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Abstract

This work continues the development of hardness magnification. The latter proposes a
strategy for showing strong complexity lower bounds by reducing them to a refined analysis of
weaker models, where combinatorial techniques might be successful.

We consider gap versions of the meta-computational problems MKtP and MCSP, where one
needs to distinguish instances (strings or truth-tables) of complexity ≤ s1(N) from instances of
complexity ≥ s2(N), and N = 2n denotes the input length. In MCSP, complexity is measured
by circuit size, while in MKtP one considers Levin’s notion of time-bounded Kolmogorov com-
plexity. (In our results, the parameters s1(N) and s2(N) are asymptotically quite close, and the
problems almost coincide with their standard formulations without a gap.) We establish that
for Gap-MKtP[s1, s2] and Gap-MCSP[s1, s2], a marginal improvement over the state-of-the-art
in unconditional lower bounds in a variety of computational models would imply explicit super-
polynomial lower bounds.

Theorem. There exists a universal constant c ≥ 1 for which the following hold. If there exists
ε > 0 such that for every small enough β > 0

(1) Gap-MCSP[2βn/cn, 2βn] /∈ Circuit[N1+ε], then NP * Circuit[poly].

(2) Gap-MKtP[2βn, 2βn + cn] /∈ TC0[N1+ε], then EXP * TC0[poly].

(3) Gap-MKtP[2βn, 2βn + cn] /∈ B2-Formula[N2+ε], then EXP * Formula[poly].

(4) Gap-MKtP[2βn, 2βn + cn] /∈ U2-Formula[N3+ε], then EXP * Formula[poly].

(5) Gap-MKtP[2βn, 2βn + cn] /∈ BP[N2+ε], then EXP * BP[poly].

(6) Gap-MKtP[2βn, 2βn + cn] /∈ (AC0[6])[N1+ε], then EXP * AC0[6].

These results are complemented by lower bounds for Gap-MCSP and Gap-MKtP against different
models. For instance, the lower bound assumed in (1) holds for U2-formulas of near-quadratic
size, and lower bounds similar to (3)-(5) hold for various regimes of parameters.

Going beyond the standard boolean devices, we identify a natural computational model under
which the hardness magnification threshold for Gap-MKtP lies below existing lower bounds:
U2-formulas that can compute parity functions at the leaves (instead of just literals). As a
consequence, if one managed to adapt the existing lower bound techniques against such formulas
to work with Gap-MKtP, then EXP * NC1 would follow via hardness magnification.
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1 Introduction

1.1 Context

Strong lower bounds are known in many restricted computational settings (see e.g. [BS90,
Juk12]), but progress in understanding the limitations of more expressive devices has been slow
and incremental (cf. [Aar17] for a recent survey and references). Table 1 summarizes the current
landscape of unconditional lower bounds with respect to general circuits, formulas, branching pro-
grams, bounded-depth threshold circuits, and bounded-depth circuits with modular gates. These
constitute some of the most widely investigated models extending the weak computational settings
for which we already have explicit super-polynomial lower bounds.

Computational Model Unconditional Lower Bounds Reference(s)

Boolean Circuits; w.r.t. P * Circuit[cN ], MA/1 * Circuit[Nk] [IM02, FGHK16]
different forms of explicitness MAEXP * Circuit[poly] [BFT98, San09]

Formulas over B2 P * B2-Formula[N2−o(1)] [Nec̆66]

Formulas over U2 P * U2-Formula[N3−o(1)] [H̊as98, Tal14, DM16]

Branching programs P * BP[N2−o(1)] [Nec̆66]

Low-depth threshold circuits P * MAJ ◦ THR ◦ THR[N3/2−o(1)] [KW16]

Depth-d threshold circuits P * TC0
d[N

1+exp(−d)] (wires) [IPS97]

Depth-d circuits with mod gates quasi-NP * ACC0
d[poly] [MW18]

Table 1: A summary of several state-of-the-art lower bounds in circuit complexity theory. In our
notation, N denotes input length, and C[s] refers to C-circuits of size ≤ s. Establishing stronger
lower bounds in these different models is open (or non-trivial lower bounds for a function in E =
DTIME[2O(N)] in the case of ACC0

d).

A conditional explanation has been proposed to address the difficulty of establishing strong
lower bounds in most of these computational settings. The theory of natural proofs [RR97] shows
that if a computational device can compute pseudorandom functions, then sufficiently constructive
techniques (such as those that have been successful against weaker models) cannot show lower
bounds of the form Nk if k is sufficiently large. This connection has been quite influential, and
subsequent works (see e.g. [MV15, Bog18]) have further investigated the limitations of lower bound
techniques from this perspective.

The Razborov-Rudich framework suggests that proving unconditional lower bounds in stronger
computational models might be tightly related to the investigation of meta-computational problems
of a particular form: those referring to the computational complexity of strings or truth-tables.
Indeed, it has been subsequently proved that the existence of a natural property for a class of
circuits yields explicit lower bounds against the same class [IKW02, Wil16, OS17, IKV18].

Our results describe a different phenomenon associated to such problems. They show that in
several scenarios, if we could establish slightly stronger lower bounds for them, i.e., lower bounds
that marginally improve the size bounds described in Table 1, then super-polynomial lower bounds
for explicit problems would follow. More specifically, this phenomenon concerns computational
problems where the complexity of strings are measured according to circuit complexity (often re-
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ferred to as MCSP; see [KC00]) or Levin’s time-bounded Kolmogorov complexity [Lev84] (a problem
known as MKtP; see [ABK+06]). MCSP and MKtP are fundamental meta-computational problems
with connections to areas such as learning theory, cryptography, proof complexity, pseudorandom-
ness and circuit complexity (see e.g. [All17] and references therein). We refer to [All01] for more
discussion about the importance of these and related complexity measures.

The new results are part of an emerging theory of hardness magnification showing that weak
lower bounds for some problems imply much stronger lower bounds. Several results of this form
have been obtained in different contexts [Sri03, AK10, LW13, MP17, OS18], and we refer to [OS18]
for further discussion. Other forms of hardness magnification are known in settings such as com-
munication complexity and arithmetic circuit complexity. A recent example phrased in a way that
is closer to our results appears in [CILM18].

As explained in [AK10, OS18], hardness magnification avoids the natural proofs barrier of
[RR97]. It is therefore important to understand the role of magnification in connection to super-
polynomial lower bounds, and this work takes another step in this direction. Our main contributions
can be summarised as follows:

(i) We employ new techniques to obtain the first magnification theorem for the usual (worst-case)
formulation of the MCSP problem.

(ii) Our results establish hardness magnification for a natural meta-computational problem (MKtP)
near the lower bound frontiers in several standard circuit models. In addition, we identify a
computational model where hardness magnification for MKtP lies below existing lower bounds.

(iii) Our hardness magnification theorems hold for problems for which it is possible to establish a
variety of non-trivial lower bounds.

1.2 Results

In this section, we formally state our results. We also briefly discuss some of our techniques,
which are explained in more detail in the main body of the paper. We defer a more elaborate
discussion of some results to Section 1.3.

Notation. We consider formulas over the bases U2 (fan-in two ANDs and ORs), B2 (all boolean
functions over two input bits), and extended U2-formulas where the input leaves are labelled by lit-
erals, constants, or parity functions over the input bits of arbitrary arity. The corresponding classes
of formulas of size at most s (measured by the number of leaves) will be denoted by U2-Formula[s],
B2-Formula[s], and U2-Formula-⊕[s], respectively. If we do not specify the type of formulas, we are
referring to De Morgan formulas (i.e., formulas over U2). We also consider bounded-depth majority
circuits, where each internal gate computes a boolean-valued majority function (MAJ) of the form∑

i∈S yi ≥? t (the circuit has access to input literals x1, . . . , xn, x1, . . . , xn). We measure the size
of such circuits by the number of wires in the circuit. Depth-d majority circuits of size s will de
denoted by MAJ0d[s], where d ≥ 1 is fixed. We also consider threshold circuits whose internal gates
compute a threshold function (THR) of the form

∑
i∈S wi · yi ≥? t, for wi, t ∈ R. We count number

of gates in this case, and let TC0
d[s] denote the corresponding class of circuits. Circuit[s] denotes

fan-in two boolean circuits of size s and of unbounded depth (gate types do not matter in our
results). More generally, for a circuit class C, we use C[s] to denote C-circuits of size ≤ s, where
size is measured by number of gates. Finally, BP[s] denotes deterministic branching programs of
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size at most s. We refer to a standard textbook (see e.g. [Juk12]) for more information about these
boolean devices.

Gap-MKtP and lower bounds for EXP. We use N to denote the input length of an instance
of Gap-MKtP[s1, s2] (see Definition 7 below), where we need to distinguish strings of Kt complexity
[Lev84] (a certain time-bounded variant of Kolmogorov complexity) at most s1(N) from strings
of Kt complexity at least s2(N). It is not hard to see that for constructive bounds s1 < s2,
Gap-MKtP[s1, s2] ∈ EXP.

We establish a hardness magnification theorem for Gap-MKtP. (In Section 2, we review some
relations between the complexity classes and boolean devices appearing below.) Let n = logN .

Theorem 1 (Hardness magnification for MKtP). There is a universal constant c ≥ 1 for which
the following hold. If there exists ε > 0 such that for every small enough β > 0

1. Gap-MKtP[2βn, 2βn + cn] /∈ Circuit[N1+ε], then EXP * Circuit[poly].

2. Gap-MKtP[2βn, 2βn + cn] /∈ U2-Formula-⊕[N1+ε], then EXP * Formula[poly].

3. Gap-MKtP[2βn, 2βn + cn] /∈ AND-THR-THR-XOR[N1+ε], then EXP * TC0
2[poly].

4. Gap-MKtP[2βn, 2βn+cn] /∈ MAJ02d′+d+1[N
1+(2/d′)+ε] for some d′ ≥ 1, then EXP * MAJ0d[poly].

5. Gap-MKtP[2βn, 2βn + cn] /∈ B2-Formula[N2+ε], then EXP * Formula[poly].

6. Gap-MKtP[2βn, 2βn + cn] /∈ U2-Formula[N3+ε], then EXP * Formula[poly].

7. Gap-MKtP[2βn, 2βn + cn] /∈ BP[N2+ε], then EXP * BP[poly].

8. Gap-MKtP[2βn, 2βn + cn] /∈ (AC0[6])[N1+ε], then EXP * AC0[6].

Interestingly, this result shows the existence of a single meta-computational problem that is
connected to several frontiers in complexity theory.

The proof of Theorem 1 relies on a refinement of some ideas from [OS18, Section 3.2]. Our
contribution here is mostly conceptual. For a sketch of the argument and its underlying techniques,
we refer to the discussion in Section 3. We mention that crucial in the proof is the use of error-
correcting codes, and that the complexity of computing these objects using different boolean devices
gives rise to the distinct magnification thresholds observed in Theorem 1. The formal proof of
Theorem 1 appears in Sections 3.1 and 3.2.

In contrast, we observe the following unconditional lower bounds.

Theorem 2 (Strong lower bounds for large parameters). For every ε > 0 there exists δ > 0 for
which the following results hold:

1. Gap-MKtP[2(1−δ)n, 2n−1] /∈ U2-Formula[N3−ε].

2. Gap-MKtP[2(1−δ)n, 2n−1] /∈ B2-Formula[N2−ε].

3. Gap-MKtP[2(1−δ)n, 2n−1] /∈ BP[N2−ε].
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The proof of Theorem 2 is simple, assuming certain results. It relies on the existence of pseu-
dorandom generators against small formulas and small branching programs [IMZ12], together with
an observation from [All01]. The argument appears in Appendix A.2.

Note the different regime of parameters for Gap-MKtP[s1, s2] in Theorems 1 and 2. In order to
magnify a weak lower bound using Theorem 1, we need that it holds for s1 = 2o(n) = No(1). The
next result shows that non-trivial unconditional lower bounds can be obtained in this regime.

Theorem 3 (A near-quadratic formula lower bound). For every constant 0 < α < 2 there exists
C > 1 such that Gap-MKtP[Cn2, 2(α/2)n−2] /∈ U2-Formula[N2−α].1

The proof of Theorem 3 adapts ideas from [HS17, Section 4] (see also the exposition in [OS18,
Appendix C.1]) employed in the context of MCSP for larger parameters. A sketch of the argument
followed by a proof can be found in Appendix A.1.

Gap-MCSP and lower bounds for NP. We use N = 2n to denote the input length of an
instance of Gap-MCSP[s1, s2] (see Definition 9 below), where one needs to distinguish functions of
circuit complexity at most s1 from functions of circuit complexity at least s2. It is not hard to see
that for constructive bounds s1 < s2, Gap-MCSP[s1, s2] ∈ NP.

We establish the following magnification theorem for Gap-MCSP.

Theorem 4 (Hardness magnification for MCSP). There is a universal constant c ≥ 1 for which
the following holds. If there exists ε > 0 such that for every small enough β > 0

1. Gap-MCSP[2βn/cn, 2βn] /∈ Circuit[N1+ε], then NP * Circuit[poly].

MCSP and MKtP are quite different problems. In our results, an important distinction is that
applying a polynomial-time function to an input of MKtP does not substantially increase its Kt
complexity (cf. Proposition 8), but this is not necessarily true in the context of circuit complexity,
where the input string represents an entire truth-table. For this reason, the proof of Theorem 4 is
completely different from the proof of Theorem 1.

Theorem 4 is our main technical contribution. The argument relies on the notion of anti-
checkers. Roughly speaking, an anti-checker is a bounded collection S of inputs associated with a
hard function f such that any small circuit C differs from f on some input in S. More precisely,
it was established in [LY94] that any function f : {0, 1}n → {0, 1} that requires circuits of size s
admits a collection Sf containing O(s) strings that is an anti-checker against circuits of size roughly
s/n. Our argument makes crucial use of anti-checkers, and en route to Theorem 4 we give a new,
more constructive proof of their existence. (While the proof in [LY94] uses min-max theory, our
proof is combinatorial and self-contained.)

We remark that anti-checkers were first employed for hardness magnification in the context of
proof complexity [MP17]. However, while the existential result from [LY94] was sufficient in that
context, this is not the case in circuit complexity, and our argument needs to be more sophisticated.
For the reader interested in learning more about hardness magnification in proof complexity, how
it relates to meta-computational problems such as MCSP, and how the new results compare with
our previous work, we refer to Appendix B.

The proof of Theorem 4 is not difficult given a certain lemma about the construction of anti-
checkers (see Section 4.1). The crucial Anti-Checker Lemma (see Lemma 17) says that NP ⊆

1The constant C has an exponential dependence on 1/α.
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Circuit[poly] implies the existence of circuits of almost linear size which given the truth table of
a Boolean function f print a corresponding set Sf . The circuits provided by the Anti-Checker
Lemma simulate our new proof of the existence of anti-checkers, but make the involved argument
constructive by using approximate counting and the assumption NP ⊆ Circuit[poly]. A high-level
exposition and the complete proof are described in Section 4.

We note that the argument is different from the proof of Theorem 1 not only on a technical level,
but also conceptually. Both proofs rely on a reduction to a certain succinct problem. In the case of
Theorem 1, this reduction is implemented by a concrete algorithm that can be explicitly described.
However, in Theorem 4 the assumption that the conclusion does not hold (i.e., NP ⊆ Circuit[poly])
and its consequences are invoked multiple times to show that the required reduction exists. More
generally, this deviates from the compression/kernelization approach present in certain proofs from
[AK10] and [OS18].2

We are able to show the following related unconditional lower bound against formulas.

Theorem 5. For every constant 0 < α < 2 there exists d > 1 such that Gap-MCSP[nd, 2(α/2−o(1))n] /∈
U2-Formula[N2−α].

Consequently, if one could establish an analogue of Theorem 4 for sub-quadratic formulas, then
NP * Formula[poly]. We explain why the argument behind the proof of Theorem 4 fails in the case
of formulas in Section 4.2.3 The proof of Theorem 5 is similar to the proof of Theorem 3, and we
sketch the necessary modifications in Appendix A.3.

Finally, in Section 4.3 we discuss a certain combinatorial hypothesis (“The Anti-Checker Hy-
pothesis”) connected to the techniques behind the proof of Theorem 4. If this hypothesis holds,
then NP * Formula[poly]. We observe that the hypothesis does hold in the average-case, but we
are unsure about its plausibility in the worst-case context that is sufficient for super-polynomial
formula lower bounds.

1.3 Discussion

As alluded to above, the thresholds for magnification in our results appear slightly above existing
size lower bounds in the case of standard boolean devices, such as branching programs, bounded-
depth threshold circuits, formulas over the bases U2 and B2, general circuits, and bounded-depth
circuits with modular gates (w.r.t. a lower bound for a problem in E = DTIME[2O(N)]). We have
also observed that some existing lower bounds can be adapted to Gap-MKtP and Gap-MCSP, under
different regimes of parameters. Naturally, one is tempted to ask whether hardness magnification
can explain the precise borders where progress on lower bounds has halted.

There are natural problems for which showing lower bounds that are weaker than the current
state-of-the-art size bounds would also imply super-polynomial lower bounds [OS18]. A represen-
tative example presented in [OS18] concerns an average-case version of MCSP, where the problem
refers to the average-case circuit complexity of the input function, while the magnification result
holds with respect to worst-case formula lower bounds. The reason that work does not imply
super-polynomial formula lower bounds via magnification is that the corresponding unconditional
lower bounds and magnification theorems hold for a different regime of the average-case complexity
parameter.

2In particular, we are not aware of results indicating that MCSP[s] might be kernelizable.
3Note that Theorem 4 implies lower bounds for a problem in NP. Theorem 1 only gives lower bounds in EXP, but

its proof extends to several low-complexity settings.
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Our results and techniques were motivated in part by the desire to address this gap. On the
one hand, it seems to be easier to analyse problems that refer to the worst-case complexity of the
input. But on the other hand, shifting from average-case to worst-case complexity often increases
the magnification threshold to size bounds that are beyond existing techniques. Another glimpse of
the subtle transition between worst-case and average-case complexity and its role in magnification
appears in the discussion of the Anti-Checker Hypothesis in Section 4.3.

We identify a computational model that has not received much attention in the literature,
and for which the magnification threshold for Gap-MKtP lies below existing lower bounds. This
corresponds to Theorem 4 Item 2, i.e., U2-formulas augmented with parities in the leaves (our
exposition in Section 3 focuses on this model). Note that, by a straightforward simulation, before
breaking the cubic barrier for U2-formulas or the quadratic barrier for B2-formulas, one needs to
show super-linear lower bounds against U2-Formula-⊕. But a recent result of Tal [Tal16] implies
exactly that: the inner product function over N input bits is not in U2-Formula-⊕[N1.99].

This makes this computational model particularly attractive in connection to hardness magni-
fication and lower bounds. Indeed, it seems “obvious” that Gap-MKtP[2δn, 2δn + cn] /∈ U2-Formula-
⊕[N1.01], given that such formulas cannot compute the much simpler inner product function, and
that standard formulas require at least near-quadratic size (Theorem 3). Our work shows that if
this is the case, then EXP * NC1. Needless to say, establishing the required lower bound is our
main open problem.

2 Preliminaries

For ` ∈ N, we use [`] to denote the set {1, . . . , `}. The length of a string w will be denoted
by |w|. Our logarithms are in base 2, and we use exp(x) to denote ex. We use boldface symbols
such as i and ρ to denote random variables, and x ∈R S to denote that x is a uniformly random
element from a set S. We often identify n with logN or N with 2n, depending on the context.

For concreteness, we employ a random-access model to formalize uniform algorithms. The
details of the model are not crucial in our results, and only mildly affect the gap parameters s1
and s2. We fix some standard encoding of algorithms as strings, and use 〈M〉 to denote the string
encoding the algorithm M . Moreover, we assume for simplicity the following property of this
encoding: if an algorithm C is obtained via the composition of the computations of algorithms A
and B, then |〈C〉| ≤ |〈A〉| + |〈B〉| + O(1). (Roughly speaking, composing two codes gives a new
valid code.4) The running time of M on x is denoted by tM (x).

We introduce next the notion of Kt complexity. We adopt a formulation that is more convenient
for our purposes. In particular, we avoid the use of universal machines in the definition given below.5

(Our definition is easily seen to be within at most a logarithmic additive term of the formulation
using universal machines. We stress that our proofs can be adapted to work with any reasonable
definition.)

4While this holds for instance for programs with relative jump instructions (i.e., goto instructions where the new
line is encoded relative to the number of the current line), we remark this is not true in general. For instance,
composing two Turing Machines might require renaming all states of one machine, which could result in a new
encoding of length (1 + o(1))|〈A〉| + |〈B〉|. Depending on the computational model, the results in Theorem 1 might
need parameters s2 = (1 + o(1))s1.

5Universal machines are still needed to upper bound the time complexity of computing Kt complexity. Moreover,
the exact Kt complexity of a string depends on the choice of encoding for algorithms/machines.
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Definition 6 (Kt Complexity ([Lev84]; see also [All01])). For a string x ∈ {0, 1}∗, Kt(x) denotes
the minimum of |〈M〉| + |a| + dlog tM (a)e over pairs (M,a) such that the machine M outputs x
when it computes on the input string a.

Definition 7 (The Gap-MKtP Problem). We consider the promise problem Gap-MKtP[s1, s2],
where s1, s2 : N → N and s1(N) < s2(N) for all N ∈ N. For each N ≥ 1, Gap-MKtP[s1, s2] is
defined by the following sets of instances:

YESN
def
= {x ∈ {0, 1}N | Kt(x) ≤ s1(N) }, and

NON
def
= {x ∈ {0, 1}N | Kt(x) > s2(N) }.

We will need the following simple result.

Proposition 8 (Kt complexity and composition). Let B be an algorithm that runs in time at most
TB(N) over inputs of length N . Then, for every input w ∈ {0, 1}N , as N grows we have

Kt(B(w)) ≤ Kt(w) + log(TB(N)) +O(1).

Proof. Let A be a machine and a be a string such that the pair (A, a) witnesses the value Kt(w).
Let C be the composition of machines A and B, i.e., C(y) = B(A(y)). We claim that the pair (C, a)
witnesses the inequality in the conclusion of the proposition. Indeed, since C(a) = B(A(a)) = B(w),
we get

Kt(B(w)) ≤ |〈C〉|+ |a|+ dlog tC(a)e
≤ |〈A〉|+ |〈B〉|+O(1) + |a|+ log(tA(a) + tB(w))

≤ |〈A〉|+ |a|+ log(tA(a)) + log(tB(w)) + |〈B〉|+O(1)

≤ Kt(w) + log(TB(N)) +O(1),

where we have used that |〈B〉| is constant as N grows.

We also consider a natural formulation of the gap version of the Minimum Circuit Size Problem
(MCSP). The circuit complexity of a boolean function f : {0, 1}n → {0, 1} is denoted by Size(f).
We use the same notation to represent the circuit complexity of the function encoded by a string
x ∈ {0, 1}2n .

Definition 9 (The Gap-MCSP Problem). We consider the promise problem Gap-MCSP[s1, s2],
where s1, s2 : N → N and s1(n) < s2(n) for all n ∈ N. For each n ≥ 1, Gap-MCSP[s1(n), s2(n)] is
defined by the following sets of instances:

YESn
def
= {x ∈ {0, 1}2n | Size(x) ≤ s1(n) }, and

NOn
def
= {x ∈ {0, 1}2n | Size(x) > s2(n) }.

A brief review of uniform complexity classes and connections to non-uniform devices.
To provide some context for Theorem 1, we remind the reader about the following relations involving
boolean devices and complexity classes. Under an appropriate uniform formulation of circuit classes,
we have the inclusions:

(uniform classes) AC0 ⊆ ACC0 ⊆ MAJ0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ P.
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Some of these classes are related in the non-uniform case as follows: NC1 = U2-Formula[poly] = B2-
Formula[poly] = (width 5) BP[poly], L/poly = BP[poly], P/poly = Circuit[poly], and MAJ0[poly] =
TC0[poly]. These equivalences might require a complexity overhead in size or depth. We refer to
[Raz91, Juk12] for these and other related results.

3 Hardness Magnification via Error-Correcting Codes

In this section, we prove Theorem 1. First, we provide a high-level exposition of the argument.

Proof Idea. The result is established in the contrapositive. The idea is to reduce Gap-MKtP[s1, s2]
to a problem in EXP over instances of size poly(s1, s2)� N , and to invoke the assumed complexity
collapse to solve Gap-MKtP using very efficient circuits (or other boolean devices). First, we apply
an error-correcting code (ECC) to the input string w ∈ {0, 1}N . Since this can be done by a
uniform polynomial time computation, we are able to show that ECC(w) ∈ {0, 1}O(N) is a string of
Kt complexity ` < s2 if w has Kt complexity ≤ s1. On the other hand, using an efficient decoder
for the ECC, we can show that if w has Kt complexity ≥ s2, then any string of Kt complexity > `
differs from ECC(w) on a constant fraction of coordinates. Let z = ECC(w). Given the gap in the
input instances of Gap-MKtP, our task now is to distinguish strings z that have Kt complexity at
most ` from strings that cannot be approximated by strings of Kt complexity at most `, where
s1 < ` < s2.

We achieve this by using a random projection of the input z to a string y of size roughly `� N .
The intuition is that if z has Kt complexity at most `, then every projection of z also agrees with
some string (i.e., z) of Kt complexity at most `. However, it is possible to argue that if z cannot
be approximated by a string of Kt complexity at most `, then with high probability no string of
Kt complexity at most ` agrees with the randomly projected coordinates of z. Checking which
case holds when we are given the string y can be done by an exponential time algorithm. Under
the assumption that EXP admits small circuits, we are able to solve this problem in complexity
poly(`)� N .

The reduction sketched above requires (1) the computation of an appropriate ECC, and (2) is
randomized. A careful derandomization and the computation of the ECC in different models of
computation provide the size bounds corresponding to the magnification thresholds appearing in
the statement of Theorem 1.

We start with a detailed proof of Item (2), which covers the more interesting scenario of formulas
with parity leaves. We then discuss how a simple modification of the argument together with known
results imply the other cases.

3.1 Proof of Theorem 1 Case 2 (Magnification for formulas with parities)

We will need the following explicit construction.

Theorem 10 (Explicit linear error-correcting codes (cf. [Jus72, SS96])). There exists a sequence
{EN}N∈N of error-correcting codes EN : {0, 1}N → {0, 1}M(N) with the following properties:

• EN (x) can be computed by a uniform deterministic algorithm running in time poly(N).

• M(N) = b ·N for a fixed b ≥ 1.
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• There exists a constant δ > 0 such that any codeword EN (x) ∈ {0, 1}M(N) that is corrupted
on at most a δ-fraction of coordinates can be uniquely decoded to x by a uniform deterministic
algorithm D running in time poly(M(N)).

• Each output bit is computed by a parity function: for each input length N ≥ 1 and for each
coordinate i ∈ [M(N)], there exists a set SN,i ⊆ [N ] such that for every x ∈ {0, 1}N ,

EN (x)i =
⊕
j∈SN,i

xj .

We proceed with the proof of Theorem 1 Part (2). We establish the contrapositive. Assume that
EXP ⊆ Formula[poly], and recall that N = 2n. For any ε > 0, we prove that Gap-MKtP[2βn, 2βn +
cn] ∈ U2-Formula-⊕[N1+ε] for a sufficiently small β > 0 and a universal choice of the constant c.
The value of c will be specified later in the proof (see Claim 12 below).

Let EN : {0, 1}N → {0, 1}M be the error-correcting code granted by Theorem 10, whereM(N) =
bN . Given an instance w ∈ {0, 1}N of Gap-MKtP[2βn, 2βn + cn], we first apply EN to w ∈ {0, 1}N
to get z = EN (w) ∈ {0, 1}M .

Claim 11. There exists c0 ≥ 1 such that for every large enough N the following holds. If Kt(w) ≤
2βn, then Kt(z) ≤ 2βn + c0n.

Proof. The claim follows immediately from the upper bound on Kt(w), the definition of z = EN (w),
the running time of EN , and Proposition 8.

Claim 12. There exist c > c1 > c0 ≥ 1 such that for every large enough N the following holds. If
Kt(w) > 2βn + cn, then Kt(z′) > 2βn + c1n for any z′ ∈ {0, 1}M that disagrees with z on at most a
δ-fraction of coordinates.

Proof. Suppose that a string z′ ∈ {0, 1}M disagrees with z on at most a δ-fraction of coordinates,
and that Kt(z′) ≤ 2βn+c1n for some c1 > c0. We upper bound the Kt complexity of w by combining
a description of z′ with the decoder D provided by Theorem 10. In more detail, assume the pair
(F, a) witnesses Kt(z′). Let B be the machine that first applies the machine F to a (producing z′),
then D to z′. It follows from Theorem 10 that B(a) = D(F (a)) = D(z′) = w. Similarly to the
proof of Proposition 8, we also get

Kt(w) ≤ |〈B〉|+ |a|+ dlog tB(a)e
≤ |〈F 〉|+ |〈D〉|+O(1) + |a|+ log(tF (a) + tD(z′))

≤ Kt(z′) + log(tD(z′)) +O(1)

≤ (2βn + c1n) +O(n) +O(1)

≤ 2βn + cn,

if n is large enough and we choose c sufficiently large.

Next we define an auxiliary language L ∈ EXP, efficiently reduce Gap-MKtP to L, and use the
assumption that EXP has polynomial size formulas to obtain almost-linear size formulas (of the
appropriate kind) for Gap-MKtP. Roughly speaking, we are able to obtain a formula of non-trivial
size for Gap-MKtP because our reduction maps input instances of length N to instances of L of
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length No(1) (the o(1) term is captured by the parameter β using n = logN). As we will see
shortly, the reduction is randomized. In order to get the final U2-formula-⊕ computing Gap-MKtP,
the argument is derandomized in a straightforward but careful way. More details follow.

An input string y encoding a tuple (a, 1b, (i1, α1), . . . , (ir, αr)) belongs to L (where a and b are
positive integers, a is encoded in binary, and αj ∈ {0, 1}) if each ij (for 1 ≤ j ≤ r) is a string of
length dlog ae and there is a string z of length a such that Kt(z) ≤ b and for each index j we have
zij = αj .

Claim 13. L ∈ EXP.

Proof. L is decidable in exponential time as we can exhaustively search all strings of Kt complexity
at most b and length exactly a and check if there is one which has the specified values at the
corresponding bit positions. Indeed, using the definition of Kt complexity and an efficient universal
machine, a list containing all such strings can be generated in time poly(2b), which is at most expo-
nential in the input length 1b. In turn, checking that a string of length a satisfies the requirement
takes time at most exponential in the total input length, since each index ij is a string of length
dlog ae.

Since EXP ⊆ Formula[poly] by assumption, L has polynomial-size formulas. Assume without
loss of generality that L has formulas of size O(`k) for some constant k, where ` is its total input
length. We choose β = ε/100k.

We are ready to describe a low-complexity reduction from Gap-MKtP[2βn, 2βn + cn] to L.
First, we use the error-correcting code to compute z from w, as described above. Then we ap-
ply the following sampling procedure. We sample uniformly and independently r = 22βn indices
i1, . . . , ir ∈R [M ], where M = bN . We then form the string y encoding the tuple

(M, 12
βn+c1n, (i1, zi1), . . . , (ir, zir)),

where c1 > c0 ≥ 1 is provided by Claim 12. Note that this is a string of length `(N) ≤ N ε/10k.

Claim 14. The following implications hold:

(a) If w ∈ {0, 1}N is a positive instance of Gap-MKtP[2βn, 2βn + cn], then y ∈ L with probability
1.

(b) If w ∈ {0, 1}N is a negative instance of Gap-MKtP[2βn, 2βn + cn], then y /∈ L with probability
> 1/2.

Proof. If w is a YES instance, we have by Claim 11 that Kt(z) ≤ 2βn + c0n ≤ 2βn + c1n. In this
case, z is a string of length M that has the specified values at the specified bit positions, regardless
of the random positions that are sampled by the reduction. Consequently, y ∈ L with probability
1.

For the claim about NO instances, as previously established in Claim 12, we have that Kt(z′) >
2βn+ c1n for any z′ such that |z′| = |z| = M and Pri∈R[M ][z

′
i 6= zi] ≤ δ. Now consider any string z′′

of length M such that Kt(z′′) ≤ 2βn+c1n. For such a string z′′, for each j ∈ [r], the probability that
the random projection satisfies z′′ij = zij (where ij ∈R [M ]) is at most 1− δ. Hence the probability

that z′′ agrees with z at all the specified bit positions is at most (1−δ)r ≤ exp(−δr) ≤ exp(−δ22βn).
By a union bound over all strings z′′ with Kt(z′′) ≤ 2βn + c1n, the probability that there exists a
string z′′ with Kt complexity at most 2βn + c1n which is consistent with the values at the specified
bit positions is exponentially small in n. Hence with high probability y /∈ L.

12



To sum up, there is a randomized reduction from Gap-MKtP[2βn, 2βn+ cn] over inputs of length
N to instances of L of length `(N) ≤ N ε/10k. Now let {F`(N)}N≥1 be a sequence of U2-formulas of

size O(`k) for L. Our randomized formulas G(·) for Gap-MKtP compute as follows.

1. G(w) =
∧N
j=1G

(j)(w), where each G(j) is an independent copy.

2. Each G(j)(w) is a randomized formula of the form G(j)(w, i1, . . . , ir) that first computes z from
w, then computes y from z using the (random) input indices i1, . . . , ir ∈ {0, 1}logM , and finally
applies F` to y.

It follows from Claim 14 using the independence of each G(j) that

Pr[G(w) is incorrect ] < 2−N ,

where the probability is taken over the choice of the random input of G. Consequently, by a union
bound there is a fixed choice γ ∈ {0, 1}∗ of the randomness of G (corresponding to the positions of
the different random projections) such that the deterministic formula Gγ obtained from G and γ
is correct on every input string w.

Claim 15. Each deterministic sub-formula G
(j)
γ (w) can be computed by a U2-formula extended with

parities at the leaves of size at most O(`(N)k) ≤ N ε/2.

Proof. Note that each bit of z can be computed from the input string w using an appropriate parity

function (as described in Theorem 10). We argue that the leaves of G
(j)
γ are precisely the leaves of

the U2-formula F` replaced by appropriate literals, constants, or parities. Recall that G
(j)
γ applies

F` to the string y obtained from z. However, since γ is fixed, the positions of z that are projected
in order to compute y are also fixed, and so are the substrings of y describing the corresponding

positions. Consequently, the size (i.e. number of leaves) of each G
(j)
γ is at most the size of F`, which

proves the claim.

It follows from this claim that Gγ(w) can be computed by a formula containing at most N1+ε

leaves, and hence Gap-MKtP[2βn, 2βn + cn] ∈ U2-Formula-⊕[N1+ε]. (Observe that we have used in
a crucial way that the derandomized sub-formulas do not need to compute address functions to
generate y from z.) This completes the proof of Theorem 1 Part (2).

3.2 Completing the proof of Theorem 1

In this Section, we discuss how the argument presented in Section 3.1 can be adapted to establish
the remaining items of Theorem 1.

First, note that Items (5) and (6) immediately follow from Item (2). This is because a parity
gate over at most N input variables can be computed by B2-formulas of size O(N) and by U2-
formulas of size O(N2). Consequently, using that formula size is measured with respect to the
number of leaves, we immediately get U2-Formula-⊕[s(N)] ⊆ B2-Formula[s(N) ·N ] and U2-Formula-
⊕[s(N)] ⊆ U2-Formula[s(N) ·N2].

In order to get Item (1), it is sufficient to compute an error-correcting code as in Theorem 10
using circuits of (almost) linear size. In other words, we need the entire codeword (and not just each
output bit) to be computable from the input message using a circuit of size O(N). The existence
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of such codes is well-known [SS96, Spi96]. The rest of the reduction produces an additive overhead
in circuit size of at most N1+ε gates.

Finally, to establish Item (4), we use the following construction from [Tel18].

Theorem 16 (Computing ECCs in parallel using majorities and few wires [Tel18])). For every
depth d′ ≥ 1 there are constants δ(d′) > 0 and b(d′) ≥ 1 and a sequence {EN}N∈N of error-correcting
codes EN : {0, 1}N → {0, 1}M with the following properties:

• EN (x) can be computed by a uniform deterministic algorithm running in time poly(N).

• M(N) = b ·N .

• Any codeword EN (x) ∈ {0, 1}M that is corrupted on at most a δ-fraction of coordinates can
be uniquely decoded to x by a uniform deterministic algorithm D running in time poly(M).

• EN (x) ∈ {0, 1}M can be computed by a multi-output circuit from MAJ02d′ [O(N1+(2/d′))], where
circuit size is measured by number of wires.

Following the steps of the reduction described in Section 3.1, under the assumption that EXP ⊆
MAJ0d[poly] the final depth of the circuit solving Gap-MKtP is 2d′ + d + 1, where the terms in
this sum correspond respectively to the computation of the error-correcting code (for a choice of

d′ ≥ 1), each (circuit) G
(j)
α , and the topmost AND gate in Gα (constant bits can be produced

in depth 1 from input literals). Similarly, the overall size (number of wires) of the circuit is
O(N1+(2/d′)) +O(N1+ε) +O(N) ≤ N1+(2/d′)+ε.

Item (3) is established in the obvious way given the previous explanations. Item (8) uses that
parity gates can be simulated using mod 6 gates.

Finally, we deal with case (7), which refers to branching program complexity. First, note
that the parity of n bits can be computed by a branching program of size O(n). In addition,
if f(x) = g(h1(x), . . . , hk(x)), each hi has a branching program of size s, and g has a branching
program of size t, then f has a branching program of size ` = O(t · s). Finally, a conjunction of N
branching programs of size ` has branching program size at most O(N · `). Combining these facts
in the natural way yields case (7). This completes the proof of all cases in Theorem 1.

4 Hardness Magnification via Anti-Checkers

4.1 Proof of Theorem 4 (Magnification for MCSP)

In this Section, we derive Theorem 4 from Lemma 17, whose proof appears in Section 4.2.
Informally, an anti-checker (cf. [LY94]) for a function f is a multi-set of input strings such that any
circuit of bounded size that does not compute f is incorrect on at least one of these strings.

Lemma 17 (Anti-Checker Lemma). If NP ⊆ Circuit[poly] there is a constant k ∈ N for which the
following hold. For every sufficiently small β > 0, there is a circuit C of size ≤ 2n+kβn that when
given as input a truth-table tt(f) ∈ {0, 1}N , where f : {0, 1}n → {0, 1}, outputs t = 210βn strings
y1, . . . , yt ∈ {0, 1}n such that if f /∈ Circuit[2βn] then every circuit of size ≤ s where s = 2βn/10n
fails to compute f on at least one of these strings.
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The Anti-Checker Lemma is a powerful tool that might be of independent interest. It says that
anti-checkers of bounded size for functions requiring circuits of size 2o(n) can be produced in time
that is almost-linear in the size of the function (viewed as a string), under the assumption that
circuit lower bounds do not hold.6

Proof of Theorem 4. Assume that NP ⊆ Circuit[poly]. We prove that for every given ε > 0 there
exists a small enough β > 0 such that Gap-MCSP[2βn/10n, 2βn] ∈ Circuit[N1+ε].

We consider the problem Succinct-MCSP, defined next. Its input instances are of the form
〈1n, 1s, 1t, (x1, b1), . . . , (xt, bt)〉, where xi ∈ {0, 1}n and bi ∈ {0, 1}, i ∈ [t]. Note that each instance
can be encoded by a string of length exactly m = n + 1 + s + 1 + t + 1 + t · (n + 1). An input
string is a positive instance if and only if it is in the appropriate format and there exists a circuit
D over n input variables and of size at most s such that D(xi) = bi for all i ∈ [t]. Note that the
problem is in NP as a function of its total input length m. Under the assumption that NP is easy
for non-uniform circuits, there exists ` ∈ N such that Succinct-MCSP can be solved by circuits
Em of size m` on every large enough input length m.

Take β = ε/(100 · ` · k), where k is the constant from Lemma 17. In order to construct a
circuit for Gap-MCSP, first we reduce this problem to an instance of Succinct-MCSP of length m
using Lemma 17, then we invoke the ml-sized circuit for this problem. More precisely, on an input
f : {0, 1}n → {0, 1}, we use the circuit C (as in Lemma 17) to produce a list of strings y1, . . . , yt ∈
{0, 1}n, generate from this list and f the input instance z = 〈1n, 1s, 1t, ((y1, f(y1)), . . . , (yt, f(yt))〉,
for parameters s = 2βn/10n, t = 210βn, m = poly(n) · 210βn, and output Em(z).

Correctness follows immediately from Lemma 17 and our choice of parameters. Indeed, if
f ∈ Circuit[2βn/10n] then no matter the choice of y1, . . . , yt the circuit Em accepts z thanks to our
choice of s = 2βn/10n. On the other hand, when f /∈ Circuit[2βn] then by Lemma 17 every circuit
of size s fails on some string from the list, and consequently Em(z) = 0.

We upper bound the total circuit size using the choice of β. Circuit C has size at most 2n+kβn ≤
N1+ε/3. In addition, producing the input z can be done from f and y1, . . . , yt by a circuit of size
at most O(t · N) ≤ N1+ε/3, since each address function can be computed in linear size O(N)
(see e.g. [Weg87]). Finally, Em has size at most m` ≤ N1+ε/3. Overall, it follows that Gap-
MCSP[2βn/10n, 2βn] is computable by circuits of size N1+ε.

4.2 Proof of Lemma 17 (Anti-Checker Lemma)

This section is dedicated to the proof of Lemma 17. This completes the proof of Theorem 4.
We start with a high-level exposition of the argument.

Proof Idea. We take β → 0, for simplicity of the exposition. In principle, the challenge is to
construct the list of strings from the description of f using a circuit of size N1+o(1), given that the
existence of such strings is guaranteed by the work of [LY94]. But it is not clear how to use this
existential result and the assumption that NP has polynomial size circuits to construct almost-linear
size circuits for this task. In order to achieve this, we use a self-contained argument that produces
the strings one by one until very few circuits of bounded size are consistent with the values of f
on the partial list of strings. We then find polynomially many additional strings that eliminate the

6We have made no attempt to optimize the constants in Lemma 17.
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remaining circuits, completing the list of strings.7

To produce the i-th string yi ∈ {0, 1}n given y1, . . . , yi−1 ∈ {0, 1}n and f , we estimate the
number of circuits of size ≤ 2βn/10n that agree with f over all strings in {y1, . . . , yi}. We show
that some string yi will reduce the number of consistent circuits from the previous round by a factor
of (roughly) 1 − 1/n if there are at least (roughly) n2 surviving circuits (this is a combinatorial
existential proof that relies on the lower bound on the circuit complexity of f). As a consequence,
it will be possible to show that at most 2O(βn) = No(1) rounds suffice to produce the required set
of strings (modulo handling the few surviving circuits). The existence of a good string yi is at the
heart of our argument, and we defer the exposition of this result to the formal proof.

In each round, we exhaustively check each of the N candidate strings yi. As we will explain
soon, estimating the number of surviving circuits after picking a new candidate string yi can be done
by a circuit of size No(1) given access to y1, . . . , yi and to the corresponding bits f(y1), . . . , f(yi).

8

In summary, there are No(1) rounds, and in each one of them we can find a good string yi using a
circuit of size N1+o(1). We remark that it will also be possible to produce the additional strings in
circuit complexity No(1), so that the complete list y1, . . . , yt can be computed from f by a circuit
of size N1+o(1).

It remains to explain how to fix a good string in each round. We simply pick the most promising
string, using that we can upper bound the complexity of estimating the number of surviving cir-
cuits. The latter relies on the assumed inclusion NP ⊆ Circuit[poly]. Indeed, from this assumption it
follows that the polynomial hierarchy PH ⊆ Circuit[poly], and it is known that relative approximate
counting can be done in the polynomial hierarchy.9 Crucially, as described in the paragraph above,
the input length of each sub-problem that we need to solve is ≤ No(1) (using that i is at most
No(1)), so a polynomial overhead will not be an issue when solving a sub-task of input length No(1).
This completes the sketch of the proof.

We proceed with a formal proof of Lemma 17. Let R be a polynomial-time relation, where
R ⊆

⋃
m{0, 1}m × {0, 1}q(m) for some polynomial q. For every x, we use R#(x) to denote |{y ∈

{0, 1}q(|x|) : (x, y) ∈ R}|. A randomized algorithm Π is called an (ε, δ)-approximator for R if for
every input x it holds that

Pr
[ ∣∣Π(x)−R#(x)

∣∣ ≥ ε(|x|) ·R#(x)
]
≤ δ(|x|).

Theorem 18 (Relative approximate counting in BPPNP ([Sto83]; see e.g. [Gol08, Section 6.2.2])).
For every polynomial-time relation R and every polynomial p, there exists a probabilistic polynomial-
time algorithm A with access to a SAT oracle that is an (1/p(m), 2−p(m))-approximator for R over
inputs x of length m.

Corollary 19. Assume NP ⊆ Circuit[poly]. For every polynomial-time relation R and for each
m ≥ 1, there is a multi-output circuit CR : {0, 1}m → {0, 1}poly(m) of polynomial size such that on
every input x ∈ {0, 1}m,

(1− 1/m2) ·R#(x) ≤ CR(x) ≤ (1 + 1/m2) ·R#(x).
7In particular, our argument implies the worst-case version of the anti-checker result from [LY94] with slightly

different parameters.
8Technically speaking, projecting f(yi) ∈ {0, 1} from the input string f ∈ {0, 1}N and the address y ∈ {0, 1}n

already takes circuit complexity Ω(N). However, since we are trying all possible strings yi, the corresponding bit
positions of f can be directly hardwired.

9In our formal proof, we take a slightly more direct route to compute the relative approximations.
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Proof. This follows from Theorem 18 (using p(m) = m2) by non-uniformly fixing the randomness
of the algorithm, replacing the SAT oracle using the assumption that NP has small circuits, and
translating the resulting deterministic algorithm into a boolean circuit.

We define a relation Q. The first input x is of the form 〈1n, 1s, 1i, 1t, (z1, b1), . . . , (zi, bi)〉, where
zj ∈ {0, 1}n and bj ∈ {0, 1} for 1 ≤ j ≤ i, and t = 210βn (t is used here to pad the input
appropriately). The second input is a string w of length m1/5 (for m = |x|) that is interpreted as
a boolean circuit Cw over n input variables and of size at most s. We let (x,w) ∈ Q if and only if
Cw(zj) = bj for all j ∈ [i]. Note that Q is a polynomial-time relation.

We employ circuits obtained from Corollary 19 using parameters s = 2βn/10n and 1 ≤ i ≤ t,
where t = 210βn. The following result is immediate from Corollary 19 given that for our choice of
parameters m = poly(2βn).

Proposition 20 (Circuits for approximate counting). There is a constant k1 ∈ N for which the
following holds. For every n ≥ 1, let s = 2βn/10n, t = 210βn, 1 ≤ i ≤ t. Then there is a
multi-output circuit Cn,i of size ≤ 2k1βn that outputs ≤ 2k1βn bits such that on every input a =
((z1, b1), . . . , (zi, bi)) ∈ {0, 1}i·(n+1),

(1− 1/n10) ·Q#(x) ≤ Cn,i(a) ≤ (1 + 1/n10) ·Q#(x),

where x = x(a) is defined from the string a and from our choice of parameters in the obvious way.

The next step is to guarantee that once just a few circuits remain consistent with f over our
partial list of strings (as described in the proof sketch above), we can efficiently find a small number
of strings to eliminate all of them.

Lemma 21 (Listing the remaining circuits). Assume NP ⊆ Circuit[poly]. There exists a constant
k2 ∈ N for which the following holds. Let a = ((z1, b1), . . . , (zt′ , bt′)), where t′ ≤ t, and x = x(a)
be the corresponding input of Q. There is a circuit Dn,t′ of size ≤ 2k2βn such that if Q#(x) ≤ n3,
then Dn,t′(a) outputs a string describing all such circuits.

Proof. It follows from NP ⊆ Circuit[poly] using a standard argument that PH ⊆ Circuit[poly]. In
addition, it is not hard to define a relation in PH (using a padded input containing the string
1t) that checks if a given input a satisfies Q#(x(a)) ≤ n3. Consequently, checking if a string λ
describes a list of such circuits for a can be done by a circuit of size at most poly(t). Using again
that NP ⊆ Circuit[poly] and a self-reduction, we obtain circuits Dn,t′ as in the statement of the
lemma.

Lemma 22 (Completing the list of strings). There is a constant k3 ∈ N for which the following
holds. For every n ≥ 1 there is a circuit En of size ≤ 2n+k3βn that given access to a truth-table
f ∈ {0, 1}2n and a string w ∈ {0, 1}2βn describing a circuit Cw of size s ≤ 2βn/10n that does not
compute f , En(f, w) outputs a string y such that C(y) 6= f(y).

Proof. First, En evaluates Cw on every string z ∈ {0, 1}n. This can be easily done by a circuit of
size 2n ·poly(|w|) under a reasonable encoding of the circuit Cw. Then En inspects one-by-one each
string z and stores the first string where Cw and f differ. Note that a circuit of size ≤ 2n · poly(n)
can print this string from the truth-table of f and Cw. It follows that the overall complexity of En
is 2n+k3βn for some constant k3.
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The previously established results will allow us to find in each round a string yi that significantly
reduces the number of remaining circuits (while at least one such string exists), and then to complete
the list so that no circuit of bounded size is consistent with all strings in the final list. We show
next that if f is hard and a reasonable number of circuits of bounded size are consistent with the
current list of strings, then a good string yi exists.

For convenience, we introduce a function to capture the fraction of strings encoding circuits that
are consistent with a set of inputs and their corresponding labels. Given a = ((z1, b1), . . . , (zi, bi)),
let x = x(a) be the corresponding input to Q under our choice of parameters. Furthermore, let

m = |x|, and recall that Q ⊆
⋃
m≥1{0, 1}m × {0, 1}m

1/5
. In order to maintain the same underlying

domain size when considering the fraction of consistent circuits, we assume without loss of generality
using appropriate padding that the encoding of x has a fixed length m = m(n) for each choice of
n (i.e., the choice of 1 ≤ i ≤ t does not affect m1/5). In addition, we can take m(n) ≤ 211βn, which
will be useful when upper bounding the number of necessary rounds. We let φ(a) ∈ [0, 1] denote

the ratio Q#(x(a))/2m
1/5

. (Thus in our formal argument we count circuits using their descriptions
as binary strings.)

Lemma 23 (Existence of a good string yi). For every integer i ≥ 1 and for every z1, . . . , zi−1 ∈
{0, 1}n, let a = ((z1, f(z1)), . . . , (zi−1, f(zi−1))). If

f /∈ Circuit[2βn] and Q#(x(a)) ≥ 4n2,

then there is some string yi ∈ {0, 1}n such that if a′ denotes the sequence a augmented with
(yi, f(yi)), then

φ(a′) ≤ φ(a) · (1− 1/2n).

Proof. The argument is inspired by a combinatorial principle discussed in [Kra95]. Consider the
tuple a and the string x = x(a) as in the statement of the lemma. Moreover, let Q(x) = {w ∈
{0, 1}m1/5

: (x,w) ∈ Q}. For convenience, let r = |Q(x)| = Q#(x) ≥ 4n2, using our assumption.
Define an auxiliary undirected bipartite graph G = (L,R,E) as follows. Set L = {0, 1}n, R =(
Q(x)
n

)
, and (y, {w1, . . . , wn}) ∈ E(G) if and only if for ≤ n/2 of the circuits Cwi we have f(y) =

Cwi(y).
Note that for any right vertex v = (w1, . . . , wn) ∈ R there is a left vertex y ∈ L such that

(y, v) ∈ E. If not, then D = Majorityn(Cw1(x), . . . , Cwn(x)) is a circuit that computes f on every
input string y. The size of D is at most n · (2βn/10n) + 5n ≤ 2βn, using the definition of Q and
that the majority function can be computed (with room to spare) by a circuit of size at most 5n
[Weg87]. This contradicts the hardness of f .

By an averaging argument, there is a left vertex y∗ that is connected to at least |R|/|L| =
(
r
n

)
/2n

vertices in R. We show below (Claim 24) that for at least r/2n strings w ∈ Q(x), the corresponding
circuit Cw satisfies Cw(y∗) 6= f(w∗). This implies that by taking y∗ as the string yi described in
the statement of the lemma, we get Q#(x(a′)) ≤ r − r/2n = r(1− 1/2n), and consequently

φ(a′) =
Q#(x(a′))

2m
1/5

≤ r(1− 1/2n)

2m
1/5

=
Q#(x(a)) · (1− 1/2n)

2m
1/5

= φ(a) · (1− 1/2n).

Claim 24. Let y∗ ∈ L be a left-vertex connected to at least
(
r
n

)
· 2−n right-vertices in R, where

r ≥ 4n2 and n is sufficiently large. Then, for at least r/2n distinct strings w ∈ Q(x), we have
Cw(y∗) 6= f(y∗).
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Proof. The claim follows using a standard counting argument. If the conclusion were false, the
vertex y∗ would be connected to strictly less than (assuming for simplicity that n is even and r/2n
is an integer)

n/2∑
j=0

(
r/2n
n
2 + j

)
·
(

r
n
2 − j

)
≤
(
r

n

)
· 2−n (as upper bounded below)

vertices in R, which is contradictory. It remains to verify this inequality, which can be done using
some careful estimates. First, note that

n/2∑
j=0

(
r/2n
n
2 + j

)(
r

n
2 − j

)
≤

∑
j=0,...,n

2
−1

rn/(2n)
n
2
+j

(n2 + j)!(n2 − j)!
+

rn

n!(2n)n
(using

(
n

k

)
≤ nk

k!
)

≤
∑

j=0,...,n
2
−1

enrn/(2n)
n
2
+j

e2(n2 + j)
n
2
+j(n2 − j)

n
2
−j +

enrn

enn(2n)n
(since e

(n
e

)n
≤ n! )

≤
∑

j=0,...,n
2
−1

enrn/(2n)
n
2

e2(n2 )j(n2 + j)
n
2 (n2 − j)

n
2

+
enrn

enn(2n)n
(∗)

By considering the cases j < n
4 and n

2 > j ≥ n
4 , we get (n2 )j((n2 )2 − j2)

n
2 ≥ (n/8)3n/4, so

(∗) ≤
∑

j=0,...,n
2
−1

enrn

e2(n/8)3n/4(2n)n/2
+

enrn

enn(2n)n

≤ nenrn

e2(n/8)3n/4(2n)n/2
≤

√
2πrn

e2n1/2(2n)n
≤

√
2πrrr1/2

e2(r − n)r−n+1/2nn+1/2
· 1

2n

≤
(
r

n

)
/2n,

where n is assumed to be sufficiently large, r > n, and the last inequality makes use of Stirling’s
approximation

√
2π(ne )nn1/2 ≤ n! ≤ e(ne )nn1/2. This completes the proof of Claim 24.

This completes the proof of Lemma 23.

We are ready to combine these results and define a circuit C of size ≤ 2n+kβn with the property
stated in Lemma 17. This circuit on an input f ∈ {0, 1}N where N = 2n computes as follows.

1. C sequentially computes the string a(i) = (y1, f(y1)), . . . , (yi, f(yi)) for 1 ≤ i ≤ t′ and t′ =
210βn − n3.

During stage i, C inspects all strings y ∈ {0, 1}n, using the circuit Cn,i (Proposition 20) to fix
yi as the string that minimizes Cn,i(a

(i)).

2. C uses the circuit Dn,t′ (Lemma 21) to print the descriptions of n3 circuits of size at most
s = 2βn/10n.

3. Finally, C invokes n3 copies of the circuit En (Lemma 22) to complete the list y1, . . . , yt of
strings, where t = t′ + n3 = 210βn.
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Correctness of the construction follows from the properties of the circuits Cn,i, Dn,t′ , and En
in combination with Lemma 23. More precisely, if f /∈ Circuit[2βn], then for every 1 ≤ i ≤ t′,
either φ(a(i)) ≤ (1 − 1/4n)i or Q#(x(a(i−1))) < 4n2. To see this, note that if the latter condition
does not hold, then for some string y∗ as in Lemma 23 we get with respect to the corresponding
extension a(i) that φ(a(i)) ≤ φ(ai−1) · (1 − 1/2n). Since C tries all strings during its computation
in step 1 when in stage i, and the relative approximation given by circuit Cn,i is sufficiently
precise, we are guaranteed in this case (using an inductive argument) to fix a string yi such that
φ(a(i)) ≤ φ(ai−1)·(1−1/4n) ≤ (1−1/4n)i. On the other hand, if the condition Q#(x(a(i−1))) < 4n2

holds for some i ≤ t′, then by monotonicity it is maintained until we reach i = t′. Consequently,
using that initially φ(ε) = 1, t′ = 210βn − n3, m(n) ≤ 211βn, and recalling that the second input of
the relation Q has length m1/5 and that this parameter is related to the definition of φ, when C
reaches i = t′ at the end of step 1 we have

Q#(x(a(t
′))) ≤ max {4n2, (1− 1/4n)t

′ · 2m1/5}
≤ n3.

This implies using Lemmas 21 and 22 and the description of C that if f /∈ Circuit[2βn] then every
circuit of size at most s = 2βn/10n disagrees with f on some input string among y1, . . . , yt.

Finally, we upper bound the circuit size of C. For every i ≤ t′ in step 1 and each string
y ∈ {0, 1}n, C feeds Cn,i with the appropriate bit in the input string f and the previously com-
puted string a(i−1). This produces an estimate vy ∈ N represented as a string of length 2O(βn) that
is stored as a pair (y, vi). Using Proposition 20, all pairs (y, vy) can be simultaneously computed
by a circuit of size at most 2n · 2O(βn). By inspecting each such pair in sequence, C can pick the
string yi ∈ {0, 1}n minimizing vi using a sub-circuit of size 2n · poly(2O(βn)). Also note that the
bit f(yi) can be easily computed from yi and f by a circuit of size O(N logN). Therefore, each
stage i can be done by a circuit of size at most 2n+O(βn), and since there are t′ ≤ 210βn stages, the
computation in step 1. can be done by a circuit of size 2n+O(βn). Lastly, steps 2 and 3 can be each
implemented by a circuit of size at most 2O(βn) using the upper bounds on circuit size provided by
Lemmas 21 and 22, respectively, and the description of C. It follows that the overall circuit size
of C is at most 2n+kβn, where k is a constant that only depends on the circuits provided by the
initial assumption that NP ⊆ Circuit[poly].

A remark on formulas vs. circuits. An obstacle to producing the anti-checker using formulas of
size N1+o(1) under the assumption that NP ⊆ Formula[poly] comes from the sequential aspect of the
construction. A string yj produced after the j-th round is inspected during each subsequent round
of the construction. In the case of formulas, the corresponding bits need to be recomputed each
time, and the overall complexity becomes prohibitive. (There are other intermediate computations
that one may not be able to simulate so easily with sub-quadratic formulas, such as selecting the
best string yi during each round.)

4.3 The Anti-Checker Hypothesis

The existence of anti-checkers of bounded size witnessing the hardness of Boolean functions is far
from obvious. In this section, we explore consequences of a hypothetical phenomenon manifesting
on a higher level: the existence of a small collection of anti-checker sets witnessing hardness of all
hard functions. We show that a certain formulation of this Anti-Checker Hypothesis (AH) implies
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unconditional lower bounds. Complementing this result, we prove unconditionally that (AH) holds
for functions that are hard in the average case.

For simplicity, we adopt a concrete setting of parameters for the hypothesis and in the results
presented in this section. Understanding the validity of (AH) with respect to other non-trivial
setting of parameters would also be interesting.

The Anti-Checker Hypothesis (AH). For every λ ∈ (0, 1), there are ε > 0 and a collection
Y = {Y1, . . . , Y`} of sets Yi ⊆ {0, 1}n, where ` = 2(2−ε)n and each |Yi| = 2n

1−ε
, for which the

following holds.

If f : {0, 1}n → {0, 1} and f /∈ Circuit[2n
λ
], then some set Y ∈ Y forms an anti-checker for f :

For each circuit C of size 2n
λ
/10n, there is an input y ∈ Y such that C(y) 6= f(y).

The Anti-Checker Hypothesis can be shown to imply the hardness of a specific meta-computational
problem in NP (which is not necessarily NP-complete).

Definition 25 (Succinct MCSP). Let s, t : N → N be functions. The Succinct Minimum Circuit
Size Problem with parameters s and t, abbreviated Succinct-MCSP(s, t), is the problem of deciding
given a list of t(n) pairs (yi, bi), where yi ∈ {0, 1}n and bi ∈ {0, 1}, if there exists a circuit C of
size s(n) computing the partial function defined by these pairs, i.e., C(yi) = bi for every i ∈ [t].

Note that Succinct-MCSP(s, t) ∈ NP whenever s and t are constructive functions.

Theorem 26. Assume (AH) holds, and let ε = ε(λ) > 0 be the corresponding constant for λ = 1/2.

Then Succinct-MCSP(2n
1/2
/10n, 2n

1−ε
) /∈ Formula[poly]. In particular, NP * Formula[poly].

Proof. The proof is by contradiction. Take λ = 1/2 in the Anti-Checker Hypothesis, and let
ε = ε(λ) > 0 be the given constant. In addition, let Fm : {0, 1}N → {0, 1} be a formula of size mk

for Succinct-MCSP(2n
1/2
/10n, 2n

1−ε
), where m ≤ poly(n) · 2n1−ε

is the total input length for this

problem. We argue below that from these assumptions it follows that Gap-MCSP[2n
1/3
, 2n

2/3
] ∈

Formula[N2−δ] for some δ > 0. This contradicts Theorem 5 if α is taken to be a sufficiently small
constant, which completes the proof.

We define a formula E : {0, 1}N → {0, 1} that solves Gap-MCSP[2n
1/3
, 2n

2/3
]. It projects the

appropriate bits of the input f to produce T = 2(2−ε)n instances of Succinct-MCSP(2n
1/2
/10n, 2n

1−ε
)

obtained from f and from the collection Y in the natural way. The formula E is defined as the
conjunction of T independent copies of the formula Fm from above. Note that E has at most
T · mk ≤ N2−δ leaves, where δ = δ(ε) > 0. Finally, it is easy to see that it correctly solves
Gap-MCSP using our choice of parameters and (AH).

We say that a Boolean function f with n inputs is hard on average for circuits of size s if every
circuit of size s fails to compute f on at least 1/s fraction of all inputs.

Proposition 27 (Average-Case AH). For every λ ∈ (0, 1) there is ε > 0 such that for every large
enough n ∈ N there is a collection Y = {Y1, . . . , Y`} of ` = 2n sets Yi ⊆ {0, 1}n of size 2n

1−ε
for

which the following holds. If f : {0, 1}n → {0, 1} is hard on average for circuits of size 2n
λ
, then

some set Y ∈ Y constitutes an anti-checker for f : For each circuit C of size 2n
λ

there is a string
y ∈ Y such that C(y) 6= f(y).

21



Proof. Let H be the set of all Boolean functions f over n inputs that are hard on average for
circuits of size s = 2n

λ
. Then we can generate anti-checkers for f ∈ H by choosing n-bit strings

uniformly at random: for each i ∈ [2n], we let Yi be the set obtained by sampling with repetition
2n

1−ε
random strings in {0, 1}n, where 1− ε > λ. Then, for every large enough n, for each circuit

C of size at most 2n
λ

and for each f ∈ H,

Pr[C|Yi
≡ f |Yi

] ≤ (1− 1/2n
λ
)2
n1−ε

≤ exp(−2n
1−ε
/2n

λ
).

Now by a union bound over all such circuits, for a fixed f ∈ H we get

Pr[Yi is not an anti-checker set for f ] ≤ exp(O(n · 2nλ)) · exp(−2n
1−ε
/2n

λ
) < 1/4,

where the last inequality used our choice of ε. Finally,

Pr[∃f ∈ H s.t. none of Y1, . . . ,Y2n is an anti-checker set for f ] ≤ 22
n · (1/4)2

n
< 1.

There is therefore a collection Y with the desired properties.

Theorem 26 and Proposition 27 show a connection between establishing super-polynomial for-
mula size lower bounds for NP and understanding the difference between worst-case and average-
case collections of anti-checkers.
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A Unconditional Lower Bounds for Gap-MKtP and Gap-MCSP

A.1 MKtP – A near-quadratic lower bound against U2-formulas

In this section, we provide the proof of Theorem 3.

Proof Idea. We employ the technique of random restrictions to show that Gap-MKtP requires near-
quadratic size formulas. The idea is that, with high probability, a formula F of sub-quadratic size
simplifies under a random restriction ρ : [N ] → {0, 1, ∗}. This will allow us to complete a fixed
restriction ρ either to a string wy of Kt complexity ≤ s1, or to a string wn of Kt complexity ≥ s2.
Because the simplified formula F �ρ depends on few input variables in ρ−1(∗), if we define wy and
wn appropriately F �ρ won’t be able to distinguish the two instances. Consequently, F does not
compute Gap-MKtP[s1, s2].

In order for this idea to work, we cannot use a truly random restriction. This is because our
restrictions will set most of the variables indexed in [N ] to simplify a near-quadratic size formula,
and a typical random restriction cannot be completed to a string of low Kt complexity. We use
instead pseudorandom restrictions, which can be computed from a much smaller number of random
bits. Previous work established that such restrictions also simplify sub-quadratic size formulas. As
a consequence, we are able to extend any restriction in the support of a pseudorandom distribution
of restrictions to either an “easy” or a “hard” string, as explained in the paragraph above. (We
remark that in order to improve our parameter s1 in Gap-MKtP[s1, s2], it is useful to compose a
sequence of pseudodeterministic restrictions.)

We proceed with the technical details. Let ρ : [N ] → {0, 1, ∗} be a restriction, and ρ be a
random restriction, i.e., a distribution of restrictions. We say that ρ is p-regular if Pr[ρ(i) = ∗] = p
and Pr[ρ(i) = 0] = Pr[ρ(i) = 1] = (1− p)/2 for every i ∈ [N ]. In addition, ρ is k-wise independent
if any k coordinates of ρ are independent.

Lemma 28 (cf. [IMZ12, Vad12]). There exist q-regular k-wise independent random restrictions
ρ distributed over ρ : [N ] → {0, 1, ∗} samplable with O(k log(N) log(1/q)) bits. Furthermore, each
output coordinate of the random restriction can be computed in time polynomial in the number of
random bits.

As a consequence, we get p-regular k-wise independent random restrictions where each restric-
tion in the support has bounded Kt complexity. In order to define the Kt complexity of a restriction
ρ : [N ] → {0, 1, ∗}, we view it as a 2N -bit string encoding(ρ) where each symbol in {0, 1, ∗} is en-
coded by an element in {0, 1}2. We abuse notation and write Kt(ρ) to denote Kt(encoding(ρ)).

26



Proposition 29. There is a distribution Dq,k of q-regular k-wise independent restrictions such that
each restriction ρ : [N ] → {0, 1, ∗} in the support of Dq,k satisfies Kt(ρ) = O(k log(N) log(1/q)).
Furthermore, this is witnessed by a pair (M,wρ) where the machine M does not depend on ρ.

Proof. By Lemma 28, each output coordinate of ρ can be computed in time poly(`) from a seed wρ of
length ` = O(k log(N) log(1/q)). Therefore, the binary string describing ρ can be computed in time
O(N · poly(`)) from a string wρ with Kt(wρ) = O(k log(N) log(1/q)). It follows from Proposition 8
that Kt(ρ) = O(k log(N) log(1/q)). The furthermore part follows from the fact that the machine M
is obtained from the generator provided by Lemma 28, i.e., in order to produce different restrictions
one only needs to modify the input seeds, which are encoded in wρ.

Let N = 2n. Given a function F : {0, 1}N → {0, 1} and a restriction ρ : [N ] → {0, 1, ∗}, we let
F �ρ be the function in {0, 1}ρ−1(∗) → {0, 1} obtained in the natural way from F and ρ. In this
section, we use L(F ) to denote the size (number of leaves) of the smallest U2-formula that computes
a function F .

The next result allows us to shrink the size of a formula using a pseudorandom restriction.
This restriction can be obtained by a composition of restrictions. This reduces the amount of
randomness and the corresponding complexity of the restriction.

Lemma 30 (Shrinkage from pseudorandom restrictions ([HS17, Theorem 28]; cf. [IMZ12, KRT17])).
Let F : {0, 1}N → {0, 1}, q = p1/r for an integer r ≥ 1, and L(F ) · p2 ≥ 1. Moreover, let Rrp,k be
a distribution obtained by the composition of r independent q-regular k-wise independent random
restrictions supported over [N ]→ {0, 1, ∗}, where k = q−2. Finally, assume that q ≤ 10−3. Then,10

Eρ∈RRrp,k [L(F �ρ)] ≤ crp2L(F ),

where c ≥ 1 is an absolute constant.

Proposition 31. There is a (p-regular k-wise independent) distribution Rrp,k obtained by the
composition of r independent q-regular k-wise independent random restrictions supported over
[N ] → {0, 1, ∗}, where k = q−2 and q = p1/r, such that each restriction ρ : [N ] → {0, 1, ∗} in
the support of Rrp,k satisfies Kt(ρ) = O(rk log(N) log(1/q)).

Proof. We use the distribution Dq,k of restrictions provided by Proposition 29. A restriction ρ in
the support of Rrp,k is therefore obtained through the composition of r restrictions ρ1, . . . , ρr in the
support of Dq,k. For each i ∈ [r], Kt(ρr) = O(k log(N) log(1/q)). Moreover, each Kt upper bound is
witnessed by a pair (M,wi), where M can be taken to be the same machine for all i ∈ [r]. It is not
hard to see that for the string w = 1|w1|0w11

|w2|0w2 . . . 1
|wr|0wr there is a machine M ′ satisfying

|〈M ′〉| ≤ |〈M〉|+O(1) and running in time tM ′(w) ≤ r ·maxi tM (wi) + poly(rN) such that the pair
(M ′, w) witnesses that Kt(ρ) = O(rk log(N) log(1/q)).

We will also need the following simple proposition, which holds even with respect to Kolmogorov
complexity instead of Kt complexity.

10The assumption that q ≤ 10−3 does not appear in [HS17, Theorem 28]. The proof sketch appearing there does not
seem to address the cases where pΓL(ψ) < 1 in their analyses of formula shrinkage in Lemma 27 and Theorem 28. This
can be easily fixed using appropriate expressions of the form 1+p2L(ψ). Lemma 27 is only affected by a constant factor.
Then, proceeding by induction as in the proof of their Theorem 28 but also addressing this possibility, one gets instead
an upper bound of the form 1 + cqΓ(1 + cqΓ(. . .)), which translates to 1 + (cqΓ) + (cqΓ)2 + . . .+ (cqΓ)r−1 + (cqΓ)rL(f).
This can still be upper bounded by crp2L(F ) (for a different universal constant c as in the statement of Lemma 30)
using that q is sufficiently small and therefore cqΓ ≤ 1/2 (note that Γ = 2 and c ≤ 500 in [HS17]).
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Proposition 32. Let S ⊆ [N ] be a set of size at least two. There exists a function h : S → {0, 1}
such that for every string w ∈ {0, 1}N , if w agrees with h over S then Kt(w) ≥ |S| − 5 log |S|.

Proof. It is easy to encode a pair (M,a) (as in Definition 6) satisfying |〈M〉|+ |a| < |S| − 5 log |S|
by a binary string of length at most 2 log |S|+ 2 + |〈M〉|+ |a| < |S|. Since each pair (M,a) outputs
at most one binary string of length N , it follows by a counting argument that for some choice of
h : S → {0, 1}, no string w of length N that agrees with h over S has Kt(w) < |S| − 5 log |S|.

The next lemma describes the high-level strategy of the lower bound proof.

Lemma 33 (Adaptation of Lemma 27 from [HS17]). There exists a constant a ≥ 1 such that the
following holds. Let ρ : [N ]→ {0, 1, ∗} be a restriction, V = ρ−1(∗), and let F : {0, 1}N → {0, 1} be
a function such that L(F �ρ) ≤M . If

Kt(ρ) + a · n ≤ s1(n) and (|V | −M)− 5 log(|V | −M) ≥ s2(n) and |V | ≥M + a,

then F does not compute Gap-MKtP[s1(n), s2(n)], where n = logN .

Proof. Under these assumptions, we define a positive instance wy ∈ YESN and a negative instance
wn ∈ NON such that F (wy) = F (wn).

– wy ∈ {0, 1}N is obtained from ρ by additionally setting each ∗-coordinate of this restriction to
0. Note that, given the 2N -bit binary string encoding ρ, wy can be computed in time polynomial
in N . It follows from Proposition 8 that Kt(wy) ≤ Kt(ρ) + a · n, for some universal constant a ≥ 1.
Since this bound is at most s1(n), we get that wy ∈ YESN .

– wn ∈ {0, 1}N is defined as follows. Since L(F �ρ) ≤ M , F �ρ depends on at most M input
coordinates (indexed by elements in V ). Let W ⊆ V ⊆ [N ] be this set of coordinates. Moreover,
let S = V \W . The string wy ∈ {0, 1}N is obtained from ρ by additionally setting each ∗-coordinate
of this restriction in W to 0, and then setting each remaining ∗-coordinate in S to agree with the
function h : S → {0, 1} provided by Proposition 32. Since |S| ≥ |V | −M and the real-valued func-
tion φ(x) = x − 5 log x is non-decreasing if x ≥ a for a large enough constant a, our assumptions
and Proposition 32 imply that Kt(wn) ≥ s2(n). Consequently, yn ∈ NON .

Using that F restricted to ρ depends only on variables from W ⊆ ρ−1(∗), and that the strings
wy and wn agree over coordinates in ρ−1({0, 1})∪W , it follows that F (wy) = F (wn). Since wy is a
positive instance while yn is a negative instance, F does not compute Gap-MKtP[s1(n), s2(n)].

We are now ready to set parameters in order to complete the proof of Theorem 3. For a
sufficiently large constant C ′ ≥ 1, let

n
def
= logN, p

def
= N−1+α/2, r

def
= n/C ′, q

def
= p1/r, k

def
= q−2,

and assume thatN is sufficiently large. Note that, under this choice of parameters, q = 2C
′(−1+α/2) =

Ω(1) and q ≤ 10−3.

Proposition 34 (Concentration Bound for |ρ−1(∗)|). For ρ ∼ Rrp,k with parameters as above, we

have Pr[ |ρ−1(∗)| ≥ pN/2 ] ≥ 1/2.

Proof. Note that ρ is p-regular and pairwise independent (i.e., k ≥ 2 for our choice of parameters).
The result then follows from Chebyshev’s inequality using mean µ = pN , variance σ2 = Np(1− p),
and the value of p.
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Using Proposition 31, we can sample a random restriction ρ ∈R Rrp,k as described in the
statement of Lemma 30 such that each ρ : [N ]→ {0, 1, ∗} in the support of Rrp,k satisfies

Kt(ρ) = O(rk log(N) log(1/q)) = O((n/C ′)q−2n log(1/q)) ≤ (C/2)n2,

if C is a sufficiently large constant.
Toward a contradiction, let F : {0, 1}N → {0, 1} be a formula of size L(f) that supposedly

computes Gap-MKtP[Cn2, 2(α/2)n−2], where p2L(F ) = 1 (note that L(F ) = N2−α), and let

M
def
= 10 · crp2L(F ) = 10 · cr ≤ 2(α/4)n,

for a constant c ≥ 1 as in Lemma 30, and using that C ′ = C ′(α) is large enough in the definition
of r.

Invoking Lemma 30 and Markov’s inequality, Proposition 34, and a union bound, there is a
fixed restriction ρ : [N ]→ {0, 1, ∗} for which the following holds:

• For V
def
= ρ−1(∗), we have |V | ≥ pN/2 = 2(α/2)n/2;

• Kt(ρ) ≤ (C/2)n2.

• L(F �ρ) ≤ M ≤ 2(α/4)n.

Using these parameters in the statement of Lemma 33, it is easy to check that its hypotheses are
satisfied given our choices of s1(n) = Cn2 and s2(n) = 2(α/2)n−2. This is a contradiction to our
assumption that F computes Gap-MKtP for these parameters, which completes the proof.

A.2 MKtP – Stronger lower bounds for large parameters

The goal of this section is to prove Theorem 2. First, we need a definition. We say that a
generator G : {0, 1}r → {0, 1}N δ-fools a function f : {0, 1}N → {0, 1} if∣∣∣ Pr

x∈R{0,1}N
[f(x) = 1]− Pr

y∈R{0,1}r
[f(G(y)) = 1]

∣∣∣ ≤ δ.

Similarly, G δ-fools a class of functions F if G δ-fools every function f ∈ F . The parameter r
is called the seed-length of G. We say that G is explicit if it can be uniformly computed in time
poly(N, 1/δ).

Theorem 35 ([IMZ12]). Let c > 0 be an arbitrary constant. The following hold:

1. There is an explicit generator GU2 : {0, 1}r → {0, 1}N using a seed of length r = s1/3+o(1) that
s−c-fools the class U2-Formula[s(N)] of formulas on N input variables.

2. There is an explicit generator GB2 : {0, 1}r → {0, 1}N using a seed of length r = s1/2+o(1) that
s−c-fools the class B2-Formula[s(N)] of formulas on N input variables.

2. There is an explicit generator GBP : {0, 1}r → {0, 1}N using a seed of length r = s1/2+o(1)

that s−c-fools the class BP[s(N)] of branching programs on N input variables.

We now prove Theorem 2 (Part 1). The other cases are similar. We instantiate GU2 with

s(N) = N3−ε and c = 1. Then GU2 : {0, 1}N1−δ′ → {0, 1}N for some δ′ = δ′(ε) > 0.
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Proposition 36. For every string w ∈ {0, 1}N1−δ′
, let GU2(w) ∈ {0, 1}N be the N -bit output of

GU2 on w. Then
Kt(GU2(w)) ≤ 2(1−δ

′/2)n

for every large enough n = logN .

Proof. This follows from Proposition 8 using that GU2 is explicit and therefore runs in time poly(N)
under our choice of parameters.

As a consequence of Proposition 36, every output of GU2 is always an N -bit string of Kt
complexity at most 2(1−δ)n, for a fixed δ > 0. On the other hand, it is well-known that a random
N -bit string (where N = 2n) has Kolmogorov complexity (and thus Kt complexity) at least 2n−1

with high probability. It follows that Gap-MKtP[2(1−δ)n, 2n−1] /∈ U2-Formula[N3−ε], since otherwise
this would violate the security of the generator GU2 against formulas of this type and size.

A.3 MCSP – A similar near-quadratic lower bound against U2-formulas

In this Section, we sketch the proof of Theorem 5, which is the analogue of Theorem 3 in the
context of MCSP. More precisely, we explain why the argument carries over when we measure the
complexity of a string by circuit size instead of via Kt complexity, modulo small changes to the
involved parameters.

As explained in Section A.1, the crucial idea in the proof of Theorem 3 is that a pseudorandom
restriction simplifies a U2-formula of bounded size. For technical reasons, we employ a composition
of restrictions of small complexity, so that the overall complexity of the combined restriction is
bounded. This allows us to trivialize any small formula F using a fixed restriction ρ of bounded
complexity, where |ρ−1(∗)| is sufficiently large compared to other relevant parameters of the argu-
ment. Then, Lemma 33 employs a counting argument (via Proposition 32) to extend this restriction
to a positive instance wy and to a negative instance wn such that F (wy) = F (wn). This can be
used to show that no small formula correctly computes Gap-MKtP for our choice of parameters.

In order to establish Theorem 5, we make two observations. Firstly, Lemma 28 already gives
individual restrictions of low circuit complexity instead of low Kt complexity. Secondly, the counting
argument used to extend ρ to a negative instance wn works for most complexity measures including
circuit size, Kolmogorov complexity, etc.

Using these two observations, the proof goes through under minor adjustments of the relevant
parameters. We remark that one obtains a lower bound for Gap-MCSP[nd, 2(α/2−o(1))n] instead of
Gap-MCSP[Cn2, 2(α/2)n−2] because of a polynomial circuit complexity overhead in the argument,
which is not present in the case of Kt complexity since there one takes the logarithmic of the running
time when measuring complexity, and because the circuit complexity (measured by number of gates)
of a random string can be slightly smaller than its Kt complexity.

B Hardness Magnification and Proof Complexity

The initial instance of hardness magnification from [OS18] says that if an average-case version of
MCSP (with inputs being truth tables of Boolean functions) is worst-case hard for formulas of super-
linear size, then its succinct version (with inputs being lists of input-output tuples representing
partial Boolean functions) is hard for NC1 (cf. [OS18, Theorem 1]).
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Hardness magnification for MCSP thus attacks strong circuit lower bounds by 1. employing the
natural proofs barrier which states a conditional hardness of MCSP, and 2. exploiting the difference
between feasible (succinct) and infeasible (uncompressed) formulations of a meta-computational
problem like MCSP.

This strategy has a history in proof complexity. The work of Razborov [Raz94, Raz95] and
Kraj́ıček [Kra04] formulated the natural proofs barrier as a conditional proof complexity lower
bound expressing hardness of tautologies encoding circuit lower bounds. This idea was further
developed in the theory of proof complexity generators [Kra01, ABSRW04]. It has led, in particular,
to Razborov’s conjecture [Raz15] about hardness of Nisan-Wigderson generators for strong proof
systems. Razborov’s conjecture is designed to imply hardness of circuit lower bounds formalized in
a way so that the whole truth table of the hard function is hardwired into the formula.

The realization that a feasible formulation of circuit lower bounds should be much harder than
the infeasible truth table formulas inspired the result about unprovability of circuit lower bounds in
theories of bounded arithmetic such as VNC1, cf. [Pic15], and the proposal [Pic14, 0.1 Circuit lower
bounds and Complexity-Theoretic tautologies] to study exponentially harder lb formulas. Once the
definitions are given, it is for example clear that polynomial-size proofs of the lb formulas transform
into almost linear-size proofs of the truth table formulas. Another instance of this phenomena says
that:

If the truth table formulas encoding a polynomial circuit lower bound require superlinear-size proofs
in AC0-Frege systems, then lb formulas encoding the same polynomial circuit lower bound require
(NC1)-Frege proofs of super-polynomial size (implicit in the proof of [MP17, Proposition 4.14]).

Since AC0-Frege lower bounds are known, this suggests a way for attacking Frege lower bounds.
([OS18] established analogous results in circuit complexity, where it might be easier to prove lower
bounds. However, their version of the MCSP problem refers to the average-case complexity of
truth-tables, which seems harder to analyse. We refer to [OS18] for further discussion.)

The lb formulas result from the feasible witnessing of circuit lower bounds. In [MP17], the
witnessing was provided by a theorem of Lipton and Young [LY94] establishing the existence of
anti-checkers, described in Section 1.2. This allows to express the hardness of f without using its
whole truth table. The present paper extends the idea of anti-checkers into the context of hardness
magnification in circuit complexity for the standard worst-case formulation of MCSP.
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