `, γ, η)-design
obtained using Lemma 16. We are now ready to define Γ2.

• Let S1, S2, . . . , Sf2 ∈
([n]
f1

)
be the first f2 sets in the (n, f2, f1, `, γ, η)-design F . At layer 1 we

have f2 many AND gates, say Γ1
1, . . . ,Γ

f2
1 , with fan-in f1 each. For each i ∈ [f2], the inputs

of the gate Γi1 are the variables indexed by the set Si.

• At layer 2 we have a single gate, which is an OR of Γ1
1, . . . ,Γ

f2
1 .

With this definition of Γ2, we now prove Theorem 3. From the definition of the parameters, it can
be checked that η = Θ(1). Therefore, we get ` = Θ(m/ logm) and Q = O(f1/η)1+1/` = O((1/δ)).
Therefore, the number of inputs in the formula is N = O(Q · f1) = O(1/δ2) and the size of the
formula is O(f1 · f2) = exp(O(1/δ)).

The only thing we need to prove now is that for any b ∈ {0, 1}, Prx∼µnb [Γ2(x) = 1 − b] ≤ 0.1.

Let q(0) = (1 − δ)/2 and q(1) = (1 + δ)/2. Let p
(0)
1 =

(
1−δ

2

)m
and p

(1)
1 =

(
1+δ

2

)m
. Note that p

(b)
1

(b ∈ {0, 1}) is the probability that each subformula Γi1 accepts on a random input x chosen from
the distribution µnb .
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Let b = 0. In this case

Pr
x∼µn0

[Γ2(x) = 1] = Pr
x∼µn0

[∃i ∈ [f2] : Γi1(x) = 1]

≤ f2 · p(0)
1 = (1− δ)m ≤ exp(−C0) ≤ 0.1.

Here the first inequality is due to a union bound. The other inequalities are obtained by simple
substitutions of the parameters and using (3).

Now consider the b = 1 case. Here Prx∼µn1 [Γ2(x) = 0] = Prx∼µn1 [∀i ∈ [f2] : Γi1(x) = 0]. Now we
would like to bound this using Janson’s inequality (Theorem 13). Applying Janson’s inequality, we
get

Pr
x∼µn1

[Γ2(x) = 0] = Pr
x∼µn1

[∀i ∈ [f2] : Γi1(x) = 0]

≤
∏
i∈[f2]

Pr
x∼µn1

[Γi1(x) = 0] · exp(2∆)

≤ (1− p(1)
1 )f2 · exp(2∆)

≤ exp(−p(1)
1 f2 + 2∆), (13)

where
∆ =

∑
j<k:

Vars(Γj1)∩Vars(Γk1)6=∅

Pr
x∼µn1

[(Γj1(x) = 1) ∧ (Γk1(x) = 1)].

We will now obtain a bound on ∆.

∆ =
∑
j<k:

Vars(Γj1)∩Vars(Γk1)6=∅

Pr
x∼µn1

[(Γj1(x) = 1) ∧ (Γk1(x) = 1)].

=
∑̀
r=1

∑
j<k:

|Vars(Γj1)∩Vars(Γk1)|=r

Pr
x∼µn1

[(Γj1(x) = 1) ∧ (Γk1(x) = 1)]

As Γj1 and Γk1 are both ANDs of size m, Γj1∧Γk1 is an AND of size (2m−|Vars(Γj1)∩Vars(Γk1)|).
Therefore, we get
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∆ =
∑̀
r=1

∑
j<k:

|Vars(Γj1)∩Vars(Γk1)|=r

Pr
x∼µn1

[((Γj1 ∧ Γk1)(x) = 1)]

=
∑̀
r=1

∑
j<k:

|Vars(Γj1)∩Vars(Γk1)|=r

(
1 + δ

2

)2m−r

=
∑̀
r=1

∑
j<k:

|Vars(Γj1)∩Vars(Γk1)|=r

(p
(1)
1 )2

((1 + δ)/2)r

=
∑̀
r=1

(p
(1)
1 )2

(q(1))r
· |{(j, k) | j < k and |Vars(Γj1) ∩Vars(Γk1)| = r}|

From the construction of the formula and the combinatorial design F , we know that |{(j, k) |
j < k and |Vars(Γj1) ∩ Vars(Γk1)| = r}| ≤ ηrf2

2 . We can also bound 1/q(1) by a small constant, say
3.

Therefore, we can simplify the above equation as follows:

∆ ≤
∑̀
r=1

(p
(1)
1 )2 · 3r · ηrf2

2

= (p
(1)
1 )2 · f2

2

∑̀
r=1

3r · ηr

≤ (p
(1)
1 )2 · f2

2 · 4 · η (14)

using the fact that 3η ≤ 1/4 as η ≤ 1/16.

Now, by using our setting of η = 1/(16 · p(1)
1 · f2) in (14), we get ∆ ≤ p(1)

1 f2/4. Using this value

of ∆ in (13), we get Prx∼µn1 [Γ2(x) = 0] ≤ exp(−p
(1)
1 ·f2

2 ) ≤ 0.1, by our choice of parameters. This
completes the proof of Theorem 3 for d = 2.

6 Proof of Theorem 3 for d ≥ 3

Throughout this section, fix a constant depth d ≥ 3 and a parameter δ ∈ (0, 1). The parameter δ
is assumed to be asymptotically converging to 0.

We also assume the notation from Section 3.3.

6.1 Definition of the formula Γd

The formula Γd is an alternating monotone depth-d formula made up of AND and OR gates. The
structure of the formula and the labels of the gates are the same as in the formula Fd defined in
Section 3.3. However, the leaves are labelled with only poly(m) distinct variables.
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We now proceed to the formal definition. We iteratively define a sequence of formulas Γ1, . . . ,Γd
(where Γi has depth i) as follows. Define the parameters γ and η by

γ =
1

m3
and η =

1

m10d
. (15)

• Γ1 is just an AND of n1 = m distinct variables.

• Recall that for i ≥ 2, any gate at level i in the formula Fd has fan-in fi for fi = exp(Θ(m)).
For each i ∈ {2, . . . , d}, define ni so that by Lemma 16, we have an explicit (ni, fi, ni−1, `, γ, η)-
combinatorial design Fi where ` = Θ(log fi/ log(ni−1/η)).Note that ni = O((ni−1)2+1/`/η1+1/`) ≤
n3
i−1/η

2.

The formula Γi is defined on a set X of ni variables by taking the OR/AND (depending on
whether i is even or odd respectively) of fi copies of Γi−1, each defined on a distinct subset
Y ⊆ X of ni−1 variables obtained from the combinatorial design Fi.
Formally, let S1, . . . , Sfi ∈

(
[ni]
ni−1

)
be the first fi many sets in the design Fi (in lexicographic

order, say). Identifying [ni] with the variable set X of Γi, we obtain corresponding subsets

Y1, . . . , Yfi of X. The formula Γi is an OR/AND of fi many subformulas Γ1
i , . . . ,Γ

fi
i where

the jth subformula Γji is a copy of Γi−1 with variable set Yj .

Observation 18. The size of Γd is exp(O(dm)). The number of variables appearing in Γd is

nd = m2O(d)
.

Explicitness of the formula Γd. The structure of the formula is determined completely by the
parameter δ. Thus to argue that the formula Γd is explicit, it suffices to show that the labels of the
input gates can be computed efficiently. Note that the inputs are in 1-1 correspondence with the
set [fd]× [fd−1]× · · · [f2]× [f1].

Let Γi be any subformula of Γd of depth i. If i = 1, then Γi is simply an AND of m = f1

variables and we identify its variable set with [f1]. When i > 1, by the properties of the design
constructed in Lemma 16, we see that the set Vars(Γi) is in a natural 1-1 correspondence with
the set Vars(Γi−1) × [Qi] where Γi−1 is any subformula of depth i − 1 and Qi = ni/ni−1. Each
subformula Γji (j ∈ [fi]) of depth i− 1 in Γi has as its variable set a set of the form {(x, kx) | x ∈
Vars(Γi−1), kx ∈ [Qi]}.

Further, by the explicitness properties of the design constructed in Lemma 16, we see that
given any x ∈ Vars(Γi−1) and j ∈ [fi], we can find in poly(log(fi)) ≤ poly(m) time the variable
(x, k) ∈ Vars(Γi) that belongs to Vars(Γji ). Equivalently, given a leaf ` = (ji, . . . , j1) ∈ [fi]×· · ·×[f1]
of Γi and the variable x ∈ Vars(Γi−1) corresponding to the leaf (ji−1, . . . , j1) in Γi−1, we can find
the variable labelling ` in poly(m) time. Using this algorithm and a recursive procedure to find the
variable x, we see that the variable labelling the leaf ` can be found in poly(m) time. In particular,
given a leaf of Γd, the variable labelling it can be found in poly(m) time.

Thus, the formula Γd is explicit.

6.2 Analysis of Γd

In this section, we will show that Γd distinguishes between the distributions µnd0 and µnd1 as defined
in Definition 2. For brevity, we use n to denote nd.
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Fix any subformula Γ of Γd and b ∈ {0, 1}. Assume Γ has depth i ∈ [d] and β ∈ {0, 1} is

such that i ≡ β (mod 2). We define p
(b)
Γ = Prx∼µnb [Γ(x) = β]. Assume that Γ is an OR/AND of

depth-(i− 1) subformulas Γ1, . . . ,Γf . We define

∆
(b)
Γ =

∑
j<k:

Vars(Γj)∩
Vars(Γk)6=∅

Pr
x∼µnb

[(Γj(x) = 1− β) ∧ (Γk(x) = 1− β)]. (16)

The following lemma is the main technical lemma of this section. Along with Theorem 10, it
easily implies Theorem 3 (as we show below).

Lemma 19. Let Γd be as constructed above. Then for each i ∈ {2, . . . , d}, each b ∈ {0, 1}, and
any subformula Γ of depth i, we have the following.

1. p
(b)
Γ ∈ [p

(b)
i (1− η · (C3m)i), p

(b)
i (1 + η · (C3m)i)] where C3 = 1000.

2. ∆
(b)
Γ ≤ (C4m)2 · η where C4 = 100.

Assuming the above lemma, we first prove Theorem 3.

Proof of Theorem 3. We use the explicit formula Γd described above. By Lemma 19 applied in the
case that i = d, it follows that for each b ∈ {0, 1}

| Pr
x∼µnb

[Γd(x) = 1− b]− Pr
x∼µnb

[Fd(x) = 1− b]| = |p(b)
Γd
− p(b)

d | ≤ p
(b)
d · η(C3m)d = o(1).

In particular, using Theorem 10, it follows that Prx∼µnb [Γd(x) = 1 − b] ≤ 0.1 and hence Γd solves

the δ-coin problem. The sample complexity of Γd is m2O(d)
= (1/δ)2O(d)

by construction.

Proof of Lemma 19. We prove the lemma by induction on i. The base case is when i = 2. This
proof is quite similar to the proof of the d = 2 case from Section 5.

Base case, i.e. i = 2: Recall that for i = 2, Γ is an OR of f2-many subformulas Γ1,Γ2, . . . ,Γf2 ,

where each Γj is an AND of distinct set of variables. Therefore, we have that p
(b)

Γj
is the same as

in the case of Amano’s proof, i.e. p
(b)

Γj
= p

(b)
1 . Recall that p

(b)
1 is equal to (1−δ

2 )m if b = 0 and it is

equal to (1+δ
2 )m if b = 1. Let q(0) (q(1)) denote 1−δ

2 (respectively, 1+δ
2 ).

∆
(b)
Γ =

∑
j<k:

Vars(Γj)∩Vars(Γk)6=∅

Pr
x∼µnb

[(Γj(x) = 1) ∧ (Γk(x) = 1)].

=
∑̀
r=1

∑
j<k:

|Vars(Γj)∩Vars(Γk)|=r

Pr
x∼µnb

[(Γj(x) = 1) ∧ (Γk(x) = 1)]

As Γj and Γk are both ANDs of size m, Γj ∧Γk is an AND of size (2m−|Vars(Γj)∩Vars(Γk)|).
Therefore, we get
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∆
(b)
Γ =

∑̀
r=1

∑
j<k:

|Vars(Γj)∩Vars(Γk)|=r

Pr
x∼µnb

[((Γj ∧ Γk)(x) = 1)]

=
∑̀
r=1

∑
j<k:

|Vars(Γj)∩Vars(Γk)|=r

(q(b))2m−r

=
∑̀
r=1

∑
j<k:

|Vars(Γj)∩Vars(Γk)|=r

(p
(b)
1 )2

(q(b))r

=
∑̀
r=1

(p
(b)
1 )2

(q(b))r
· |{(j, k) | j < k and |Vars(Γj) ∩Vars(Γk)| = r}|

From the construction of the formula, we know that |{(j, k) | j < k and |Vars(Γj)∩Vars(Γk)| =
r}| ≤ ηrf2

2 . We can also bound 1/q(b) by a small constant, say 3.
Therefore, we can simplify the above equation as follows:

∆
(b)
Γ ≤

∑̀
r=1

(p
(b)
1 )2 · 3r · ηrf2

2

= (p
(b)
1 )2 · f2

2

∑̀
r=1

3r · ηr

≤ (p
(b)
1 )2 · f2

2 · 4 · η

The last inequality comes from summing up a geometric series. Now using Observation 11 we get

that p
(b)
1 · f2 ≤ 50m. Hence, we get ∆

(b)
Γ ≤ (p

(b)
1 )2 · f2

2 · 4 · η ≤ (50m)2 · 4η = (100m)2 · η. This proves

the bound on ∆
(b)
Γ in the base case.

We now prove the bounds claimed for p
(b)
Γ in the base case. When i = 2, β = 0, hence

p
(b)
Γ = Prx∼µnb [Γ(x) = 0]. By Janson’s inequality (Theorem 13), we get the following bounds on the

value of p
(b)
Γ .

f2∏
j=1

(1− p(b)

Γj
) ≤ p(b)

Γ ≤
f2∏
j=1

(1− p(b)

Γj
) · exp(2 ·∆(b)

Γ ).

Recall that p
(b)

Γj
= p

(b)
1 as we are in the base case. Also, from Equation (5) we have that

21



(1− p(b)
1 )f2 = p

(b)
2 . Therefore, we get

p
(b)
2 ≤ p

(b)
Γ ≤ p

(b)
2 · exp(2∆

(b)
Γ )

≤ p(b)
2 · (1 + 4 ·∆(b)

Γ ) Using (3) (d)

≤ p(b)
2 · (1 + 4 · (C4m)2 · η)

≤ p(b)
2 · (1 + (C3m)2 · η)

This finishes the proof of the base case.

Inductive case, i.e. i ≥ 3: We now proceed to proving the inductive case. Assume that the
statement holds for (i − 1). Let Γ be a subformula at depth i which is OR/AND of subformulas

Γ1,Γ2, . . . ,Γfi each of depth (i− 1). From the definition of ∆
(b)
Γ , we get the following:

∆
(b)
Γ =

∑
j<k:

Vars(Γj)∩Vars(Γk) 6=∅

Pr
x∼µnb

[(Γj(x) = 1− β) ∧ (Γk(x) = 1− β)].

=
∑̀
r=1

∑
j<k:

|Vars(Γj)∩Vars(Γk)|=r

Pr
x∼µnb

[(Γj(x) = 1− β) ∧ (Γk(x) = 1− β)]

Let tr denote the maximum value of Prx∼µnb [(Γj(x) = 1 − β) ∧ (Γk(x) = 1 − β)], where the

maximum is taken over j < k such that |Vars(Γj) ∩Vars(Γk)| = r. Then we get

∆
(b)
Γ ≤

∑̀
r=1

tr · |{(j, k) | j < k and |Vars(Γj) ∩Vars(Γk)| = r}|

≤
∑̀
r=1

tr · ηr · f2
i (17)

Let us now bound tr, which we will do by using the construction parameters and the inductive
hypothesis. Fix any j < k. We have

Pr
x∼µnb

[(Γj(x) = 1−β)∧(Γk(x) = 1−β)] = Pr
x∼µnb

[Γj(x) = 1−β]· Pr
x∼µnb

[(Γk(x) = 1−β)|(Γj(x) = 1−β)].

(18)
As Γj is a formula of depth i− 1 and i− 1 ≡ (1− β) (mod 2), using the induction hypothesis,

we can upper bound the quantity Prx∼µnb [Γj(x) = 1− β]. We get

Pr
x∼µnb

[Γj(x) = 1− β] = p
(b)

Γj
≤ p(b)

i−1 · (1 + η · (C3m)i−1) = p
(b)
i−1(1 + o(1)). (19)

We now analyse the second term on the right hand side of Equation (18). From the construction
of the formula, we know that for any y ∈ Vars(Γj), the variable y appears in at most γ · fi−1 many
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depth-(i − 2) subformulas of Γk. Since |Vars(Γj) ∩ Vars(Γk)| = r, the number of depth-(i − 2)
subformulas T of Γk that contain some variable from Γj is at most γ · fi−1 · r which is at most
γ · fi−1 · `, as r ≤ `.

Let us construct a formula Φk from Γk by deleting all the depth-(i− 2) subformulas containing
some variable from Γj . Then we get

Pr
x∼µnb

[(Γk(x) = 1− β)|(Γj(x) = 1− β)] ≤ Pr
x∼µnb

[(Φk(x) = 1− β)|(Γj(x) = 1− β)]

= Pr
x∼µnb

[(Φk(x) = 1− β)] (20)

The first inequality follows from the fact that Φk was constructed by removing some subformulas
of depth-(i − 2) from Γk, and this can only increase the probability of taking value 1 − β. The
equality follows from the fact that Φk and Γj share no variables in common and hence the events
(Φk(x) = 1− β) and (Γj(x) = 1− β) are independent.

Let Γk,1,Γk,2, . . . ,Γk,fi−1 be the depth-(i − 2) subformulas of Γk. By ordering the variables if
necessary, let Γk,1,Γk,2, . . . ,Γk,fi−1−T be the depth-(i− 2) subformulas of Φk.

We will show below that

Pr
x∼µnb

[(Φk(x) = 1− β)] ≤ Pr
x∼µnb

[(Γk(x) = 1− β)] · (1 + o(1)). (21)

Suppose we have this then we will proceed as follows.

Pr
x∼µnb

[(Φk(x) = 1− β)] ≤ Pr
x∼µnb

[Γk(x) = 1− β] · (1 + o(1)) ≤ p(b)
i−1 · (1 + o(1)) (22)

Here the last inequality is obtained by using the induction hypothesis for Γk. Now using (19), (20),
and (22) in (18) we get

Pr
x∼µnb

[(Γj(x) = 1− β) ∧ (Γk(x) = 1− β)] ≤ (p
(b)
i−1(1 + o(1))) · (p(b)

i−1(1 + o(1)))

≤ (p
(b)
i−1)2(1 + o(1))

Since the above holds for all j < k such that |Vars(Γj) ∩ Vars(Γk)| = r, this gives us a bound on
tr. Using this in (17), we get

∆
(b)
Γ ≤

∑̀
r=1

(p
(b)
i−1)2 · (1 + o(1)) · ηr · f2

i

= (p
(b)
i−1)2 · f2

i · (1 + o(1)) ·
∑̀
r=1

ηr

≤ (50m)2 · 2η

Here the last inequality is by applying Observation 11 and by summing a geometric series. This

therefore proves the inductive bound on ∆
(b)
Γ assuming (21).
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In order to prove (21), we note that by using Janson’s inequality (Theorem 13) for Φk, we get
that

Pr
x∼µnb

[(Φk(x) = 1− β)] ≤
∏

u≤fi−1−T
(1− p(b)

Γk,u
) · exp(2∆Φk)

Also observe (Theorem 13) that Prx∼µnb [(Γk(x) = 1−β)] is lower bounded by
∏
u≤fi−1

(1−p(b)

Γk,u
).

Therefore, we get ∏
u≤fi−1−T

(1− p(b)

Γk,u
) ≤

Prx∼µnb [Γk(x) = 1− β]∏
u>fi−1−T (1− p(b)

Γk,u
)
.

Now, we have ∆
(b)

Φk
≤ ∆

(b)

Γk
by the definitions of these quantities and the fact that Φk is obtained

from Γk by removing some depth-(i− 2) subformulas. Also, by the induction hypothesis, we have

∆
(b)

Γk
≤ (C4m)2η. As η = 1/m10d, we get that ∆Φk = o(1). Hence, exp(2∆Φk) = exp(o(1)) ≤

(1 + o(1)). Putting these together, we obtain the following inequality.

Pr
x∼µnb

[(Φk(x) = 1− β)] ≤
Prx∼µnb [Γk(x) = 1− β]∏

u>fi−1−T (1− p(b)

Γk,u
)
· (1 + o(1)) (23)

Now using the induction hypothesis for p
(b)

Γk,u
, we get p

(b)

Γk,u
≤ (1 + o(1)) · p(b)

i−2 ≤ 2 · p(b)
i−1. Using

this bound on the value of p
(b)

Γk,u
, we get the following lower bound on

∏
u>fi−1−T (1− p(b)

Γk,u
).

∏
u>fi−1−T

(1− p(b)

Γk,u
) ≥ (1− 2p

(b)
i−2)T

≥ 1− 2 · T · p(b)
i−2

≥ 1− 2 · γ · fi−1 · ` · p(b)
i−2

≥ (1− o(1))

The third inequality comes from the upper bound on the value of T argued above. Using Obser-

vation 11 we get that fi−1 · p(b)
i−2 ≤ 50m. From our choice of parameters, γ = 1/m3 and ` ≤ m.

Therefore, we get γ · ` · fi−1p
(b)
i−2 ≤ (1/m3) ·m · 50m = o(1). This gives the last inequality above.

Putting it together, this gives is (21). This finishes the proof of part 2 in Lemma 19.
We now proceed to proving the inductive step for part 1 of Lemma 19. The proof is very

similar to the proof of the analogous statement in the base case. We give the details for the sake
of completeness. Using Janson’s inequality, we get

fi∏
j=1

(1− p(b)

Γj
) ≤ p(b)

Γ ≤
fi∏
j=1

(1− p(b)

Γj
) · exp(2 ·∆(b)

Γ ) (24)

Using (3) we get p
(b)
Γ ≥

∏fi
j=1(1 − p(b)

Γj
) ≥ exp(−

∑
j≤fi p

(b)

Γj
−
∑

j≤fi(p
(b)

Γj
)2). To lower bound

this quantity, we will first upper bound p
(b)

Γj
. By using the induction hypothesis, we get p

(b)

Γj
≤

p
(b)
i−1(1 + η · (C3m)i−1). Using this, we get

∑
j≤fi p

(b)

Γj
≤ fi · p(b)

i−1(1 + η · (C3m)i−1).

24



We will also show that
∑

j≤fi(p
(b)

Γj
)2 is negligible. For that observe the following:

∑
j≤fi

(p
(b)

Γj
)2 ≤ fi · (p(b)

i−1(1 + η · (C3m)i−1))2

≤ 4
(fi · p(b)

i−1)2

fi
≤ O(m2)

dm · 2m · ln 2e
≤ η · (C3m)i−1

Here the second inequality comes from the fact that (1 + η · (C3m)i−1)) ≤ 2. The other inequalities
easily follow from our choice of parameters and Observation 11.

p
(b)
Γ ≥ exp(−

∑
j≤fi

p
(b)

Γj
−
∑
j≤fi

(p
(b)

Γj
)2)

≥ exp(−fi · p(b)
i−1(1 + η · (C3m)i−1)− η · (C3m)i−1)

= exp(−fi · p(b)
i−1 − η · (C3m)i−1 · (fip(b)

i−1 + 1))

≥ (1− p(b)
i−1)fi(1− (η · (C3m)i−1(fip

(b)
i−1 + 1)) (25)

≥ p(b)
i (1− (η · (C3m)i−1(50m+ 1)) (26)

≥ p(b)
i (1− (η · (C3m)i−1C3m))

= p
(b)
i (1− (η · (C3m)i))

Here, the above inequalities can be obtained primarily by simple rearrangement of terms. The
inequality (25) uses (3), while inequality (26) uses the induction hypothesis and Observation 11.

This proves the desired lower bound on p
(b)
Γ . Now we prove the upper bound.

p
(b)
Γ ≤

∏
j≤fi

(1− p(b)

Γj
) exp(∆

(b)
Γ )

≤ exp(−
∑
j≤fi

p
(b)

Γj
+ 2∆

(b)
Γ )

≤ exp(−p(b)
i−1(1− η · (C3m)i−1) · fi + 2∆

(b)
Γ )

≤ exp(−p(b)
i−1fi) exp

(
p

(b)
i−1 · η · (C3m)i−1 · fi + 2∆

(b)
Γ

)
= exp(−p(b)

i−1)fi exp
(
p

(b)
i−1 · η · (C3m)i−1 · fi + 2∆

(b)
Γ

)
≤
(

(1− p(b)
i−1) · exp((p

(b)
i−1)2)

)fi
· exp

(
p

(b)
i−1 · η · (C3m)i−1 · fi + 2∆

(b)
Γ

)
(27)

= (1− p(b)
i−1)fi · exp

(
(p

(b)
i−1)2 · fi + p

(b)
i−1 · η · (C3m)i−1 · fi + 2∆

(b)
Γ

)
≤ p(b)

i · exp
(
η · (C3m)i−1 + 50m · η · (C3m)i−1 + 2η · (C3m)i−1

)
(28)

≤ p(b)
i · exp

(
η · (C3m)i−1 · (50m+ 3)

)
≤ p(b)

i · (1 + 2 · η · (C3m)i−1 · (50m+ 3)) (29)

≤ p(b)
i · (1 + η · (C3m)i)
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Most inequalities above are obtained by simple rearrangement of terms. Inequality (27) is obtained
by applying the inequality (b) from (3). Inequality (28) is obtained by applying (5), by using

Observation 11, and by using the fact that fi · (p(b)
i−1)2 ≤ η · (C3m)i−1. Finally, (29) is obtained by

using inequalities (d) and (e) of (3). This completes the proof of part 1 of Lemma 19.

7 Lower bounds for the Coin Problem

In this section, we prove Theorem 4. We start with a special case of the theorem (that we call
the monotone case) the proof of which is shorter and which suffices for the application to the
Fixed-Depth Size-Hierarchy theorem (Theorem 1). We then move on to the general case.

The special case is implicit in the results of O’Donnell and Wimmer [OW07] and Amano [Ama09],
but we prove it below for completeness.

7.1 The monotone case

In this section, we prove a near-optimal size lower bound (i.e. matching the upper bound con-
struction from Theorem 3) on the size of any AC0[⊕] formula computing any monotone Boolean
function solving the δ-coin problem. Observe that this already implies Theorem 1, since the formula
Fn from the statement of Theorem 1 computes a monotone function.

Let g : {0, 1}N → {0, 1} be any monotone Boolean function solving the δ-coin problem. Note
that the monotonicity of g implies that for all α ∈ [0, (1− δ)/2] and β ∈ [(1 + δ)/2, 1], we have

Pr
x∼DNα

[g(x) = 1] ≤ 0.1 and Pr
x∼DNβ

[g(x) = 1] ≥ 0.9. (30)

Let F be any AC0[⊕] formula of size s and depth d computing g. We will show that s ≥
exp(d · Ω(1/δ)1/(d−1)).

Our main tool is the following implication of the results of Razborov [Raz89], Smolensky [Smo93],
and Rossman and Srinivasan [RS17].

Theorem 20. Let F ′ be any AC0[⊕] formula of size s′ and depth d with n input bits that agrees with
the n-bit Majority function in at least a 0.75 fraction of its inputs. Then, s′ ≥ exp(d ·Ω(n)1/2(d−1)).

We will use the above theorem to lower bound s (the size of F ) by using F to construct a
formula F ′ of size at most s that agrees with the Majority function on n = Θ(1/δ2) bits at a 0.8
fraction of its inputs. Theorem 20 then implies the result.

We now describe the construction of F ′. Let n = b(1/100δ2)c. We start by defining a random
formula F ′′ on n inputs as follows. On input x = (x1, . . . , xn) ∈ {0, 1}n, define F ′′(x) to be
F (xi1 , . . . , xiN ) where i1, . . . , iN are chosen i.u.a.r. from [n].

We make the following easy observation. For any x ∈ {0, 1}n and for α = |x|/n,

Pr
F ′′

[F ′′(x) = 1] = Pr
y∼DNα

[F (y) = 1] = Pr
y∼DNα

[g(y) = 1]. (31)
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In particular, from (30), we see that if α ≤ (1− δ)/2 or α ≥ (1 + δ)/2, we have PrF ′′ [F
′′(x) 6=

Majn(x)] ≤ 0.1. As a result we get

Pr
x∼{0,1}n,F ′′

[F ′′(x) 6= Majn(x)] = E
x

[
Pr
F ′′

[F ′′(x) 6= Majn(x)]

]
≤ Pr

x
[|x|/n ∈ ((1− δ)/2, (1 + δ)/2)]

+ max
α 6∈[(1−δ)/2,(1+δ)/2)]

Pr
F ′′

[F ′′(x) 6= Majn(x) | |x| = αn]

≤ Pr
x

[|x|/n ∈ ((1− δ)/2, (1 + δ)/2)] + 0.1.

By Stirling’s approximation, it follows that for any i ∈ [n], Prx[|x| = i] ≤
(

n
bn/2c

)
/2n ≤ 1/

√
n.

Hence, by a union bound, we have Prx[|x|/n ∈ ((1− δ)/2, (1 + δ)/2)] ≤ (δn) · 1/
√
n ≤ δ

√
n ≤ 0.1.

Plugging this in above, we obtain

Pr
x∼{0,1}n,F ′′

[F ′′(x) 6= Majn(x)] ≤ 0.2.

By an averaging argument, there is a fixed choice of F ′′, which we denote by F ′, that agrees with
the Majority function Majn on a 0.8 fraction of all inputs. Note that F ′ = F (xi1 , . . . , xiN ) for some
choices of i1, . . . , iN ∈ [n]. Hence, F ′ is a circuit of depth d and size at most s.

Theorem 20 now implies the lower bound on s.

7.2 The general case

In this section, we prove a general lower bound on the size of any AC0[⊕] formula that solves the
coin problem (not necessarily by computing a monotone function). The main technical result is
the following theorem about polynomials that solve the coin problem.

Theorem 21. Let g ∈ F2[x1, . . . , xN ] solve the δ-coin problem. Then, deg(g) = Ω(1/δ).

Given the above result, it is easy to prove Theorem 4 in its general form.

Proof of Theorem 4. Assume that F is an AC0[⊕] formula F of size s and depth d on N inputs
that solves the δ-coin problem.

Building on Razborov [Raz89], Rossman and Srinivasan [RS17] show that for any such AC0[⊕]
formula F of size s and depth d and any probability distribution µ on {0, 1}N , there exists a
polynomial P ∈ F[x1, . . . , xN ] of degree O((log s)/d)d−1 such that

Pr
x∼µ

[P (x) 6= F (x)] ≤ 0.05.

Taking µ = (µN0 + µN1 )/2, we have for each b ∈ {0, 1}, the above polynomial P satisfies

Pr
x∼µNb

[P (x) 6= F (x)] ≤ 2 Pr
x∼µ

[P (x) 6= F (x)] ≤ 0.1. (32)

In particular, if F solves the δ-coin problem, then P solves the δ-coin problem with error at
most 0.2. By Fact 9 applied with t being a suitably large constant, it follows that there is a
polynomial Q ∈ F[x1, . . . , xN ] that solves the δ-coin problem (with error at most 0.1) and satisfies
deg(Q) ≤ t · deg(P ) = O(deg(P )). By Theorem 21, it follows that deg(Q) = Ω(1/δ) and hence we
have deg(P ) = Ω(1/δ) as well.

Since deg(P ) = O((log s)/d)(d−1), we get s ≥ exp(Ω(d · (1/δ)1/(d−1))).
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We now turn to the proof of Theorem 21.

7.2.1 Proof of Theorem 21

We define a probabilistic function to be a random function g : {0, 1}N → {0, 1}, chosen according
to some distribution. We say that deg(g) ≤ D if this distribution is supported over polynomials
(from F2[x1, . . . , xN ] ) of degree at most D. A probabilistic function solves the δ-coin problem with
error at most ε if it satisfies (1), where the probability is additionally taken over the randomness
used to sample g. If no mention is made of the error, we assume that it is 0.1. Note that a standard
(i.e. non-random) function is also a probabilistic function of the same degree.

We will prove the stronger statement that any probabilistic function g solving the δ-coin problem
must have degree Ω(1/δ). 13

Given a probabilistic function g : {0, 1}N → {0, 1}, we define the profile of g, denoted πg, to be
a function πg : [0, 1]→ [0, 1] where

πg(α) = Pr
g,

x∼DNα

[g(x) = 1].

Note that since g solves the δ-coin problem, we have

πg((1− δ)/2) ≤ 0.1 and πg((1 + δ)/2) ≥ 0.9. (33)

The proof of the lower bound on deg(g) proceeds in two phases. In the first phase, we use g to
obtain a probabilistic function h (of related degree) which satisfies a stronger criterion than (33):
namely that the profile of h is small in an interval close to (1− δ′)/2 and large in an interval close
to (1 + δ′)/2 (for some δ′ ≤ δ). In the second phase, we use algebraic arguments [Smo87] to lower
bound deg(h), which leads to a lower bound on deg(g).

Let r, t ∈ N and ζ ∈ (0, 1) denote absolute constants that we will fix later on in the proof.
We start the first phase of the proof as outlined above. We iteratively define a sequence of

probabilistic functions (gk)k≥0 where gk : {0, 1}Nk → {0, 1} solves the δk-coin problem where
Nk, δk are parameters that are defined below.

• The function g0 is simply the function g. Hence, N0 = N and we can take δ0 = δ.

• Having defined gk, we consider which of the following 3 cases occur.

– Case 1: There is an α ∈ ((1− δk)/2, (1− δk)/2 + δk/r] such that πgk(α) ≥ 0.4.

– Case 2: There is an β ∈ [(1 + δk)/2− δk/r, (1 + δk)/2) such that πgk(β) ≤ 0.6.

– Case 3: Neither Case 1 nor Case 2 occur. In this case, the sequence of probabilistic
functions ends with gk.

• If Case 1 or Case 2 occurs, we extend the sequence by defining gk+1. For simplicity, we
assume Case 1 occurs (Case 2 is handled similarly). Note that in this case we have

πgk((1− δ)/2) ≤ 0.1 and πgk(α) ≥ 0.4 (34)

13While formally stronger, this statement is more or less equivalent, since given such a probabilistic function g,
one can always extract a deterministic function of the same degree that solves the coin problem with error at most
0.21 by an averaging argument. Then using error reduction (Fact 9), we can obtain a deterministic function with a
slightly larger degree that solves the coin problem with error 0.1.
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for some α ∈ ((1− δk)/2, (1− δk)/2 + δk/r].

We will need the following technical claim.

Claim 22. Let δ′, δ′′ ∈ (0, 1) be such that δ′′ ≥ 4δ′. Assume we have α1, α2, β1, β2 ∈ (0, 1)
such that (1/4) ≤ α1 ≤ (1/2), α2 = α1 + δ′, β1 = (1 − δ′′)/2, β2 = (1 + δ′′)/2. Then, there
exist γ, η ∈ [0, 1] such that for each i ∈ [2], αi = γ · βi + (1− γ) · η.

Proof. We immediately get

(α2 − α1) = γ(β2 − β1) =⇒ γ =
α2 − α1

β2 − β1
=
δ′

δ′′
∈ (0, 1/4].

Then

η =
α1 − β1γ

1− γ
> α1 − β1γ ≥

1− β1

4
> 0.

Further

η =
α1 − β1γ

1− γ
≤ 4α1

3
≤ 2

3
.

So η ∈ (0, 2/3].

Applying the above claim to α1 = (1 − δk)/2, α2 = α, δ′ = α2 − α1 and δ′′ = 4δk/r, we see
that there exist γ, η ∈ [0, 1] such that

(1− δk)/2 = γ · (1− δ′′)/2 + (1− γ) · η and α = γ · (1 + δ′′)/2 + (1− γ) · η (35)

To define the function gk+1, we start with an intermediate probabilistic function hk on Nk

inputs. On any input x ∈ {0, 1}Nk , the function hk is defined as follows.

hk(x):

– Sample a random b from the distribution DNk
γ and y from the distribution DNk

η .

– Define z ∈ {0, 1}Nk by zi = bi · xi + (1− bi) · yi.
– hk(x) is defined to be gk(z).

Note that as each zi is a (random) degree-1 polynomial in x, the probabilistic function hk(x)
satisfies deg(hk) ≤ deg(gk).

Also, note that when x is sampled from the DNk
(1−δ′′)/2 or DNk

(1+δ′′)/2, then by (35), z has the

distribution DNk
(1−δk)/2 or DNk

α respectively. Hence, we get

πhk((1− δ′′)/2) = πgk((1− δk)/2) ≤ 0.1 and πhk((1 + δ′′)/2) = πgk(α) ≥ 0.4.

We are now ready to define gk+1. Let Thrtt/4 : {0, 1}t → {0, 1} be the Boolean function
that accepts inputs of Hamming weight at least t/4. We set Nk+1 = Nk · t and define
gk+1 : {0, 1}Nk+1 → {0, 1} by

gk+1(x) = Thrtt/4(h
(1)
k (x(1)), . . . ,h

(t)
k (x(t)))
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where h
(1)
k , . . . ,h

(t)
k are independent copies of the probabilistic function hk and x(i) ∈ {0, 1}Nk

is defined by x
(i)
j = x(i−1)Nk+j for each j ∈ [Nk]. Clearly, deg(gk+1) ≤ deg(Thrtt/4) ·deg(hk) ≤

deg(gk) · t.

Note that if x is chosen according to the distribution D
Nk+1

(1−δ′′)/2, each h
(i)
k (x(i)) is a Boolean

random variable that is 1 with probability at most 0.1. Similarly, if x is chosen according

to the distribution D
Nk+1

(1+δ′′)/2, each h
(i)
k (x(i)) is a Boolean random variable that is 1 with

probability at least 0.4. By a standard Chernoff bound (see e.g. [DP09, Theorem 1.1]), we
see that for a large enough absolute constant t,

πgk+1
((1− δ′′)/2) = exp(−Ω(t)) ≤ 0.1 and πgk+1

((1 + δ′′)/2) = 1− exp(−Ω(t)) ≥ 0.9. (36)

We now fix the value of t so that the above inequalities hold. Note that we have shown the
following.

Observation 23. gk+1 : {0, 1}Nk+1 → {0, 1} is a probabilistic function that solves the δk-coin
problem where Nk+1 = Nk · t,deg(gk+1) ≤ deg(gk) · t and δk+1 ≤ 4δk/r.

We now argue that, for r = 10t, the above process cannot produce an infinite sequence of
probabilistic functions. In other words, there is a fixed k such that gk is in neither Case 1 nor Case
2 mentioned above.

Assume to the contrary that the above process produces an infinite sequence of probabilistic
functions. By Observation 23 and induction, we see that gk is a probabilistic function on at most
N · tk variables solving the δk-coin problem for δk ≤ δ · (4/r)k. We now appeal to the following
standard fact.

Fact 24 (Folklore). Let δ′ ∈ (0, 1) and N ′ ∈ N be arbitrary. Then, the statistical distance between
DN ′

(1−δ′)/2 and DN ′

(1+δ′)/2 is at most O(
√
N ′ · δ′).

Thus, for gk to able to solve the δk-coin problem with Nk samples, we must have
√
Nk · δk ≥ α0

for some absolute positive constant α0. On the other hand, this cannot be true for large enough k,
since

√
Nkδk ≤ Nkδk ≤ Nδ · (4t/r)k and r ≥ 10t. This yields a contradiction.

Thus, we have shown that for large enough k, the function gk is in neither Case 1 nor Case 2.
Equivalently, for any α ∈ [1/2− δk, 1/2− δk + δk/r] and any β ∈ [1/2 + δk− δk/r, 1/2 + δk], we have

πgk(α) ≤ 0.4 and πgk(β) ≥ 0.6.

Using error reduction as above, we can obtain a probabilistic function that satisfies the above
inequalities with parameters ζ := exp(−10r2) and 1 − ζ respectively. Set ` = 10dlog(1/ζ)e and
define h : {0, 1}Nk·` → {0, 1} by

h(x) = Maj`(g
(1)
k (x(1)), . . . , g

(t)
k (x(t)))

where g
(1)
k , . . . , g

(t)
k are independent copies of the probabilistic function gk and x(i) ∈ {0, 1}Nk is

defined by x
(i)
j = x(i−1)Nk+j for each j ∈ [Nk].

Clearly, deg(h) ≤ `·deg(gk) = O(deg(gk)) as ` is an absolute constant. Further, by the Chernoff
bound, h satisfies
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πh(α) ≤ ζ and πh(β) ≥ 1− ζ. (37)

This concludes the first phase of the proof. In the second phase, we will show the following
lower bound on deg(h).

Claim 25. deg(h) ≥ Ω(1/δk).

Note that this immediately implies the result since we have

deg(g) = deg(g0) ≥ deg(gk)

tk
= Ω

(
deg(h)

tk

)
= Ω

(
1

δktk

)
≥ Ω

(
1

δ · (4t/r)k

)
≥ Ω(1/δ)

where we have used Observation 23 and the fact that r ≥ 10t.
It therefore suffices to prove Claim 25. We prove this in two steps.
We start with an extension of a lower bound of Smolensky [Smo87] (see also the earlier results of

Razborov [Raz89] and Szegedy [Sze89]) on the degrees of polynomials approximating the Majority
function.14 Our method is a slightly different phrasing of this bound following the results of Aspnes,
Beigel, Furst and Rudich [ABFR94], Green [Gre00] and Kopparty and Srinivasan [KS12].15

Lemma 26 (A slight extension of Smolensky’s bound). Let h : {0, 1}n → {0, 1} be a (deterministic)
function satisfying the following. There exist integers D < R < n/2 such that ERh defined by

ERh = {x ∈ {0, 1}n | h(x) 6= Majn(x), |x| 6∈ (R,n−R)} (38)

satisfies |ERh | <
(

n
≤(R−D)

)
.16 Then, deg(h) > D.

Proof. Consider the vector space VR−D of all multilinear polynomials of degree ≤ (R − D). A
generic polynomial g ∈ VR−D is given by

g(x1, . . . , xn) =
∑

|S|≤R−D

aS ·
∏
i∈S

xi

where aS ∈ F2 for each S. We claim that there is a non-zero g as above that vanishes at all points in
ERh . To see this, note that finding such a g is equivalent to finding a non-zero assignment to the aS
so that the resulting g vanishes at ERh . Vanishing at any point of {0, 1}n gives a linear constraint
on the coefficients aS . Since we have |ERh | <

(
n

≤(R−D)

)
, we have a homogeneous linear system

with more variables than constraints and hence, there exists a non-zero multilinear polynomial g
of degree ≤ (R−D) which vanishes on ERh . Thus, there is a non-zero g as claimed.

Let B1 = {x ∈ {0, 1}n | |x| ≤ R} and B2 = {x ∈ {0, 1}n | |x| ≥ n − R}. Note that B1 and
B2 are both Hamming balls of radius R. Let f be the pointwise product of the functions g and h.
Note that f can be represented as a multilinear polynomial of degree at most deg(g) + deg(h) (by
replacing x2

i by xi as necessary in the polynomial g · h).
We will need the following standard fact (see e.g. [KS12] for a proof).

14In [Smo87], Smolensky proves a lower bound for MODp functions. However, the same idea also can be used to
prove lower bounds for the Majority function, as observed by Szegedy [Sze89].

15It can be viewed as a ‘dual’ version of Smolensky’s proof. Smolensky’s standard proof can also be modified to
yield this.

16Recall that
(
n
≤i

)
denotes

∑i
j=0

(
n
j

)
.
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Fact 27. Let P be a non-zero multilinear polynomial of degree ≤ d in n variables. Then P cannot
vanish on a Hamming ball of radius d.

OnB1, g vanishes wherever h does not (by definition of ERh ) and therefore f vanishes everywhere.
On B2, h is non-vanishing wherever g is non-vanishing. But since B2 is a Hamming ball of

radius R > R − D ≥ deg(g), Fact 27 implies that g(x0) 6= 0 for some point x0 in B2. Therefore
h(x0) 6= 0 and so f(x0) 6= 0. In particular, f is a non-zero multilinear polynomial of degree at most
deg(g) + deg(h).

Since f is non-zero and vanishes on B1 which is a Hamming ball of radius R, Fact 27 implies
that deg(f) > R. Therefore (R−D) + deg(h) ≥ deg(g) + deg(h) ≥ deg(f) > R⇒ deg(h) > D.

We now prove Claim 25.

Proof of Claim 25. The idea is to use h to produce a deterministic function h of the same degree
to which Lemma 26 is applicable. Let M denote Nk · `, the sample complexity (i.e. number of
inputs) of h.

Let n = dr2/δ2
ke. Define a probabilistic function h̃ : {0, 1}n → {0, 1} as follows. On any input

x ∈ {0, 1}n, we choose i1, . . . , iM ∈ [n] i.u.a.r. and set

h̃(x) = h(xi1 , . . . , xiM ).

Clearly, we have deg(h̃) ≤ deg(h). Also note that for any x ∈ {0, 1}n, we have

Pr
h̃

[h̃(x) = 1] = πh(|x|/n)

since in this case (xi1 , . . . , xiM ) is drawn from the distribution DM
|x|/n. By (37), we have for any x

such that |x|/n ∈ [1/2− δk, 1/2− δk + δk/r] ∪ [1/2 + δk − δk/r, 1/2 + δk],

Pr
h̃

[h̃(x) 6= Majn(x)] ≤ ζ.

In particular, for x chosen uniformly at random from {0, 1}n, we have

Pr
x,h̃

[h̃(x) 6= Majn(x) | |x|/n ∈ [1/2− δk + δk/r, 1/2− δk] ∪ [1/2 + δk − δk/r, 1/2 + δk]] ≤ ζ.

We will apply Lemma 26 below with n unchanged, R = b(1/2 − δk + δk/r) · nc, and D =
bδkn/(2r)c. For these parameters, we have

E
h̃

[
|ER

h̃
|

2
(
n
≤R
)] = E

h̃

[
Pr
x

[h̃(x) 6= Majn(x) | |x| 6∈ (R,n−R)]
]

= Pr
x,h̃

[h̃(x) 6= Majn(x) | |x| 6∈ (R,n−R)]

≤ Pr
x,h̃

[h̃(x) 6= Majn(x) | |x|/n ∈ [1/2− δk, 1/2− δk + δk/r] ∪ [1/2 + δk − δk/r, 1/2 + δk]]

+ Pr
x,h̃

[|x|/n 6∈ [1/2− δk, 1/2 + δk] | |x| 6∈ (R,n−R)]

≤ ζ + Pr
x

[|x|/n 6∈ [1/2− δk, 1/2 + δk] | |x| 6∈ (R,n−R)] ≤ ζ +
2
(
n
≤R′
)

2
(
n
≤R
)
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where R′ = b(1/2− δk)nc. Hence, we have

E
h̃

[
|ER

h̃
|
]
≤ 2ζ

(
n

≤ R

)
+ 2

(
n

≤ R′

)
.

By averaging, we can fix a deterministic h : {0, 1}n → {0, 1} so that deg(h) ≤ deg(h̃) and we
have the same bound for |ERh |. By a computation, we show below that the above bound is strictly
smaller than

(
n

≤R−D
)
. Lemma 26 then implies that deg(h) ≥ D = Ω(1/δk), completing the proof of

Claim 25.
It remains to prove only that

2ζ

(
n

≤ R

)
+ 2

(
n

≤ R′

)
≤
(

n

≤ R−D

)
. (39)

Recall that ζ = e−10r2 , where r = 10t and t ≥ 1.

Now let Vn(α) = 1
2n

(
n

≤n/2−α
√
n

)
and Φ(x) =

∫∞
x

e−t
2/2
√

2π
dt. Then by the Central Limit Theorem

(see, e.g., [Fel71, Chapter VIII, vol II]), for any fixed α, we have

lim
n→∞

(Vn(α)− Φ(2α)) = 0. (40)

Also, we have the estimates [Fel71, Lemma 2, Chapter VII, vol I]

1√
2π
·
(

1

x
− 1

x3

)
e−x

2/2 ≤ Φ(x) ≤ 1√
2π
· 1

x
e−x

2/2, x > 0. (41)

Note that we have δkn ≥ δk · (r/δk) ·
√
n = r

√
n. So we get

1

2n
· 2ζ
(

n

≤ R

)
+

1

2n

(
n

≤ R′

)
≤ 1

2n
· 2ζ
(

n

≤ n/2− (1− 1/r)δkn

)
+

1

2n
· 2
(

n

≤ n/2− δkn

)
≤ 1

2n
· 2ζ
(

n

≤ n/2− (1− 1/r)r
√
n

)
+

1

2n
· 2
(

n

≤ n/2− r
√
n

)
= 2ζ · Vn(r − 1) + Vn(r)

≤ 2ζ + Vn(r)

≤ 2e−10r2 +
1√
2πr
· e−r2/2 + o(1) (42)

where the second-last inequality uses the fact Vn(α) ≤ 1 for any α, and the final inequality follows
from the definition of ζ and (40) and (41) above. Note that the o(1) above goes to 0 as n → ∞
(which happens as δ → 0).

33



Further, we have δkn ≤ δk · ((r/δk) + 1) ·
√
n = (r + o(1))

√
n, which yields

1

2n

(
n

≤ R−D

)
=

1

2n

(
n

≤ bn/2− (1− 1/r)δknc − b(1/2r)δknc

)
≥ 1

2n

(
n

≤ n/2− (1− 1/2r)δkn− 1

)
=

1

2n

(
n

≤ n/2− (1− 1/2r + o(1)) · δkn

)
≥ 1

2n

(
n

≤ n/2− (1− 1/2r + o(1)) · (r + o(1))
√
n

)
=

1

2n

(
n

≤ (n/2)− (r − (1/2) + o(1)) ·
√
n

)
≥ Vn(r − (1/4)) (for large enough n)

≥ 1√
2π
e−(r−(1/4))2/2 ·

(
1

r − (1/4)
− 1

(r − 1/4)3

)
− o(1)

≥ 1√
2π
e−(r2/2)+2 · 1

2r
− o(1) (43)

where the second-last inequality uses (40) and (41) and the final inequality uses the fact that
r ≥ 10t ≥ 10. From (42) and (43), the inequality follows for all large n.

8 Open Problems

We close with some open problems.

• We get almost optimal upper and lower bounds on the complexity of the δ-coin problem.
In particular, as mentioned in Theorem 3 and Theorem 4, the upper and lower bounds on
the size of AC0[⊕] formulas computing the δ-coin problem are exp(O(d(1/δ)1/(d−1))) and
exp(Ω(d(1/δ)1/(d−1))), respectively. It may be possible to get even tighter bounds by exactly
matching the constants in the exponents in these bounds. The strongest result in this direction
would be to give explicit separations between AC0[⊕] formulas of size s and size s1+ε for any
fixed ε > 0 (for s = nO(1), for example).

For circuits, we have a non-explicit upper bound of exp(O((1/δ)1/(d−1))) due to Rossman and
Srinivasan [RS17]. It would be interesting to achieve this upper bound with an explicit family
of circuits.

• In Theorem 3 we get a (1/δ)2O(d)
upper bound on the sample complexity of the δ-coin problem.

We believe that this can be improved to O((1/δ)2). (We get this for depth-2 formulas, but
not for larger depths.)

• Finally, can we match the AC0 size-hierarchy theorem of Rossman [Ros08b] by separating
AC0[⊕] circuits of size s and some fixed depth (say 2) and AC0[⊕] circuits of size sε (for some
absolute constant ε > 0) and any constant depth?
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A Omitted Proofs from Section 3.3

Theorem 10. Assume d ≥ 3 and Fd is defined as in section 3.3. Then, for small enough δ, we
have the following.

1. For b, β ∈ {0, 1} and each i ∈ [d− 1] such that i ≡ β (mod 2), we have

p
(b)
i = Pr

x∼µNib
[Fi(x) = β].

In particular, for any i ∈ {2, . . . , d− 2} and any b ∈ {0, 1}

p
(b)
i = (1− p(b)

i−1)fi . (44)

2. For β ∈ {0, 1} and i ∈ [d− 2] such that i ≡ β (mod 2), we have

1

2m
(1 + δi exp(−3δi)) ≤ p(β)

i ≤ 1

2m
(1 + δi exp(3δi))

1

2m
(1− δi exp(3δi)) ≤ p(1−β)

i ≤ 1

2m
(1− δi exp(−3δi))

3. Say d− 1 ≡ β (mod 2). Then

p
(β)
d−1 ≥ exp(−C1m+ C2) and p

(1−β)
d−1 ≤ exp(−C1m− C2)

where C2 = C1/10.

4. For each b ∈ {0, 1}, Prx∼µNb
[Fd(x) = 1−b] ≤ 0.05. In particular, Fd solves the δ-coin problem.
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Proof. Proof of (1) (for i ∈ [d − 2]) and (2): We show these by induction on i. We start with
the base case i = 1. Each formula at level 1 computes an AND of N1 = f1 = m many variables.
Hence we have:

Pr
D
N1
0

[F1(x) = 1] =

(
1− δ

2

)f1
=

(
1− δ

2

)m
≤ 1

2m
≤ 0.5

Pr
D
N1
1

[F1(x) = 1] =

(
1 + δ

2

)f1
=

(
1 + δ

2

)m
≤ 0.5 (for small enough δ)

This implies p
(b)
1 = Pr

D
N1
(b)

[F (x) = 1]. For part (2):

p
(1)
1 = Pr

Dm1
[F1(x) = 1] =

(
1 + δ

2

)m
=

1

2m
(1 + δ)m ≤ 1

2m
exp(δm) By Fact 8 (c) and δm = o(1)

≤ 1

2m
(1 + δm+ δ2m2) By Fact 8 (d)

=
1

2m
(1 + δm(1 + δm))

≤ 1

2m
(1 + δm exp(δm)) By Fact 8 (c)

=
1

2m
(1 + δ1 exp(δ1))

≤ 1

2m
(1 + δ1 exp(3δ1))

p
(1)
1 =

1

2m
(1 + δ)m ≥ 1

2m
exp(m(δ − δ2)) By Fact 8 (b) with x = δ

≥ 1

2m
(1 + (m(δ − δ2))) By Fact 8 (c)

=
1

2m
(1 + (mδ(1− δ))) ≥ 1

2m
(1 + (mδ exp(−2δ))) By Fact 8 (a),(b)

≥ 1

2m
(1 + (δ1 exp(−3δ1)))
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Similarly, we bound p
(0)
1 :

p
(0)
1 =

1

2m
(1− δ)m ≤ 1

2m
exp(−mδ) By Fact 8 (c)

≤ 1

2m
(1−mδ(1−mδ)) By Fact 8 (d)

≤ 1

2m
(1−mδ exp(−3mδ)) By Fact 8 (a),(b)

=
1

2m
(1− δ1 exp(−3δ1))

p
(0)
1 =

1

2m
(1− δ)m

≥ 1

2m
exp(m(−δ − δ2)) By Fact 8 (b)

≥ 1

2m
(1−mδ(1 + δ)) By Fact 8 (c)

≥ 1

2m
(1−mδ(1 + 3mδ))

≥ 1

2m
(1− δ1 exp(3δ1)) By Fact 8 (c)

We now show the inductive step of parts (1) and (2) for p
(b)
i+1. Since the circuit consists of alternating

layers of OR gates and AND gates, we obtain ∀i ∈ [d− 2]:

Pr
D
Ni
b

[Fi(x) = β] =

(
1− Pr

D
Ni−1
b

[Fi−1(x) = (1− β)]

)fi
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Without loss of generality, assume i ≡ 0 (mod 2). Then we have:

Pr
x∼µ

Ni+1
0

[Fi+1(x) = 1] =

(
1− Pr

x∼µNi0

[Fi(x) = 0]

)fi+1

=
(

1− p(0)
i

)fi+1

From induction part (1)

≤ exp(−p(0)
i · fi+1) By Fact 8 (c)

= exp(−p(0)
i d2

mm ln 2e)

≤ exp(−p(0)
i (2mm ln 2))

= exp

(
−
(

1

2m
(1 + δi exp(−3δi))

)
2mm ln 2

)
From induction part(2)

≤ exp (−(m ln 2)(1 + δi exp(−3δi)))

≤ exp(−m ln 2) =
1

2m
≤ 0.5

Similarly, Pr
x∼µ

Ni+1
1

[Fi+1(x) = 1] = (1− p(1)
i )fi+1

≤ exp(−p(1)
i · fi+1) = exp(−p(1)

i d2
mm ln 2e) By Fact 8 (c)

≤ exp

(
−
(

1

2m
(1− δi exp(3δi))

)
(2mm ln 2)

)
≤ exp((−m ln 2)(1− δi(1 + 3δi + 9δ2

i ))) By Fact 8 (d)

= 2−m(1−δi(1+3δi+9δ2i )) ≤ 0.5 Since δi = o(1)
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This completes the induction step for part (1). Now we show the bounds for part (2):

p
(1)
i+1 = (1− p(1)

i )d2
mm ln 2e ≤ (1− p(1)

i )m2m ln 2

≤
(

1− 1

2m
(1− δi exp(3δi))

)m2m ln 2

From induction hypothesis

≤ exp

(
− 1

2m
(1− δi exp(3δi))m2m ln 2

)
By Fact 8 (c)

= exp ((−m ln 2)(1− δi exp(3δi)))

= exp (−m ln 2 + δi exp(3δi)m ln 2)

=
1

2m
exp(δi exp(3δi)m ln 2)

=
1

2m
exp(δi+1 exp(3δi))

≤ 1

2m
(1 + δi+1 exp(3δi)(1 + δi+1 exp(3δi))) By Fact 8 (d)

≤ 1

2m
(1 + δi+1 exp(3δi)(1 + 2δi+1)) Since δi = o(1)

≤ 1

2m
(1 + δi+1 exp(3δi + δi+1)) By Fact 8 (c)

≤ 1

2m
(1 + δi+1 exp(3δi+1))

p
(1)
i+1 = (1− p(1)

i )d2
mm ln 2e

≥ (1− p(1)
i )2mm ln 2+1

≥
(

1− 1

2m
(1− δi exp(−3δi))

)m2m ln 2+1

From induction

≥ exp

((
−1

2m
(1− δi exp(−3δi))−

1

22m
(1− δi exp(−3δi))

2

)
(m2m ln 2 + 1))

)
By Fact 8 (b)

≥ exp

((
−1

2m
(1− δi exp(−3δi))−

1

22m

)
(m2m ln 2 + 1)

)
≥ 1

2m
exp

(
δi exp(−3δi)m ln 2− m

2m

)
=

1

2m
exp

(
δi+1 exp(−3δi)−

m

2m

)
≥ 1

2m
exp

(
δi+1 exp(−3δi)− δ2

i+1

)
Using δi+1 ≥

1

m

≥ 1

2m
exp

(
δi+1(1− 3δi)− δ2

i+1

)
By Fact 8 (c)

≥ 1

2m
exp (δi+1(1− 2δi+1))

≥ 1

2m
exp (δi+1 exp(−3δi+1)) By Fact 8 (a)(b)

≥ 1

2m
(1 + δi+1 exp(−3δi+1)) By Fact 8 (c)
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The case of p
(0)
i+1 is similar and hence omitted.

Proof of (3): Assume, without loss of generality, d−1 ≡ 1 (mod 2). Let i = d−1. Then we have:

δi−1 = δd−2 = δm(m(ln 2))d−3

= δmd−2(ln 2)d−3

=⇒ δi−1m = δmd−1(ln 2)d−3

= δ

(⌈(
1

δ

)1/(d−1) 1

ln 2

⌉)d−1

(ln 2)d−3

=
1

ln 2d−1
(ln 2)d−3ε for some ε ∈ [1, 2]

=
1

(ln 2)2
ε

With the above estimate for δi−1m, we show the required bounds as follows. It follows exactly
as in the proof of Part (1) for i ∈ [d− 2] that

p
(b)
i = Pr

x∈µNib
[Fi(x) = 1].

43



Hence, we have

p
(1)
i = (1− p(1)

i−1)fd−1

= (1− p(1)
i−1)C1·m2m

≥
(

1− 1

2m
(1− δi−1 exp(−3δi−1))

)C1m2m

From part (2)

≥ exp

((
−1

2m
(1− δi−1 exp(−3δi−1))

)(
1 +

1

2m
(1− δi−1 exp(−3δi−1))

)
C1m2m

)
By Fact 8 (b)

≥ exp

(
−1

2m

(
1− δi−1 exp(−3δi−1) +

1

2m

)
C1m2m

)
= exp(−C1m) exp

(
C1

(
δi−1m exp(−3δi−1)− m

2m

))
≥ exp(−C1m) exp

(
C1

4(ln 2)2

)
δi−1m ≥

1

(ln 2)2

≥ exp(−C1m) exp (C2) C2 = C1/10

The upper bound for p
(0)
i is as follows:

p
(0)
i = (1− p(0)

i−1)C1m2m

≤
(

1− 1

2m
(1 + δi−1 exp(−3δi−1))

)C1m2m

From part (2)

≤ exp

(
−1

2m
(1 + δi−1 exp(−3δi−1))C1m2m

)
From Fact 8 (c)

≤ exp(−C1m) exp(−C1δi−1m exp(−3δi−1))

≤ exp(−C1m) exp(−C1/4(ln 2)2)

≤ exp(−C1m) exp(−C2)

Proof of (4): Without loss of generality, assume d ≡ 0 (mod 2). Then, the output gate of the
circuit is an OR gate. Thus:

Pr
µ
Nd
1

[Fd(x) = 0] = (1− p(1)
d−1)fd

≤ exp(−p1
d−1 · fd) From Fact 8 (c)

≤ exp(− exp(−C1m+ C2) · exp(C1m)) From part (3)

= exp(− exp(C2))

=
1

ee5
≤ 0.05

Similarly, Pr
D0

[Fd(x) = 1] ≤ fd · Pr
Dn

[Fd−1(x) = 1] by union bound

≤ 2 exp(C1m) exp(−C1m · C2)

≤ 2 exp(−C2) =
2

e5

≤ 0.05
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B Omitted Proofs from Section 3.4

Theorem 13 (Janson’s inequality). Let C1, . . . , CM be any monotone Boolean circuits over inputs
x1, . . . , xN , and let C denote

∨
i∈[M ]Ci. For each distinct i, j ∈ [M ], we use i ∼ j to denote the

fact that Vars(Ci) ∩ Vars(Cj) 6= ∅. Assume each xj (j ∈ [n]) is chosen independently to be 1 with
probability pi ∈ [0, 1], and that under this distribution, we have maxi∈[M ] Prx[Ci(x) = 1] ≤ 1/2.
Then, we have

∏
i∈[M ]

Pr
x

[Ci(x) = 0] ≤ Pr
x

[C(x) = 0] ≤

 ∏
i∈[M ]

Pr
x

[Ci(x) = 0]

 · exp(2∆) (45)

where ∆ :=
∑

i<j:i∼j Prx[(Ci(x) = 1) ∧ (Cj(x) = 1)].

We will use the following inequality in the proof of the above theorem.

Lemma 28 (Kleitman’s inequality). Let F,G : {0, 1}n → {0, 1} be two monotonically increasing
Boolean functions or monotonically decreasing Boolean functions. Then,

Pr
x

[F (x) = 1|G(x) = 0]≤
(i)

Pr
x

[F (x) = 1] ≤
(ii)

Pr
x

[F (x) = 1|G(x) = 1]

Proof of Theorem 13. As C(x) is an OR over Ci(x) for i ∈ [M ], Prx[C(x) = 0] = Prx[∀i ∈ [M ], (Ci(x) =
0)]. The lower bound on Prx[C(x) = 0] follows easily from Kleitman’s inequality (Lemma 28) and
induction on M .

Now we prove the upper bound on Prx[C(x) = 0]. In order to prove the intended upper bound,
we use the following intermediate lemma.

Lemma 29. For all i ∈ [M ],

Pr
x

[(Ci(x) = 1) | ∀j < i, (Cj(x) = 0)] ≥ Pr
x

[Ci(x) = 1]−
∑

j:j<i,j∼i
Pr
x

[(Ci(x) = 1) AND (Cj(x) = 1)]
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Assuming the above lemma, we will complete the proof of Theorem 13.

Pr
x

[C(x) = 0] = Pr
x

[∀i ∈ [M ], (Ci(x) = 0)]

=
∏
i∈[M ]

Pr
x

[(Ci(x) = 0) | ∀j < i, (Cj(x) = 0)]

=
∏
i∈[M ]

(1− Pr
x

[(Ci(x) = 1) | ∀j < i, (Cj(x) = 0)])

≤
∏
i∈[M ]

(1− Pr
x

[Ci(x) = 1]−
∑

j:j<i,j∼i
Pr
x

[(Ci(x) = 1) AND (Cj(x) = 1)]) (46)

=
∏
i∈[M ]

(Pr
x

[Ci(x) = 0]−
∑

j:j<i,j∼i
Pr
x

[(Ci(x) = 1) AND (Cj(x) = 1)])

=
∏
i∈[M ]

Pr
x

[Ci(x) = 0] · (1 +
1

Prx[(Ci(x) = 0)]

∑
j:j<i,j∼i

Pr
x

[(Ci(x) = 1) AND (Cj(x) = 1)]


≤
∏
i∈[M ]

Pr
x

[Ci(x) = 0] · (1 + 2
∑

j:j<i,j∼i
Pr
x

[(Ci(x) = 1) AND (Cj(x) = 1)]

 (47)

≤
∏
i∈[M ]

Pr
x

[Ci(x) = 0] · exp(2
∑

j:j<i,j∼i
Pr
x

[(Ci(x) = 1) AND (Cj(x) = 1)])

 (48)

=

 ∏
i∈[M ]

Pr
x

[Ci(x) = 0]

 · exp(2∆)

Inequality (46) follows from Lemma 29. Inequality (47) follows from the fact that Prx[(Ci(x) =
0)] ≤ 1/2 for each i ∈ [M ]. Finally, (48) follows from (3). Therefore, assuming Lemma 29, we are
done. We now prove this lemma.

Proof of Lemma 29. By reordindering the indices if required, assume that d is an index such that
d < i and for 1 ≤ j ≤ d, i ∼ j and for d < j < i, i 6∼ j. Let E be the event that [∀j ≤ d, (Cj(x) = 0)]
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and F be the event that [∀d < j < i, (Cj(x) = 0)].

Pr
x

[(Ci(x) = 1) | ∀j < i, (Cj(x) = 0)]

= Pr
x

[(Ci(x) = 1) | E AND F ]

≥ Pr
x

[(Ci(x) = 1) AND E | F ] (Bayes’ Rule)

= Pr
x

[(Ci(x) = 1) | F ]− Pr
x

[(Ci(x) = 1) AND E | F ]

= Pr
x

[(Ci(x) = 1)]− Pr
x

[(Ci(x) = 1) AND ∃j ≤ d, (Cj(x) = 1) | F ] (Ci(x) and F are independent)

= Pr
x

[(Ci(x) = 1)]− Pr
x

[∃j ≤ d, [(Ci(x) = 1) AND (Cj(x) = 1)] | F ]

≥ Pr
x

[(Ci(x) = 1)]−
∑
j≤d

Pr
x

[[(Ci(x) = 1) AND (Cj(x) = 1)] | F ] (Union bound)

≥ Pr
x

[(Ci(x) = 1)]−
∑
j≤d

Pr
x

[[(Ci(x) = 1) AND (Cj(x) = 1)]] (Kleitman’s inequality)
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