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Abstract

We define new functions based on the Andreev function and prove that they require
n3/ polylog(n) formula size to compute. The functions we consider are generalizations
of the Andreev function using compositions with the majority function. Our arguments
apply to composing a hard function with any function that agrees with the majority
function (or its negation) on the middle slices of the Boolean cube, as well as iter-
ated compositions of such functions. As a consequence, we obtain n3/ polylog(n) lower
bounds on the (non-monotone) formula size of an explicit monotone function by com-
bining the monotone address function with the majority function. To the best of our
knowledge, previously, super-quadratic formula size lower bounds for explicit functions
have been obtained only for non-monotone functions.

1 Introduction

We study the problem of proving lower bounds on the De Morgan formula size of explicit
functions.

While it is known that almost all Boolean functions of n variables require formula size
exponential in n, proving lower bounds on the formula size of specific functions remains a
major challenge. The current largest lower bounds on De Morgan formula size for explicitly
defined functions are of the form n3−o(1). Lower bounds for general formula size are weaker,
throughout this paper we only consider De Morgan formulas, but sometimes we just refer to
them as “formulas”.

History: Formula size lower bounds have a long history. One of the methods for proving
formula size lower bounds is based on shrinkage of De Morgan formulas under random
restrictions. This method was introduced by Subbotovskaya [Sub61] who gave a Ω(n1.5)
lower bound on the De Morgan formula size of the parity function. The lower bound for
parity has been improved by Khrapchenko [Khr71] to Ω(n2). However, it is also known
that Khrapchenko’s method cannot give larger than quadratic lower bounds. The method of
random restrictions on the other hand has led to the currently known largest lower bounds
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on formula size. Andreev [And87] used random restrictions to prove an Ω
(
n2.5−o(1)

)
lower

bound for a function obtained by composing parity with an arbitrary other function f where
f is specified as part of the input. We give more formal definitions in Section 2. After
improvements of the bound by [IN93; PZ93], H̊astad [H̊as98] proved a lower bound of the
form n3−o(1) for the Andreev function. Tal [Tal14] improved the lower order terms to give

a Ω
(

n3

(logn)2 log logn

)
lower bound for the Andreev function, which is tight up to the log log n

term. Tal [Tal17] gave a slightly larger lower bound of the form Ω
(

n3

logn(log logn)2

)
for another

function introduced by Komargodski and Raz [KR13]. This function is similar to the Andreev
function, it still composes parity with other functions specified as part of the input. The
difference is that instead of specifying the function f by its entire truth table as part of the
input, an error correcting code is used to derive the truth table from the input. Bogdanov

[Bog17] showed that the same Ω
(

n3

logn(log logn)2

)
lower bound can also be obtained for any

“small-biased” function, that is any randomized function whose distribution of truth tables
is small biased. He also noted that standard constructions of small biased sets yield explicit
families of such functions. [Che+15; KRT17] showed that parity in Andreev’s function can be
replaced with any good enough bit fixing extractor, and the resulting function still requires
n3/ polylog n formula size.

Other than Bogdanov’s functions, the only explicit function with n3−o(1) formula size
lower bounds has been the Andreev function, and its variants using error correcting codes
by [KR13; Tal17] or bit fixing extractors [Che+15; KRT17].

Dinur and Meir [DM16] gave a new proof of n3−o(1) formula size lower bounds for the
Andreev function, based on information theoretic arguments. The bound obtained by their

argument is of the form Ω
(

n3

2
√
logn poly log logn

)
which is weaker in the lower order terms than

the bounds of H̊astad [H̊as98] and Tal [Tal14]. But their goal was to give a proof that could
possibly generalize to other function compositions, which would be important in light of
the KRW conjecture [KRW95] (see Section 5). Our results can be viewed as a step in this
direction.

Our results: In this paper we obtain n3/ polylog(n) lower bounds on a new class of
functions. First we consider an extension of the Andreev function which we call “General-
ized Andreev function with Majority”, using the majority function instead of parity in the
function compositions. We define the function formally in Section 2. As far as we know
this function has not been studied before, and previous approaches do not directly work to
obtain our bounds.

Next we extend our results to composing a hard function with any function that agrees
with the majority function (or its negation) on the middle slices of the Boolean cube, as well
as iterated compositions of such functions. Since parity agrees with majority on the two
middle slices of the Boolean cube, our argument also applies to parity (the original Andreev
function), and composing parity with majority in various ways.

As another consequence, we prove n3/ polylog(n) lower bounds on the (non-monotone)
formula size of the monotone function obtained by combining the monotone address function
of Wegener [Weg85] with the majority function. As far as we know this is the first super-
quadratic formula size lower bound for an explicitly defined monotone function.

Our argument gives a formal proof that the monotone formula size of the majority func-
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tion is Ω(nΓmon), where Γmon denotes the shrinkage exponent of monotone formulas under
random restrictions. It is a long standing open problem to determine the value of Γmon. It is
also open to obtain tight bounds on the formula size of majority, both in the monotone and
non-monotone case. The current best lower bound for both monotone and non-monotone
formulas computing majority of n bits is Ω(n2). The best upper bound on the De Mor-
gan formula size of majority on n bits is O(n3.91) [Ser16]. Considering monotone formulas
for majority, the best upper bound remains the O(n5.3) bound by Valiant [Val84]. H̊astad
[H̊as98] noted that determining the value of Γmon is likely to yield improved lower bounds
on the monotone formula size of the majority function. Our results make this connection
explicit, independently of how the value Γmon is obtained.

Our argument is based on random restrictions and analyzing the shrinkage of formula
size under restrictions. However, the main obstacle in applying previous arguments is that
we need random restrictions that leave each Majority undetermined. Previously considered
restrictions are far from achieving this. Instead of standard random restrictions, we use
“staged” random restrictions, and adjust their results to enforce more structure. The idea
of building restrictions in stages appears before in [IMZ12; Che+15; KRT17]. The main
difference in our approach is that we maintain the structure of the composed hard function
with majority after each stage by performing some clean-up procedure.

2 Definitions and Background

Given an n-bit string ~x = (x1, . . . , xn) ∈ {0, 1}n, let wt(~x) denote the Hamming weight of ~x,
defined as

wt(~x) = |{i : xi = 1}|

Let Bn = {f : {0, 1}n → {0, 1}} denote the set of all Boolean functions on n bits.
Given an bm-bit string ~x, we can interpret ~x as a b×m matrix with rows ~x1, . . . , ~xb of m

bits each. If f ∈ Bb and g ∈ Bm are arbitrary functions, let f ◦ g : {0, 1}b×m → {0, 1} denote
their composition, defined as

(f ◦ g)(~x1, . . . , ~xb) = f(g(~x1), . . . , g(~xb))

Given a function f ∈ Bn, let tt(f) denote the truth table of f , defined as the string of
length 2n specifying the output of f on all strings ~x ∈ {0, 1}n in lexicographic order. We use
f and tt(f) interchangeably when f is an input to another function.

Let ⊕m : {0, 1}m → {0, 1} denote the parity function on m bits.
Let Majm : {0, 1}m → {0, 1} denote the majority function on m bits, defined as

Majm(~x) =

{
1 if wt(~x) ≥

⌈
m
2

⌉
0 otherwise

2.1 Andreev Function

Let An : {0, 1}n × {0, 1}n → {0, 1} denote the Andreev function on 2n bits. Let b = log n
and m = n/b = n/ log n. If f ∈ Bb, then |tt(f)| = 2b = 2logn = n.
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The function An takes two inputs: an n-bit string representing the truth table of a
function f on b bits, and an n-bit string ~x, interpreted as a b×m matrix with rows ~x1, . . . , ~xb.
Then,

An(f, ~x) = (f ◦ ⊕m)(~x) = f(⊕m(~x1), . . . ,⊕m(~xb))

2.2 Generalized Andreev Function

Let b = log n and m = n/b as before. If gm ∈ Bm is an arbitrary function on m bits, then let
Agmn : {0, 1}n × {0, 1}n → {0, 1} denote the generalized Andreev function on 2n bits, defined
analogously by

Agmn (f, ~x) = (f ◦ gm)(~x) = f(gm(~x1), . . . , gm(~xb))

In particular, An = A⊕m
n .

LetMn : {0, 1}n × {0, 1}n → {0, 1} denote the generalized Andreev function with Majm
in place of gm. That is

Mn(f, ~x) = AMajm
n (f, ~x) = (f ◦Majm)(~x) = f(Majm(~x1), . . . ,Majm(~xb))

If f ∈ Bb is a fixed function, define Mn,f : {0, 1}n → {0, 1} as

Mn,f (~x) =Mn(f, ~x)

or equivalently, Mn,f = f ◦Majm.

2.3 De Morgan Formulas

Formulas are tree-like circuits, that is circuits where each gate has fan-out at most one. A
De Morgan formula is a formula that uses only AND, OR and negation gates, where the
gates have fan-in at most 2. Let f ∈ Bn be an arbitrary function. Define L(f) to be the
formula complexity of f , which is the minimum number of leaves required by any De Morgan
formula computing f .

It is known that almost all Boolean functions on n variables require De Morgan formula
size at least 2n

2 logn
[RS42].

2.4 Random Restrictions and Shrinkage

Consider a function f ∈ Bn and let S = {x1, . . . , xn} denote the variables of f . A restriction
on S is a function ρ : S → {0, 1, ?}. Let f�ρ denote the function obtained from f by fixing
inputs xi to ρ(xi) if ρ(xi) 6= ?, which depends only on the inputs xi for which ρ(xi) = ?.
Given arbitrary functions g ∈ Bm and f ∈ Bn for m ≤ n, we say that f computes g as a
sub-function if g can be achieved as a restriction of f .

A random p-restriction on S is a randomly generated restriction ρ where

Pr(ρ(xi) = ?) = p

Pr(ρ(xi) = 0) = Pr(ρ(xi) = 1) =
1− p

2
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uniformly and independently for all xi ∈ S. Let Rp denote the distribution of all uniformly
generated random p-restrictions.

Subbotovskaya [Sub61] proved that for any Boolean function f ∈ Bn it holds that

E
ρ∼Rp

[
L
(
f�ρ
)]

= O
(
pΓ L(f)

)
for Γ = 3/2. The constant Γ is called the shrinkage exponent, which is the largest number
for which the statement is true. After several improvements [IN93; PZ93], H̊astad [H̊as98]
proved that Γ = 2. The following version is due to Tal [Tal14].

Theorem 2.1 (Shrinkage Lemma [Tal14])
Let f ∈ Bn be an arbitrary function. Then, ∀p > 0,

E
ρ∼Rp

[
L
(
f�ρ
)]
≤ O

(
1 + p2 L(f)

)
(1)

Corollary 2.2
Let f ∈ Bn be an arbitrary function. Then, ∃c > 0 such that for ∀p > 0 and large enough n,

Pr
ρ∼Rp

(
L
(
f�ρ
)
≥ 10c(1 + p2 L(f))

)
≤ 1

10
(2)

Proof. Let c > 0 be chosen such that Eρ∼Rp

[
L
(
f�ρ
)]
≤ c(1 + p2 L(f)). Then, by Markov’s

inequality: Prρ∼Rp

(
L
(
f�ρ
)
≥ 10c(1 + p2 L(f))

)
≤ 1

10
.

2.5 Concentration Inequalities

We use the following result on bounds of sums of random variables.

Theorem 2.3 (Hoeffding’s Inequality [Hoe63])
Let X1, . . . , Xn be independent random variables such that ai ≤ Xi ≤ bi for 1 ≤ i ≤ n and
let X =

∑n
i=1Xi. Then,

Pr
(∣∣∣X − E[X]

∣∣∣ ≥ t
)
≤ 2 exp

(
−2t2∑n

i=1(bi − ai)2

)
(3)

3 Composition with Majority

Let Mn be the generalized Andreev function with majority. Let b = log n and m = n/b =
n/ log n and assume b,m ∈ N. Let h ∈ Bb be a function of maximum formula complexity
and consider Mn,h = h ◦Majm. Since Mn,h is a sub-function of Mn, we have L(Mn) ≥
L(Mn,h) = L(h ◦Majm). Thus, it suffices to prove a lower bound on the formula complexity
of h◦Majm. Indeed, this will be our strategy (which is standard when proving lower bounds
for Andreev-type functions). Our main result is the following general theorem, that may
also be applied in other scenarios.
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Theorem 3.1 (Formula Size of Composition with Majority)
Let b,m ∈ N and h ∈ Bb be non-constant. Then,

L(h ◦Majm) ≥ L(h) ·m2/ polylog(b ·m).

Since the hardest functions on b = log n bits have formula complexity at least n
2 log logn

[RS42], Theorem 3.1 implies that

L(Mn) ≥ L(h ◦Majm) ≥ L(h) ·m2/ polylog(b ·m) ≥ n3/ polylog(n).

The rest of this section is devoted to the proof of Theorem 3.1.

Warmup: Let n = mb. The input ~x = (x1, . . . , xn) is divided into b contiguous blocks
B1, . . . , Bb of m variables each. In order to apply a random restriction based argument to
h ◦Majm, we wish to prove that there exists a restriction ρ that leaves each Majm undeter-
mined and the resulting formula shrinks by a factor of Ω(m2/ polylog(bm)).

A single majority is undetermined by ρ if the absolute difference between the number of
variables assigned 0 and 1 is at most the number of unassigned variables. Otherwise, the
majority value is already set and there are not enough remaining variables to flip it.

3.1 Random p-Restrictions

Previous random restriction based arguments typically use random p-restrictions defined
in Section 2.4. We start by some observations about them. Let ρ ∈ Rp be a random
p-restriction on S = {x1, . . . , xn} and let Bi = {xi1 , . . . , xim} be a fixed block of the input.

Let Xik and Yik for 1 ≤ k ≤ m be the following random variables:

Xik =

{
1 if ρ(xik) = ?

0 otherwise
Yik =


1 if ρ(xik) = 0

−1 if ρ(xik) = 1

0 if ρ(xik) = ?
Then,

Xi =
m∑
k=1

Xik

E[Xi] =
m∑
k=1

E[Xik] = mp

Yi =
m∑
k=1

Yik

E[Yi] =
m∑
k=1

E[Yik] = 0

We note that Xi and Yi are not necessarily independent, since for any ` ≥ 0

Xi ≥ ` =⇒ |Yi| ≤ m− `

Since 0 ≤ Xik ≤ 1, Theorem 2.3 gives:

Pr
ρ∈Rp

(|Xi −mp| > t) ≤ 2 exp(−2t2/m) (4)
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To obtain lower bounds of the form L(h) · m2

polylog(mb)
by a single round of p-restrictions,

one would need p = O(polylog(mb)/m), thus Xi = Θ(polylog(mb)) would hold with high
probability. Since |Yi| is typically Ω(

√
m), it is likely that Majm(Bi�ρ) is constant.

Since one p-restriction cannot shrink the formula size sufficiently and leave each majority
undetermined, we will build such a restriction incrementally instead.

3.2 Staged p-Restrictions

Proof of Theorem 3.1. Let c′ be a large constant to be defined later. We first deal with the
case that L(h) ≤ 2c′. Then, since for non-constant h, Majm (or its negation) is a sub-function
of h ◦Majm and since L(Majm) ≥ Ω(m2) ([Khr71]) we get

L(h ◦Majm) ≥ L(Majm) ≥ Ω(m2) ≥ Ω(L(h) ·m2)

which completes the proof in this case. In the following, we shall assume that L(h) > 2c′.
We define the following procedure that runs in t stages: in the j-th stage, we generate

a pj-restriction ρj such that, with high probability, the formula has enough unrestricted
variables to balance the number of 0’s and 1’s and leave enough variables unrestricted for
stage j + 1.

Setting Up Parameters. We set m1 = m and

mj+1 = m0.6
j

for j ≥ 1 as long as mj ≥ log5(4b). Let t be the last j such that mj ≥ log5(4b). A small
calculation shows that t ≤ 2 log logm. For j = 1, . . . , t we set

pj = 4m−0.4
j = 4mj+1/mj

Shrinkage in t stages. Denote by ϕ1 = h ◦ Majm. For j = 1, . . . , t, we show how to
construct ϕj+1 over variables Sj+1 from ϕj over Sj. We show by induction that ϕj+1 =
h ◦Majmj+1

(up to a renaming of the variables) and that

L(ϕj+1) ≤ c ·
(
mj+1

mj

)2

· L(ϕj),

for some large enough universal constant c > 0.
Let j ∈ {1 . . . , t}. Let ρj ∈ Rpj be a random pj-restriction over Sj. Let

Xj
i =

mj∑
k=1

Xj
ik Y j

i =

mj∑
k=1

Y j
ik

for i = 1, . . . , b be defined analogously as in the previous section for block Bi. Then,

E
[
Xj
i

]
= mjpj = 4mj+1
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Let Ej,i denote the event that
∣∣Xj

i −mjpj
∣∣ ≤ 1

4
mjpj and let Fj,i denote the event that∣∣Y j

i

∣∣ ≤ 1
2
mjpj. By Theorem 2.3, using the assumption mj ≥ log5(4b),

Pr
ρj∈Rpj

(Ej,i) ≥ 1− 2e
−2

m2
j+1
mj = 1− 2e−2m0.2

j ≥ 1− 1

4b
(5)

Pr
ρj∈Rpj

(Fj,i) ≥ 1− 2e
−2

(2mj+1)
2

4mj = 1− 2e−2m0.2
j ≥ 1− 1

4b
(6)

By Corollary 2.2, there exists some constant c′ > 0 such that

Pr
ρj∈Rpj

(
L
(
ϕj�ρj

)
≤ c′(1 + p2

j L(ϕj))
)
≥ 0.9

Let Hj denote the event that L
(
ϕj�ρj

)
≤ c′ · (1 + p2

j · L(ϕj)). Thus Pr[Hj] ≥ 0.9. By

union bound, there exists a restriction ρj for which Hj and all Ej,i, Fj,i for i = 1, . . . , b hold
simultaneously. Fix such a restriction ρj. Now, since Ej,i holds, then

Xj
i ≥

3

4
mjpj

Since Fj,i also holds, then we can make the number of 0’s and 1’s equal by fixing at most
1
2
mjpj variables appropriately, leaving at least 1

4
mjpj = mj+1 unrestricted variables in the

block. We restrict the remaining variables further to leave exactly mj+1 unrestricted variables
by assigning an equal number of them 0 and 1 in some arbitrary process. Take ϕj+1 to be
the restricted function.

Since Hj holds, we get

L(ϕj+1) ≤ L
(
ϕj�ρj

)
≤ c′ · (1 + p2

j · L(ϕj))

However, since h is a sub-function of ϕj+1 and since we assumed that L(h) > 2c′, we get
that c′ < 1

2
L(ϕj+1). Thus,

L(ϕj+1) < 1
2
L(ϕj+1) + c′ · p2

j · L(ϕj)

which implies that L(ϕj+1) < 2c′ · p2
j · L(ϕj) and we get

L(ϕj+1) ≤ 2c′ ·
(

4mj+1

mj

)2

· L(ϕj) = c ·
(
mj+1

mj

)2

· L(ϕj)

for any j ∈ {1, . . . , t} by setting c = 2c′ · 16. Overall, we get

L(ϕt+1) ≤ ct ·
(mt+1

m

)2

· L(ϕ).

Since h is a sub-function of ϕt+1, the formula size of ϕt+1 is at least L(h), which gives

L(ϕ) ≥ c−t ·
(

m

mt+1

)2

· L(h).

Using mt+1 < log5(4b) and t ≤ 2 log logm we get

L(ϕ) ≥ c−2 log logm ·
(

m

log5(4b)

)2

· L(h) ≥ L(h) ·m2/ polylog(b ·m) .
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In the above proof, we only use two facts about the majority function. First, we use
that the values of the m-bit majority function are 0 on inputs ~x with Hamming weight
wt(~x) =

⌈
m
2

⌉
− 1 and 1 on inputs with wt(~x) =

⌈
m
2

⌉
. In addition, (at the beginning of our

proof) we use that L(Majm) ≥ Ω(m2) [Khr71]. Thus our argument extends to any function
with these two properties. It turns out that the first condition we need implies the second.
Let gm ∈ Bm be any function such that gm(~x) = 0 when wt(~x) =

⌈
m
2

⌉
− 1, and gm(~x) = 1

when wt(~x) =
⌈
m
2

⌉
. Then by Khrapchenko’s theorem [Khr71] the De Morgan formula size

of gm is at least Ω(m2).
One can also think of such functions as a partial function that generalizes both Majority

and Parity. We obtain the following.

Theorem 3.2
Let m = n

logn
and let gm ∈ Bm be any function such that gm(~x) = 0 when wt(~x) =

⌈
m
2

⌉
− 1,

and gm(~x) = 1 when wt(~x) =
⌈
m
2

⌉
. Then

L(Agmn ) ≥ n3/ polylog n.

4 Consequences

4.1 Composition with Other Threshold Functions

We also obtain lower bounds for compositions with arbitrary threshold functions
Thm,k instead of Majm. We use that Th2k+1,k is a subfunction of Thm,k. Fixing
arbitrary m− (2k + 1) bits to 0 in each block, our results immediately imply that
L(h ◦ Thm,k) ≥ L(h) · k2/ polylog(k, b). We get stronger bounds by noticing that fixing the
m− (2k+ 1) heaviest variables in each block, the formula shrinks by a factor of (2k+ 1)/m.
Thus, we get L(h ◦ Thm,k) ≥ L(h) ·m · k/ polylog(k, b). This implies the following.

Theorem 4.1
Let m = n

logn
and k ≤ m/2. Then

L
(
AThm,k
n

)
≥ n2 · k/ polylog n.

4.2 Iterated Compositions

Since the composed function “Parity of Parities” is just Parity, considering iterated compo-
sitions in place of Parity in the original lower bound arguments for Andreev function did
not give new functions. But taking iterated compositions of Majorities yield new functions,
such as “Majority of Majorities”, “Parity of Majorities”, “Majority of Parities” and so on.
Our results extend to the generalized Andreev function with iterated compositions in place
of gm. We obtain additional functions with cubic formula size lower bounds.

Theorem 4.2
Let Gm denote the set of functions gm ∈ Bm such that gm(~x) = 0 when wt(~x) =

⌈
m
2

⌉
− 1,
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and gm(~x) = 1 when wt(~x) =
⌈
m
2

⌉
; or the other way around, that is gm(~x) = 1 when

wt(~x) =
⌈
m
2

⌉
− 1, and gm(~x) = 0 when wt(~x) =

⌈
m
2

⌉
.

Let m = n
logn

and let u ≥ 2 and v ≥ 2 be integers such that uv = m. For any functions
fu ∈ Gu and gv ∈ Gv

L
(
Afu◦gvn

)
≥ n3/ polylog n.

Proof. Let h ∈ Blogn be a function of maximum formula complexity. By Theorem 3.1

L(h ◦ fu) ≥ L(h) · u2/ polylog(b · u),

where b = log n. Let b′ = b · u. By Theorem 3.1

L(h ◦ fu ◦ gv) ≥ L(h ◦ fu) · v2/ polylog(b′ · v).

Thus,

L(h ◦ fu ◦ gv) ≥ L(h) · u2

polylog(b · u)
· v2

polylog(b · u · v)
≥ L(h) · m2

polylog(n)
≥ n3

polylog(n)
.

The argument extends to repeated iterations. As the proof shows, we lose a polylog(n)
factor from the n3 lower bound at each iteration.

4.3 Cubic Formula Size Lower Bounds for an Explicit Monotone
Function

A function h : {0, 1}b → {0, 1} is called a slice function if on inputs ~z ∈ {0, 1}b, h(~z) = 1 if
wt(~z) ≥

⌊
b
2

⌋
+ 1, and h(~z) = 0 if wt(~z) <

⌊
b
2

⌋
. Note that every slice function is monotone,

and slice functions differ from each other only on inputs in the middle layer of the Boolean
cube, that is on inputs with weight exactly

⌊
b
2

⌋
.

The monotone address function defined by Wegener [Weg85] takes b+n input bits where
n =

(
b

b b2c
)
. The n bits are interpreted to specify a slice function h on b bits. We denote by

h both the n-bit string and the slice function specified by it. Then, on input (z, h) where
z ∈ {0, 1}b and h ∈ {0, 1}n, the output of the monotone address function is h(z). Note that
the monotone address function itself is monotone.

We are now ready to define a monotone function that requires cubic formula size. Let
n =

(
b
bb/2c

)
, and let m = n/b. Similarly to the Generalized Andreev Function, we define a

function Fn : {0, 1}n × {0, 1}n → {0, 1} on 2n bits.
The function Fn takes two inputs: an n-bit string representing a slice function h on b

bits, and an n-bit string ~x, interpreted as a b×m matrix with rows ~x1, . . . , ~xb. Then,

Fn(h, ~x) = (h ◦Majm)(~x) = h(Majm(~x1), . . . ,Majm(~xb))

We can further generalize this as follows: If gm ∈ Bm is an arbitrary function on m bits,
then let Fgmn : {0, 1}n × {0, 1}n → {0, 1} denote the function on 2n bits, defined analogously
by

Fgmn (h, ~x) = (h ◦ gm)(~x) = h(gm(~x1), . . . , gm(~xb))

10



In particular, Fn = FMajm
n . Note that for any monotone function gm, the function Fgmn is

also monotone.
Since the number of De Morgan formulas of size s on b input bits is at most (cb)s for

some constant c [RS42], and the number of different slice functions on b input bits is 2n

where n =
(

b
bb/2c

)
, by a standard counting argument, there are slice functions on b bits that

require formula size at least Ω( n
log b

) = Ω( n
log logn

).
This implies the following bound on the formula size of the monotone function Fn.

Theorem 4.3

L(Fn) ≥ n3/ polylog n.

4.4 Monotone Formula Size of Majority

Our results highlight again the question of determining the shrinkage exponent for monotone
formulas, raised by H̊astad [H̊as98]. It was pointed out by H̊astad [H̊as98], that determining
the shrinkage exponent for monotone formulas could potentially yield improved lower bounds
on the monotone formula size of the Majority function. Our results make this connection
explicit, without any dependence on how the value of the shrinkage exponent is obtained.
More precisely, our arguments imply the following.

Theorem 4.4
Let Γmon denote the shrinkage exponent of monotone formulas. Then Lmon(Majn) ≥
Ω(nΓmon), where Lmon denotes monotone formula complexity.

5 Future Directions

A possible extension of our result would be to verify the KRW conjecture [KRW95] for
composing arbitrary functions with the majority function. The KRW conjecture essentially
states that the formula size of composed functions is the product of their formula sizes,
e.g. L(h ◦ g) ≥ Ω(L(h) · L(g)). The conjecture has been verified for composing arbitrary
functions with parity. Unfortunately, getting asymptotically tight bounds on the formula
size of majority is still open. Currently, the best upper bound on the De Morgan formula size
of majority is O(n3.91) [Ser16]. Our lower bound would verify the conjecture for composing
arbitrary functions with majority if L(Majn) = O(n2).

Another interesting direction is studying the average-case hardness of the Generalized
Andreev function with Majority. Here, we expect a different behavior than the standard
Andreev function that is hard to compute on 1/2+exp(−nΩ(1)) fraction of the inputs [KR13]
(under the uniform distribution). ForMn we could not hope to get such strong average-case
hardness, as we argue next. Observe that a Majority function on the {x1, . . . , xm} agrees
with the dictator function of x1 on 1/2 + Ω(1/

√
m) fraction of the inputs. Replacing each

majority inMn with the appropriate dictator yields the address function, which has formula
complexity Θ(n). A small calculation shows that that a linear size formula (computing the
address function) has agreement at least 1/2 + Ω(1/

√
m)logn ≥ 1/2 + 2− log2(n) withMn. We

11



conjecture that getting a much better agreement with Mn, say 1/2 + 1/ poly(n), or even

1/2 + 2− o(log2 n), requires almost cubic formula complexity.
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