
Delegating Computations with (almost) Minimal

Time and Space Overhead

Justin Holmgren∗ Ron D. Rothblum†

September 13, 2018

Abstract

The problem of verifiable delegation of computation considers a setting in which a client
wishes to outsource an expensive computation to a powerful, but untrusted, server. Since the
client does not trust the server, we would like the server to certify the correctness of the result.
Delegation has emerged as a central problem in cryptography, with a flurry of recent activity in
both theory and practice. In all of these works, the main bottleneck is the overhead incurred
by the server, both in time and in space.

Assuming (sub-exponential) LWE, we construct a one-round argument-system for proving
the correctness of any time T and space S RAM computation, in which both the verifier and
prover are highly efficient. The verifier runs in time n · polylog(T) and space polylog(T), where
n is the input length. Assuming S ≥ max(n, polylog(T)), the prover runs in time Õ(T) and
space S + o(S), and in many natural cases even S + polylog(T). Our solution uses somewhat
homomorphic encryption but, surprisingly, only requires homomorphic evaluation of arithmetic
circuits having multiplicative depth (which is a main bottleneck in homomorphic encryption)
log2 log(T) +O(1).

Prior works based on standard assumptions had a T c time prover, where c ≥ 3 (at the
very least). As for the space usage, we are unaware of any work, even based on non-standard
assumptions, that has space usage S + polylog(T).

Along the way to constructing our delegation scheme, we introduce several technical tools
that we believe may be useful for future work.

∗Princeton. Email: justin.holmgren@princeton.edu. This research was conducted while the author was at MIT.
†Technion. Email: rothblum@cs.technion.ac.il. This research was conducted while the author was at MIT

and Northeastern.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 161 (2018)

Contents

1 Introduction 3
1.1 Our Contributions . 3
1.2 Comparison to Prior Works . 8
1.3 Organization . 10

2 Technical Overview 10
2.1 A Primer on BFLS Style PCPs . 11
2.2 No-signaling Soundness and Avoiding the Augmented Circuit . 14
2.3 PCPs for RAM computations via Tree Machines . 17
2.4 Efficient Implementation of the BFLS Prover . 18
2.5 Efficient Arguments: FHE and Multiplicative Depth . 22
2.6 Evaluating Low Degree Extension of Read Once Branching Programs 23

3 Preliminaries 24
3.1 Fields, Polynomials, and Low Degree Extensions . 25
3.2 Semantic Security and Homomorphic Encryption (FHE) . 26
3.3 No-Signaling PCPs . 27
3.4 Argument Systems . 28

4 Models of Computation 28
4.1 Arithmetic Straight Line Program (ASLP) . 29
4.2 RAM Machines . 31
4.3 Tree Machines . 35
4.4 Emulating RAM machines with Tree machines . 37

5 Technical Tools 40
5.1 Computing Low Degree Extensions of Read-Once Branching Programs 40
5.2 Caching . 44

6 Our Main Results 46
6.1 Efficient PCPs . 47
6.2 Argument-Systems . 48

7 The Construction 48
7.1 Preliminaries: A Locally-Checkable Transcript for Tree Machines . 49
7.2 The Prover . 50
7.3 The Verifier . 51

8 Verifier Efficiency 53
8.1 Computing φ̂+1, φ̂d and Ĉ0 . 54

9 Prover Efficiency 56
9.1 Evaluating X̂ . 56
9.2 Evaluating P

(enc)
i and P

(win)
i for i ≤ t . 57

9.3 Evaluating P
(enc)
i for t < i ≤ t+ s . 59

9.4 Evaluating P
(win)
i for t < i ≤ t+ s . 62

10 No-Signaling Soundness 66
10.1 Weak Soundness of the Relaxed Verifier - Proving Lemma 10.3 . 67
10.2 Soundness of V ⊗κ – Proving Lemma 10.1 . 77

11 Putting it All Together: Proving Theorems 6.1 and 6.4 79
11.1 Proof of Theorem 6.1 . 79
11.2 Proof of Theorem 6.4 . 79

A Deferred Proofs 86

2

1 Introduction

The problem of verifiable delegation of computation, or just delegation for short, considers a setting
in which a computationally weak device, such as a smart-{phone, watch, home device}, wishes to
outsource the computation of a complex function f , on a given input x, to a powerful, but untrusted,
server (aka “the cloud”). Since the device does not trust the server, a major security concern that
arises is that the alleged result y may be incorrect.

A naive solution for this problem is to simply have the client re-compute f(x) and compare
with y. However, that defeats the entire purpose of outsourcing the computation. Rather, we
would like for the server to prove to the client that the computation was done correctly. For such
a proof-system to be useful, it must satisfy two key properties:

1. The verification procedure, run by the client, must be extremely efficient. In particular it
should be much more efficient than computing f by yourself.

2. Proving correctness should be relatively efficient. Namely, not much more than the time that
it takes to compute f .

In addition, we seek solutions that are general-purpose and apply to any computation, rather
than specific custom made solutions. Due to the high cost of interaction, we will also restrict our
attention to protocols that are non-interactive. In such protocols the verifier sends to the prover
an input x (together with a short challenge) and gets back a response y as well as a short proof π.
Based on this proof, the verifier should able to quickly confirm the correctness of the computation.

The problem of delegating computation has drawn considerable interest in recent years, both of
a theoretical nature and even practical implementations. In particular, a delegation scheme (with
some additional properties) also forms the core component of a popular crypto currency [BCG+14].
The line of work implementing such schemes has identified the efficiency of the prover as the major
bottleneck toward practical solutions (see, e.g., [WB15]). This efficiency refers both to the time
overhead incurred by the prover over simply performing the computation and to the space overhead
- namely, how much additional memory does the prover need in order to prove correctness.

Solutions achieving good asymptotic performance are known under non-standard cryptographic
assumptions. In particular, these assumptions are not falsifiable in the sense of [Nao03, GW11]
and more generally are not well understood. This motivates the following question:

Under standard cryptographic assumptions, can we construct delegation schemes such
that the proving correctness is almost as efficient as simply performing the computation?

Computational Model. Since we care about the precise overhead incurred by the prover (and
in particular care about polynomial factors), it is important to specify what computational model
we use. In this work we focus on the standard word RAM model, which is typically viewed as a
good approximation for the efficiency of real computers.

1.1 Our Contributions

Our main result is a general-purpose non-interactive delegation scheme for deterministic computa-
tions with almost optimal time and space usage for both the verifier and prover.

3

Theorem 1 (Informally Stated, see Theorem 6.4 and Corollary 6.5). Let L be computable by a

time T and space S RAM machine, where max(log(T), n) ≤ S ≤ T , and let ζ > polylog(T)
S . Suppose

that there exists a sub-exponentially secure somewhat homomorphic encryption scheme. Then, there
exists a 2-message argument-system for L with the following efficiency:

• The verifier runs in time n · polylog(T) and space polylog(T).

• The prover runs in Õ(T) · (1/ζ) time and uses (1 + ζ) · S space.

• The communication complexity is polylog(T).

We emphasize that ζ can be smaller than 1. In particular, assuming S ≥ (log(T))c for some
sufficiently large constant c, we can set ζ = 1/ polylog(T) to obtain a prover that runs in time
Õ(T) and space S + o(S).

This result builds on, and improves upon, the recent line of work on delegation from standard
assumptions initiated by Kalai et al. [KRR13]. Our key improvement over these prior works is
in the time and space complexity of the prover. In particular, all prior results on non-interactive
delegation from standard assumptions had a prover running time of T c, where at the very least
c ≥ 3.

While the space usage in Theorem 1 is already quite low, we can actually improve upon it for a
large and natural class of RAM programs. Specifically, for this class we can reduce the space usage
to S + polylog(T), which is optimal up to the specific additive poly-logarithmic factor. Loosely
speaking, this class refers to RAM programs that have good “caching” behavior (i.e., do not suffer
from too many cache misses using an ideal cache).1 In particular, this includes Turing machine
computations but also other typical classes of computations. We are unaware of any prior general-
purpose delegation scheme, even based on non-standard assumptions, that simultaneously achieves
space usage S + polylog(T) and Õ(T) running time for the prover.

Theorem 2 (Informally Stated, see Theorem 6.4 and Corollary 6.6). Under the same setting as
Theorem 1, if L is computable by a time T and space S “cache friendly” RAM program (e.g., a
Turing machine), then there exists a 2-message argument-system for L with the same parameters as
those in Theorem 1, except with the prover running in time Õ(T) and using space S + polylog(T).

It is well known that cache efficiency is critical for practically efficient computing. There is also
a large body of theoretical work on the asymptotic number of cache misses incurred by a variety
of algorithms (see for example [FLPR99, AV88, Vit06]). Because of these considerations, we find
“cache friendly” algorithms to be an interesting target for practical delegation. We believe this
class of programs strikes a good balance between the concerns of efficiency vs. generality.

Homomorphic Encryption and Multiplicative Depth. Our reliance on homomorphic en-
cryption is actually quite mild. In particular, the multiplicative depth2 of the prover’s homomor-
phic operation is log2 log(T) + O(1) – a doubly exponential improvement over a naive usage. This

1More precisely, we require that the machine not suffer from too many cache misses (using an ideal cache) even if
we consider the caching behavior wrt to larger blocks of memory. See Section 5.2 and specifically Definition 5.12 for
the actual definition.

2An arithmetic circuit has multiplicative depth d if every path from the output to an input gate goes through
at most d multiplication gates. It is important for us that the encryption performs homomorphic evaluation in a
gate-by-gate manner, which all known schemes do. See Sections 3.2 and 11.2 for additional details.

4

(simultaneously) greatly benefits the efficiency of our argument scheme, as well as improves the
cryptographic assumptions on which it can be based.

1. Efficiency: A major efficiency bottleneck in existing FHE schemes (e.g., [BGV14, GSW13])
is the multiplicative depth of the computation. In particular, shallow computations are sup-
ported directly by these schemes without resorting to the expensive bootstrapping process.

2. Assumptions: Since we only need homomorphic encryption that supports low depth oper-
ations we can rely on weaker cryptographic assumptions. First, we can use “leveled” fully
homomorphic encryption (FHE), which is known based on the learning with errors (LWE) as-
sumption. In contrast, full-fledged FHE is only known based on LWE combined with a poorly
understood circular security assumption or based on obfuscation [CLTV15].

The fact that our protocol does not require homomorphic evaluation of circuits with multiplica-
tive depth Ω(T) may initially seem quite surprising. In particular, the computation that we are
delegating might be represented by an arithmetic circuit with multiplicative depth Ω(T). Jumping
ahead, the reason that we can obtain such a dramatic saving in the multiplicative depth is by having
the prover perform most of the work directly on the plaintext data (i.e., not under the FHE).3

Efficient Implementations of No-Signaling MIPs. Our basic approach for proving Theorem 1
follows the line of work on non-interactive delegation for P based on standard assumptions [KRR13,
KRR14, KR15, KP16, PR17, BHK17, BKK+18]. Similarly to that line of work, our basic building
block is the multi-prover interactive proof-system (MIP) of Babai et al. [BFL91] (and its PCP
variant from [BFLS91]). The above works all rely on a transformation from MIPs to non-interactive
arguments, originally proposed by Biehl et al. [BMW98], and shown to be secure for MIPs having
a strong soundness property in [KRR13]. This strong soundness property is known as no-signaling
soundness (to be discussed in depth below).

One of our key technical contributions is constructing a variant of the [BFL91] MIP which is
both no-signaling sound and for which the prover answers can be generated extremely efficiently.

Theorem 3 (Informally Stated, see Theorem 6.1 and Corollary 6.2). Let L be computable by a

time T and space S RAM machine, where max(log(T), n) ≤ S ≤ T . Let ζ > polylog(T)
S . Then,

there exists a polylog(T)-prover MIP for L with soundness against no-signaling strategies and the
following efficiency properties:

• The verifier runs in time n · polylog(T) and space polylog(T).

• Each of the provers runs in Õ(T) · (1/ζ) time and uses (1 + ζ) · S space.

• The communication complexity is polylog(T).

Setting ζ = 1/polylog(T) we get that the provers’ running time is Õ(T) and space usage is S+o(S).
Similarly to Theorem 2, we can obtain space usage S+polylog(T) for cache friendly RAM programs
(see Corollary 6.3). For comparison, the running time of the prover in prior no-signaling MIPs
[KRR13, KRR14, BHK17] was T c, for an unspecified constant c (which at the very least is c ≥ 3).

3On a related note, we comment that we cannot follow the private information retrieval (PIR) variant of the
[KRR13, KRR14, BHK17] approach, since it automatically increases the space usage of the prover to Ω(T).

5

In fact, Theorem 3 also improves over the most efficient known classical MIPs.4 Specifically,
Bitansky and Chiesa [BC12] and Blumberg et al. [BTVW14] show that variants of the [BFL91] MIP
can be implemented with a time Õ(T) and space S · polylog(T) prover. Prior to our work, MIPs
with space usage of O(S) were not known, let alone MIPs with additive space usage S + o(S) or
S + polylog(T).5 See Section 1.2 for further comparison and discussion on these and other related
works.

Remark 1.1 (PCP Length). Since we mainly care about using this MIP as a building block in
the construction of an efficient delegation scheme, we did not try to optimize certain parameters.
In particular, the length of queries generated by the verifier is slightly super logarithmic. This
means that if one views our MIP as a probabilistically checkable proof (PCP), the PCP proof length
has quasi-polynomial length. We believe that this is not inherent, and that our techniques can
easily yield a PCP of polynomial length (using techniques dating back to [BFLS91]). Since it would
make our proof significantly more cumbersome, for the sake of simplicity, we avoid doing so (see
Remark 2.2 for additional details).

1.1.1 Additional Technical Contributions

In the process of establishing our main results (i.e., Theorems 1 and 2), we also obtain some
technical results and introduce new techniques that we believe to be of independent interest.

Efficient Implementation of the BFLS PCP and Caching. As noted above, one of our key
steps is showing that, for our variant of the [BFLS91] PCP, it is possible to compute any symbol of
the proof string very efficiently. Consider for example a RAM program M and an input x. We show
an efficient algorithm P for computing any individual symbol of the corresponding proof string.

At a high level, this is done by giving the prover streaming access to the underlying computation
transcript. The prover algorithm P (which is stateful) then proceeds in T steps, where T is the
running time of M on x. In the ith step, P is given oracle access to the ith configuration of M on x,
as well as (succinct representations of) the differences between the ith and (i− 1)th configuration.
In case M is a Turing machine, we can implement P to run in amortized time polylog(T) per step,
while also maintaining an internal state of size polylog(T).

As mentioned above, our variant of the BFLS allows M to be a RAM machine (rather than
just a Turing machine). In this case, we give a time/space trade-off for the efficiency of P , that
depends on the memory access pattern of M on the given input x. If M ’s memory access pattern
is mostly sequential (as is the case for Turing machines), then we can similarly implement each
step of P in (amortized) time polylog(T). More generally, we count the number of cache misses
Q(τ,B) incurred by M ’s memory access pattern with an ideal cache6 of size τ and with respect to
a partition of the memory into blocks of size B.

However, as mentioned above, our variant of the BFLS PCP allows M to be a RAM machine
(rather than merely a Turing machine). In this case, we give a time/space trade-off that depends
on the memory access pattern of M on the given input x. If M ’s memory access pattern is mostly

4The MIP of Theorem 3 refers to deterministic computations (which is inherent for no-signaling soundness
[DLN+01, IKM09]). However, essentially the same MIP can be shown to achieve classical soundness even for non-
deterministic computations (see Remark 10.15).

5We remark that obtaining additive space overhead is significantly more difficult than constant multiplicative
space overhead. For example, we cannot even afford to assume that the space usage is a power of two.

6I.e., a cache designed when one knows the memory access pattern in advance.

6

sequential (as is the case for Turing machines), then we can similarly implement each step of P in
(amortized) time polylog(T). More generally, we count the number of cache misses Q(τ,B) incurred
by M ’s memory access pattern with an ideal cache7 of size τ and with respect to a partition of the
memory into blocks of size B.

For any τ , we show that it is possible to compute each step of P in amortized time maxBQ(τ,B)·
S
B · polylog(T) and space τ · polylog(T). Our analysis utilizes a classical result in caching theory,
due to Sleator and Tarjan [ST85], that shows that a least-recently-used (LRU) cache is nearly as
good as an ideal cache.

Avoiding the Augmented Circuit of [KRR14]. Building on the work of [KRR13, KRR14],
we give a new technique for establishing the no-signaling soundness of MIPs. Most notably, we
manage to avoid the complicated “augmented circuit” construction of [KRR14]. We mention that
similar ideas for avoiding the KRR augmented circuit appear in the concurrent and independent
works of Chiesa, Manohar, and Shinkar [CMS18] and Kiyoshima[Kiy18], however those two works
consider the setting of the exponential–length Hadamard PCP and in particular do not show how
to remove the augmented circuit in the setting of the [KRR14] no-signaling PCP.

We remark that although our construction is a significant simplification, the analysis remains
unfortunately quite complex. In particular, our analysis relies crucially on insights developed in
[KRR14]. See Sections 2.2 and 10 for more details.

Abstractions and Computational Models. Our argument schemes (Theorems 1 and 2) have
many moving pieces. We are able however to identify suitable abstractions that allow us to describe
the construction in a modular way. We are hopeful that these ideas will be useful for future work
as well.

For example, our high level approach (following [BMW98, KRR13]) is to transform our efficient
no-signaling MIP into an argument-scheme by encrypting the MIP queries and have the prover
generate the answers homomorphically. This is problematic in terms of efficiency, since even if the
MIP prover can be efficiently implemented on a RAM machine, homomorphic encryption schemes
natively support the homomorphic evaluation of circuits. Thus, we have to transform the MIP
prover into a circuit, which is sub-optimal.

We observe however that the prover has the main input x in the clear, and only gets the MIP
query q in encrypted form. To get improved efficiency, we show that the MIP prover, given x in
the clear can be used to generate a sequence of simple arithmetic instructions to be done on q. We
refer to this as an arithmetic straight-line program (ASLP).

Stated otherwise, we show that each MIP prover is computable by (uniformly generated given
x) ASLP. This notion allows us to:

1. Avoid needlessly generic reductions from time-T RAM computations to circuits of size Ω(T 2).

2. Cleanly separate the provers’ work “in the clear” from the work that it does under FHE.

3. Easily keep track of the multiplicative depth of provers’ FHE computations.

Another model that we utilize is tree machines, a variant of Turing machines in which the work
tape is laid out as an infinite complete binary tree (rather than the standard linear tape). These

7I.e., a cache designed when one knows the memory access pattern in advance.

7

are useful for us because on the one hand, they can emulate RAMs very efficiently, and on the other
hand they have a local structure that is amenable to PCP techniques (similar to Turing machines).8

See Section 2.3 for details.

Low Degree Extensions of Read Once Branching Programs. We describe clean and ver-
satile conditions which guarantee that a function’s minimal9 low-degree extension is efficiently
computable. Specifically, we show that the low-degree extension of any size-S read-once branch-
ing program is computable in O(S) ring operations. The proof of this is extremely simple, yet it
immediately subsumes and simplifies previous lengthy and ad-hoc algorithms for computing low-
degree extensions of specific functions in [BHK17] and [GR17]. In algebra-based proof-systems (e.g.,
[GKR15, KRR13, KRR14, KR15, KP16, BHK17, GR17]), it is quite common that one or more par-
ties must evaluate low-degree extensions of simple functions (e.g., a gate-indicator function for a
circuit), and we believe that our abstraction will prove useful in future work.

Remark 1.2 (On (Non-Minimal) Low Degree Extensions of Bounded Depth Computations). We
contrast this to another approach to generically computing simple functions’ (non-minimal) low-
degree extensions, that has been used in the literature (e.g., [BF91, LFKN92, Sha92, GKR15,
PR17]). These works rely on the observation that for any Boolean function f that is computable by
a small, low-depth circuit, it is possible to efficiently compute a moderately low-degree extension
of f by directly arithmetizing the circuit. This approach is not suitable for us; as observed in
the context of interactive proofs by Cormode et al. [CMT12] (in their fast implementation of the
[GKR15] protocol), there can be drastic efficiency benefits to using the minimal low degree extension.
The same type of efficiency benefits are applicable also in our setting.

1.2 Comparison to Prior Works

Delegation based on Standard Assumptions. As noted above, our scheme builds on the
recent line of work on non-interactive delegation schemes for polynomial-time computations based
on no-signaling PCPs [KRR13, KRR14, KR15, KP16, PR17, BHK17, BKK+18]. As mentioned
above, the prover in all of these schemes runs in time Ω(T 3).

One route to improved prover efficiency is to construct a no-signaling PCP whose proof strings
can be generated in time Õ(T). Such PCPs with classical soundness are known to exist (cf.
[BS08, BCGT13, BBC+17, BBHR18]) but are only known to be constructible using Ω(T) space.
Constructing short PCPs that can be generated with minimal time and space overhead is a fasci-
nating open question (let alone such PCPs that also have no-signaling soundness).

Our approach follows a different route. Rather than using a PIR scheme, we use (somewhat)
homomorphic encryption. Loosely speaking, this allows the cost of our prover to be proportional
to just computing a single PCP symbol, rather than the entire string. A similar observation was
made by Bitansky and Chiesa [BC12] (see more details below).

8Prior works that constructed efficient PCPs and MIPs for RAM computations used a non-deterministic reduction
from RAM machines to Turing machines. In contrast, since in the no-signaling context proof-systems can only support
deterministic computations [DLN+01, IKM09], we cannot utilize non-deterministic reductions. See Section 1.2 for
additional details.

9By minimal low degree extension of a function f : Hm → F over a field F, we refer to the unique individual
degree |H|−1 polynomial f̂ : Fm → F that agrees with f on Hm. In contrast, functions have many other “low degree
extensions” in which the total degree of the functions is larger but still bounded.

8

Returning to the comparison with the line of work on no-signaling based delegation schemes,
we remark that our main result has two drawbacks compared to the recent scheme of Brakerski et
al. [BHK17]:

1. First, [BHK17] only rely on polynomial hardness assumptions (e.g., standard computational
PIR) whereas we rely on sub-exponential hardness. We believe that we can show that our
construction can also be based on polynomial hardness assumptions, but the prover and veri-
fier running times would increase to T 1+ε and T ε, respectively. Also, basing our construction
on polynomial-time hardness assumptions would introduce some complications in the proof
(e.g., handling computational no-signaling provers) as in [BHK17], that we prefer to avoid.

2. Also, [BHK17] show that their delegation scheme has adaptive soundness meaning that sound-
ness holds even if the cheating prover can decide on the computational statement to be proved
after seeing the first message from the verifier. We believe that our construction can similarly
be shown to have adaptive soundness but we prefer to avoid doing so, given the complications
involved (which were already done in [BHK17]).

Lastly, we mention that in a very recent work, Badrinarayanan et al. [BKK+18] extended this
line of work to give a delegation scheme for bounded-space non-deterministic computations. We
believe that our techniques are applicable also in their context and should yield an extension of our
result for the bounded-space non-deterministic setting.

Interactive Delegation Schemes. Kilian [Kil92] constructed a 4-message delegation protocol
based on PCPs and collision resistant hash functions. Micali [Mic00] extended this to a non-
interactive solution in the random oracle model (which is a somewhat controversial model [CGH04])
and his techniques were recently further refined by [BCS16] (using an interactive notion of PCPs).
We remark that the prover’s space complexity in all of these protocols grows (at least) linearly with
the time complexity of the computation. These solutions are therefore highly inefficient for small
space computations. In contrast, in our protocol the space complexity is only slightly larger than
the space complexity of the original computation.

As mentioned above, Bitansky and Chiesa [BC12] construct an interactive delegation scheme in
which the prover’s time overhead is almost linear, and the space usage grows by a poly-logarithmic
multiplicative factor. Our main results improve on [BC12] in several ways: (1) our delegation
protocol is non-interactive10, (2) our construction uses only somewhat homomorphic encryption (for
log2 log(T) + O(1) multiplicative depth) whereas [BC12] use full-fledged FHE, (3) the space usage
in our scheme is S+o(S) (and in some cases even S+polylog(T)), see Theorem 2), whereas [BC12]
have space usage S · polylog(T); and (4) [BC12] perform have nested homomorphic evaluations
(i.e., homomorphic evaluation of a homomorphic evaluation of the computation) which we do
not. However, an advantage of the [BC12] result is that they can handle also non-deterministic
computations whereas we are limited to deterministic computations. An improved construction
with roughly the same asymptotic behavior as [BC12] (but much better concrete efficiency) was
given by Blumberg et al. [BTVW14].

Other interactive solutions from the literature provide the much stronger guarantee of statistical
soundness, but inherently handle only certain restricted classes of computations. In particular,

10[BC12] also give a separate non-interactive scheme that relies on a non-standard, and in particular non-falsifiable,
assumption.

9

Goldwasser et al. [GKR15] and Reingold et al. [RRR16] construct such protocols for computations
that are highly parallel-izable (i.e., bounded depth) or use bounded space, respectively. Both of
these protocols require a large number of rounds, which can be minimized via the Fiat-Shamir [FS86]
transformation, obtaining heuristic soundness (see also [KRR17, CCRR18]). We remark that there
has recently been a very successful line of work (c.f. [CMT12, SVP+12, Tha13, ZGK+17, WJB+17])
implementing, optimizing and improving the [GKR15] protocol.

Additional Delegation Schemes. A separate line of work [Gro10, Lip12, BCCT12a, DFH12,
GLR11, BCCT12b, GGPR12, BC12, BCI+13] constructs non-interactive delegation schemes for
non-deterministic computations based on non-falsifiable assumptions (which is inherent by [GW11]).
These are non standard assumptins whose security is much less understood.

Assuming indistinguishability obfuscation (IO), one can construct a delegation scheme which
preserves the underlying computation’s time and space complexity (up to multiplicative polyno-
mial factors in the security parameter). This holds not only for computations modeled as Turing
machines [KLW15], but also RAM machines [CH16] and even Parallel RAM machines [CCC+16].
These schemes all also enjoy a number of other desirable properties, such as public verifiability,
computation privacy, and the ability to delegate a persistent and mutable database.

Still, current candidate constructions of IO are problematic, both in the astronomically large
polynomial factors in current candidate constructions, and more fundamentally on the fact that
their security is still far from being well understood.

We also mention that many works consider delegation in the pre-processing model [GGP10,
CKV10, AIK10, PRV12], in which the verifier first has an expensive pre-processing stage, as complex
as performing the entire computation. Later, in the online phase the verifier is very efficient. In
contrast, our delegation protocol does not require any pre-processing for the verifier.

1.3 Organization

We start in Section 2 by providing a high-level technical overview of our construction and main ideas.
In Section 3 we provide preliminary definitions, notations and facts. In Section 4 we formally define
the computational models that we consider in this work, including RAM machines, Tree machines,
and arithmetic straight line programs. In Section 5 we show technical results that will be used for
our main results but we believe to be of independent interest: evaluating low degree extensions of
read-once branching programs and basic facts on caching theory.

In Section 6 we formally state our main results (the statements of these results rely on notions
defined in the prior sections). The proof of these results is established in the subsequent sections.
In Section 7 we give the construction of a PCP. In Section 8 we establish the running time of the
PCP verifier. In Section 9 we give our efficient implementation of the prover strategy. In Section 10
we show that our PCP has soundness against no-signaling strategies. Finally, in Section 11 we put
everything together and prove our main results.

2 Technical Overview

In this section we give an overview of the main technical ideas that we employ.
Our approach revolves around the celebrated PCP of [BFLS91]. Our presentation of this PCP

departs from the textbook description (cf. [Sud00]) because we directly arithmetize the Turing

10

machine computation, without first converting it into a Circuit-SAT instance. This is an impor-
tant conceptual step since later on we will not be able to afford the overhead incurred by the
transformation to a circuit.11 Throughout this section we refer to this PCP as the BFLS PCP.

Section Organization. We start in Section 2.1 by giving a primer on the BFLS PCP. In
Section 2.2 we describe how we establish no-signaling soundness of the BFLS PCP without relying
on the augmented circuit construct of [KRR14]. In Section 2.3 we describe a new technique that
allows us to efficiently handle RAM computations (rather than just Turing machine computations).
In Section 2.4 we give a high level outline of our efficient implementation of the BFLS PCP (viewed
as an MIP). In Section 2.5 we describe a technique by which we decrease the multiplicative depth of
the circuits that we are homomorphically evaluating by a doubly exponential factor (as compared
to a naive implementation). Lastly, in Section 2.6 we describe our simple method of computing low
degree extensions of simple functions.

2.1 A Primer on BFLS Style PCPs

In this section we recall the basic outline of the BFLS PCP, as applied to standard Turing machine
computations.

Let L ∈ TISP(T, S) be a language and let M be a time T and space S (single-tape) Turing
machine for deciding L. For simplicity we assume that T and S are powers of two and denote by
t = log2(T) and s = log2(S).12 We construct a PCP for deciding L as follows.

Let x ∈ {0, 1}n be an input for M . Define a function X : {0, 1}t×{0, 1}s → Γ× (Q∪⊥), where
Q is the set of internal control states of the Turing machine (and ⊥ 6∈ Q), as follows. For every
i ∈ {0, 1}t and j ∈ {0, 1}s we set X(i, j) = (γ, q) where γ is the symbol of the jth position of the
work tape at time step i. As for q, in case the machine head is located at position j at time step i
then q is the internal control state of the machine at time step i. Otherwise, q = ⊥. Thus, q both
indicates whether the machine head is located at position j (at time i) and, if that is the case, also
indicates the internal control state of the machine.

The truth table of the function X fully describes the evaluation of the machine M on input
x. However, it is extremely sensitive to small changes in the sense that a computation that is
entirely incorrect can be described by a function X that is locally consistent almost everywhere.
We would like to add redundancy to X by encoding it via an error-correcting code - specifically
the multi-linear extension - as follows.

Let F be a sufficiently large finite field (in particular |F| ≥ |Γ| · (|Q|+ 1)). We associate the set
Γ × (Q ∪ {⊥}) with some subset of F. Let X̂ : Ft+s → F be the (unique) multilinear polynomial
such that X̂ agrees with X on every input in {0, 1}t+s (via the above association).13

Remark 2.1 (A Useful Notational Convention). Throughout this overview, and also later in the
technical sections, we use the following useful notational convention. Blackboard bold lowercase
(e.g., z) is used for field elements whereas standard bold lowercase (e.g., z) is used for bits. Likewise,
we use z̄ to denote vectors of field elements and z̄ to denote bit strings.

11In particular, as we elaborate on later, it is not clear how to use the efficient non-deterministic reductions from
RAMs to circuits [GS89, BCGT13] in the no-signaling setting.

12In the actual construction we cannot assume that S is a power of two since this would lead to potential doubling
of the space usage, which we would like to avoid.

13For more details on the multilinear extension, and in particular a proof that such a polynomial X̂ exists, see
Section 3.1.

11

Remark 2.2 (An Aside: Multilinear vs. Low Degree Extensions). The fact that we use the multi-
linear extension rather than the so-called “low degree extension” leads to a PCP whose length is
quite long. In fact, the length will be super polynomial.14 However, since we will actually use this
PCP as an MIP, the important measure of efficiency is not the length of the PCP nor even the time
that it takes to write down the entire PCP. Rather, the main resource that we care about is the
complexity of retrieving any particular symbol from the PCP proof string.

We further remark that we believe that all of our results can be adapted with only mild compli-
cations to yield a PCP with a polynomial length proof (by using the low degree extension encoding).
However, to avoid handling these additional complications we use the multilinear extension encod-
ing.

While X̂ is much more “robust” thanX, we also need a method by which to verify its correctness.
To do so we shall express the correctness of the computation by relations between all pairs of points
in the computation transcript.

To this end, we first define four functions φ+1 : {0, 1}t × {0, 1}t → {0, 1} and φ→, φ←, φ∅ :
{0, 1}s×{0, 1}s → {0, 1} as follows. The function φ+1 gets as input two points z̄1, z̄2 ∈ {0, 1}t and,
viewing them as integers, outputs 1 if and only if z̄2 = z̄1 + 1.15 Thus, we think of the function φ+1

as getting as input a pair of indices corresponding to two time steps and outputting 1 if and only
if they are consecutive. Likewise, the function φ→ (resp., φ←) gets as input indices of two points
on the tape and outputs 1 iff the second point is immediately to the right (resp., left) of the first
point. Lastly, the function φ∅ gets as input a pair of points and checks that they are equal to one
another.

The correctness of a computation transcript can be described by local consistency constraints.
Furthermore, using the specific structure that we imposed on X, we can describe the correctness of
the computation using only constraints on pairs of values (ā1, b̄1) ∈ {0, 1}t×{0, 1}s and (ā2, b̄2) ∈
{0, 1}t×{0, 1}s of X. For each constraint, it must hold that the points lie in subsequent layers: i.e.,
ā2 = ā1 + 1. Likewise, by the sequential nature of Turing machine computations (and again using
the structure of X), b̄1 and b̄2 must be neighboring, i.e., b̄2 ∈ {b̄1 − 1, b̄1, b̄1 + 1}. Even more
importantly the local constraints are universal, in the sense that they only depend on which of three
options for b̄2 holds, and do not depend on the specific values of ā1 and b̄1 (where again we are
ignoring edge cases). We introduce validation functions V→, V←, V∅ : (Γ× (Q∪ {⊥}))2 → {0, 1} for
the three types of local constraints that we have. Each function gets as input values corresponding
to a pair of points in X, and checks that these values satisfy one of the three types of constraints
as follows:

• V→ handles constraints in which b̄2 = b̄1 + 1,

• V← handles constraints in which b̄2 = b̄1 − 1; and

• V∅ handles constraints in which b̄2 = b̄1.

For every d ∈ {→,←, ∅}, the function Vd outputs 1 if it detects a violation of the d type of constraint,
and otherwise outputs 0.

14In particular, this construction is closer to that of [BFL91] than that of [BFLS91].
15For this overview we shall ignore edge cases such as integers overflows. In particular, for the overview we do

not even specify the behavior of the functions φ+1, φ→, φ← in their edges cases. We remark that the edge cases are
handled explicitly in the technical sections, see Section 7.

12

By the above discussion, X is a consistent description of a Turing machine computation if and
only if the following holds: for every ā1, ā2 ∈ {0, 1}t and b̄1, b̄2 ∈ {0, 1}s such that φ+1(ā1, ā2) = 1
(i.e., ā2 corresponds to the time step following ā1) and φd(b̄1, b̄2) = 1 for some d ∈ {←,→, ∅} it
holds that

Vd

(
X
(
ā1, b̄1

)
, X
(
ā2, b̄2

))
= 0.

Observe that if φd(b̄1, b̄2) is equal to 1 for some d ∈ {←,→, ∅}, then that d is unique. Thus,
we can characterize the correctness of the computation in a more algebraic way by noting that the
computation is correct if and only if for every ā1, ā2 ∈ {0, 1}t and b̄1, b̄2 ∈ {0, 1}s:

φ+1(ā1, ā2) ·
∑

d∈{←,→,∅}

φd(b̄1, b̄2) · Vd
(
X
(
ā1, b̄1

)
, X
(
ā2, b̄2

))
= 0. (1)

Let φ̂+1 : Ft × Ft → F and φ̂→, φ̂←, φ̂∅ : Fs × Fs → F be the multilinear extensions of φ̂+1, φ̂→,
φ̂← and φ̂∅, respectively. Let V̂→, V̂←, V̂∅ : F2 → F be the low degree extensions of V→, V← and V∅,
respectively.

Motivated by Eq. (1), we define a polynomial P0 : Ft × Fs × Ft × Fs → F as follows:

P0(ā1, b̄1, ā2, b̄2) = φ̂+1(ā1, ā2) ·
∑

d∈{←,→,∅}

φ̂d(b̄1, b̄2) · V̂d
(
X̂
(
ā1, b̄1

)
, X̂
(
ā2, b̄2

))
. (2)

The polynomial P0 is included as part of the PCP proof string, in addition to the polynomial
X̂. The PCP verifier needs to check that P0 is identically 0 for all binary inputs.16 This check
will be done by augmenting the PCP with one last component, often referred to as the “sumcheck
polynomials”.17

Let ` = 2(t+ s). For every i ∈ [`], define the polynomial Pi : F` → F as follows:

Pi(z1, . . . , z`) =
∑

zi∈{0,1}

Pi−1

(
z1, . . . , zi−1, zi, zi+1, . . . , z`

)
· zzii , (3)

where we are viewing zi ∈ {0, 1} both as a field element and as an integer, in the natural way. Note
that we are simultaneously using zi and zi in the same equation. This choice, which may at first
appear confusing, is an intentional notational convention that we adopt. Later on, it will make our
notation much clearer.

Remark 2.3. The order in which we handle the variables in Eq. (3) can be chosen arbitrarily (i.e.,
unrelated to the different role that these variables play in P0). Moreover, we could equally well
define Pi to sum over a constant number of variables of Pi−1, rather than just one. Later on, in
Section 2.4 (when we describe an efficient implementation of the PCP prover), we shall choose a
different ordering and grouping that is more amenable to our efficient implementation.

The reason that the polynomials P1, . . . , P` are useful is because

Pi|Fi×{0,1}`−i ≡ 0 ⇔ Pi−1|Fi−1×{0,1}`−i+1 ≡ 0. (4)

16We emphasize since P0 has individual degree greater than 1, it is most likely the case that it is not the identically
0 polynomial.

17Indeed, these polynomials are directly related to the classical sumcheck protocol of Lund et al. [LFKN92].

13

The ⇐ direction is immediate from Eq. (3). The ⇒ direction follows by observing that the right
hand side of Eq. (3), viewed as a (degree 1) polynomial in zi is the identically 0 function for any
zi+1, . . . , z` ∈ {0, 1}. A polynomial is identically 0 if and only if all its coefficients are 0.

Thus, the PCP proof string includes, in addition to P0 and X̂, also the polynomials P1, . . . , P`.
Observe that if Eq. (4) holds for all i ∈ [`], then checking that P0|{0,1}` ≡ 0 is reduced to checking
that P`|F` ≡ 0, which turns out to be much easier to do.

We next describe a verifier for this PCP and provide intuition on why this verifier has classical
soundness. Later, in Section 2.2, we give intuition on a key step that shows that (a variant of) this
verifier also achieves no-signaling soundness.

The PCP Verifier and Classical Soundness. Given oracle access to the functions X̂ : Ft+s → F
and P0, . . . , P` : F` → F (which are all included as part of the PCP proof string), the verifier first
runs a low degree test [RS96] for each one of these polynomials. This test basically ensures us that
these functions are close to low degree polynomials. Let us assume for simplicity that the functions
themselves are low degree polynomials (rather than being close to having low degree).18

Now, the verifier checks the consistency of X̂ with P0. This check can be done by observing
that Eq. (2) describes a low degree relation between these polynomials and so it suffices to check
it at a random point to be ensured that (with very high confidence) it is correct on all points.

The above test requires the verifier to compute the functions {φ̂d}d∈{+1,←,→,∅} and {V̂d}d∈{←,→,∅}.
To see how this can be done efficiently, observe that the base functions φ+1, φ←, φ→ and φ∅ are
incredibly simple and, in particular, are each computable by a constant-width oblivious read-once
branching program. In Section 2.6 we show that the multi-linear extension of any function com-
putable by such a branching program can be efficiently evaluated (i.e., in time that is roughly
linear in the branching program size). Thus, the verifier can easily compute these functions by
itself. As for the functions {V̂d}d∈{←,→,∅}, since these are low degree extensions of functions defined
on a constant sized domain, they can be evaluated in a constant number of field operations by the
verifier.

This leaves us only with the check that Pi and Pi−1 are consistent, for all i ∈ [`]. This can again
be done by observing that Eq. (3) describes a low degree relation between the two polynomials and
so, yet again, if the relation holds at a random point then it holds everywhere.

So far we have established that X̂ is the low degree extension of a consistent computation
transcript. To complete the argument, the verifier must further check that the input embedded
within X̂ is consistent with its own main input x. This can be done by observing that the function
X̂(0, ·) : Fs → F is (supposed to be) the multilinear extension of the entire first layer of the
computation transcript. Since that layer simply consists of x concatenated with 0’s, the verifier
can directly check the correctness of this polynomial by querying it at a random point.

2.2 No-signaling Soundness and Avoiding the Augmented Circuit

In order to construct an efficient argument-system, we follow the approach originally suggested by
Biehl et al. [BMW98] and shown to be secure in [KRR13].

As mentioned above, this approach composes a private-information retrieval scheme (PIR),
or more generally a fully homomorphic encryption scheme (FHE), together with a multi-prover
interactive proof-system (MIP) to obtain an efficient non-interactive argument-system. Kalai et

18This assumption is justified by the fact that polynomials are also self-correctable [GLR+91].

14

al. [KRR13] establish the soundness of this approach if the the MIP satisfies a strong notion of
soundness called no-signaling soundness.19

No-Signaling Soundness. We first recall the definition of an MIP. An MIP consists of a verifier
V and ` non-communicating provers P1, . . . , P`. The verifier generates queries (q1, . . . , q`), sends qi
to Pi and gets a response ai. Given these answers the verifier decides whether to accept or reject.
Completeness means that if x ∈ L, there is a strategy for P1, . . . , P` to convince V to accept (say,
with probability 1).

Classical soundness means that for x 6∈ L, no cheating provers P ∗1 , . . . , P
∗
` that are not allowed to

communicate can convince V to accept x 6∈ L other than with negligible probability. No-signaling
soundness strengthens the classical soundness requirement by allowing the provers’ answers to
depend on queries sent to the other provers, but in a very restricted way. Specifically, the answer
distribution of any subset of the provers should not depend as a random variable on the queries to
the complementary set of provers.

More precisely, a prover strategy is a family of distributions {Aq̄}q̄ indexed by all possible sets
of queries (to all provers). A prover strategy is no-signaling if for every S ⊆ [`] and every two
query sets q̄, q̄′ that agree on S (i.e., q̄S = q̄′S) it holds that the marginal distributions āS and ā′S
are identical, where ā (resp., ā′) refers to the ` answers of the provers given the query set q̄ (resp.,
q̄′). (See Section 3.3 for the formal definition.)

An MIP verifier has no-signaling soundness if it accepts false statements with only negligible
probability, even when interacting with a no-signaling strategy. To show that our PCP has no-
signaling soundness we re-visit the no-signaling soundness analysis of [KRR13, KRR14].

Bird’s Eye View of the Augmented Circuit of [KRR14]. Kalai et al. [KRR13] showed
that a variant of the BFLS PCP has no-signaling soundness. A shortcoming of their original result
was that it was applicable only to bounded space computations. In a subsequent work, Kalai et
al. [KRR14] removed this restriction by introducing a new construct they called the “augmented
circuit”.

The augmented circuit is a transformation that gets as input a layered circuit C and outputs
a redundant version C ′ of C. More specifically, for the ith layer Gi of gates in C (for i ∈ [T]),
C ′ computes the low-degree extension Ĝi of those gates’ values, and also performs the (seemingly
redundant) check that when Ĝi is restricted to any line, the result is a low-degree univariate
polynomial. The BFLS PCP is now applied to the augmented circuit C ′.

Consider an input x 6∈ L and a no-signaling strategy A = {Aq}q̄ that makes our verifier accept.
For simplicity, let us assume that A makes the verifier accept with probability that is very close
to 1 (i.e., 1 − negl(T)).20 Loosely speaking, Kalai et al., and in a more explicit manner Paneth
and Rothblum [PR17], show that there is a mechanism by which we can query A on a subset
of polylog(T) points in the sub-domain of X̂ which refers to the underlying computation (i.e.,
{0, 1}t+s) such that the provided answers will be locally consistent (with probability close to 1).
We refer to this procedure as “reading” the subset of points and remark that it will only be done
as a mental experiment in the analysis.

19The results of Dwork et al. [DLN+01] and Dodis et al. [DHRW16] show that this approach is in general insecure
when using an MIP that is not sound against no-signaling strategies.

20To show soundness we need to rule out no-signaling strategies that succeed with much smaller probability. This
is done in a similar manner to [KRR13, KRR14, BHK17] and so we do not elaborate on it here. See Section 10 for
details.

15

Fix a layer i ∈ [T] and suppose that if we read the value of a random point v̄ in Ĝi then with
high probability we get the correct value of that point (i.e., the unique value that is determined by
the input x). Kalai et al. [KRR14] use the augmented circuit to argue that in such a case it should
also be true that if any fixed (i.e., worst-case) point v̄ is read, then whp we also get the correct
value.

To see why this holds, consider (as a thought experiment) taking a random line Lū passing
through the fixed point u within Ĝi. Consider reading the restriction of Ĝi to the line Lū. The
values retrieved can be interpreted as a univariate function f : F→ F. The additional checks added
in the augmented circuit, together with the local consistency of the reading mechanism ensure
that the function f will be low degree. Suppose that when reading the value of ū we obtain an
incorrect answer. Then, since distinct low degree polynomials disagree almost everywhere, with
high probability over the choice of v̄, also the value corresponding to v̄ is incorrect. By the no-
signaling condition, the same is true even if v̄ is read by itself (rather than via the line Lū). Thus,
we reach a contradiction which means that reading the fixed point ū will return the correct value.

This worst-case to average-case reduction is the core component that allows [KRR14] to bypass
the limitation of [KRR13] to bounded space computations.

Delegation for Unbounded Space Without the Augmented Circuit. The augmented
circuit is a major barrier to obtaining efficient provers. The first reason is that it introduces
an additional layer of abstraction and complicates the structure of the PCP proof string. More
fundamentally though, the augmented circuit drives us further away from the base computational
model that we are working with (i.e., the Turing machine, and later on the RAM machine).

With that in mind, our first observation is that, in a sense, low degree extensions of the individual
layers of C are already present in the original BFLS PCP (i.e., without the augmented circuit).
More specifically, for every i ∈ {0, 1}t, the polynomial X̂(i, ·) : Fs → F is essentially the low degree
extension of layer i. We would like to make similar arguments to [KRR14] with regard to these low
degree extensions that are anyhow present in the PCP.

The major complication that arises as compared to the augmented circuit approach, is that
we have no reason to believe that if we were to read the values of X̂(i, ·) restricted to the line
Lū : F→ Fs then the answers would be low degree. While the PCP verifier does explicitly test that
the restriction of X̂ to random lines has low degree, in the no-signaling setting we do not know
how to argue that the restriction to a non-random line such as Lū is low degree (in other words,
we do not have a low degree test for no-signaling PCPs). It is worth pointing out that the reason
that Lū is not a random line is due to two facts (1) that it passes through the fixed, worst-case,
point ū and (2) that it lies entirely the ith layer of the circuit. The latter point is actually much
more concerning for us since the analysis of [KRR13] does show that that the restriction of X̂ to a
random line passing through a fixed point is in fact low degree.

We resolve this issue by looking at the restriction of X̂ to a carefully constructed plane, rather
than a line.21 Recall that a plane is an individual degree 1 bivariate polynomial mapping (whereas
a line is a univariate degree 1 mapping) and that the restriction of a plane to each of its two coordi-
nates is a line. Thus, rather than taking a random line passing through u ∈ Ft+s, we take a take a
random plane M : F2 → Ft+s such that M(0, 0) = ū and M(·, 0) is contained entirely within layer

21In the actual construction, due to complications that arise from the implementation of the reading mechanism
(and the fact that the prover only succeed with small probability), we need to resort to multiple and slightly more
complicated manifolds (rather than a plane).

16

i (i.e., M(·, 0) ⊆ {i} × Fs).22 Observe that for each β 6= 0, the line M(·, β) is a totally random line
and so the restriction of X̂ to that line should be low degree (since the verifier tests that random
lines are low degree). For every α 6= 0, the line M(α, ·) is a random line conditioned on passing
through layer i at 0. In other words, M(α, ·) is entirely random except for a single point which is
not entirely random. As mentioned above, the analysis in [KRR13] shows that also the restriction
of X̂ to such “almost random” lines will also be low degree (or more accurately, it is low degree
if we ignore its value at 0). Very loosely speaking, this lets us argue that if we were to read the
restriction of X̂ to the plane M , the result would be a low degree (bivariate) polynomial F . Thus,
the line M(·, 0) is a random line that lies entirely within layer i and so we can treat it similarly to
the line Lū in the original analysis of [KRR14].

This concludes the overview of the no-signaling soundness analysis of our PCP. For full technical
details, see Section 10.

2.3 PCPs for RAM computations via Tree Machines

Having established the no-signaling soundness of our PCP, we proceed to the main step - giving an
efficient implementation of the PCP prover. The first difficulty that we encounter when trying to
obtain an efficient implementation of the BFLS PCP (as described in Section 2.1), is the very fact
that it refers to Turing machine computations rather than RAM computations.

It is well known that Turing machines can emulate RAMs with a quadratic to cubic slowdown,
depending on the precise RAM variant. In our context, we cannot afford such a slowdown since we
care about the precise polynomial running time of the prover, and we are aiming for a prover that
has only a poly-logarithmic overhead in running time over the RAM complexity of the computation.

The trouble that we run into when trying to implement a PCP directly for RAM computations,
is that RAMs do not offer the same type of local checkability that Turing machines offer. More
specifically, any location in memory might potentially be affected in any time step, depending
on the contents of the memory cell under the machine head. This difficulty was resolved in prior
works, starting from [BCGT13], by utilizing a more efficient non-deterministic reduction from RAM
programs to Turing machines (originally due to Gurevich and Shelach [GS89]). These works observe
that since they are anyhow constructing PCPs for non-deterministic computations, they may as well
utilize non-determinism when going from RAM computations to Turing machines. In contrast, since
we are only constructing protocols for deterministic computations (and this is inherent when aiming
for no-signaling soundness, see [DLN+01, IKM09]) we cannot utilize non-deterministic reductions.

Our approach to resolving this difficulty is by considering a twist on the Turing machine model,
called Tree machines. The advantage of Tree machines is that on one hand they are quite similar
to Turing machines and in particular are “locally checkable” (i.e., at any given time step, only a
constant number of neighboring memory location might be affected). This makes them amenable
to algebraic PCP techniques. On the other hand, the key advantage of Tree machines over Turing
machines is that they can emulate RAMs with only a poly logarithmic slowdown (using a simple
deterministic reduction).

Tree machines can be thought of as Turing machines with a different tape “geometry”. Rather
than having one (or more) linear working tapes, we think of the tape of a tree machine as an infinite

22Such a plane can be constructed by sampling at random v̄ ∈ {0} × Fs and z̄ ∈ Ft+s and setting M(α, β) =
ū+ α · v̄ + β · z̄.

17

complete binary tree. At any given point in time, the machine head points to a node in the tree,
and similarly to a Turing machine, the head position can move to either a parent or child of the
current node. Similarly to Turing machines, the decision of where to move (and what to write
at the current head position) is based on the symbol currently read by the machine head and an
internal control state.

We find Tree machines to be a very useful and natural abstract model of computation. Un-
surprisingly, Tree machines have been previously studied in the complexity theoretic literature at
least since the 70’s (cf. [PF79]), in particular, due to their efficient emulation of RAMs. Still, to
the best of our knowledge Tree machines have never been used in the context of designing efficient
proof-systems.

Efficient Emulation of RAMs by Tree machines. Recall that the main difficulty in emulating
RAMs by Turing machines is that in a RAM the machine head might move to a place that is at
some large distance d from the current position, at the cost of one instruction. For Turing machines
this seems to necessitate d instructions to cover the large distance. On the other hand, it is easy
to see that Tree machines can emulate such a step in O(log(d)) instructions as follows.

The RAM tape of length S is emulated by considering only the first log(S) layers of the (infinite)
tree-tape of the Tree machine. We view the log(S)th layer of the tree as the leaves (i.e., ignoring
the subsequent layers) and associate the RAM tape with this layer. Now, a transition of the RAM
machine head from location v to u can be emulated in the Tree machine by moving the Tree
machine head from v to the least common ancestor of u and v and then back down to u. Overall
this emulation takes O(log(S)) steps (rather than the S steps in a Turing machine).

We remark that for technical convenience our actual formalization of a Tree machine is slightly
different than stated above. In particular, rather than storing just single symbol at each node of
the tree, we store an entire infinite sequential working tape. This is done since in a RAM each
memory cell can contain a super-constant sized symbol (e.g., from an alphabet that is as large as
the RAM tape). See Section 4 for our actual formalization of Tree machines.

2.4 Efficient Implementation of the BFLS Prover

We now turn our attention to the prover efficiency. For sake of simplicity we address the easier
case where the computation is described by a Turing machine M , rather than a Tree machine. In
particular, we still refer to the construction and notation presented in Section 2.1 (which referred to
a Turing machine computation). We point out complications that arise from using Tree machines
only as necessary.

We describe an efficient evaluation procedure for each of the polynomials X̂, P0, . . . , P`, defined
over a field F in which all operations take polylog(T) time and representing an element of F takes
polylog(T) space. We start with X̂, which serves as a warmup for the far more complicated
evaluation of P0, . . . , P`. (Recall that X̂ is the multilinear extension of the function X : {0, 1}t ×
{0, 1}s → Γ× (Q ∪ ⊥), which corresponds to the computation transcript.)

Evaluating X̂: Attempt 1. The simplest approach for computing X̂(z) is by first generating
the entire truth table of X and then observing that X̂(z) is a linear combination of the truth table
of X (and the coefficients of this linear combination can be efficiently generated from z). The
problem with this approach is that it takes both time and space Ω(T · S) (whereas we are aiming
for time roughly T and space roughly S).

18

Evaluating X̂: Attempt 2. The key idea for improving the space usage is to generate the values
of X “on-the-fly” as we are running the computation, as follows.

Let y ∈ Ft and u ∈ Fs such that z = (y,u). Using the fact that the multilinear extension is a
tensor code we can express X̂(z) as

X̂(z) =
∑

i∈{0,1}t
βi→y · X̂(i,u)

where βi→y are easily computable coefficients.23

At any given time step i of the computation, given access to the entire work tape and control
state of M (i.e., head position and internal state) we can compute X̂(i,u) in time roughly S and
space polylog(T) since this value is a linear combination of evaluations of the restricted function
X(i, ·).

Overall this approach can be implemented in time roughly T ·S. As for space, beyond the space
actually using by the Turing machine, we only need additional polylog(T) space for the various
counters. Note that this still falls short of our goal of having the prover run in time roughly T .

Efficient Evaluation of X̂. Our final observation regarding the efficient evaluation of X̂ is that
the memory contents of the Turing machine do not change so much in each time step. More
specifically, they can are only changed in a constant number of location.24 Thus, we can minimize
the amount of work involved in computing the contribution of a given layer to X̂(z̄) as follows.

Suppose that we have already computed X̂(i, ū) and we want to compute X̂(i+ 1, ū). Observe
that:

X̂(i, ū) =
∑

j∈{0,1}s
βj→ū ·X(i, j).

Let Wi ⊆ {0, 1}s denote the positions in the work tape that are affected in transitioning from the
ith time step to the (i+ 1)th one. Then,

X̂(i+ 1, ū)− X̂(i, ū) =
∑
j∈Wi

βj→ū ·
(
X(i+ 1, j)−X(i, j)

)
. (5)

Since we know the set Wi (and its size is O(1)) and we also know what changes are made when
transitioning to the (i + 1)th time step (these all follow from the current head location, internal
machine state and transition function of the Turing machine), we can compute X̂(i + 1, ū) from
X̂(i, ū) in just polylog(T) time and space. Thus, overall, we can evaluate X̂(z̄) in time Õ(T) and
space S + polylog(T).

Efficient Evaluation of P0. Given our efficient evaluation of X̂ it is actually very easy to evaluate
P0 (indeed, the complications will only arise for evaluating Pi with i ≥ 1). Recall from Eq. (2) that
P0 is defined as:

P0(ȳ1, ū1, ȳ2, ū2) = φ̂+1(ȳ1, ȳ2) ·
∑

d∈{←,→,∅}

φ̂d(ū1, ū2) · V̂d
(
X̂
(
ȳ1, ū1

)
, X̂
(
ȳ2, ū2

))
.

23The notation is meant to remind of the fact that βi→y measures the contribution of X(i) to X̂(ȳ), which is
well-defined because the multi-linear extension is a linear code.

24The same is also true for Tree machines.

19

As was briefly discussed in Section 2.1, the functions φ̂+1, {φ̂d}d∈{←,→,∅} and {V̂d}d∈{←,→,∅} are all

computable in time polylog(T). In combination with our procedure for evaluating X̂, Eq. (2) can
be used directly to evaluate P0 in time Õ(T) and space S + polylog(T).

Efficient Evaluation of Pi for i ≤ t. We proceed to the evaluation of the polynomials Pi, but
start with the case that i ≤ t. We will use the notation x‖x′ to denote the concatenation of x and
x′.

Recall from Eq. (3) and Remark 2.3 that we may choose an arbitrary variable ordering and
grouping in the definition of Pi. We choose them so that for any i ≤ t, any ȳ1 = ā1‖b̄1 ∈ Fi×Ft−i,
any ȳ2 = ā2‖b̄2 ∈ Fi × Ft−i, and any ū1, ū2 ∈ Fs, we have

Pi
(
ā1‖b̄1, ū1, ā2‖b̄2, ū2

)
=

∑
ā1,ā2∈{0,1}i

P0

(
ā1‖b̄1, ū1, ā2‖b̄2, ū2

)
· āā1

1 · ā
ā2
2 ,

where for ā = (a1, . . . ,ai) and ā = (a1, . . . ,ai), the vector exponentiation notation is defined as

āā
def
=
∏
j a

aj
j .

This variable ordering and grouping will make it easy to evaluate Pi for i ≤ t in a similar fashion
to the method we described for evaluating X̂.

The factors āā1
1 and āā2

2 are each computable in time polylog(T). We will show how to enumerate
(i.e., sequentially output on a one-way write-only tape) the non-zero terms in the sequence:{

P0

(
ā1‖b̄1, ū1, ā2‖b̄2, ū2

)}
ā1,ā2∈{0,1}i.

(6)

in time Õ(T) and space S + polylog(T). Using this enumeration, we can evaluate Pi in time Õ(T)
and space S + polylog(T).

Before describing the enumeration process, let us see that there are at most O(T) non-zero
terms in the sequence defined in Eq. (6). This holds because by Eq. (2) P0

(
ā1‖b̄1, ū1, ā2‖b̄2, ū2

)
is a

multiple of φ̂+1(ā1‖b̄1, ā2, b̄2). But because φ̂+1 is the minimal low-degree extension of φ+1, we will
only have φ̂+1(ā1‖b̄1, ā2, b̄2) 6= 0 if there exist b̄1, b̄2 ∈ {0, 1}t−i such that φ+1(ā1‖b̄1, ā2‖b̄2) = 1.
This happens only if ā2 = ā1 or ā2 = ā1 + 1, i.e. for at most 2 · 2i = O(T) values of (ā1, ā2).

For simplicity, we only show how to enumerate the terms of Eq. (6) where ā1 = ā2 (the terms
when ā2 = ā1 +1 can be enumerated similarly and separately). As in the evaluation of P0 discussed
previously, and using the definition of P0, enumerating these terms reduces to enumerating{(

X̂(ā‖b̄1, ū1), X̂(ā‖b̄2, ū2)
)}

ā∈{0,1}i
(7)

in time Õ(T) and space S + polylog(T).
This can be done using similar techniques to the ones we have described for evaluating X̂, as

we explain next. Observe that

X̂(ā‖b̄1, ū1) =
∑

b̄∈{0,1}t−i
βb̄→b̄1

· X̂(ā‖b̄, ū1), (8)

and
X̂(ā‖b̄2, ū2) =

∑
b̄∈{0,1}t−i

βb̄→b̄2
· X̂(ā‖b̄, ū2). (9)

20

Since the coefficients βb̄→b̄1
and βb̄→b̄2

are computable in time polylog(T), enumerating Eq. (7)
reduces to enumerating: {(

X̂(ȳ, ū1), X̂(ȳ, ū2)
)}

ȳ∈{0,1}i.
(10)

in time Õ(T) and space S + polylog(T), as long as the enumeration is in a “nice” ordering.25

One nice ordering is in order of lexicographically increasing (or, if ȳ is thought of as an integer in
{0, . . . , 2t − 1}, numerically increasing) ȳ.

But this is possible by the same techniques we described for evaluating X̂. Namely, we first
compute X̂(0̄, ū1) and X̂(0̄, ū2) (which is easily done in time Õ(T) and space S + polylog(T),
since these refer to points in the multilinear extension of the initial configuration of the machine).
We then incrementally compute all remaining values X̂(ȳ, ū1) and X̂(ȳ, ū2) “on the fly” via the
formula given in Eq. (5) in our previous method for evaluating X̂. This also takes time polylog(T)
time per ȳ, and polylog(T) additional space, for a total running time of Õ(T) and total space usage
of S + polylog(T).

Efficient Evaluation of Pi for i > t. We proceed to describe the efficient evaluation of Pi for
t < i ≤ t + s, which will be the most complicated procedure. We further modify the variable
ordering and grouping in the definition of Pi, so that for any i with t < i ≤ t+ s, any ȳ1, ȳ2 ∈ Ft,
any ū1 = ā1‖b̄1 ∈ Fi−t × Fs−(i−t), and any ū2 = ā2‖b̄2 ∈ Fi−t × Fs−(i−t), we have

Pi
(
ȳ1, ā1‖b̄1, ȳ2, ā2‖b̄2, ū2

)
=

∑
ȳ1,ȳ2∈{0,1}t
ā1,ā2∈{0,1}i−t

P0

(
ȳ1, ā1‖b̄1, ȳ2, ā2‖b̄2

)
· ȳȳ1

1 · ȳ
ȳ2
2 · ā

ā1
1 · ā

ā2
2 . (11)

Unlike in the case i ≤ t, we cannot now say that Eq. (11) has O(T) (or even Õ(T)) non-zero
terms. However, we will try to make simple observations to simplify our task of computing the ex-
pression in Eq. (11). In particular, by the definition of P0, we observe that P0

(
ȳ1, ā1‖b̄1, ȳ2, ā2‖b̄2

)
6=

0 only if:

• As an integer, ȳ2 is equal to ȳ1 + 1.

• As an integer, ā2 is either equal to ā1, ā1 − 1, or ā1 + 1.

For simplicity, we will focus on the case that ā2 = ā1 (the other cases are handled similarly and
separately). Note that ȳȳ1

1 and ȳ
ȳ2
2 are computable in time polylog(T). We will show that the T

terms ∑
ā∈{0,1}i−t

P0(ȳ, ā‖b̄1, ȳ + 1, ā‖b̄2) · āā1 · āā2

ȳ∈{0,1}t

(12)

can be enumerated in time Õ(T) and space S + polylog(T). Assuming, as we have claimed, that
the other cases can be similarly summed, this implies that Pi itself can be evaluated in time Õ(T)
and space S + polylog(T).

Let σȳ denote the ȳth term of Eq. (12). In the hopes of following our earlier approach, we first
verify that σ0̄ can be evaluated in time Õ(T) and space S + polylog(T). Indeed, this follows more

25Specifically, we want to ensure that while computing terms of Eq. (7) via Eqs. (8) and (9), that we never have
too many “incomplete summations”. Otherwise, to store these partial summations might require Ω(T) space

21

generally from the fact that the formula for σȳ is a summation of 2i−t terms, each of which can
be evaluated in time 2s−(i−t) · polylog(T) given access to X(ȳ, ·) and X(ȳ + 1, ·). The latter is
simulatable with constant overhead given X(ȳ, ·)).

Now suppose we have computed σȳ, have oracle access to X(ȳ, ·), and want to compute σȳ+1.
Due to the structure of Turing machines, X(ȳ + 1, ·) differs from X(ȳ, ·) on at most a constant
number of inputs. For simplicity, suppose that they differ only on a single input ū1, and that
X(ȳ + 2, ·) differs from X(ȳ + 1, ·) on a single input ū2. The āth term in the summation defining
σȳ is

P0

(
ȳ, ā‖b̄1, ȳ + 1, ā‖b̄2

)
· āā1 · āā2 . (13)

After fixing ā, ā1, ā2, b̄1, and b̄2 – essentially everything except ȳ – Eq. (13) is a function only
of X̂(ȳ, ā‖b̄1) and X̂(ȳ + 1, ā‖b̄2). These are themselves functions of X(ȳ, ā‖·) and X(ȳ + 1, ā‖·)
respectively, and thus are unchanged unless ā is a prefix of ū1 or of ū2.

We thus want to compute σȳ+1 by computing the changes to the (constant) number of differing
terms of σȳ. Suppose the āth term is one such term. Via our previous techniques, it is possible to
compute the change to the āth term in time polylog(T) – if we already happen to know the values
of X̂(ȳ, ā‖b̄1) and X̂(ȳ+1, ā‖b̄2) (and in this case we will also be able to compute their new values
X̂(ȳ + 1, ā‖b̄1) and X̂(ȳ + 2, ā‖b̄2) in time polylog(T)). If not, we can reduce to the former case
by computing X̂(ȳ, ā‖b̄1) and X̂(ȳ + 1, ā‖b̄2) in time 2s−(t−i) · polylog(T) time.

Thus, we apparently have a time/space trade-off. At one extreme, we can maintain X̂(ȳ, ā‖b̄1)
and X̂(ȳ + 1, ā‖b̄2) for every ā ∈ {0, 1}i−t as we progress in the computation from ȳ = 0 to
ȳ = 2t − 2. This will use space 2i−t · polylog(T), which can be as large as S · polylog(T). At
the other extreme, we can store none of the values, in which case our total time usage will be
Õ(T · 2s−(i−t)), which can be Ω(S · T).

The time/space trade-off is in many cases mitigated by noticing that the sequence of relevant ā’s
is tightly tied to the memory access pattern of our computation – the sequence of addresses whose
values in memory are modified. In the case of Turing machines, this has an important implication.
In any consecutive interval of ≈ 2s−(i−t) timesteps, there will be at most 2 relevant values of ā.
Thus, as long as we always remember X̂(ȳ, ā‖b̄1) and X̂(ȳ + 1, ā‖b̄2) for the two most recent
values of ā (thereby using polylog(T) space), then there will be at most O(T/2s−(i−t)) occasions
in which we need to compute these values. In total, this takes Õ(T) time. More generally – e.g.
for tree machine and RAM computations, the actual time/space trade-off is dictated by the cache
efficiency of the computation’s memory access pattern.

More generally – e.g. for tree machine and RAM computations, the actual time/space trade-off
is dictated by the cache efficiency of the computation’s memory access pattern. This concludes
the overview of the efficient implementation of the PCP provers. For the full technical details, see
Section 9.

This concludes the overview of the efficient implementation of the PCP prover. For the full
technical details, see Section 9.

2.5 Efficient Arguments: FHE and Multiplicative Depth

Recall that, following [BMW98], the provers in our delegation scheme need to homomorphically
generate answers to encrypted PCP queries. Recall that our PCP proof string consists of the
polynomials X̂, P0, . . . , P` (see Section 2.1 for details). For this overview we only describe how to

22

efficiently homomorphically evaluate X̂. The procedure for homomorphic evaluation of P0, . . . , P`
relies on similar ideas but is more complicated.

A naive way of homomorphically evaluating X̂ is as follows. Consider the circuit C that has
x (the main input to the computation) hard-coded, and given as input z ∈ Ft+s, evaluates and
outputs X̂(z) (using the procedure described in Section 2.4). Then, given an encrypted query E(z),
the prover can homomorphically generate E(C(z)) = E(X̂(z)). Note however that this requires
homomorphic evaluation of circuits that are as complex as the entire computation, which we would
rather avoid (both in terms of assumptions on the FHE and efficiency).

In particular, one of the key bottlenecks in existing FHE schemes (e.g., [BGV14, GSW13]) is the
multiplicative depth of the circuit being homomorphically evaluated. This is because ciphertexts
in such lattice-based schemes have some noise parameter, which doubles with each multiplication
operation performed. If too many multiplications are done then the noise level explodes and
we resort to Gentry’s expensive bootstrapping technique [Gen09]. The circuit C that we are
trying to evaluate C might have multiplicative depth T , which would be extremely costly in terms
of homomorphic operations. We will show however that we can instead rely on homomorphic
encryption that only supports circuits with multiplicative depth log2 log(T) +O(1).

Recall that X̂ : Ft × Fs → F is the multilinear extension of the function X : {0, 1}t ×{0, 1}s →
Γ×(Q∪⊥), which corresponds to the computation transcript. In Section 2.4 we outlined a procedure
for efficiently evaluating X̂ using the following formula:

X̂(z) =
∑

i∈{0,1}t
βi→y ·

∑
j∈{0,1}s

βj→u ·X(i, j),

where y ∈ Ft and u ∈ Fs are such that z = (y,u). Our main observation is that to compute
the same expression “under the hood” it suffices to only homomorphically compute the coefficients
{βj→u}j∈{0,1}s and {βi→y}i∈{0,1}t and that all other operations only include addition or multipli-
cation with a plaintext (i.e., unencrypted) value, such as X(i, j).

Each value βi→y expressed as a function of y, is a degree t multilinear polynomial with a simple
arithmetic circuit of size O(t) and multiplicative depth log(t). Likewise the βj→u have degree O(s)
as a function u. As argued above, all other operations are additions or multiplication by a plaintext
value. Therefore, the overall multiplicative depth of the circuit that we evaluate, as a function of
z, is log(t) = log log(T).

2.6 Evaluating Low Degree Extension of Read Once Branching Programs

As a technical tool toward the efficient implementation of both the prover and the verifier algorithms
of the BFLS PCP, we show that the low degree of some very simple functions that arise in that
construction can be efficiently evaluated. More specifically, we show that the low degree extension
of any function that is computable by a small read-once branching program can be efficiently
evaluated. As mentioned above, this result generalizes some ad-hoc techniques for evaluating the
low degree extension that were used in [BHK17] and [GR17]. We believe that this technique will
be useful also in future works.

To illustrate our approach, for simplicity, we describe an important special case that suffices
for our construction. Namely, computing the the multilinear extension of any function that is
computable by an oblivious read-once branching program P of bounded width. We remark that
our general result applies to arbitrary read-once branching programs (of bounded size) and is

23

applicable to the computing the (exact) low degree extensions of functions (and not just the multi-
linear extension).

Recall that an oblivious width w branching program is described by a layered directed graph G
(possibly with multi-edges) with n+ 1 layers, each having exactly w vertices and where edges only
go from layer i to layer i + 1. Each layer i (except for the last one) is associated with a variable
Var(i) ∈ [n]. The vertices in the last layer are called sinks and are labeled by a terminating symbol
which is either 0 or 1. For simplicity, and without loss of generality, we assume that that the first
sink (i.e., first vertex in the last layer) is labeled by 1 and all other sinks are labeled by 0. From
each vertex (which is not in the last layer), there are exactly two outgoing edges: one marked with
0 and one marked by 1.

The evaluation of a branching program on an input x ∈ {0, 1}n proceeds as follows. We start
at the first vertex of the first layer. Then, at each step i ∈ [n], we move from the current vertex
(which is at layer i) by following the outgoing edge that is marked by xVar(i). Once we get to the
sink, we output its terminating symbol. In what follows we assume without loss of generality that
P reads its input in order.26 That is, Var(i) = i for every i ∈ [n].

Let f : {0, 1}n → {0, 1} be computable by an oblivious read-once branching program P of width

w. One way to describe P is by a collection of binary matrices {M (b)
i ∈ Fw×w2 }i∈[n],b∈{0,1}, where

M
(b)
i , describes the adjacency matrix of the (sub-)graph of the b-labeled edges connecting layer i

with layer i+ 1. Therefore, the evaluation of f on an input x̄ = (x1, . . . , xn) ∈ {0, 1}n is equal to:

f(x̄) =
(n∏
i=1

M
(xi)
i

)
1,1
,

where the notation A1,1 refers to the (1, 1)th entry of the matrix A.

In this case, the formula for f̂ : Fn → F is particularly simple. For any x̄ ∈ Fn, we simply have

f̂(x̄) =
n∏
i=1

(
xi ·M (1)

i + (1− xi) ·M (0)
i

)
.

To see that f̂ is indeed the multi-linear extension of f note that f̂ agrees with f on every
input x̄ ∈ {0, 1}n. Further, f̂ is multilinear and by the uniqueness of the multilinear extension, we
conclude that it is indeed the multi-linear extension of f .

While this result is extremely simple, to the best of our knowledge it has not been pointed out
before (in the context of constructing probabilistic proof-systems). For additional details, including
the extension to non-oblivious branching programs, see Section 5.1.

3 Preliminaries

We begin with some standard notations. For any integer n, we write [n] to denote the set {1, . . . , n}.
We will sometime treat binary string of length ` as integers in {0, . . . , 2` − 1} in the natural way.

For two tuples ū = (u1, . . . , un) and v̄ = (v1, . . . , vm), we write ū‖v̄ to denote the tuple
(u1, . . . , un, v1, . . . , vm). If n = m, we write ū ? v̄ to denote the tuple (u1, v1, . . . , un, vn).

26If P instead reads xπ(1), . . . , xπ(n) for some permutation π of [n], then define the function f ′(x̄) =

f(xπ−1(1), . . . , xπ−1(n)). Then P computes f ′ by reading input bits in order. It is possible to evaluate f̂ in terms of

f̂ ′ using the easily verified fact that P̂ (x̄) = P̂ ′(xπ(1), . . . ,xπ(n)).

24

We use Prefixi : {0, 1}≥i → {0, 1}i to denote the function that outputs the i-bit prefix of its
input. All logarithms in this work are base 2.

Font Conventions. Throughout this work we will use the convention that blackboard bold
lowercase (e.g., z) is used for field elements whereas standard bold lowercase (e.g., z) is used for
bits. Likewise, we use z̄ to denote vectors of field elements and z̄ to denote bit strings.

3.1 Fields, Polynomials, and Low Degree Extensions

Let F be a finite field. For any function f : F→ F, we use Deg(f) to denote the (minimal) degree
of a polynomial over F that computes f . Throughout this work, by a degree d polynomial, we
actually mean a polynomial with degree at most d.

Given a set of at least d+ 1 pairs {(xi,yi)} ⊂ F2, which we will suggestively denote {xi 7→ yi},
we write Interpd({xi 7→ yi}) to denote the unique degree-d polynomial f such that f(xi) = yi if
such an f exists; otherwise we define Interpd({xi 7→ yi}) = ⊥.

Definition 3.1 (Multi-linear Extension). Let f : {0, 1}` → F be a function. We define the multi-
linear extension of f , denoted f̂ : F` → F, as the (unique) multi-linear polynomial such that f̂ |{0,1}` ≡
f .

Fact 3.2. For any function f : {0, 1}` → F , its multi-linear extension f̂ : F` → F is given by the
formula

f̂(z1, . . . , z`) =
∑

z1,...,z`∈{0,1}

f(z1, . . . , z`) ·
∏̀
i=1

βzi→zi ,

where βzi→zi
def
= zi · zi + (1− zi) · (1− zi).

We will use the notation βzi→zi
def
= zi · zi + (1− zi) · (1− zi) throughout this work.

We now extend the definition of multilinear extension to functions defined over larger alphabets.

Definition 3.3 (Low-Degree Extension). For any subset H ⊆ F and function f : H` → F, there is
a unique individual degree |H| − 1 polynomial f̂ : F` → F that agrees with f on H`.

Definition 3.1 follows as a special case of Definition 3.3 (with H = {0, 1}).

Fact 3.4. For any function f : H` → F with H ⊆ F, its low-degree extension f̂ is given by the
formula

f̂(z1, . . . , z`) =
∑

z1,...,z`∈H
f(z1, . . . , z`) ·

∏̀
i=1

χ̂zi(zi),

where for each z ∈ H, the degree |H| − 1 polynomial χ̂z : F → F is the Lagrange interpolation
polynomial, defined as

χ̂z(z)
def
=

∏
h∈H\{z}

z− h
z− h

.

25

Lines and Planes. A line L : F → Fm is a polynomial mapping of degree 1 (in particular we
allow degenerate lines which are just a constant function). Similarly, a plane M : F2 → Fm is also
a polynomial mapping of degree at most 1 in each of its two variables. Note that if M is a plane,
then for every α ∈ F, it holds that both M(α, ·) and M(·, α) are lines.

3.1.1 Explicit Representation of Finite Fields

A finite field ensemble is an ensemble F = {Fn}n∈N, where Fn is a finite field for every n ∈
N. We say that a finite field ensemble has an explicit representation if for every n, there exists
there exists a representation of the elements of Fn as bit strings of length O(log(|Fn|)) and there
exist (probabilistic) polynomial-time Turing machines for computing the field operations (e.g., the
machine gets as input n ∈ N and the representation of two fields elements x,y ∈ Fn and outputs
the representation of (x + y)). These operations include field addition, multiplication, division,
equality, generating random elements, access to constants 0 and 1.

When the parameter n is clear from the context, we will abuse notation and use F to refer both
to the ensemble {Fn}n∈N and to the specific finite field Fn.

3.2 Semantic Security and Homomorphic Encryption (FHE)

A public-key encryption scheme consists of three probabilistic polynomial-time algorithms Gen,
Enc and Dec. The key Generation algorithm Gen, when given as input a security parameter 1λ,
outputs a pair (pk, sk) of public and secret keys. The encryption algorithm, Enc, on input a public
key pk and a message m ∈ {0, 1}poly(λ), outputs a ciphertext m̂, and the decryption algorithm,
Dec, when given the ciphertext m̂ and the secret key sk, outputs the original message m (with
overwhelming probability). We allow the decryption process to fail with negligible probability (over
the randomness of all algorithms).

Let s = s(λ) ∈ N and δ = δ(λ) ∈ [0, 1] be parameters. A public-key encryption scheme has
(S, δ)-security if for every family of circuits {Cλ}λ∈N of size S(λ), for all sufficiently large λ and for
any two messages m,m′ ∈ {0, 1}poly(λ) such that |m| = |m′|,∣∣∣∣ Pr

(pk,sk)∈RGen(1λ)
[Cλ(pk,Encpk(m)) = 1]− Pr

(pk,sk)∈RGen(1λ)

[
Cλ(pk,Encpk(m

′)) = 1
]∣∣∣∣ < δ(λ)

where the probability is also over the random coin tosses of Enc.
We say that an encryption scheme has sub-exponential security if there exists a constant ε > 0

such that it is (2O(λε), 2−Ω(λε))-secure.

Homomorphic Encryption. A public-key encryption scheme (Gen,Enc,Dec) is said to be
homomorphic wrt to a circuit class C if there exists an algorithm, called Eval, such that on input
the public-key pk, a circuit C ∈ C and a ciphertext m̂ that is an encryption of a message m with
respect to pk, outputs a string ψ such that the following two conditions hold:

• Homomorphic Evaluation: Decsk(ψ) = C(m), except with negligible probability (over
the coins of all algorithms).

• Compactness: The length of ψ is polynomial in λ, |m| and |C(m)| but is otherwise inde-
pendent of the size of C.

26

Furthermore, in this work we assume that homomorphic evaluation is done in a gate-by-gate man-
ner. (All candidate homomorphic encryption schemes have this property.)

The scheme is fully homomorphic if it is homomorphic wrt the class of all polynomial-size
circuits.

Remark 3.5. [Homomorphic Operations over Large Fields] Most candidate homomorphic encryp-
tion schemes support addition and multiplication operations over the binary field GF(2). In our
construction we will need to homomorphically evaluate addition and multiplication over a larger
field F. Clearly such operations can be emulated by GF(2) operations but here we care about the
efficiency of this transformation.

For this we restrict our attention to binary fields (i.e., with characteristic 2). Recall that the
elements of such a field can be viewed as a vector space over GF(2). Addition over such a field F
corresponds to coordinate-wise XOR of vectors, which can be trivially emulated by GF(2) additions
(and no multiplications). Less obvious is the fact that multiplication over F can be emulated by
GF(2) operations with multiplicative depth 1. This is because multiplication of a and b over F,
viewed as an operation over GF(2) is a GF(2)-linear transformation if we fix either a or b.

3.3 No-Signaling PCPs

A probabilistically checkable proof (PCP) is a protocol, between a prover P and verifier V , for
convincing the verifier V that a common input x ∈ {0, 1}n belongs to a language L, with soundness
depending on a statistical security parameter κ. This protocol is in an idealized model; specifically,
the prover produces a proof string π of some length `(n, κ), and the verifier is allowed to make some
number k(n, κ) of (randomized) queries to π. Based on the answers to these queries the verifier
decides whether to accept or reject.

In this work we exclusively consider PCPs with verifiers whose queries are non-adaptive; in this
case, we represent V by two algorithms V0 and V1. The first algorithm, V0, takes as input (x, 1κ)
and outputs (Q, st), where Q is the set of queries asked by V and st is some private state. The
second algorithm, V1, “continues” the execution of V , taking as input (x, 1κ, st, πQ) and outputs a
bit representing an accept or reject.

As usual (perfect) completeness means that for any x ∈ L and security parameter κ, there is a
string π such that V π(x, 1κ) accepts with probability 1. The classical notion of soundness means
that for any x ∈ {0, 1}n \L and for any π, it holds that V π(x, 1κ) accepts with probability at most
ε(κ), where ε is called the soundness error.

In this work we shall consider a stronger notion of soundness called no-signaling (NS) soundness.
Let Σ = Σ(n, κ) denote the alphabet of π.

Definition 3.6 (NS Prover). A (kmax, δ)-NS prover P ∗ over alphabet Σ is a set of distributions
{P ∗(Q)}|Q|≤kmax

, where each P ∗(Q) is distributed over ΣQ, such that for all sets of queries Q′ ⊆ Q
with |Q| ≤ kmax, the following two distributions on AQ′ ∈ ΣQ′ have statistical distance at most δ.

1. Sample AQ′ ← P ∗(Q′).

2. Sample AQ ← P ∗(Q) and set AQ′ = (AQ)Q′, namely, the restriction of AQ to the coordinates
in Q′.

Definition 3.7 (NS-PCPs). A PCP for a language L with soundness error ε against (kmax, δ)-NS
provers (where ε, kmax, and δ are functions of n and κ) is composed of a prover algorithm P and
verifier algorithms (V0, V1) such that:

27

1. (Completeness:) For every x ∈ L and security parameter κ, it holds that

Pr
(Q,st)←V0(x,1κ)

[V1(x, 1κ, st, P (x, 1κ)Q) = 1] = 1.

2. (Soundness:) For every x ∈ {0, 1}n \L, every security parameter κ, and every (kmax, δ)-NS
prover P ∗, it holds that:

Pr
(Q,st)←V0(x,1κ)
AQ←P ∗λ (Q)

[V1(st, AQ) = 1] ≤ ε(n, κ).

3.4 Argument Systems

An argument scheme is a protocol, between a prover P and a verifier V , for convincing the verifier
that a common input x ∈ {0, 1}n belongs to some language L with certainty that depends on a
computational security parameter λ. In contrast to PCPs, argument schemes work in a non-idealized
model. However, their soundness holds only against computationally bounded provers.

Definition 3.8 (Argument Schemes). A (non-adaptive, two-message) (s, ε)-sound argument scheme
for a language L consists of an algorithm P and a pair of probabilistic polynomial-time algorithms
(V0, V1) such that:

1. For all x ∈ L,
Pr

(q,st)←V0(x,1λ)

[
V1(st, P (x, q)) = 1

]
= 1.

2. For all x ∈ {0, 1}n \ L, and all size s(n) circuits P ∗,

Pr
(q,st)←V0(x,1λ)

[
V1(st, P ∗(q)) = 1

]
≤ ε(n).

An argument-system has polynomial-soundness if it is (poly(n), 1/poly(n))-sound for every poly-
nomial poly. We use argument-system as a shorthand for a (poly(n), 1/poly(n))-sound argument-
system.

4 Models of Computation

A common theme in our construction is the use of specialized computational models that are geared
specifically toward our needs. Since the actual formalism is vital for our construction, we go into
full details about these model, which might feel a bit tedious at times. The reader may want to
initially skip this section and revisit it as necessary later.

Section Organization. First, in Section 4.1 we introduce a model of computation which we
call “arithmetic straight line program”. This model will conveniently allow us to separate the
computation done by the prover “in the clear” from those that are done “under the FHE”. In
Section 4.2 we formalize the RAM model that we consider. In Section 4.3 we introduce a model of
computation which we call “Tree machines” which on the one hand can simulate RAM computations
very efficiently (i.e., with logarithmic overhead in time) but on the other, are amenable to PCP
techniques. In Section 4.4 we show how to emulate a RAM machine by a Tree machine.

28

4.1 Arithmetic Straight Line Program (ASLP)

Loosely speaking, an arithmetic straight line program (ASLP) is a program, defined over some ring
R, that is composed of a sequence of arithmetic instructions which can simply add or multiply two
registers together.

Definition 4.1. An Arithmetic Straight Line Program (ASLP) for inputs of length n, over a ring
R and with k registers R[1], . . . , R[k], is a sequence of instructions A = (ins1, . . . , insT), where each
instruction inst takes one of the following forms. Either:

1. R[i]← INPUT[j] for some i ∈ [k] and j ∈ [n]; or

2. R[i] := α, where i ∈ [k] and α ∈ R; or

3. R[i]← R[j] +R[`] for some i, j, ` ∈ [k]; or

4. R[i]← R[j]×R[`] for some i, j, ` ∈ [k]; or

5. R[i]← α×R[j] for some i, j ∈ [k] and α ∈ R; or

6. OUTPUT← R[i] for some i ∈ [k].

We assume that there are m different OUTPUT instructions. Every such ASLP A defines in a
natural way a function A : Rn → Rm, where the m different outputs appear in the order in which
they were generated.

When the ring R is clear from the context, we omit it from the notation.

Remark 4.2 (Multiplication by a Constant). Clearly the instruction R[i]← α×R[j] can be easily
emulated by other instructions. The reason that we add this instruction explicitly though is that in
the context of fully homomorphic encryption, multiplication by a known constant is much cheaper
than multiplication of two encrypted values. In particular, multiplication by a known constant does
not increase the multiplicative depth (to be defined next) of the ASLP.

We next define the multiplicative depth as the maximal number of sequential multiplication
operations that was used to compute the value of any register.

Definition 4.3 (Multiplicative Depth of ASLP). The multiplicative depth of an ASLP (ins1, . . . , insT)
with k registers is defined as maxi∈[k],t∈[T]{di,t}, where the values {di,t} are defined inductively in t

as follows. We define di,0
def
= 0 for all i, and for t > 0 we define

di,t
def
=

0 if inst is R[i]← INPUT[j] for some j

0 if inst is R[i]← α for some α

max(dj,t−1, d`,t−1) if inst is R[i]← R[j] +R[`]

1 + max(dj,t−1, d`,t−1) if inst is R[i]← R[j]×R[`]

dj,t−1 if inst is R[i]← α×R[j]

di,t−1 if inst is OUTPUT← R[j] for some j.

29

Uniformity of ASLPs. We will mainly use ASLPs to describe computations of a function fα(x),
indexed by α, on a value x. First, a bounded time and space RAM machine gets input α ∈ {0, 1}∗
and outputs an ASLP Pα that computes fα. We call such a combined program a uniform ASLP
(see Definition 4.4 for the precise definition).

Definition 4.4. Let C be a complexity class. A function family {fα}α∈{0,1}∗ is computable by a
C-uniform ASLP over R with k registers and multiplicative depth d if there is a function in C that
on input α ∈ {0, 1}∗ outputs an ASLP Pα, with k(α) registers and multiplicative depth d, such that
Pα(x) = fα(x).

We think of the function fα as also being parameterized by the description of the ring R and
so the RAM machine has explicit access to a full description of R.

Uniform ASLPs can be emulated by RAM machines as follows.

Fact 4.5 (Emulating ASLP by RAM). If a function family {fα}α∈{0,1}∗ is computable by a TISP(T, S)-
uniform ASLP over the ring R with k registers, then {fα}α∈{0,1} is computable in time upper bounded
by O(T) ring operations and in space S + O(k · SR), where SR is the space to store a single ring
element.

Remark 4.6. The multiplicative depth of an ASLP is upper bounded by the length of the ASLP.
For a TIME(T)-uniform ASLP, the length of the ASLP (and therefore also the multiplicative depth)
are upper bounded by T .

4.1.1 Evaluation of the Multilinear Extension via ASLPs

We proceed to describe some procedures for efficient evaluation of the multilinear extension via
ASLPs.

By Fact 3.2, computing the multi-linear extension of an arbitrary function f : {0, 1}` → R at a

point z̄ ∈ R` reduces to enumerating the coefficients
{
βz̄→z̄

def
=
∏`
i=1 βzi→zi

}
z̄
. There are two ways

of doing this; a time-efficient way, and a depth-efficient way.

Fact 4.7. For any ring R, let f`,R : R` → R2` denote the function f`,R(z̄) = (βz̄→z̄)z̄∈{0,1}`. The
function family f = {f`,R} is computable both by:

• A TISP
(
O(2`·log(`)), O(`)

)
-uniform ASLP with O(`) registers and multiplicative depth log(`)+

O(1); and

• A TISP
(
O(2`), O(`)

)
-uniform ASLP with O(`) registers and multiplicative depth `+O(1).

Fact 3.2 directly gives a way to evaluate multi-linear extensions.

Corollary 4.8. There is an oracle word-RAM algorithm A such that for any ring R, any positive
integer `, and any function f : {0, 1}` → R, executing A on input (R, `) with oracle f results in an
ASLP that computes f̂ . Furthermore:

1. The process of generating the ASLP takes time O(2` · log(`) · log |R|) and space O(`+ log |R|).

2. The ASLP itself has length O(2` · log(`)), uses O(`) registers, and has multiplicative depth
log(`) +O(1).

30

Corollary 4.9 (See also [Tha13, Remark 1]). There is an oracle word-RAM algorithm A such that
for any ring R, any positive integer `, and any function f : {0, 1}` → R, executing A on input
(R, `) with oracle f results in an ASLP that computes f̂ . Furthermore:

1. The process of generating the ASLP takes time O(2` · log |R|) and space O(`+ log |R|).

2. The ASLP itself has length O(2`), uses O(`) registers, and has multiplicative depth `+O(1).

4.2 RAM Machines

When studying the fine-grained prover overhead for general-purpose computation, the choice of
computational model is important. Most models of computation can simulate each other with
polynomial blow-up in running-time and constant factor blow-up in space usage, but we want to
simulate real-world computations with nearly constant overhead. We therefore focus on the word
RAM model of computation, which is standard in practice.

In this section we formally define the RAM machine model that we consider. Our definition
allows for flexibility in the concrete set of (word) operations that the RAM supports.

Definition 4.10 (RAM Machine). A RAM machine M relative to a finite operation set27 O of
functions {?i : Z≥0 × Z≥0 → Z≥0}i is a finite list of ` instructions (ins1, . . . , ins`), each taking one
of the following forms (for some i, j, k ∈ N).

• Input: R[i]← INPUT[R[j]]

• Load/Store instructions: One of

– R[i]← c for some constant c ∈ Z≥0

– R[i]← R[j]

– R[i]← R[R[j]]

– R[R[i]]← R[j]

• Word operations: R[i]← R[j] ? R[k] for some operation ? ∈ O.

• Control flow instructions, either

– GOTO i, or

– GOTO i IF R[j] 6= 0.

• Halting instructions: ACCEPT or REJECT.

4.2.1 Execution Semantics

Loosely speaking, the execution of a RAM machine M on a given input string x proceeds as follows.
We start with a memory tape which is set to an infinite sequence of 0’s. We use R[i] to refer to
the ith memory cell. At each time step, we execute the relevant RAM instruction. For example,
R[i] ← INPUT[R[j]] means that ith memory cell R[i] obtains the value of the (R[j])-th bit of x.

27The set of allowed operations is a common source of variation between different RAM models, but for us it only
matters that the set is finite and each operation is computable in polynomial time.

31

The other operations are similarly defined in the natural way. Throughout the execution we keep
track of a program counter pc ∈ [`] that points to the current instruction being executed by the
RAM program. The program counter advances linearly, except in the case of GOTO instructions
(or the halting instructions ACCEPT and REJECT). We say that M(x) = 1 (resp., M(x) = 0) if the
RAM machine halts at the ACCEPT (resp, REJECT) instruction, given input x. We proceed to the
formalization of the foregoing discussion.

Definition 4.11. A configuration of a RAM machine M = (ins1, . . . , ins`) is a tuple (pc, T), where

• pc ∈ [`] is a “program counter” indicating the next instruction to be executed, and

• T : N→ Z≥0 is the memory contents of M .

If inspc = ACCEPT, the configuration is said to be an accepting configuration. If inspc = REJECT,
the configuration is said to be a rejecting configuration. In either case, the configuration is said to
be a halting configuration.

Definition 4.12. The initial configuration of a RAM machine M = (ins1, . . . , ins`) is the configu-
ration (1, T0), where T0(α) = 0 for all α ∈ N.

The following definition formalizes the “evolution” of a RAM machine computation.

Definition 4.13. A non-halting configuration (pc, T) for a RAM machine M = (ins1, . . . , ins`) is

said to yield the configuration (pc′, T ′) on input x = x1 · · ·xn, denoted (pc, T)
M,x→ (pc′, T ′), if the

following holds:

• If inspc is of the form R[i]← INPUT[R[j]], then

T ′(α) =

{
xT (j) if α = i and 1 ≤ T (j) ≤ n
T (α) otherwise,

and pc′ = pc + 1.28

• If inspc is of the form R[i]← c, then

T ′(α) =

{
c if α = i

T (α) otherwise,

and pc′ = pc + 1.

• If inspc is of the form R[i]← R[j], then

T ′(α) =

{
T (j) if α = i

T (α) otherwise,

and pc′ = pc + 1.

28The behavior of this instruction on R[j] > n can be used to determine the value of n via a binary search.

32

• If inspc is of the form R[i]← R[R[j]], then

T ′(α) =

{
T (T (j)) if α = i

T (α) otherwise,

and pc′ = pc + 1.

• If inspc is of the form R[R[i]]← R[j], then

T ′(α) =

{
T (j) if α = T (i)

T (α) otherwise,

and pc′ = pc + 1.

• If inspc is of the form R[i]← R[j] ? R[k] for some operation ? ∈ O, then

T ′(α) =

{
T (j) ? T (k) if α = i

T (α) otherwise,

and pc′ = pc + 1.

• If inspc is of the form GOTO i, then T ′ = T , and pc′ = i.

• If inspc is of the form GOTO i IF R[j] 6= 0, then T ′ = T , and

pc′ =

{
i if T (j) 6= 0

pc + 1 otherwise.

When M and x are clear from the context we omit them from the notation and simply write
C → C′.

Definition 4.14. If C0 is the initial configuration of M , and if there is a finite sequence of con-

figurations C0
M,x→ · · · M,x→ CT with CT a halting configuration, then (C0, . . . , CT) is said to be the

transcript of M on x, and we say that M halts at CT on x. We denote this symbolically by writing

C0
M,x⇒ CT .

Definition 4.15. The evaluation of M on x is defined as

M(x)
def
=

1 if M halts at C on x for some accepting configuration C
0 if M halts at C on x for some rejecting configuration C
⊥ otherwise.

Recall that we defined the notation s‖s′ to denote the concatenation of s and s′. We next define
a combined access pattern as the list of all memory and input locations that are accessed by the
RAM program on a given input. Formally, this is defined as follows.

Definition 4.16. If the transcript for a RAM machine M = (ins1, . . . , ins`) on an input x is
((pc0, T0), . . . , (pcT , TT)), then the combined access pattern (access pattern for short) of M on x is
the concatenated tuple a1‖ · · · ‖aT , where for each t ∈ [T],

33

• If inspct is of the form R[i]← INPUT[R[j]], then at is the tuple (j, Tt(j), i).

• If inspct is of the form R[i]← c, then at is the singleton tuple (i).

• If inspct is of the form R[i]← R[j], then at = (j, i).

• If inspct is of the form R[i]← R[R[j]], then at = (j, Tt(j), i).

• If inspct is of the form R[R[i]]← R[j], then at = (j, i, T (i)).

• If inspct is of the form R[i]← R[j] ? R[k], then at = (j, k, i).

• If inspct is of the form GOTO i IF R[j] 6= 0, then at is the singleton tuple (j).

• Otherwise, at is the empty tuple.

Remark 4.17. Note that the list of memory locations in Definition 4.16 does not distinguish
between memory and input accesses. This is done for technical reasons that slightly simplify our
emulation of RAM machines by Tree machines in Section 4.4.

4.2.2 Time and Space Complexity

We next define the time and space complexity measures for RAM machines.

Definition 4.18. When a (finite) transcript (C0, . . . , CT) exists29 for a RAM machine M on input

x, then the running time of M on x is defined as TIME(M,x)
def
= T .

Definition 4.19. The space usage of a tape T of a RAM machine is defined as

SPACE(T)
def
= max{i : T (i) 6= 0}.

The space usage or a configuration C = (pc, T) is defined as SPACE(C) = SPACE(T).
When a transcript (C0, . . . , CT) exists for a RAM machine M on input x, the space usage of M

on x is defined as

SPACE(M,x)
def
= maxi∈[T]SPACE(Ci).

So far we have not bounded the amount of information that can be stored in each one of the
memory cells. The standard RAM model allows O(log n) bits of information per cell, where n is
the input length. Likewise, we have not placed any restrictions on the complexity of the RAM
operations. We define a word RAM to as a RAM that uses bounded size words as its memory and
whose supported binary operations are computable in polynomial time. More formally:

Definition 4.20 (Word RAM). Let w = w(n) ∈ N. A RAM machine M with operations O is a
w(·)-bit word RAM if:

• Each ? ∈ O is computable (by, say, a Turing machine) in polynomial time (in the bit length
of its input).

• For each x ∈ {0, 1}n with corresponding transcript ((pc0, T0), . . . , (pcT , TT)), it holds that
Tt(i) < 2w(n), for all t ∈ {0, . . . , T} and all i ∈ N.

For natural RAM programs the word size is typically Θ(log(S)).

29Recall that a machine does not necessarily halt for every input.

34

4.3 Tree Machines

When designing MIPs, it is convenient to work with a more “stepwise-local” computation model
like a Turing machine. Unfortunately Turing machines can only simulate RAM machines with
quadratic overhead, so they are not suitable for studying the fine-grained prover overhead. Instead
we introduce a strengthening of the Turing machine model in which the work tape, rather than
being linear, is a binary tree of nodes, each of which has its own sequential tape. The machine
head can move either within a given tape, or to a neighboring tape.

Definition 4.21. A tree machine is a tuple (Q,Σ,Γ, δ, q0, qacc, qrej), where

• Q is the set of states,

• Σ is the input alphabet, not containing the blank symbol ε,

• Γ ⊇ Σ ∪ {ε} is the tape alphabet,

• δ : Q× Γ→ Q× Γ× {↑,↙,↘,⊗,�} is the transition function30,

• q0 ∈ Q is the start state,

• qacc ∈ Q is the accept state, and

• qrej ∈ Q is the reject state, where qrej 6= qacc.

4.3.1 Execution Semantics

A tree machine is evaluated on a given input x in the following natural way. We consider an infinite
rooted binary tree, where each vertex is associated with an infinite memory tape. The i-th input
bit is placed in the first cell of the i-th vertex of the binary tree31 (where the indexing is done in
a breadth first manner). At any given time, the machine head points to one memory cell of one
of the vertices of the tree. Similarly to a Turing machine, each computation step depends only
on the memory cell located under the machine head and an internal machine state. Given these,
the machine can write on the current head location, and move either sequentially on the tape
associated with the current vertex, or to one of the three neighboring vertices (i.e., the parent and
two children). Intuitively, this lets the tree machine emulate a RAM machine with only logarithmic
overhead in time (this will be done formally in Construction 4.32). We proceed to the formalization
of the above discussion.

Definition 4.22. A configuration of a tree machine TM = (Q,Σ,Γ, δ, q0, qacc, qrej) is a tuple(
q, (v, z), T

)
, where

• q ∈ Q is the control state of TM,

• (v, z) ∈ Z≥0×Z≥0 is the head position of TM; v indexes nodes of a binary tree in breadth-first
order (i.e., the root is labeled 1, and any node labeled ` has children labeled 2` and 2`+ 1)32,
and z indexes a position on that node’s sequential tape.

30The symbol ⊗ (resp., �), borrowing notation from physics, is meant to evoke an arrow pointing into (resp., out
of) the page (the viewer sees either the tail end (with feathers) or the pointy end (with a dot) of the arrow).

31This is mainly done for technical convenience and to avoid having an additional tree for the input bits.
32The observant reader will notice that we have not accounted for the vertex labeled 0; this is intentional and

allows us to handle some edge cases in a simpler way later on.

35

• T : Z≥0 × Z≥0 → Γ is a function representing the tape contents of TM.

A configuration in which q = qacc is called an accepting configuration, and when q = qrej, it is called
a rejecting configuration. Either case is a halting configuration.

Definition 4.23. The initial configuration of a tree machine TM = (Q,Σ,Γ, δ, q0, qacc, qrej) on input
x = (x1, . . . , xn) ∈ Σn is (q0, (0, 0), T0), where

T0(v, z)
def
=

{
xi if v = i and z = 0

ε otherwise.

Observe that, as mentioned earlier, in a tree machine the input bits are stored in memory
location 0 of the first n nodes of the tree.

Definition 4.24. For a given tree machine TM = (Q,Σ,Γ, δ, q0, qacc, qrej), and any non-halting

configuration (q, (v, z), T), we say that (q, (v, z), T) yields (q′, (v′, z′), T ′), denoted (q, (v, z), T)
TM→

(q′, (v′, z′), T ′), if

1. (q′, T ′(v, z), d) = δ(q, T (v, z)); and

2. v′ =

bv/2c if d = ↑
2v if d = ↙
2v + 1 if d = ↘
v otherwise; and

3. z′ =

z + 1 if d = ⊗
max(0, z − 1) if d = �
z otherwise; and

4. T ′(u) = T (u), for all u 6= (v, z).

For any halting configuration (q, (v, z), T), we say that (q, (v, z), T) yields (q, (v, z), T).
We also write (q′, (v′, z′), T ′) = S((q, (v, z), T)), saying that (q′, (v′, z′), T ′) is the successor of

(q, (v, z), T).

Definition 4.25. If C0 is the initial configuration of TM on input x, and if there exists a finite

sequence of configurations C0
TM→ · · · TM→ CT with CT−1 a non-halting configuration and CT a halting

configuration, then (C0, . . . , CT) is said to be the transcript of TM on x, and we say that TM halts
at CT on x.

Definition 4.26. The evaluation of TM on x is defined as

TM(x)
def
=

1 if TM halts at C on x for some accepting configuration C
0 if TM halts at C on x for some rejecting configuration C
⊥ otherwise

Definition 4.27. If the transcript of a tree machine TM on an input x is (C0, . . . , CT−1), we say
that the running time of TM on x is T , which we denote by TIME(TM, x).

36

Remark 4.28 (Space Usage of Tree Machine). Loosely speaking, we could define the space usage
of a Tree machine as the sum over all nodes of the maximal location in the respective node’s tape
that we accessed.

In the technical parts below however we never consider the space usage of the Tree machine, but
rather only of the RAM machine that it emulates. The reason is that the more modular alternative
introduces overhead that we cannot afford.

Definition 4.29. If the transcript of a tree machine TM on an input x is (C0, . . . , CT−1) with
Ci = (qi, (vi, zi), Ti), we say that the access pattern of TM on x is ((v0, z0), . . . , (vT , zT)).

Loosely speaking, we say that a configuration is (d, `)-bounded if it does not involve memory
cells beyond a depth d of the tree, nor memory cells that are at distance more than ` in any of the
tapes associated with vertices at depth less than d. More formally, we define bounded configurations
as follows.

Definition 4.30 (Bounded Configuration). A configuration (q, (v∗, z∗), T) is said to be (d, `)-
bounded if v∗ < 2d, z∗ < `, and whenever v ≥ 2d or z ≥ `, it holds that T (v, z) = ε.

We also give an alternate formalization of a bounded configuration. Jumping ahead, this for-
malization will be convenient for some algebraic manipulations in our eventual construction.

Definition 4.31 (Configuration Function Representation). We define the function representation
of a (d, `)-bounded configuration (q, (v∗, z∗), T) of a tree machine TM = (Q,Σ,Γ, δ, q0, qacc, qrej) as
the function

C : {0, 1}d × {0, 1}dlog `e → Γ̄,

where Γ̄ = (Qt{⊥})×Γ×E and E = {leaf,⊥}×{front, back,⊥} is the (finite) set of possible edge
cases. Namely,

C(u) =

{
(q, T (u), e(u)) if u = (v∗, z∗)

(⊥, T (u), e(u)) otherwise,

where e((v, z)) = (e1(v), e2(z)) and

e1(v) =

{
leaf if v ≥ 2d−1

⊥ otherwise

and

e2(z) =

front if z = 0

back if z = `− 1

⊥ otherwise.

4.4 Emulating RAM machines with Tree machines

In this section we describe how to emulate a word RAM by a tree machine with logarithmic overhead
in time .

Construction 4.32 (Emulating RAM by Tree Machine - Sketch). Given a word RAM machine
M , we construct a tree machine Tree(M) with input alphabet {0, 1} as follows.

37

Tree(M) stores the program counter of M in its internal control state, and stores the memory
contents T ′ of M in its own tape T by storing the ith bit of T ′(j) in T (j, i) for i ∈ {1, . . . , w(n)}.
The jth input bit is stored in T (j, 0) for j ∈ {1, . . . , n}.

Tree(M) reserves T (0, ·) as a linear “work tape”, and simulates two “virtual” tape heads: one
is dedicated to this tape, and the other traverses the rest of the tree tape (i.e., T (v, z) for v > 0)
freely. The simulation simply runs the real head back and forth between the two head positions.
This necessitates augmenting the tape alphabet with an additional bit used to mark the positions of
the two heads. For the second head, we also mark the path to its position starting from the root
of the tree, by leaving “breadcrumbs”: each vertex along the path indicates the direction toward the
second head.

Tree(M) now simulates M instruction-by-instruction. The linear tape T (0, ·) is used primarily
to perform the word operations specified by M . It also serves as a place to store indirect addresses
(i.e., R[j] in instructions of the form R[i]← R[R[j]] or R[R[j]]← R[i]).

Tree(M)’s state space Q is augmented if necessary to reveal the most recent tape motion; that is,
we ensure there is a well-defined function dir : Q→ {↑,↙,↘,⊗,�} such that whenever (q′, γ′, d) =
δ(q, γ), it holds that dir(q′) = d. Additionally, we ensure that Tree(M) always moves its tape head
to the position (0, 0) before halting.

Proposition 4.33 (Correctness). For any x ∈ {0, 1}∗, it holds that Tree(M)(x) = M(x).

Let M be a w-bit word RAM machine relative to a set of operations O. We denote by W =
W (n) = poly(w(n)) the maximal time complexity for any operation in O on inputs of length w.

Let T = T (n) and S = S(n) respectively denote the time and space usage of M on input

x ∈ {0, 1}n. Define S′
def
= max(S, n).

Proposition 4.34 (Efficiency). The following efficiency constraints hold:

• The running time T ′ of Tree(M) on x is at most O(T · logS′ ·W 2), and

• Each configuration Ci in the transcript of Tree(M) on x is (dlogS′e,W)-bounded.

Propositions 4.33 and 4.34 follow directly from the construction.

Proposition 4.35. The access pattern of Tree(M) on input x is a W · dlog(S′ + 1)e-blowup (as in
Definition 5.7) of the combined access pattern of M on x.

More generally, let ((v0, z0), . . . , (vT , zT)) denote the access pattern of Tree(M) on x, and let
(a1, . . . , aT ′) denote the combined access pattern of M on x.

• For any i ≤ dlogW e,

((v0,Prefixi(z0)), . . . , (vT ,Prefixi(zT)))

is a 2i · dlog(S′ + 1)e-blowup of
(a1, . . . , aT ′).

• For any i ≤ dlog(S′ + 1)e,

(Prefixi(v0), . . . ,Prefixi(vT))

is an (i+ 1)-blowup of
(Prefixi(a1), . . . ,Prefixi(aT ′)).

38

Proof Sketch. The more general statement follows from the fact that, when emulating a step of M
that accesses either the ai-th input bit or the ai-th word of memory, Tree(M) accesses its tape T
only at (v, z) for which v is an “ancestor” (i.e., prefix) of ai.

4.4.1 Emulating the Emulator: Succinct Configurations and Emulation of Tree(M)

Let M be a RAM machine and let x be an input for M . Let T and S denote the running time and
space usage, respectively, of M on x. We show that the tree machine Tree(M)’s execution on x is
“emulatable” by a RAM machine with similar time and space usage to M .

Recall that Tree(M) is (dlogS′e,W)-bounded (see Proposition 4.34). Thus, using the function
representation (see Definition 4.31), each configuration C of Tree(M) is a function C : {0, 1}s → Γ̄,

where s
def
= dlogS′e+ dlogW e and Γ̄ is unimportant for the current discussion.

Proposition 4.36. There exists a data structure DS, of size S+O(W), that represents the configu-
rations of Tree(M) (executed on input x) as follows. At any point in time, the data structure’s state
implicitly represents a single configuration DS.C of Tree(M) and supports the following operations
(given read-only random access to x).

• InitConfigDS(M,x) : returns, in time O(1), an initialized data structure DS such that
DS.C is the initial configuration of Tree(M) on input x.

• DS.ActiveCells() : returns
{
ū : DS.C(ū) 6= next(DS.C)(ū)

}
in O(1) time, where

next(DS.C) denotes the successor configuration of DS.C.

• DS.Eval(R, ū) : where R is a ring33 and ū ∈ {0, 1, ?}s. When R is implicit, we omit it as
an input. If there are k “?” symbols in ū, then Eval outputs an ASLP that on input z̄ ∈ Rk
does the following.

1. For each i ∈ [k], replace the ith “?” symbol of ū by zi, and denote the resulting element
of Rs by ū.

2. Compute and output the multi-linear extension of DS.C evaluated on ū.

The process of generating the ASLP takes time Õ(2k) and space poly(k), and the ASLP itself
has length O(k · 2k), uses O(1) registers, and has multiplicative depth log(k) +O(1).

We typically think of using DS.Eval to evaluate the low-degree extension of the current
configuration DS.C on an input ū ∈ Rs, some of whose coordinates are known to be 0 or
1. This knowledge is represented by a vector ū ∈ {0, 1, ?}s. When this is the case (and ū
is clear from context), we abuse notation and write DS.Eval(ū) to denote the result of (1)
generating an ASLP P from DS.Eval(ū), and (2) evaluating P on the vector obtained from
ū by removing those coordinates that were already known to be 0 or 1 (i.e., those that do not
correspond to a “?” in ū).

• DS.Advance() : update DS.C to the configuration next(DS.C) in O(1) time, where next is
the successor operation as defined above.

33We assume that there is an efficient injective mapping from Γ̄ to R

39

Proof. Before we describe the data format of DS, first recall from Construction 4.32 that Tree(M)
emulates M instruction by instruction, so that each transition C → C′ of Tree(M) is part of the
emulation of some transition C̄ → C̄′ of M . We now define DS so that when (implicitly) representing
C, it (explicitly) contains:

• The configuration C̄ (which requires S +O(1) words of space).

• Additional state which pertains to the emulation of a single instruction of M , namely

– The control state q of Tree(M). This requires O(1) space.

– The contents of Tree(M)’s work tape T (0, ·) (which requires space O(W))

– The positions of Tree(M)’s two “virtual” tape heads (which requires O(1) words of
space). Note that this implicitly defines the positions of all the “breadcrumbs” mentioned
in Construction 4.32.

– The position of Tree(M)’s real tape head (which requires O(1) words of space).

The definitions of ActiveCells, Eval, and Get are then straight-forward.

Corollary 4.37. The data structure DS defined in Proposition 4.36 also supports the operations
NextActiveCells(i) and NextEval(JRK, ū, i) operations that are the same as ActiveCells
and Eval (respectively) but applied to the ith successor configuration of C (and without modifying
the internal representation of DS). These operations take O(i) time and space. We sometimes
omit the parameter i in which case we mean to use as default i = 1 (i.e., the immediate successor).

Proof. Since calling Advance i times takes O(i) time, we can just store all the changes that
Advance would have made without actually performing them.

5 Technical Tools

In this section we introduce some new technical tools that will be useful in our main construction and
its analysis. In Section 5.1 we show a general result on how to efficiently evaluate the multi-linear
extension of functions that can be evaluated by small read-once branching programs. This result
generalizes some ad-hoc approaches for computing the multilinear extension of specific functions,
e.g. in [BHK16] and [GR17]. Then, in Section 5.2 we discuss basic notions and results from caching
theory.

5.1 Computing Low Degree Extensions of Read-Once Branching Programs

In this section we show a general result by which the multi-linear extension of function computable
by read-once branching programs can be efficiently computed. This result also extends to the
more general setting of low degree extension. While in this work we will only apply the result to
computing multi-linear extensions, we believe that this result will be useful for future work and so
we prove a more general statement here.

Definition 5.1. A branching program P for inputs of length n over an alphabet H and output space
Y is an acyclic directed graph (V,E) with a designated “source” vertex s and a positive number of
sink vertices t1, . . . , t` such that:

40

• Each non-sink vertex v is labeled with an index Var(v) ∈ [n], and has |H| outgoing edges
{v → Succh(v))}h∈H .

• Each sink vertex t is labeled with an output value yt ∈ Y .

The size |P | of P is the number of vertices. The branching program is said to be read-once if for
every path from source to a sink, the vertices on that path are labeled distinctly.

A read-once branching program is oblivious if it is a layered graph with n+ 1 layers and all the
vertices v within layer i ∈ [n] are labeled with the same index, which we simply denote by Var(i).
All vertices in the (n+ 1)th layer are sinks. The width of an oblivious read-once branching program
is the maximal number of vertices of any layer in the graph.

Evaluating a Branching Program. Given any string x ∈ Hn, we can iterate the following
simple rule to map any vertex v to an output in Y , which we will denote by Pv(x).

If at a non-sink vertex v, move to SuccxVar(v)
(v). If at a sink vertex t, output yt.

By mapping x to yt, the branching program P can thus be thought of as a function P = Ps : Hn →
Y .

Uniformity of Branching Programs. A function family {fα}α∈{0,1}∗ is computable by a (T, S)-
uniform read-once branching program, if there exists a standard word RAM machine that on input
x ∈ {0, 1}∗ runs in time T (x) and space S(x) and outputs a read-once branching program P such
that P (x) = fα(x).

5.1.1 Low Degree Extension of Read-Once Branching Programs

The following result shows how to efficiently evaluate the low degree extension of functions com-
putable by a read-once branching program.

Theorem 5.2. Given any read-once branching program B : Hn → Y and any field F that contains
H and Y , it is possible to evaluate the low-degree extension B̂ : Fn → F in time dominated by
O(|B| · |H|2) field operations.

Moreover, viewing B̂ as a function family indexed by B and F, it holds that B̂ is computable by
a TIME(|B| · |H|2)-uniform ASLPs of length O(|B| · |H|) and of multiplicative depth O(n · log(|H|)).

Proof. By Fact 4.5, it suffices to show only the moreover clause. Without loss of generality, we
assume that the vertex set V is [S].

1. For each vertex v ∈ V , in reverse topological order (so that we visit sink vertices first and
source vertices last):

(a) If v is a sink vertex, output the instruction R[v]← yv.

(b) Otherwise, output a sequence of O(|H|) instructions that, loosely speaking, computes

R[v]←
∑
h∈H

χ̂h(zVar(v)) ·R[Succh(v)],

41

where χ̂h : F→ F is the Lagrange interpolation polynomial for h:

χ̂h(z) =
∏

h′∈H\{h}

z− h′

h− h′
.

Such a sequence of instructions can be constructed in terms of the ASLP of Claim 5.2.3.

2. Output the instruction OUTPUT← R[s].

To show correctness, we must show that the algorithm computes f̂ correctly on Hn, and that the
algorithm computes a polynomial of degree |H| − 1 in each of z1, . . . , zn. Let d(v) denote the
“depth” of a vertex v: specifically, the length of the longest directed path from v to a sink vertex.

Claim 5.2.1. If z̄ ∈ Hn, then the above algorithm on input z̄ outputs f(z1, . . . , zn).

Proof. We show that for every vertex v, the vth iteration of the loop on line 1 assigns the Pv(z1, . . . , zn)
to R[v]. This is by induction on d(v). If d(v) = 0, then v is a sink, and R[v] is assigned yv, which
is Pv(z1, . . . , zn) by definition.

If d(v) > 0, then R[v] is assigned
∑

h∈H χ̂h(zVar(v)) · R[Succh(v)]. But zVar(v) ∈ H, so this is
simply equal to R[SucczVar(v)

(v)], which by the inductive hypothesis is PSucczVar(v)
(v)(x).

Claim 5.2.2. The output of the algorithm on input z1, . . . , zn ∈ F is degree |H| − 1 in z1, . . . , zn.

Proof. We show that for every vertex v, A(v) has degree |H| − 1 in each variable. This is by
induction on d(v). If d(v) = 0, then v is a sink vertex and A(v) is a constant independent of
z1, . . . , zn, i.e. has degree 0.

If d(v) > 0, then by definitionA(v) =
∑

h∈H χ̂h(zVar(v))·A(Succh(v)). For every h, d(Succh(v)) <
d(v), so by the inductive hypothesis A(Succh(v)) has degree |H| − 1 in each of z1, . . . , zn. Further-
more, because the branching program is read-once, A(Succh(v)) is independent of zVar(v) (i.e. it
has degree 0 in zVar(v)). Since χ̂h has degree |H| − 1, it holds that A(v) has degree |H| − 1 in each
of z1, . . . , zn.

Finally, we must show that Line 1b can in fact be implemented with O(|H| · S) instructions.
This follows from the following claim.

Claim 5.2.3 (Linear-Size ASLPs for Batch Computing Lagrange Interpolation Polynomials). There
is an algorithm that takes as input a description of a field F, as well as a subset H = {h1, . . . , h|H|} ⊆
F, and in time O(|H|2) outputs an ASLP of length O(|H|) (and therefore multiplicative depth
O(|H|)) that on input z ∈ F outputs

(
χ̂h1(z), . . . , χ̂h|H|(z)

)
, where

χ̂hi(z) =
∏
j 6=i

z− hj
hi − hj

.

Proof. The algorithm does the following:

42

1. Output O(|H|) instructions that jointly compute all “prefix products”
{∏i−1

j=1(z− hj)
}
i∈[|H|]

,

storing the ith prefix product in register R[i]. Specifically, one such sequence of instructions
is

R[1]← 1

(R[i]← hi−1)i∈{2,...,|H|}

R
[
|H|+ 1

]
← INPUT[1](

R[i]← R
[
|H|+ 1

]
−R[i]

)
i∈{2,...,|H|}(

R[i]← R[i]×R[i− 1]
)
i∈{2,...,|H|}

2. Similarly, outputO(|H|) instructions that jointly compute all “suffix products”
{∏|H|

j=i+1(z− hj)
}
i∈[|H|]

,

storing the ith suffix product in register R
[
|H|+ i

]
.

3. Finally, output O(|H|) instructions that jointly compute and store χ̂hi(z) in register R
[
2|H|+

i
]

for every i ∈
[
|H|
]

by computing R
[
2|H|+ i

]
← R[i] ·R

[
|H|+ i

]
·
∏
j 6=i

1
hi−hj . Specifically,

one sequence of instructions that accomplishes this isR[2|H|+ i
]
←
∏
j 6=i

1

hi − hj

i∈[|H|]

(14)

(
R
[
2|H|+ i

]
← R

[
2|H|+ i

]
×R[i]

)
i∈[|H|](

R
[
2|H|+ i

]
← R

[
2|H|+ i

]
×R

[
|H|+ i

])
i∈[|H|]

Remark 5.3. We note that the complexity of computing the O(|H|) instructions of Eq. (14) is
O(|H|2). For certain choices of H and F it is possible to compute this sequence of instructions
more efficiently, namely in time equivalent to O(|H|) operations over F. In particular, if H is of

the form {hi
def
= h0 + i · δ}i∈{1,...,|H|} for some h0 ∈ F, δ ∈ F \ {0}, then

∏k
i=1(hk − hi) = δk · k!,

which is computable in O(1) operations given
∏k−1
i=1 (hk−1 − hi) = δk−1 · (k − 1)!. For a given field

F, such sets H exist of all sizes up to and including the characteristic of F.

This concludes the proof of Theorem 5.2.

In the case of oblivious read-once branching programs, it is possible to achieve much better
multiplicative depth.

Theorem 5.4. Viewing B̂ as a function family indexed by B and F, it holds that B̂ is computable

by a TIME
(
O
(
n · (w3 + |H|2)

))
-uniform ASLPs of length O

(
n · (w3 + |H|)

)
and multiplicative depth

dlog(n)e+ |H| − 2.

Proof. Let B be a width w oblivious read-once branching program. We assume without loss of
generality that all the layers of B have width w. Let s ∈ [w] denote the index of the starting vertex

43

of B within layer 1. Let T = [w] denote the indices of all the sink vertices within layer n+ 1 (recall
that we assumed that all the vertices within layer n+ 1 are sinks).

For every i ∈ [n] let Bi : H → {0, 1}w×w be a function that on input h ∈ H outputs a matrix
Mi,h ∈ {0, 1}w×w that is the adjacency matrix corresponding to a transition of the branching
program from layer i to layer i+ 1 when the Var(i)th input symbol is h. More precisely, the (j, k)th

entry of Mi,h is 1 if there is an h-labeled edge from the jth vertex in layer i to the kth vertex in
layer i+ 1; otherwise, the entry is 0.

Consider the function f : Fn → F defined as:

f(z) =
∑
t∈[w]

∏
i∈[n]

(∑
h∈H

χh(zi) ·Bi(h)

)
s,t

· yt,

where by A(s,t) we refer to the (s, t)th entry of the matrix A.
By inspection, for every z ∈ Hn, the function f evaluates the branching program on z. On

the other hand, f is an individual degree |H| − 1 polynomial. Thus, by the uniqueness of the low
degree extension, f ≡ B̂.

The uniform ASLP for evaluating f proceeds as follows. For every sink t ∈ [w], the expression(∏
i∈[n]

(∑
h∈H χh(zi) ·Bi(h)

))
s,t
·yt is computed by a balanced binary multiplication tree of depth

dlog(n)e. Leaves of this tree correspond to a computation of
∑

h∈H χh(zi) ·Bi(h). This expression
can be computed by a TIME(O(|H|2))-uniform ASLP of length O(|H|) and multiplicative depth
|H| − 2. Finally, all the results (corresponding to different values of t ∈ [w] are summed.

Remark 5.5. The w3 term in Theorem 5.4 can be improved to wω, where ω is the matrix mul-
tiplication exponent. However, we do not try to optimize the polynomial dependence on w in this
work, since we will only use Theorem 5.4 with w = O(1).

5.2 Caching

We recall some basic notions and results from caching theory. A cache is a dictionary (i.e., it
supports standard Get and Put operations), with a bound τ on the number of mappings it can
store. Put operations are allowed to delete a mapping to avoid exceeding this bound. The main
performance objective of a cache is to minimize the number of failed Get operations that result
from these deletions.

There are many different types of caches corresponding to different replacement policies – how
it chooses which mapping to delete. Two particularly important types of caches are the ideal
cache (which is easily analyzed), and the least recently used (LRU) cache, which is efficiently
implementable.

An ideal cache behaves optimally and clairvoyantly with respect to future Get operations.

Definition 5.6. An access pattern (a1, . . . , aT) is said to incur Q misses on an ideal cache of size

τ (written Q = Qideal((a1, . . . , aT), τ)) if Q is the minimum value of
∑T

t=1

∣∣∣At \ At−1

∣∣∣, where the

minimum is taken over sets34 A0, . . . , AT satisfying the following constraints for each t.

34At represents the set of keys mapped by the cache at time t

44

• A0 = ∅ (the cache starts empty), and

• |At| ≤ τ (the cache can store at most τ entries), and

• at ∈ At (the cache must have at at time t)

We state without proof several useful facts about how (ideal) cache misses behave under com-
position.

Definition 5.7. An α-blowup of an access pattern (a1, . . . , aT) is another access pattern (a′1, . . . , a
′
T ′)

that is obtained by replacing each ai by a (possibly empty) sequence of addresses, each of which lies
in a set Aai whose size is at most α. We emphasize that Aai depends only on the value ai, and not
directly on i.

Proposition 5.8. If an access pattern (a1, . . . , aT) incurs Q misses on an ideal cache of size τ ,
then any α-blowup of (a1, . . . , aT) incurs at most α ·Q misses on an ideal cache of size α · τ .

An LRU cache is an “online” cache – i.e., the set At of mappings stored at time t is determined
by a1, . . . , at−1. In particular, At is obtained from At−1 by adding at and, if necessary to ensure
|At| ≤ τ , removing the mapping which was least recently accessed. This is efficiently implementable
with a doubly linked list and a hash table.

Definition 5.9. An access pattern (a1, . . . , aT) is said to incur Q misses on an LRU cache of size

τ if Q =
∑T

t=1

∣∣∣At \At−1

∣∣∣ (written Q = QLRU((a1, . . . , aT), τ)), where A0, . . . , AT are defined as

• A0 = ∅.

• For t > 0,

At =

At−1 if at ∈ At−1

At−1 ∪ {at} if at /∈ At−1 and |At−1| < τ

(At−1 ∪ {at}) \ {arg mina∈At−1
max{i : i < t ∧ ai = a}} otherwise.

A theorem of Sleator and Tarjan [ST85] shows that an LRU cache is nearly as good as a mythical
ideal cache.

Theorem 5.10 ([ST85, Theorem 6]). If an access pattern (a1, . . . , aT) incurs Q misses on an ideal
cache of size τ , then it incurs at most 2Q misses on an LRU cache of size 2τ .

Definition 5.11 (Cache Block Size). We say that an access pattern (a1, . . . , aT) incurs Q misses
on an ideal (respectively, LRU) cache of size τ and block size B if

(
ba1
B c, . . . , b

aT
B c
)

incurs Q misses
on an ideal (respectively, LRU) cache of size τ .

When using a cache for bounded memoization, it is convenient to define the following “get or
compute” operation.

Algorithm 1 Looks up key k in cache, or computes f(k)

1: procedure GetOrCompute(cache, k, f)
2: if cache.Get(k) = ⊥ then
3: cache.Put(k, f(k))

4: return cache.Get(k)
5: end procedure

45

We end this section with a technical definition that will be useful for our theorem statements.
This definition refers to the “cache friendliness” of a RAM program M on a given input x. Loosely
speaking, this quantity corresponds to the number of cache misses during the evaluation of M on
x. The actual definition refers also to prefixes of memory addresses.

Definition 5.12 (Cache Friendliness). For x ∈ {0, 1}∗ and RAM program M , let (a1, . . . , aO(T))
denote the combined access pattern (see Definition 4.16) of M on input x. For any τ ∈ N, we define
the τ -cache friendliness of M on x, denoted CFτ (x,M), as the maximum, over r ∈ [s], the number
of misses incurred by (Prefixr(a1), . . . ,Prefixr(aO(T))) on an ideal cache of size τ , divided by 2r.

Proposition 5.13. For any RAM machine M , input x and cache size τ ≤ O(T) it holds that
CFτ (x,M) ≤ O(T/τ).

Proof. For r such that 2r ≤ τ , the prefixes of all memory addresses fit in the cache and so the
number of cache misses is at most 2r (just for filling up the cache to begin with). For r such that
2r > τ , we can use the trivial bound of O(T) on the number of cache misses.

Overall, we get that CFτ (M,x) ≤ max
(

2r

2r ,
O(T)
τ

)
= O(T/τ).

For Turing machines computations, we can achieve a better bound.

Proposition 5.14 (On Cache Friendliness of Turing Machines). For a (multi-tape) Turing machine
M and any input x, it holds that CFτ (x,M) = O(T/2s), with τ = O(1).

Proof Sketch. Consider first the case of a single-tape Turing machine. Let (a1, . . . , aO(T) be the
combined access pattern of M on x and fix r ∈ [s]. Consider an LRU cache of size 2.

Due to the Turing machine sequential access pattern, after any given cache miss, it takes at
least 2s−r steps before making another cache miss. Thus, the number of cache misses is at most
O(T/2s−r) and the cache friendliness is therefore CF2(x,M) = O(T/2s).

This argument extends easily to k-tape Turing machines, using a cache of size 2k.

6 Our Main Results

Let L be any language that is decidable in time T (n) and space S(n) by a standard w-bit word
RAM machine M , where we assume that:

• max(log(n), log(S)) ≤ w ≤ O(log(T)),

• n ≤ T ≤ 2O(n), and

• log(T) ≤ S ≤ T .

In this section we state our main results: the existence of efficient PCPs with no-signaling
soundness and argument-systems for L.

Recall that CFτ (M,x) is the “cache-friendliness” of the RAM machine M on input x, given a
cache of size τ (see Definition 5.12).

46

6.1 Efficient PCPs

We first state a very general theorem that shows the explicit dependence of the running time of
the prover on a cache size and “cache friendliness” of the program. Later, we provide corollaries
for the most interesting setting of parameters.

Recall that CFτ (M,x) is the “cache-friendliness” of the RAM machine M on input x, given a
cache of size τ (see Definition 5.12).

Theorem 6.1. Let λ be a security parameter and let F be an explicit field ensemble of size |F| =
Θ(log(T)). There is a q-query PCP for L, over the alphabet F, with soundness error ε against
(kmax, δ)-NS strategies, where q = λ · polylog(T), ε = 2−λ, δ = 2−λ·polylog(T) and kmax = λ ·
polylog(T). The PCP has the following efficiency properties:

1. The PCP verifier can be implemented in time n · λ · polylog(T) and space λ · polylog(T).

2. For any cache size τ , any symbol in the PCP proof string can be evaluated in time
(
T +

max(S, n) · CFτ (M,x)
)
· polylog(T) and space S + τ · polylog(T).

Moreover, any symbol in the PCP proof string can be evaluated by a TISP
((
T + max(S, n) ·

CFτ (M,x)
)
·polylog(T), S+τ ·polylog(T)

)
-uniform ASLP over F with τ ·polylog(T) registers

and multiplicative depth log log(T) +O(1).

3. The communication complexity with each prover is polylog(T).

Sections 7 to 11 are devoted to the proof of Theorem 6.1. Using Theorem 6.1 we can derive
corollaries corresponding to the most interesting setting of parameters. First, for any ζ > polylog(T)

S

we can set the cache size to be τ = ζ·S
polylog(T) . Using Proposition 5.13 we get a bound on the cache

friendliness of any RAM program and so we can derive the following corollary (which for simplicity
of presentation is restricted to the setting of sublinear space S ≥ n):

Corollary 6.2. Suppose that S ≥ n and let ζ > polylog(T)
S . Then, every symbol in the PCP proof-

string of Theorem 6.1 can be evaluated in time Õ(T) · (1/ζ) and space (1 + ζ) · S.
Moreover, every symbol in the PCP proof string can be evaluated by a TISP

(
Õ(T) · (1/ζ), (1 +

ζ) · S
)
-uniform ASLP with ζ · S registers and multiplicative depth log log(T) +O(1).

In particular, setting ζ = 1/polylog(T) (and assuming that S ≥ (log(T))c for a sufficiently
large constant c ≥ 1) we obtain that every symbol in the PCP proof-string can be computed in
time Õ(T) and space S + o(S).

Alternatively, for programs that are “cache friendly” (e.g., Turing machines - see Proposi-
tion 5.14), we derive the following improved efficiency:

Corollary 6.3. Suppose M has cache friendliness CFτ (M,x) ≤ T ·polylog(T)
max(S,n) , for τ = polylog(T),

and every x ∈ {0, 1}n. Then, every point in the PCP proof-string of Theorem 6.1 can be evaluated
in time Õ(T) and space S + polylog(T).

Moreover, every symbol in the PCP proof string can be evaluated by a TISP
(
Õ(T), S+polylog(T)

)
-

uniform ASLP with polylog(T) registers and multiplicative depth log log(T) +O(1).

47

6.2 Argument-Systems

Applying the transformation of [KRR13], from no-signaling PCPs to argument-schemes, to the
PCPs of Theorem 6.1 and Corollaries 6.2 and 6.3 we derive our main results on the existence of
efficient 2-message argument-systems.

Theorem 6.4. Assume the existence of a sub-exponential secure homomorphic encryption scheme
that supports evaluation of arithmetic circuits of size

(
T + max(S, n) · CFτ (M,x)

)
· polylog(T) and

multiplicative depth log log(T) +O(1). Then, there exists a 2-message argument scheme for L with
the following efficiency properties:

1. The verifier of the argument-system runs in time n · polylog(T) and space polylog(T).

2. The prover runs in time
(
T +max(S, n) ·CFτ (M,x)

)
·polylog(T) and space S+τ ·polylog(T).

3. The communication complexity is polylog(T).

Theorem 6.4 is proved in Section 11.
In analogy to Corollary 6.2 we can derive a result assuming worst-case cache behavior of the

program as follows.

Corollary 6.5. Suppose that S ≥ n and let ζ > polylog(T)
S .

Assume the existence of a sub-exponential secure homomorphic encryption scheme that supports
evaluation of arithmetic circuits of size Õ(T)·(1/ζ) and multiplicative depth log log(T)+O(1). Then,
the prover in Theorem 6.4 can be implemented in time Õ(T) · (1/ζ) and space (1 + ζ) · S.

In contrast, if we assume the program is cache friendly, in analogy to Corollary 6.3 we can
derive a more efficient argument-system.

Corollary 6.6. Suppose M has cache friendliness CFτ (M,x) ≤ T ·polylog(T)
max(S,n) , for τ = polylog(T),

and every x ∈ {0, 1}n.
Assume the existence of a sub-exponential secure homomorphic encryption scheme that supports

evaluation of arithmetic circuits of size Õ(T) and multiplicative depth log log(T) +O(1). Then, the
prover in Theorem 6.4 can be implemented in time Õ(T) and space S + polylog(T).

7 The Construction

Let M be a standard word RAM machine that on an input of length n runs in time T = T (n) and
space S = S(n) with a word size w = w(n). As in Section 4.4, let W = poly(w) be the maximal
complexity of implementing any (standard) word operation by a single-tape Turing machine on
w-bit inputs, let S′ = max(n, S), and let Tree(M) be the tree machine from Construction 4.32 that
simulates M in time T ′ = Θ(T ·W 2 · logS′). Throughout this section, we think of configurations of
Tree(M) as represented by functions C : {0, 1}dlogS′e × {0, 1}dlogW e → Γ̄ as in Definition 4.31. For

convenience of notation we define s
def
= dlogS′e+ dlogW e and t

def
= dlog T ′e.

We now construct a PCP for the language accepted by M . The PCP is parameterized by a finite
field ensemble F = {F(n)}n∈N, of size |F(n)| ≥ |Γ̄|, and for each n we require that the description of
F(n) includes a canonical association of Γ̄ with a subset of |F(n)|. We will describe the functionality
of the prover and verifier, and defer analysis of their complexities to Sections 8 and 9. In Section 10
we show that this construction, with appropriate parameters (e.g., the field size), has no-signaling
soundness.

48

Notations and Conventions. Recall that we use the convention that blackboard bold lowercase
(e.g., z) is used for field elements whereas standard bold lowercase (e.g., z) is used for bits. Likewise,
we use z̄ to denote vectors of field elements and z̄ to denote bit strings. For two vectors ū =
(u1, . . . , uk) and v̄ = (v1, . . . , vk), recall that we write ū ? v̄ to denote the vector (u1, v1, . . . , uk, vk).

7.1 Preliminaries: A Locally-Checkable Transcript for Tree Machines

In this section we show that the correctness of a Tree machine computation can be expressed via
local constraints. This is analogous to the Cook-Levin theorem, which shows that Turing machine
computations can be expressed as a combination of local constraints. As is typical in the PCP
literature, later on, we will make these constraints “robust” using algebraic techniques.

For every “direction” d ∈ {↑,↙,↘,⊗,�, ∅} we define a function

φd : {0, 1}2s → {0, 1}

that takes as input a pair of head locations ū ? ū′ of the Tree machine Tree(M) and returns 1 if a
single step from ū in direction d reaches ū′ and 0 otherwise. In other words,

φ−1
d (1) =

{(v̄, z̄) ?(bv̄/2c, z̄)} if d =↑
{(v̄, z̄) ?(2v̄, z̄)} if d =↙
{(v̄, z̄) ?(2v̄ + 1, z̄)} if d =↘
{(v̄, z̄) ?(v̄, z̄ + 1)} if d = ⊗
{(v̄, z̄) ?(v̄, z̄− 1)} if d = �
{(v̄, z̄) ?(v̄, z̄)} if d = ∅.

Remark 7.1. The reader might wonder why the format of the input to φd is (ū ? ū′) rather than
simply (ū, ū′) (recall that in the former expression, the coordinates of ū and ū′ are interleaved).
The reason for this convention (which will also be used extensively below) will become more clear
later, but jumping ahead, we remark that it is made for notational convenience regarding the order
in which variables are “eliminated” in the so-called sumcheck polynomials.

Proposition 7.2. There exist functions
{
Vd : Γ̄2 → {0, 1}

}
d∈{↑,↙,↘,⊗,�,∅} such that for any pair

of configurations C, C′ : {0, 1}s → Γ̄, we have C → C′ iff for every ū′ in {0, 1}s, it holds that C′(ū′)
is the (unique) value in Γ̄ such that for every d ∈ {↑,↙,↘,⊗,�, ∅} and ū ∈ {0, 1}s:

φd(ū ? ū′) · Vd
(
C(ū), C′(ū′)

)
= 0.

Proof. This follows from the following decomposition of what it means for a configuration C to
yield another configuration C′.

1. (Memory Consistency) For every (v̄, z̄), let (q, γ, e) = C(v̄, z̄) and let (q′, γ′, e′) = C′(v̄, z̄).

• If q = ⊥ or q ∈ {qacc, qrej}, then γ′ = γ.

• Otherwise, δ(q, γ) = (q̃, γ′, d̃ir) for some q̃ and some d̃ir.

2. (Control State Consistency) For every (v̄, z̄) and (v̄′, z̄′), let (q, γ, e) = C(v̄, z̄) and (q′, γ′, e′) =
C′(v̄′, z̄′).

49

• If q = ⊥ and q′ 6= ⊥, then

– If v̄′ = bv̄/2c and z̄′ = z̄, then dir(q′) 6= ↑.
– If v̄′ = 2v̄ and z̄′ = z̄ then dir(q′) 6= ↙.

– If v̄′ = 2v̄ + 1 and z̄′ = z̄ then dir(q′) 6= ↘.

– If v̄′ = v̄ and z̄′ = z̄ + 1 then dir(q′) 6= ⊗.

– If v̄′ = v̄ and z̄′ = z̄− 1 then dir(q′) 6= �.

• If q ∈ {qacc, qrej}, then

q′ =

{
q if v̄′ = v̄ and z̄′ = z̄

⊥ otherwise.

• If q /∈ {⊥, qacc, qrej} and (q̃, γ̃, d) = δ(q, γ), then q′ = q̃ if:

– v̄′ = bv̄/2c, z̄′ = z̄, and d = ↑; or

– v̄′ = 2v̄, z̄′ = z̄, and d = ↙; or

– v̄′ = 2v̄ + 1, z̄′ = z̄, and d = ↘; or

– v̄′ = v̄, z̄′ = z̄ + 1, and d = ⊗; or

– v̄′ = v̄, z̄′ = z̄− 1, and d = �

3. (Edge-case Consistency) For every (v̄, z̄), let (q, γ, (e1, e2)) = C(v̄, z̄) and let (q′, γ′, (e′1, e
′
2)) =

C′(v̄, z̄).

• e′1 = e1 and e′2 = e2.

• If e1 = leaf and q′ 6= ⊥, then dir(q′) 6=↑.
• If e2 = front and q′ 6= ⊥, then dir(q′) 6= ⊗.

• If e2 = back and q′ 6= ⊥, then dir(q′) 6= �.

7.2 The Prover

On input x and security parameter 1κ, the prover P generates the string formed by writing down the
truth tables of several polynomials that are defined below. As mentioned in the remarks following
Lemma 11.1, the efficiency of P does not directly determine the efficiency of our argument scheme.
Rather, the essential metric is the complexity of computing the ith symbol of P (x, 1κ) given (i, x, 1κ).
This will be analyzed in Section 9. As such, we now describe only the functionality of P (i.e., the
proof string that it outputs).

Let C0, . . . , CT ′−1 denote the transcript of Tree(M) on input x, with each configuration Cy
represented as described in Definition 4.31. Extend this transcript to have length 2t by setting
CT ′−1 = CT ′ = · · · = C2t−1.

Motivated by Proposition 7.2, we make the following definition.

Definition 7.3. For any ȳ ∈ [T ′ − 1], we say that Cȳ(ū′) is determined by {Cȳ−1(ū)}ū∈U , where
U is the (constant-sized) set of ū for which some φd(ū ? ū′) 6= 0.

Define X : {0, 1}t×{0, 1}s → F such that X(ȳ, ·) = Cȳ(·), for every ȳ ∈ {0, 1}t. Let X̂ : Ft+s →
F be the multi-linear extension of X.

Let φ+1 : {0, 1}2t → {0, 1} be the indicator function for

{ȳ ? ȳ′ : ȳ′ = ȳ + 1}

50

and let φ̂+1 : F2t → F be its multi-linear extension.
For every d ∈ {↑,↙,↘,⊗,�, ∅}, let φ̂d : F2s → F be the multi-linear extension of φd and let

V̂d : F2 → F be the low-degree extension of Vd, where φd and Vd are as in Proposition 7.2.
The PCP proof string consists of X̂, as well as two sequences of “sum-check polynomials”

P
(win)
0 , . . . , P

(win)
t+s : F2t+2s → F and P

(enc)
0 , . . . , P

(enc)
t+s : Ft+s → F, defined as follows.

• The polynomial P
(win)
0 : F2t+2s → F is defined as

P
(win)
0 (ȳ ? ȳ′, ū ? ū′)

def
= φ̂+1(ȳ ? ȳ

′) ·
∑

d∈{↑,↙,↘,⊗,�,∅}

φ̂d(ū ? ū
′) · V̂d

(
X̂(ȳ, ū), X̂(ȳ′, ū′)

)
.

• For 1 ≤ i ≤ t+ s, the polynomial P
(win)
i : F2t+2s → F is defined as

P
(win)
i (z1, . . . , z2t+2s)

def
=

∑
z1,...,z2i∈{0,1}

P
(win)
0 (z1, . . . , z2i, z2i+1, . . . , z2t+2s) · zz11 · · · z

z2i
2i ,

where we are treating 0 and 1 both as field elements (as input to P
(win)
0) and as integers (e.g.,

zz11).

• The polynomial P
(enc)
0 : Ft+s → F is defined as

P
(enc)
0 (ȳ, ū)

def
= ZΓ̄(X̂(ȳ, ū)),

where ZΓ̄ : F → F is a degree |Γ̄| − 1 polynomial such that ZΓ̄(z) = 0 iff z is in Γ̄ (i.e.,
ZΓ̄(z) =

∏
γ∈Γ̄(z− γ)).

• For 1 ≤ i ≤ t+ s, the polynomial P
(enc)
i : Ft+s → F is defined as

P
(enc)
i (z1, . . . , zt+s)

def
=

∑
z1,...,zi∈{0,1}

P
(enc)
0 (z1, . . . , zi, zi+1, . . . , zt+s) · zz11 · · · z

zi
i

(where we are again treating 0 and 1 both as field elements and integers).

7.3 The Verifier

Similarly to [KRR14], our verifier performs several tests κ times independently, where κ is the
statistical security parameter, and accepts if and only if all tests pass. We denote the base verifier,
which corresponds to a single set of tests, by V , and the actual κ-times repeated verifier by V ⊗κ.

The tests themselves also build on [KRR14]. In particular, we will rely on some of the tests that
the [KRR14] verifier makes (and later, in Section 10, we will reuse parts of [KRR14]’s soundness
analysis). We first list the [KRR14] tests that we re-use in Section 7.3.1 and then state a few
additional tests that we need for our analysis in Section 7.3.2.

51

7.3.1 Tests from [KRR14]

The following tests are based on the verifier of [KRR14]. We only use these tests in a “blackbox”
manner by relying on certain results from [KRR14] (enumerated in Section 10.1.1). The base
verifier V makes the following tests:

1. Low Degree Test for X̂: Choose a random line L : F→ Ft+s. Check that X̂ ◦L has degree
t+ s.

2. Low Degree Test for P
(win)
i : For every i ∈ {0, . . . , t+ s− 1} choose a random line L : F→

F2t+2s. Check that P
(win)
i ◦ L has degree 2|Γ̄| · (t+ s).

3. Sum Check for P
(win)
i : For every i ∈ {1, . . . , t + s}, choose at random z1, . . . , z2t+2s ∈ F.

Check that:

P
(win)
i (z1, . . . , z2t+2s)

def
=

∑
z,z′∈{0,1}

P
(win)
i−1

(
z1, . . . , z2i−1, z, z

′, z2i+2, . . . , z2t+2s

)
· zz2i · zz

′
2i+1.

4. Consistency of X and P
(win)
0 : Choose at random ȳ, ȳ′ ∈ Ft and ū, ū′ ∈ Fs. Check that

P
(win)
0 (ȳ ? ȳ′, ū ? ū′)

def
= φ̂+1

(
ȳ ? ȳ′

)
·

∑
d∈{↑,↙,↘,⊗,�,∅}

φ̂d
(
ū ? ū′

)
· V̂d
(
X̂(ȳ, ū), X̂(ȳ′, ū′)

)
.

5. Low Degree Test for P
(enc)
i : For every i ∈ {0, . . . , t+ s− 1} choose a random line L : F→

F2t+2s. Check that P
(enc)
i ◦ L has degree (|Γ̄| − 1) · (t+ s).

6. Sum Check for P
(enc)
i : For every i ∈ {1, . . . , t + s}, choose at random z1, . . . , zt+s ∈ F.

Check that:

P
(enc)
i (z1, . . . , zt+s)

def
=

∑
z∈{0,1}

P
(enc)
i−1 (z1, . . . , zi−1, z, zi+1, . . . , zt+s) · zzi .

7. Consistency of X and P
(enc)
0 : Choose at random ȳ ∈ Ft and ū ∈ Fs. Check that

P
(enc)
0 (ȳ, ū)

def
= ZΓ̄(X̂(ȳ, ū)).

Remark 7.4. The verifier in [KRR14] actually performs some additional more restricted types of
low degree tests (specifically, using lines that are orthogonal and/or parallel to certain axes). As
noted therein (see [KRR14, Section 5.2]) these additional tests are redundant and were presented
there only for convenience.

7.3.2 Additional Verifier Tests

In addition to the tests mentioned above, the verifier V performs the following tests:

1. Axis-Parallel Low-Degree Test on X̂: For every i ∈ {1, . . . , s}), sample a uniformly
random ū0 ← Ft+s, and define a line L : F → Ft+s as L(α) = ū0 + α · ēt+i, where ēj
denotes the jth standard basis vector. Check that X̂ ◦ L is a linear function (i.e., a degree 1
polynomial).

52

2. Layer-Parallel Low-Degree Test on X̂: Sample a uniformly random ū0 ← Ft+s and
ū1 ∈ {0} × Fs, and define a line L : F → Ft+s as L(α) = ū0 + α · ū1. Check that X̂ ◦ L is a
degree s polynomial.

3. Accepting Final State Test: Sample a uniformly random line L : F → Ft+s such that
L(0) = (2t − 1, 0) ∈ {0, 1}t × {0, 1}s.35 Check that Interpt+s({α 7→ X̂(L(α))}α 6=0)(0) is
(qacc, γ, e) for some γ and some e.

4. Correct Initial Input Test: Sample a uniformly random ū← Fs, and sample a uniformly
random line L : F→ Ft+s such that L(0) = (0, ū) ∈ {0, 1}t × Fs. Check that Interpt+s({α 7→
X̂(L(α))}α 6=0)(0) = Ĉ0(ū).36

In Section 8 we show how to compute the foregoing verifier tests efficiently.

8 Verifier Efficiency

As in Section 7, let M be a standard word RAM machine that on a length-n input runs in time
T = T (n) and space S = S(n) with a word size w = w(n) ≤ O(log(T (n))). Suppose for simplicity
that:

• max(log(n), logS(n)) ≤ w(n) ≤ O
(

log
(
T (n)

))
,

• n ≤ T (n) ≤ 2O(n), and

• log
(
T (n)

)
≤ S(n) ≤ T (n).

We recall some notations that were set up in Section 7. We use W = poly(w) to refer to the maximal
complexity of implementing any (standard) word operation by a single-tape Turing machine on w-

bit inputs. We denote S′ = max(n, S), and T ′ = Θ(T ·W 2 · logS′). Lastly, s
def
= dlogS′e+ dlogW e

and t
def
= dlog T ′e.

In this section, we describe the efficiency of the verifier in our PCP construction (Section 7.2)
for the language accepted by M , when instantiated with any explicit finite field ensemble F. Let
TF = TF(n) denote the time complexity of performing a field operation in F. Then, we have:

Lemma 8.1. The verifier V can be implemented in time O
((
n + polylog(T)

)
· κ · TF

)
and space

O
(
κ · poly(|F|)

)
.

The only non-trivial part in the verifier’s checks is evaluating the polynomials φ̂+1, φ̂d for d ∈
{↑,↙,↘,⊗,�, ∅}, and Ĉ0. Given these implementations, all additional arithmetic computations
involved can be implemented in time κ ·polylog(T ′) ·TF and space κ ·poly(|F|). Thus, our main step
is to show how compute the functions φ̂+1, φ̂d and Ĉ0 efficiently. These efficient implementations
rely on results established in Section 5.1.

35 Recall that the point (2t − 1, 0) refers to the result of the Tree machine computation.
36Recall that C0 refers to the initial configuration of the Tree machine (see Definition 4.23), and Ĉ0 is its multi-linear

extension.

53

8.1 Computing φ̂+1, φ̂d and Ĉ0

The functions φ̂+1 and φ̂d are low degree extensions of very simple indicator functions. Specifically,
the following propositions show that these indicator functions can be computed by small (and
uniform) read-once branching programs. In this section, especially when discussing the uniformity
of our algorithms, we emphasize that φ+1 and φd should be thought of as families of functions
that are respectively indexed by t and s. Similarly, φ̂+1 and φ̂d should be thought of as families of
functions that are respectively indexed by (t,F) and (s,F).

Proposition 8.2. φ+1 : {0, 1}2t → {0, 1} is computable by a TIME
(
O(t)

)
-uniform oblivious ROBP

of width O(1).

Proposition 8.3. For each d ∈ {↑,↙,↘,⊗,�, ∅}, φd : {0, 1}2s → {0, 1} is computable by a
TIME

(
O(s)

)
-uniform oblivious ROBP of width O(1).

Proof Sketch for Propositions 8.2 and 8.3. The propositions consist of several claims that we need
to establish.

• (Computing φ+1, φ⊗, and φ�) To determine whether ȳ′ = ȳ + 1, it suffices to check that they
are of the form ȳ′ = p̄‖1‖0c and ȳ = p̄‖0‖1c for some prefix string p and some “number of
carries” c. The functions φ⊗ and φ� are equivalent to φ+1: they simply check that z̄′ = z̄ + 1
or that z̄ = z̄′ + 1. There is a straight-forward implementation of this check by a read-once
branching program.

• (Computing φ↑) To check whether v̄′ = bv̄/2c, it suffices to check that the bits of v̄′ are the
same as those of v̄, but shifted one place to the right (with a 0 in the leftmost position).
There is a straight-forward implementation of this check by a read-once branching program.

• (Computing φ↙ and φ↘) To check whether v̄′ = 2v̄ (resp., 2v̄ + 1), it suffices to check that
the bits of v̄′ are the same as those of v̄, but shifted one place to the left (with a 0 (resp.,
1) in the rightmost position). There is a straight-forward implementation of this check by a
read-once branching program.

• (Computing φ∅) Simply need to check that two strings are identical. There is a straight-
fcorward implementation of this check by a read-once branching program.

Applying, Theorem 5.2 we derive the following two immediate corollaries.

Corollary 8.4. The function φ̂+1 : F2t → F is computable by a TIME
(
O(t)

)
-uniform ASLP with

multiplicative depth log(t) +O(1).

Corollary 8.5. For every d ∈ {↑,↙,↘,⊗,�, ∅}, the function φ̂d : F2s → F is computable by a
TIME

(
O(s)

)
-uniform ASLP with multiplicative depth log(s) +O(1).

The following proposition shows that also Ĉ0 is efficiently computable in both time and space.
Moreover, viewing Ĉ0 as a family of functions indexed by the input x and the field F, we have

Proposition 8.6. The function Ĉ0 : Fs → F, viewed as a function family indexed by x ∈ {0, 1}n
and a field F, is both:

54

• Computable by a TISP(O
(
n·polylog(|F|)

)
, O
(
s·polylog(|F|)

)
-uniform ASLP with O(1) registers

and s+O(1) multiplicative depth; and

• Computable by a TISP
(
O
(
n · s · polylog(|F|)

)
, O
(
s · polylog(|F|)

))
-uniform ASLP with O(s)

registers and log(s) +O(1) multiplicative depth.

We remark that we use the second bound exclusively in our construction of an efficient argu-
ment scheme (??), where we care much more about multiplicative depth due to our reliance on
homomorphic encryption.

Proof. We view C0 : {0, 1}dlogS′e×{0, 1}dlogW e → Γ̄ as the sum (over F) of two F-valued functions:

C(M)
0 , which handles edge cases and depends only on the machine M ; and C(x)

0 , which depends only
on the input x.

Specifically, we define

C(M)
0 (v̄, z̄) = (q, ε, β), where q and β are defined as

• q = q0 if v̄ = 0 and z̄ = 0, and q = ⊥ otherwise.

• β = (β1, β2), where β1 = leaf if v̄ ≥ 2dlogS′e−1 and β1 = ⊥ otherwise, and β2 = front if z̄ = 0,
β2 = back if z̄ = W − 1 and β2 = ⊥ otherwise.

We define

C(x)
0 (v̄, z̄) =

{
(⊥, xi, (β1, front))− (⊥, ε, (β1, front)) if v̄ = i ∈ [n] and z̄ = 0

0 otherwise

where as before, β1 = leaf if v̄ ≥ 2dlogS′e−1 and β1 = ⊥ otherwise.

It can be easily verified that C0 ≡ C(M)
0 + C(x)

0 and therefore also Ĉ0 ≡ Ĉ(M)
0 + Ĉ(x)

0 . It remains

to establish that the low-degree extensions Ĉ(M)
0 and Ĉ(x)

0 are both computable in the stated time
and space.

Based on our description of C(M)
0 above, there is a straight-forward implementation of C(M)

0 by
a TIME

(
O
(
s · polylog(|F|)

))
-uniform oblivious ROBP of width O(1). Therefore by Theorem 5.4,

the function Ĉ(M)
0 is computable by a TIME

(
O(s · polylog(|F|))

)
-uniform ASLP with multiplicative

depth log(s) +O(1).

As for evaluating Ĉ(x)
0 , first observe that C(x)

0 is sparse: C(x)
0 (v̄, z̄) 6= 0 only for v̄ ∈ [n] and z̄ = 0.

Thus,

Ĉ(x)
0 (v̄, z̄) =

n∑
v̄=1

C(x)
0 (v̄, 0) · β(v̄,0̄)→(v̄,z̄) = β0̄→z̄ ·

n∑
v̄=1

C(x)
0 (v̄, 0) · βv̄→v̄,

which by Corollaries 4.8 and 4.9 is computable both by:

• A TISP
(
O(n · polylog(|F|)), O(polylog(|F|))

)
-uniform ASLP with O(1) registers and multi-

plicative depth s; and

• A TISP
(
O
(
n · s · polylog(|F|)

)
, O(polylog(|F|))

)
-uniform ASLP with O(s) registers and mul-

tiplicative depth
max(log(s), log log(W)) +O(1) = log(s) +O(1).

55

Combining the asymptotic expressions yields the proposition as stated.

Lemma 8.1 follows by combining Corollaries 8.4 and 8.5 and Proposition 8.6.

9 Prover Efficiency

As in Section 7, let M be a standard word RAM machine that on a length-n input runs in time
T = T (n) and space S = S(n) with a word size w = w(n) ≤ O(log(T)). Suppose for simplicity
that:

• max(log(n), log(S)) ≤ w ≤ O(log(T)),

• n ≤ T ≤ 2O(n), and

• log(T) ≤ S ≤ T .

We recall some notations that were set up in Section 7. We use W = poly(w) to refer to
the maximal complexity of implementing any (standard) word operation by a single-tape Turing

machine on w-bit inputs. We denote S′ = max(n, S), and T ′ = Θ(T ·W 2 · logS′). Lastly, s
def
=

dlogS′e+ dlogW e and t
def
= dlog T ′e.

In this section, we describe the efficiency of the prover in our PCP construction (Section 7.2)
for the language accepted by M , when instantiated with an explicit field ensemble F satisfying
|F| ≤ T (n) (so field operations are computable in time polylog(T)).

Specifically, we show how to evaluate X̂, P
(win)
0 , . . . , P

(win)
t+s , and P

(enc)
0 , . . . , P

(enc)
t+s , as defined in

Section 7, with efficiency that depends on the cache behaviour of M . Although we don’t explicitly

write it, we think of X̂, {P (enc)
i }i, and {P (win)

i }i as families of polynomials that are indexed by

inputs x to M , as well as i ∈ {0, . . . , t+ s} in the case of {P (enc)
i } and {P (win)

i }.
Recall that CFτ (M,x) is the “cache-friendliness” of the RAM machine M on input x, given a

cache of size τ (see Definition 5.12).

Lemma 9.1. Let τ = τ(n) be a cache parameter. Given as input x ∈ {0, 1}n, each of the polyno-

mials X̂, {P (enc)
i }i∈[t+s], and {P (win)

i }i∈[t+s] can be evaluated in time
(
T + max(S, n) · CFτ (M,x)

)
·

polylog(T) and space S + τ · polylog(T).

Moreover, these polynomials can be evaluated by a TISP
((
T+max(S, n)·CFτ (M,x)

)
·polylog(T), S+

τ ·polylog(T)
)

-uniform ASLP with τ ·polylog(T) registers and multiplicative depth log log(T)+O(1).

Our analysis will also rely on the efficient algorithms for computing φ̂+1, φ̂d, and Ĉ0 that were
given in Section 8.1 (specifically, Corollaries 8.4 and 8.5 and Proposition 8.6).

9.1 Evaluating X̂

In this section we show how to evaluate the polynomial X̂ efficiently at any given point. As a
matter of fact, we shall prove a stronger statement (Proposition 9.2 below) that will be useful in
the evaluation of other parts of the PCP proof in the subsequent subsections.

Recall that t = dlog(T ′)e and s = dlogS′e + dlogW e, where T ′ = Õ(T) is the running time of
the tree machine and S′ = max(S, n).

56

Proposition 9.2. For any i ≤ t, any ā ∈ Ft−i, and any b̄ ∈ Fs, it is possible to enumerate
{X̂(p̄‖ā, b̄)}p̄∈{0,1}i in order of lexicographically increasing p̄, using time Õ(T) and space S +
polylog(T).

Furthermore, for ` distinct b̄1, . . . , b̄`, it is possible to enumerate {(X̂(ā‖b̄1), . . . , X̂(ā‖b̄`))}ā∈{0,1}i
in order of lexicographically increasing ā, using time ` · Õ(T) and space S + ` · polylog(T).

Moreover, it is possible to do this enumeration with a TISP
(
` · Õ(T), S + log ` + polylog(T)

)
-

uniform ASLP that has O(`+ log(T)) registers, and multiplicative depth log log(T) +O(1).

Proof. We first focus on the case ` = 1, and observe that

X̂(p̄‖ā, b̄) =
∑

ā∈{0,1}t−i
βā→ā · X̂(p̄‖ā, b̄)

and by Fact 4.7, the coefficients {βā→ā}ā∈{0,1}t−i are enumerable by a TISP
(
O(2t−i ·log(t−i)), O(t−

i)
)
-uniform ASLP with O(t− i) registers and multiplicative depth log(t− i)+O(1). Thus, it suffices

to establish the following claim.

Claim 9.2.1. {X̂(ȳ, b̄)}ȳ∈{0,1}t, or equivalently {Ĉȳ(b̄)}ȳ∈{0,1}t, is enumerable in order of lexico-

graphically increasing ȳ by a TISP
(
Õ(T), S + polylog(T)

)
-uniform ASLP with O(s) registers and

multiplicative depth log(s) +O(1).

Proof. Proposition 8.6 states that there is a TISP
(
O
(
n·s·polylog(|F|)

)
, O
(
s·polylog(|F|)

))
-uniform

ASLP that computes Ĉ0(b̄) with O(s) registers and multiplicative depth log(s) + O(1). For each
ȳ ≥ 1, observe that given Ĉȳ−1(b̄) and the (constant-sized) set of differences between Cȳ−1 and Cȳ,
we can compute Ĉȳ(b̄) via term-wise differences in the formula Ĉȳ(b̄) =

∑
b̄∈{0,1}s Cȳ(b̄)·βb̄→b̄. This

computation can be performed within an ASLP using O(s) instructions, O(1) temporary registers,
and multiplicative depth log(s) +O(1).

But all of the term-wise differences between Cȳ−1 and Cȳ for ȳ ∈ [2t] are enumerable (outside
the ASLP) in time O(T ′) = Õ(T) and space S+O(W) using Proposition 4.36. In total, it is possible
to enumerate {Ĉȳ(b̄)}ȳ∈{0,1}t with a TISP(O(n · s · polylog(|F|) + T ′ · s, S + O(W))-uniform ASLP
with O(s) registers and multiplicative depth log(s) +O(1).

The case of ` > 1 follows in a similar manner.

As a direct corollary of Proposition 9.2 we can also efficiently compute X̂ at any given point.

Corollary 9.3. The polynomial X̂ is computable in time Õ(T) and space S+polylog(T). Moreover,

the polynomial is computable by a TISP
(
Õ(T), S + polylog(T)

)
-uniform ASLP with O(t) registers

and log(t) +O(1) multiplicative depth.

9.2 Evaluating P
(enc)
i and P

(win)
i for i ≤ t

We proceed to show how to efficiently evaluate the polynomials P
(enc)
i (ȳ, ū) for values of i that are

at most t.

57

Proposition 9.4. For i ≤ t, the polynomial P
(enc)
i can be evaluated in time Õ(T) and space

S + polylog(T).

Moreover, P
(enc)
i is computable by a TISP

(
Õ(T), S + polylog(T)

)
-uniform ASLP with O(t) reg-

isters and log(t) +O(1) multiplicative depth.

Proof. Let i ≤ t, ȳ ∈ Ft and ū ∈ Fs be arbitrary. Write ȳ = ā‖b̄ for ā ∈ Fi. Recall that we use

vector exponentiation, e.g. āā as shorthand for
∏
i a

ai
i . By definition of P

(enc)
i ,

P
(enc)
i (ā‖b̄, ū) =

∑
ā∈{0,1}i

ZΓ̄

(
X̂(ā‖b̄, ū)

)
· āā.

The polynomial ZΓ̄ (which was defined as ZΓ̄(z) =
∏
γ∈Γ̄(z − γ)) is computable within an

ASLP in O(1) instructions, and {āā}ā∈{0,1}i can be enumerated within an ASLP using O(i · 2i)
instructions, O(i) registers, and log(i) +O(1) multiplicative depth in a similar fashion to Fact 4.7.
Thus, it suffices to enumerate the 2i = O(T ′) values

{
X̂(ā‖b̄, ū)

}
ā∈{0,1}i . This can be done with

a TISP
(
Õ(T), S + polylog(T)

)
-uniform ASLP with O(t) registers and log(t) + O(1) multiplicative

depth by Proposition 9.2.

An analogous proposition holds for P
(win)
i , but the proof is slightly more involved:

Proposition 9.5. For i ≤ t, the polynomial P
(win)
i can be evaluated in time Õ(T) and space

S + polylog(T).

Moreover, P
(win)
i is computable by a TISP

(
Õ(T), S + polylog(T)

)
-uniform ASLP with O(t) reg-

isters and multiplicative depth log(t) +O(1).

Proof. We show how to compute P
(win)
i (ȳ ? ȳ′, ū ? ū′) for arbitrary ȳ, ȳ′ ∈ Ft and ū, ū′ ∈ Fs. Write

ȳ = ā‖b̄ and ȳ′ = ā′‖b̄′ for ā, ā′ ∈ Fi (and recall that i ≤ t). Then P
(win)
i (ȳ ? ȳ′, ū ? ū′) is, by

definition, equal to

P
(win)
i

(
(ā ? ā′)‖(b̄ ? b̄′), ū ? ū′

)
=

∑
ā,ā′∈{0,1}i

P
(win)
0

(
(ā ? ā′)‖(b̄ ? b̄′), ū ? ū′

)
· āā · (ā′)ā′

=
∑

ā,ā′∈{0,1}i
φ̂+1

(
(ā ? ā′)‖(b̄ ? b̄′)

)
·

∑
d∈{↑,↙,↘,⊗,�,∅}

φ̂d
(
ū ? ū′

)
· V̂d
(
X̂(ā‖b̄, ū), X̂(ā′‖b̄′, ū′)

)
· āā · (ā′)ā′

=
∑

d∈{↑,↙,↘,⊗,�,∅}

φ̂d
(
ū ? ū′

)
·

∑
ā,ā′∈{0,1}i

φ̂+1

(
(ā ? ā′)‖(b̄ ? b̄′)

)
· V̂d
(
X̂(ā‖b̄, ū), X̂(ā′‖b̄′, ū′)

)
· āā · (ā′)ā′ .

Because φ̂d is computable in time O(s · TF) (in fact by a TIME(O(s))-uniform ASLP with multi-
plicative depth log(s) + O(1), see Corollary 8.5), it suffices to separately compute for each d the
following sub-sum:∑

ā,ā′∈{0,1}i
φ̂+1

(
(ā ? ā′)‖(b̄ ? b̄′)

)
· V̂d
(
X̂(ā‖b̄, ū), X̂(ā′‖b̄′, ū′)

)
· āā · (ā′)ā′ .

We again simplify our task by noting that φ̂+1((ā ? ā′)‖(b̄ ? b̄′)) is non-zero only if for some b̄, b̄′ ∈
{0, 1}t−i we have φ+1

(
(ā ? ā′)‖(b̄ ? b̄′)

)
= 1, which can happen only if ā′ ∈ {ā, ā + 1}. Thus, the

58

above summation has at most 2i+1 = O(T) non-zero terms. To enumerate these terms, it suffices

to enumerate
{(
X̂(ā‖b̄, ū), X̂(ā′‖b̄′, ū′)

)}
ā∈{0,1}i

ā′∈{ā,ā+1}
because

• φ̂+1 is computable by a TIME(O(t))-uniform ASLP with multiplicative depth log(t) + O(1)
(see Corollary 8.4);

• V̂d is computable with an ASLP with O(1) instructions (via Lagrange interpolation polyno-
mials, with coefficients computed externally to the ASLP); and

• āā and (ā′)ā
′

are each computable within an ASLP using t = O(log T ′) instructions with
multiplicative depth log(t) +O(1).

The enumeration of
{(
X̂(ā‖b̄, ū), X̂(ā′‖b̄′, ū′)

)}
ā∈{0,1}i

ā′∈{ā,ā+1}
in turn reduces to enumerating the

sequence
{(
X̂(ā‖b̄, ū), X̂(ā‖b̄′, ū′)

)}
ā∈{0,1}i

, because we can simply keep the last element as we are

enumerating. By Proposition 9.2, the latter enumeration is possible using a (Õ(T), S+polylog(T))-
uniform ASLP with O(t) registers and multiplicative depth log(t) +O(1).

9.3 Evaluating P
(enc)
i for t < i ≤ t+ s

In this section, we show how to efficiently evaluate P
(enc)
i (ȳ, ū) for arbitrary ȳ ∈ Ft and ū ∈ Fs for

i > t.
The main algorithmic bottleneck in evaluating P

(enc)
i turns out to be evaluating the low-degree

extensions of each of the Tree(M)’s configurations C1, . . . , CT on points in {0, 1}r × Fs−r. Each of
these evaluations can be done in O(2s−r) operations over F (see Proposition 4.36, but we wish to

evaluate P
(enc)
i in time less than T · 2s−r. Additionally, we want to use minimal space beyond what

is required to evaluate M on x.
We use a bounded memoization technique to reduce the number of necessary evaluations at

the expense of somewhat larger space usage. We show that the profitability of this trade-off is
intimately related to the memory access pattern of M on x, and in particular the number of cache
misses it incurs (with various block sizes). For a quick review of standard definitions and results
about caching, the reader is invited to Section 5.2.

Recall from Definition 4.16 that the combined access pattern of a RAM machine M on an input
x is a tuple whose entries are all addresses accessed by M , where input accesses are treated as if they
were memory accesses. Conflating input accesses with memory accesses is somewhat unnatural,
and is done for convenience, as Tree(M) stores the jth bit of x and the jth memory cell’s contents
in the same region of its tape.

The performance of our algorithm is determined by the number of misses incurred by the
combined access pattern on an ideal cache (see Definition 5.6). This may seem even less natural,
but it is bounded37 by the number of misses incurred by input accesses plus the number of
misses incurred by memory accesses. Both of the latter quantities are natural parameters that are
optimized in practical programs.

37up to a factor of 2 both in the number of misses and in the cache size considered

59

Proposition 9.6. There is an algorithm for evaluating P
(enc)
t+r , for any r ∈ [s], whose efficiency is

controlled by a “cache size” parameter τ as follows.
Let addrs = (addr1, . . . , addrO(T)) denotes the combined access pattern of M on x. Let Q denote

the number of misses incurred by (Prefixr(addr1), . . . ,Prefixr(addrO(T))) on an ideal cache of
size τ . The algorithm runs in time (T +Q · 2s−r) · polylog(T) and space S + τ · polylog(T).

Moreover, P
(enc)
t+r is computable by a TISP

(
(T +Q ·2s−r) ·polylog(T), S+τ ·polylog(T)

)
-uniform

ASLP with τ · polylog(T) registers and multiplicative depth log(t) +O(1).

Proof. Consider an arbitrary input (ȳ, ū) ∈ Ft × Fs to P
(enc)
t+r . Writing ū = ā‖b̄ with ā ∈ Fr, we

have, by definition, that

P
(enc)
t+r (ȳ, ā‖b̄) =

∑
ȳ∈{0,1}t

∑
ā∈{0,1}r

ZΓ̄(Ĉȳ
(
ā‖b̄)

)
· ȳȳ · āā.

In Algorithm 2 below, we show how to enumerate the 2t = O(T ′) terms {σȳ}ȳ∈{0,1}t , where

σȳ
def
=

∑
ā∈{0,1}r

ZΓ̄

(
Ĉȳ(ā‖b̄)

)
· āā, (15)

in total time (T +Q ·2s−r) ·polylog(T) and space S+O
(
τ ·polylog(T)

)
. Actually, Algorithm 2 can

be viewed as producing, in time (T +Q · 2s−r) · polylog(T) and space S + τ · polylog(T), an ASLP
that enumerates {σȳ}ȳ∈{0,1}t with τ · polylog(T) registers and multiplicative depth log(s) +O(1).

We use this as a subroutine to evaluate P
(enc)
t+r with Algorithm 3, whose correctness, efficiency,

and multiplicative depth are immediate (given the analysis of Algorithm 2).
.

Algorithm 2 Enumerates (as streaming output) σ0, . . . , σ2t−1

1: configDS← InitConfigDS(M,x)
2: Initialize cache as a new LRU cache of size τ ′ = 2W · τ · logS′.
3: σ ←

∑
ā∈{0,1}r Zγ̄

(
configDS.Eval(ā‖b)

)
· āā. . σ =

∑
ā∈{0,1}r Zγ̄

(
Ĉ0(ā‖b)

)
· āā

4: Output “σ0 = σ”.
5: for ȳ ∈ {0, . . . , 2t − 2} do

6: Uȳ ← configDS.ActiveCells() . i.e., Uȳ =
{

ū : Cȳ(ū) 6= Cȳ+1(ū)
}

7: Aȳ ← {Prefixr(ū) : ū ∈ Uȳ} . Aȳ ⊇
{

ā : Ĉȳ(ā‖b̄) 6= Ĉȳ+1(ā‖b̄)
}

8: for all ā ∈ Aȳ do
9: cur← cache.GetOrCompute

(
ā, configDS.Eval(·‖b̄)

)
. cur = Ĉȳ(ā‖b̄)

10: new← cur
11: for all b̄ ∈ {0, 1}s−r such that ā‖b̄ ∈ Uȳ do . computes new = Ĉȳ+1(ā‖b̄)
12: new← new +

(
configDS.NextEval(ā‖b̄)− configDS.Eval(ā‖b̄)

)
· βb̄→b̄

13: σ ← σ + (Zγ̄(new)− Zγ̄(cur)) · āā
14: cache.Put(ā, new)

15: Output “σȳ+1 = σ”.
16: config.Advance() . from Cȳ to Cȳ+1

60

Algorithm 3 Evaluates P
(enc)
i for i > t

1: sum← 0, ȳ← 0
2: for σ ← σ0, . . . , σ2t−1 do . Enumerated using Algorithm 2
3: sum← sum + σ · (ȳ)ȳ

4: ȳ← ȳ + 1

5: return sum

Correctness of Algorithm 2. The for-loop of Line 5 maintains several invariants that hold at
the beginning of the ȳth iteration, for every ȳ:

1. Every (key, value) pair in cache is of the form
(
ā, Ĉȳ(ā‖b̄)

)
, for some ā ∈ {0, 1}r.

2. σ is σȳ as defined in Eq. (15).

3. configDS.C = Cȳ, i.e., the (succinct) representation of the ȳth configuration of Tree(M) on
input x.

Lines 6 and 7 compute the possible terms in the definition of σ that could change when ȳ increments,
and the for-loop of Line 8 iterates over these terms. The for-loop at Line 11 computes how each
term actually changes (if at all), and Line 13 applies this change to σ to maintain Invariant 2.
Line 14 applies these changes to the entries of cache to maintain Invariant 1.

The correctness of Algorithm 2 follows from the fact that Invariant 2 is maintained throughout
the course of the algorithm, and, in each step, we output σ = σȳ+1.

Space Usage of Algorithm 2. The data structure configDS uses S +O(W) space (see Propo-
sition 4.36) and cache uses O

(
τ ′ · (r + log(|F|))

)
space, where recall that τ ′ = 2W · τ · logS′. The

rest of Algorithm 2 only uses space O(r · log(|F|)). In total, Algorithm 2 uses space S + O(W) +
O
(
τ ′ · (r + log(|F|))

)
+O(r · log(|F|) = S +O

(
τ · s ·W · (r + log(|F|))

)
.

Running Time of Algorithm 2. It is straightforward to verify that the running time of Al-
gorithm 2 excluding Line 9 is O

(
(2s + 2t · s) · TF

)
= O

(
T ′ · s · TF

)
. (Note that Line 3 takes time

O(2s · TF) and |Uȳ| ≤ 2 for all ȳ, which bounds the number of iterations of the for-loops at Lines 8
and 11.)

The total running time of Line 9 (over all loop iterations) is the running time of config.Eval(·‖b̄)
(which is O(TF · 2s−r)) multiplied by the number of misses incurred on an LRU cache of size τ ′ by
the sequence of values for ā at Line 9 over the entire execution of Algorithm 2.

Claim 9.6.1. The number of misses incurred on an LRU cache of size τ ′ by the sequence of values
for ā at Line 9 over the entire execution of Algorithm 2 is at most 2W · log(S′) ·Q.

Proof. Recall that we denote by QLRU (resp., Qideal) the number of cache misses incurred on LRU
(resp., ideal) cache (see Section 5.2).

Let a denote the sequence of values taken by ā in the O(T ′) executions of Line 9 in Algorithm 2.
By Theorem 5.10 it holds that:

QLRU(a, τ ′) ≤ 2 ·Qideal(a, τ
′/2). (16)

61

Let (ū0, . . . , ū2t−1) denote the access pattern of Tree(M) on input x. Note that by construction38

a =
(
Prefixr(ū0),Prefixr(ū1),Prefixr(ū1), . . . ,Prefixr(ū2t−2),Prefixr(ū2t−2),Prefixr(ū2t−1)

)
.

Thus,

Qideal(a, τ
′/2) = Qideal((Prefixr(ū0), . . . ,Prefixr(ūT ′)), τ

′/2). (17)

Let addrs = (addr1, . . . , addrO(T)) denote the combined access pattern of the RAM machine M
on x. Then, combining Proposition 5.8 and Proposition 4.35 we get that the right hand side of
Eq. (17) is upper bounded by

W · log(S′) ·Qideal

((
Prefixr(addr1), . . . ,Prefixr(addrO(T))

)
,

τ ′

2W · log(S′)

)
(18)

which in turn is equal to W · log(S′) ·Q. The claim follows by combining Eqs. (16) to (18).
This concludes the proof of Claim 9.6.1.

This concludes the proof of Proposition 9.6.

9.4 Evaluating P
(win)
i for t < i ≤ t+ s

We now move on to P
(win)
i , showing how to efficiently compute P

(win)
i (ȳ ? ȳ′, ū ? ū′) for arbitrary

ȳ, ȳ′ ∈ Ft and ū, ū′ ∈ Fs.

Proposition 9.7. There is an algorithm for evaluating P
(win)
t+r , for any 0 < r ≤ s, which is given a

cache size parameter τ , and exhibits the following efficiency.
Let addrs = (addr1, . . . , addrO(T)) denote the combined access pattern of the RAM machine M

on x. Let Q denote the number of misses incurred by
(
Prefixr(addr1), . . . ,Prefixr(addrO(T))

)
on an ideal cache of size τ . The algorithm runs in time (T + Q · 2s−r) · polylog(T) and space
S + τ · polylog(T).

Moreover, P
(win)
t+r is computable by a TISP

(
(T +Q ·2s−r) ·polylog(T), S+τ ·polylog(T)

)
-uniform

ASLP with τ · polylog(T) registers and multiplicative depth log(t) +O(1).

Proof. Let 0 < r ≤ s be such that i = t + r. Fix inputs ȳ, ȳ′ ∈ Ft, and ū, ū′ ∈ Fs be inputs

for P
(win)
t+r . Let ā, ā′ ∈ Fr and b̄, b̄′ ∈ Fs−r such that ū = ā‖b̄ and ū′ = ā′‖b̄′. By definition,

Pt+r(ȳ ? ȳ
′, ū ? ū′) is equal to∑

ȳ,ȳ′,ā,ā′

P0

(
ȳ ? ȳ′, (ā ? ā′)‖(b̄ ? b̄′)

)
· (ȳ ? ȳ′)ȳ ? ȳ′ · (ā ? ā′)ā ? ā′

=
∑
ȳ,ȳ′

φ̂+1(ȳ ? ȳ′) · (ȳ ? ȳ′)ȳ ? ȳ′ ·
∑
ā,ā′

∑
d

φ̂d
(
(ā ? ā′)‖(b̄ ? b̄′)

)
· V̂d
(
Ĉȳ(ā‖b̄), Ĉȳ′(ā′‖b̄′)

)
· (ā ? ā′)ā ? ā′

=
∑
d

2t−2∑
ȳ=0

(ȳ ? ȳ′)ȳ ?(ȳ+1) ·
∑
ā,ā′

φ̂d
(
(ā ? ā′)‖(b̄ ? b̄′)

)
· V̂d
(
Ĉȳ(ā‖b̄), Ĉȳ+1(ā′‖b̄′)

)
· (ā ? ā′)ā ? ā′ ,

38This is basically because the algorithm enumerates at every step both the current and next head positions.

62

where the last equality uses the fact that

φ̂+1(ȳ ? ȳ′) = φ+1(ȳ ? ȳ′) =

{
1 if ȳ′ = ȳ + 1

0 otherwise.

Fix d ∈ {↑,↙,↘,⊗,�, ∅}. We show how to efficiently enumerate the sequence {σd,ȳ}ȳ∈{0,...,2t−2},
where

σd,ȳ
def
=
∑
ā,ā′

φ̂d
(
(ā ? ā′)‖(b̄ ? b̄′)

)
· V̂d
(
Ĉȳ(ā‖b̄), Ĉȳ+1(ā′‖b̄′)

)
· (ā ? ā′)ā ? ā′ (19)

(in order of increasing ȳ ∈ {0, . . . , 2t − 2}). Specifically, Algorithm 4 shows how to efficiently
enumerate {σd,ȳ}ȳ in order of increasing ȳ, taking time O

(
(s ·(S′ ·W+T ′)+Q ·2s−r ·W · logS′) ·TF

)
and using space S+O

(
τ ·W logS′ · (log(|F|)+r)

)
. We can then evaluate P

(win)
t+r in a straightforward

way with Algorithm 5. Before describing these algorithms, we first introduce the following useful
notation:

Definition 9.8. For any d ∈ {↑,↙,↘,⊗,�, ∅}, we write ā ∼d ā′ for ā, ā′ ∈ {0, 1}i iff for some
b̄, b̄′ ∈ {0, 1}s−i, it holds that φd((ā‖b̄) ?(ā′‖b̄′)) 6= 0.

We proceed to describe Algorithms 4 and 5.

Correctness of Algorithm 4. The for-loop of Line 6 maintains several invariants:

1. Every (key, value) pair in cache is of the form
(
ā, Ĉȳ(ā‖b̄)

)
, and every (key, value) pair in

cache′ is of the form
(
ā′, Ĉȳ(ā′‖b̄′)

)
.

2. σ is σd,ȳ as defined in Eq. (19).

3. configDS.C is the (succinct) representation of the ȳth configuration of Tree(M).

Lines 6 and 7 compute the possible terms in the definition of σ that could change when ȳ increments,
and the for-loop of Line 12 iterates over these terms. Lines 16 and 18 compute how these terms
actually change (if at all), and Line 22 applies this change to σ to maintain Invariant 2. Lines 20
and 21 store these changes, and the for-loops at Lines 23 and 25 apply these changes to the entries
of cache and cache′ to maintain Invariant 1.

Space Usage. Other than the following variables, Algorithm 4 uses space O(log T ′ · log(|F|)):

• config, which uses space S +O(W).

• cache and cache′, which each use space O
(
τ ′ · (log(|F|) + r)

)
.

Running Time. The running time of Algorithm 4 excluding Lines 13 and 14 is O(T ′ · s · TF). In
particular:

• The time to evaluate Line 4 is O
(
(2r · (s+ 2s−r · r)

)
· TF), which is at most O

(
2s · s · TF

)
.

• |Uȳ| ≤ 2 for all ȳ, which bounds the number of iterations of the for-loops at Lines 12, 16, 18,
23 and 25.

63

Algorithm 4 Produces (as streaming output) σd,0, . . . , σd,2t−2

1: configDS← InitConfigDS(M,x)
2: Initialize cache and cache′ as new LRU caches of size τ ′ = 288 · τ ·W · log(S′)
3: . Below, we use the shorthands Ĉ0(·) for configDS.Eval(·) and Ĉ1(·) for configDS.NextEval(·).
4: σ ←

∑
ā∼dā′ φ̂d

(
(ā ? ā′)‖(b̄ ? b̄′)

)
· V̂d
(
Ĉ0(ā‖b̄), Ĉ1(ā′‖b̄′)

)
· (ā ? ā′)ā ? ā′

5: output “σd,0 = σ”
6: for all ȳ = 0, . . . , 2t − 3 do
7: . Throughout this loop, we use the shorthands Ĉȳ(·) for configDS.Eval(·), Ĉȳ+1(·) for

configDS.NextEval(·) and Ĉȳ+2(·) for configDS.NextNextEval(·)
8: Uȳ ←

{
(ū, ū′) : ū ∼d ū′ and either Cȳ(ū) 6= Cȳ+1(ū) or Cȳ+1(ū′) 6= Cȳ+2(ū′)

}
9: . See Proposition 4.36 for details on the implementation of this step.

10: Aȳ ←
{(

Prefixr(ū),Prefixr(ū
′)
)

: (ū, ū′) ∈ Uȳ

}
11: updates← ∅, updates′ ← ∅
12: for all (ā, ā′) ∈ Aȳ do
13: cur← cache.GetOrCompute

(
ā, Ĉȳ(·‖b̄)

)
. cur = Ĉȳ(ā‖b̄)

14: cur′ ← cache′.GetOrCompute
(
ā′, Ĉȳ+1(·‖b̄′)

)
. cur′ = Ĉȳ+1(ā′‖b̄′)

15: new← cur, new′ ← cur′

16: for all b̄ such that Cȳ(ā‖b̄) 6= Cȳ+1(ā‖b̄) do
17: new← new +

(
Cȳ+1(ā‖b̄)− Cȳ(ā‖b̄)

)
· βb̄→b̄

18: for all b̄′ such that Cȳ+1(ā′‖b̄′) 6= Cȳ+2(ā′‖b̄′) do
19: new′ ← new′ +

(
Cȳ+2(ā′‖b̄′)− Cȳ+1(ā′‖b̄′)

)
· βb̄′→b̄′

20: updates← updates ∪ {(ā, new)}
21: updates′ ← updates′ ∪ {(ā′, new′)}
22: σ ← σ + φ̂d

(
(ā ? ā′)‖(b̄ ? b̄′)

)
·
(
V̂d(new, new′)− V̂d(cur, cur′)

)
· (ā ? ā′)ā ? ā′

23: for all (k, v) ∈ updates do
24: cache.Put(k, v)

25: for all (k, v) ∈ updates′ do
26: cache′.Put(k, v)

27: output “σd,ȳ+1 = σ”.
28: configDS.Advance()

Algorithm 5 Evaluates P
(win)
i for i > t

1: sum← 0
2: for all d ∈ {↑,↙,↘,⊗,�, ∅} do
3: ȳ← 0
4: for σ = σd,0, . . . , σd,2t−2 do . Enumerated using Algorithm 4

5: sum← sum + σ · (ȳ ? ȳ′)ȳ ?(ȳ+1)

6: ȳ← ȳ + 1

7: return sum

64

The total running time of Line 13 (over all loop iterations) is the running time of config.Eval(·‖b̄)
(which is O(2s−r · TF)) multiplied by the number of missses incurred on an LRU cache of size τ ′ by
the sequence of values taken by ā at Line 13 over the entire execution of Algorithm 4. Similarly,
the total running time of Line 14 is O(2s−r · TF) multiplied by the number of missses incurred on
an LRU cache of size τ ′ by the sequence of values taken by ā′ at Line 14 over the entire execution
of Algorithm 4.

Claim 9.8.1. The number of misses incurred on an LRU cache of size τ ′ by the sequence of values
for ā (resp., ā′) at Line 13 (resp., Line 14) over the entire execution of Algorithm 4 is at most
288W · log(S′) ·Q.

The proof of Claim 9.8.1 is similar to (but slightly more complicated than) Claim 9.6.1.

Proof. We bound the number of misses for the sequence of values for ā. The analysis for ā′ is
similar. Recall that we denote by QLRU (resp., Qideal) the number of cache misses incurred on LRU
(resp., ideal) cache (see Section 5.2).

Let a denote the sequence of values taken by ā in the O(T ′) executions of Line 13 in Algorithm 4.
By Theorem 5.10 it holds that:

QLRU(a, τ ′) ≤ 2 ·Qideal(a, τ
′/2). (20)

Observe that a is produced as follows. In the ȳth iteration of the main loop, we add values ā
that are prefixes of all the Tree machine head positions that are either changed between the ȳth and
(ȳ + 1)th time steps or are “neighbors in the dth direction” of positions that are changed between
the (ȳ+1)th and (ȳ+2)th time steps. Overall, this means that at the ȳth iteration there are at most
O(1) positions that could potentially be inserted into the list a (here we use the fact that given the
position of the Tree machine head at time ȳ, there are O(1) possibilities for the head position at
time ȳ + 1. Moreover, this also holds even when considering only prefixes of the head position, see
Proposition A.1). As a matter of fact, a loose accounting shows that the above constant is upper
bounded by 144.39

Let u denote r-bit prefixes of the access pattern of Tree(M) on input x. By the above discussion,
the list a is a 144-blowup of u (see Definition 5.7 for the definition of an α-blowup).

Thus, by Proposition 5.8 it holds that

Qideal(a, τ
′/2) ≤ 144 ·Qideal(u, τ

′/288). (21)

Let addrs = (addr1, . . . , addrO(T)) denote the combined access pattern of the RAM machine M
on input x. Then, combining Proposition 5.8 and Proposition 4.35 we get that the right hand side
of Eq. (21) is upper bounded by

W · log(S′) ·Qideal

((
Prefixr(addr1), . . . ,Prefixr(addrO(T))

)
,

τ ′

288W · log(S′)

)
(22)

which in turn is equal to W · log(S′) ·Q. The claim follows by combining Eqs. (20) to (22).
This concludes the proof of Claim 9.8.1.

This concludes the proof of Proposition 9.7.

39We do not try to optimize this constant here and merely specify it to make our algorithm use concrete constants.

65

10 No-Signaling Soundness

In this section we prove that the PCP construction from Section 7, with appropriately chosen
parameters, is no-signaling sound. Recall that the PCP verifier is actually a “repeated verifier”: on
input x and statistical security parameter κ it runs a “base verifier” V independently κ times (each
time on input x) and accepts if and only if V accepts in all κ executions. We call this repeated
verifier V ⊗κ, and we prove that V ⊗κ accepts false assertions with probability that is exponentially
small in the security parameter κ.

Lemma 10.1. Suppose F, κ, δ, and ε are such that

• |F| = ω(t).

• δ ≤ o(|F|−25·κ·t·|F|2).

• ε ≥ ω
(

2t+s · κ3 · |F|3 · t · 2−κ/|F|3
)

.

Then, the verifier V ⊗κ has ε-soundness against (kmax, δ)-NS provers, where kmax = O(κ2 · |F|2).

Remark 10.2 (Suggested Parameter Setting). Lemma 10.1 can be used with a wide set of parame-
ters. Still, we find it instructive to suggest a setting of parameters that the reader can keep in mind.
We suggest to think of the field size F as being poly-logarithmic in T (since the verifier runs in time
at least poly(|F|)). We think of κ as being a security parameter since, as long as κ ≥ (log(T))Ω(1),
the soundness error ε decreases exponentially in κ. Given this setting of parameters δ is roughly
2−poly(log(T),κ).

Let r = r(κ) ∈ [κ] be a parameter. We write V ≥κ−r to denote a verifier which on input x and
security parameter κ, runs κ independent copies of the base verifier V (as defined in Section 7) in
parallel, and accepts if at least κ− r of the copies of V accept.

Following [KRR14], our proof of Lemma 10.1 is composed of two main steps. Our first, and
main, step is to show that for r � κ, the “relaxed” verifier V ≥κ−r has “weak soundness” – that
is, a no-signaling strategy can only convince V ≥κ−r(x) to accept false statements with probability
bounded away from 1. Note that this falls short of our goal of showing that a no-signaling strategy
can only convince the verifier to accept with negligible probability. Indeed, our second step is an
amplification step (which is taken verbatim from [KRR14]) shows that if the relaxed verifier only
accepts with probability bounded away from 1, then the actual verifier V ⊗k accepts false statements
with negligible probability.

We start with our main step which shows that the relaxed verifier accepts with probability that
is bounded away from 1:

Lemma 10.3. Suppose that F, δ, κ, r, ε are such that:

• δ ≤ ε.

• r = o(κ/|F|2).

• κ ≥ log(1/ε).

• |F| = ω(t).

66

• ε = o
(

1
2t+s·κ3·|F|2

)
.

Then, the relaxed verifier V ≥κ−r has (1− ε)-soundness against (kmax, δ)-NS provers, where kmax =
O(κ2 · |F|2).

Remark 10.4. The reader should think of δ and ε as being very small (i.e., on the order of
1/poly(T)). We emphasize that our restriction that δ ≤ ε exists only to simplify the statements of
our technical lemmas; in particular, this allows us to reduce the number of parameters in bounding
the probabilities of various “bad” events.

As noted above, our main step is proving Lemma 10.3, which we do in Section 10.1. The second
step, establishing Lemma 10.1 based on Lemma 10.3, is then done in Section 10.2.

10.1 Weak Soundness of the Relaxed Verifier - Proving Lemma 10.3

Let F, δ, κ, r, ε be as in the statement of Lemma 10.3. Throughout this section we fix a (kmax, δ)-NS
prover P ∗ which makes V ≥κ−r accept with probability 1− ε.

For any set Q ⊆ Ft+s of at most kmax/(κ · |F|) points, let Q(Q) denote the following probabilistic
experiment.

1. For each q ∈ Q and each j ∈ [κ], sample a uniformly random line L
(j)
q : F → Ft+s such that

L
(j)
q (0) = q (e.g., by sampling a random point z̄ ← Ft+s and taking the unique line L such

that L(0) = q and L(1) = z̄).

2. Define Q̄ = {L(j)
q (α)}q∈Q,j∈[κ],α∈F\{0}.

3. Sample AQ̄ ← P ∗(Q̄) and output AQ̄ : Q̄ → F (note that the distribution P ∗(Q̄) is well
defined since |Q̄| ≤ kmax), where by P ∗(Q̄) we refer to the part of the PCP that corresponds
to X̂.

Let r′ = O(|F| · r) be a parameter that will be fixed in Lemma 10.5. For each q ∈ Q, let vq
denote the (unique) value of v ∈ F for which a large majority of the κ lines that pass through q are
assigned values that interpolate to v. More specifically, we set vq to v ∈ F if for all but r′ values of
j ∈ [κ] it holds that

Interpd

({
α 7→ AQ̄(L(j)

q (α))
}
α∈F\{0}

)
(0) = v,

and we set vq to ⊥ if no such v exists (although we will soon see that this event is unlikely to
happen, see Lemma 10.5).

We also denote by Correct(q) the event that vq = X̂correct(q), where by X̂correct we denote
the low-degree extension of the correct computation transcript for Tree(M) on the input x (as
defined in Section 7). We extend this notation to any subset W ⊆ Q, writing Correct(W) to mean
∧q∈WCorrect(q).

10.1.1 Lemmas from Previous Work

We recall several lemmas from [KRR14]. Recall that we have fixed a (kmax, δ)-NS prover P ∗ that
makes V ≥κ−r(x) accept with probability 1− ε.

67

Lemma 10.5 (Consistency of X̂, [KRR14, Lemma 7.27]). There exists r′ = O(|F| · r) and ε′ =
O(|F| · ε) such that for any ū ∈ Ft+s,

Pr
Q({ū})

[
vū = ⊥

]
≤ ε′.

The following proposition follows from the definition of the polynomial P
(enc)
0 and its corre-

sponding sumcheck polynomials, together with the analysis in [KRR14].

Proposition 10.6 (X̂ is a valid symbol). There exists ε′ = O(t · |F| · ε) such that for any ū ∈
{0, 1}t+s, it holds that

Pr
Q({ū})

[
vū 6∈ Γ̄

]
≤ ε′,

where Γ̄ ⊆ F is the extended tape alphabet of Tree(M) (see Definition 4.31).

Lemma 10.7 (Local Consistency, analogous to [KRR14, Lemma 7.30]). There exists ε′ = O(t·|F|·ε)
such that for every ȳ ∈ {0, . . . , 2t − 2} and z̄ ∈ {0, 1}s the following holds. Let W ⊆ {0, 1}s be a
set such that Cȳ+1(z̄) is determined by {Cȳ(w̄)}w̄∈W (as in Definition 7.3). Then,

Pr
Q(({ȳ}×W)∪({(ȳ+1,z̄)}))

[
¬Correct

(
(ȳ + 1, z̄)

)
∧ Correct

(
{ȳ} ×W

)]
≤ ε′.

The proof of Lemma 10.7 is analogous to that of [KRR14, Lemma 7.30] together with an
application of Proposition 10.6.

10.1.2 From Average-Case to Worst-Case Correctness within a Layer

The following central proposition shows that if a small set of random points in some layer ȳ are
“read” correctly than any specific point z̄ in layer ȳ will be read correctly as well.

Proposition 10.8. There exists ε′ = O(κ2 ·|F|2 ·ε) such that for every ȳ ∈ {0, 1}t and z̄ ∈ {ȳ}×Fs:

Pr
ū1,...,ūκ←{ȳ}×Fs

[
¬Correct(z̄) ∧ Correct(ū1) ∧ · · · ∧ Correct(ūκ)

]
≤ ε′,

where the probability is also over Q({ū1, . . . , ūκ, z̄}) (over which the events Correct(·) are defined).

Proof. Fix z̄ ∈ {ȳ} × Fs, let Q′(z̄) be the following probabilistic experiment.

1. For each i ∈ [κ]:

(a) Sample ūi ← {ȳ} × Fs and an “evaluation point” αi ← F \ {0}. We emphasize that the
distribution of the points ūi is uniform within layer ȳ (but is not uniform in Ft+s).

(b) For each j ∈ [κ], sample i.i.d. uniformly random lines L
(j)
ūi

: F → Ft+s such that

L
(j)
ūi

(0) = ūi.

2. For each j ∈ [κ], sample a uniformly random line L
(j)
z̄ : F→ Ft+s such that L

(j)
z̄ (0) = z̄.

68

3. For each i, j ∈ [κ], let M
(j)
i : F2 → Ft+s denote the (unique) bilinear mapping such that

M
(j)
i (0, ·) = L

(j)
z̄ (·) and M

(j)
i (αi, ·) = L

(j)
ūi

(·).40

4. Define a set of queries Q̄ =
{
M

(j)
i (α, β)

}
i,j∈[κ]
α,β∈F

, and sample AQ̄ ← P ∗(Q̄), where AQ̄ : Q̄→ F.

Note that P ∗(Q̄) is well defined since |Q̄| ≤ κ2 · |F|2 ≤ kmax.

5. Output AQ̄.

For q ∈ {z̄, ū1, . . . , ūκ}, define the random variables v′q and the event Correct′(q) similarly to the
definitions of vq and Correct(q), but with respect to the distribution Q′ rather than Q, and with

respect to the lines {L(j)
q }j∈[κ].

Using the fact that P ∗ is non-signaling, to prove Proposition 10.8 it suffices to show that

Pr
Q′(z)

[
¬Correct′(z̄) ∧ Correct′(ū1) ∧ · · · ∧ Correct′(ūκ)

]
≤ O(t · κ2 · |F|2 · ε). (23)

Define the “good” event G = G1 ∧ · · · ∧Gκ, where, for every i ∈ [κ], the event Gi is defined as:

• v′z̄ 6= ⊥ and v′ūi 6= ⊥ for all i ∈ [κ].

• There exists a degree t+ s polynomial Fi : F→ F such that for all α ∈ F,∣∣∣∣{j ∈ [κ] : Interpd

({
β 7→ AQ̄(M

(j)
i (α, β))

}
β∈F\{0}

)
(0) = Fi(α)

}∣∣∣∣ ≥ κ− r′.
Informally, this says that for most j, the interpolated values for AQ̄(M

(j)
i (α, 0)) are a low-

degree polynomial Fi of α which does not depend on j (intuitively, in the honest case it should
be that Fi(0) = X̂(z̄) and Fi(αi) = X̂(ūi)).

Claim 10.8.1.
Pr
Q′(z̄)

[¬G] ≤ O(κ2 · |F|2 · ε).

Proof. Fix i ∈ [κ]. We show that PrQ′(z̄) [¬Gi] ≤ O(t · κ · |F|2 · ε) and the claim will follow from a
union bound over i ∈ [κ].

For each β ∈ F\{0}, it holds that M
(j)
i (·, β) is a uniformly random line (since it is a line passing

through the two independently uniform points M
(j)
i (0, β) and M

(j)
i (αi, β)). Thus, by the verifier’s

low-degree test and no-signaling, with all but |F| · (ε + δ) probability, for each β ∈ F \ {0}, there
are at least κ− r values of j ∈ [κ] for which

Deg
(
AQ̄ ◦M

(j)
i (·, β)

)
≤ t+ s. (24)

40To see that such a bilinear mapping exists, observe that M
(j)
i (0, ·) and M

(j)
i (αi, ·) are linear functions. For

any α ∈ F, the function M
(j)
i (α, ·) is derived by interpolation (which is a linear operation) and is therefore a linear

function. Lastly, for any fixed β ∈ F, the function M
(j)
i (·, β) is linear since it is obtained by interpolating at two

points. Thus, M
(j)
i is bilinear.

69

By Lemma 10.5 and using the no-signaling condition, it holds that with all but O(|F| ·(|F| ·ε+δ)) =
O(|F|2 · ε) probability, for each α ∈ F there exists a value Fi(α) such that for at least κ− r values
of j ∈ [κ],

Interp

({
β 7→ AQ̄(M

(j)
i (α, β))

}
β∈F\{0}

)
(0) = Fi(α). (25)

Thus, by Eqs. (24) and (25) and a union bound, with all but O(|F|2 · ε) probability, both of the
following events happen:

1. For every β ∈ F\{0}, there are at least κ−r′ values of j ∈ [κ] for which Deg(AQ̄◦M
(j)
i (·, β)) ≤

t+ s.

2. For each α ∈ F there exists a value Fi(α) such that for at least κ− r′ values of j ∈ [κ] it holds

that Interp

({
β 7→ AQ̄(M

(j)
i (α, β))

}
β∈F\{0}

)
(0) = Fi(α).

In particular, this means that with the same probability, there exists a function Fi : F→ F such
that for at least κ− 2|F| · r′ values of j ∈ [κ] the following condition holds:

∀(α, β) ∈ F× (F \ {0}) :
Deg(AQ̄ ◦M

(j)
i (·, β)) ≤ t+ s and

Interp

({
β 7→ AQ̄(M

(j)
i (α, β))

}
β∈F\{0}

)
(0) = Fi(α).

(26)

Assuming that Fi as above exists, we argue that it must have degree t + s. To see this, fix
any j ∈ [κ] such that Eq. (26) holds. Consider a |F| × (|F| − 1) matrix whose (α, β)th entry is

AQ̄(M
(j)
i (α, β)) for β 6= 0. Observe that all columns of this matrix have degree t + s. On the

other hand, by Lagrange interpolation there exist coefficients cβ for β 6= 0 such that Fi(α) =∑
β 6=0 cβ ·AQ̄(M

(j)
i (α, β)). In other words, the function Fi can be expressed as a linear combination

of the columns. It follows that Fi also has degree at most t+ s.
Thus, with all but O(|F|2 · ε) probability, there exists a degree t+ s polynomial Fi : F→ F such

that for all α ∈ F,∣∣∣∣{j ∈ [κ] : Interp

({
β 7→ AQ̄(M

(j)
i (α, β))

}
β∈F\{0}

)
(0) = Fi(α)

}∣∣∣∣ ≥ κ− 2|F| · r′. (27)

Note that Eq. (27) is almost what we want, except that we need the right hand side to be κ−r′.
To obtain this observe that by Lemma 10.5, the fact that P ∗ is NS and a union bound, it also holds
that with all but O(|F|2 · ε) probability, for all α ∈ F there exists a value vα such that∣∣∣∣{j ∈ [κ] : Interp

({
β 7→ AQ̄(M

(j)
i (α, β))

}
β∈F\{0}

)
(0) = vα

}∣∣∣∣ ≥ κ− r′. (28)

Using the fact41 that 2|F| · r′ = O(|F|2 · r) and κ = ω(|F|2 · r), Eqs. (27) and (28) and a union
bound yield that with all but O(|F|2 · ε) probability, there exists a polynomial Fi : F→ F of degree
at most t+ s such that for all α ∈ F,∣∣∣∣{j ∈ [κ] : Interp

({
β 7→ AQ̄(M

(j)
i (α, β))

}
β∈F\{0}

)
(0) = Fi(α)

}∣∣∣∣ ≥ κ− r′. (29)

41Loosely speaking, Eq. (27) shows that a relatively large fraction of j’s agree with Fi where Eq. (28) shows that
an even larger fraction agrees with one another. This implies that even the larger fraction actually agrees with Fi.

70

The claim follows by applying Lemma 10.5 κ + 1 times (once for z̄ and once for each ūi), a
union bound, and the fact that P ∗ is no-signaling. This concludes the proof of Claim 10.8.1.

Define the event Correct′(~u) = Correct′(ū1) ∧ · · · ∧ Correct′(ūκ).

Claim 10.8.2.
Pr
Q′(z̄)

[
¬Correct′(z̄) ∧ Correct′(~u) ∧G

]
≤ 2−κ.

Proof. By the principle of deferred decisions, one can think of the distribution Q′(z̄) as being

generated as follows. For every j ∈ [κ], choose a uniformly random line L
(j)
z̄ : F → Ft+s such

that L
(j)
z̄ (0) = z̄. For every i, j ∈ [κ], let M

(j)
i be a random bilinear mapping such that (1)

M
(j)
i (0, ·) = L(j)

z̄ (·) and (2) the line M
(j)
i (·, 0) is entirely contained within {ȳ} × Fs (note that the

first condition refers to the line M
(j)
i (0, ·) whereas the latter refers to M

(j)
i (·, 0)). Only then, choose

αi ∈ F\{0} at random and define ūi = M
(j)
i (αi, 0). We shall use this view in the following analysis.

To prove the claim it suffices to bound PrQ′(z̄)

[
Correct′(~u)

∣∣ ¬Correct′(z̄)∧G
]
. Fix a choice of the

bilinear maps M
(j)
i and a sample from the distribution AQ̄ such that the events G and ¬Correct′(z̄)

occur. Observe that by the foregoing view, αi remains uniformly random even conditioned on M
(j)
i .

Since G occurs, we know that for each i ∈ [κ], there exists a degree t+ s polynomial Fi : F→ F
such that for all α ∈ F, and all but r′ values of j ∈ [κ]:

Interp

({
β 7→ AQ̄(M

(j)
i (α, β))

}
β∈F\{0}

)
(0) = Fi(α). (30)

We argue that for every i ∈ [κ] it holds that Fi(0) 6= X̂correct(z̄). This is because on the one
hand, for all but r′ values of j ∈ [κ] Eq. (30) holds with α = 0, but on the other hand it also

holds for all but r′ values of j ∈ [κ] that Interp

({
β 7→ AQ̄(M

(j)
i (0, β))

}
β∈F\{0}

)
(0) 6= X̂correct(z̄).

Since r′ < κ/2, this implies that Fi(0) 6= X̂correct(z̄). Thus, the degree t+ s polynomials Fi(·) and

X̂(M
(j)
i (·, 0)) are distinct.

Since G occurs, the event Correct′(ūi) occurs if and only if Fi(αi) = X̂(ūi). Since Fi(·) and

X̂(M
(j)
i (·, 0)) are distinct degree t + s polynomials, with probability at least 1 − t+s

|F|−1 over the

choice of αi ∈ F \ {0}, it holds that Fi(αi) 6= X̂(M
(j)
i (αi, 0)) = X̂(ūi). Thus, the event Correct′(ūi)

occurs with probability at most t+s
|F|−1 ≤ 1/2. By the above discussion the events {Correct′(ūi)}i

are independent, conditioned on the choice of {M (j)
i }i,j and AQ̄ (which fully determine the events

¬Correct′(z̄) and G). Thus,

71

Pr
Q′(z̄)

[
¬Correct′(z̄) ∧ Correct′(~u) ∧G

]
≤ Pr
Q′(z̄)

[
Correct′(~u)

∣∣ ¬Correct′(z̄) ∧G
]

= E
{M(j)

i }i,j∈[κ],AQ̄←P ∗(Q̄)

s.t. ¬Correct′(z̄)∧G

[
Pr

{αi}i∈[κ]

[
Correct′(~u)

]]

= E
{M(j)

i }i,j∈[κ],AQ̄←P ∗(Q̄)

s.t. ¬Correct′(z̄)∧G

∏
i∈[κ]

Pr
αi

[
Correct′(ūi)

]
≤ 2−κ.

This concludes the proof of Claim 10.8.2.

Combining Claim 10.8.1 and Claim 10.8.2 we have that:

Pr
[
¬Correct′(z̄) ∧ Correct′(~u)

]
≤ Pr

[
¬Correct′(z̄) ∧ Correct′(~u) ∧G

]
+ Pr[¬G]

≤ 2−κ +O(κ2 · |F|2 · ε)
≤ O(κ2 · |F|2 · ε).

This concludes the proof of Proposition 10.8.

10.1.3 Average-Case Correctness for Subsequent Layers

The following proposition extends Proposition 10.8 by showing that if random points in some layer
ȳ are read correctly, then a given fixed point in layer ȳ + 1 will also be read correctly (whereas
Proposition 10.8 considered fixed points also in layer ȳ).

Proposition 10.9. There exists ε′ = O(2s ·κ2 ·|F|2 ·ε) such that for any ȳ ∈ {0, . . . , 2t−2} ⊆ {0, 1}t
and any z̄ ∈ {ȳ + 1} × Fs,

Pr
ū1,...,ūκ←{ȳ}×Fs
Q({z̄,ū1,...,ūκ})

[¬Correct(z̄) ∧ Correct(ū1) ∧ · · · ∧ Correct(ūκ)] ≤ ε′. (31)

Proof. For every ` ∈ {0, . . . , s} define

pȳ,`
def
= maxz̄∈{ȳ+1}×F`×{0,1}s−` Pr

~u←({ȳ}×Fs)κ
Q({z̄,ū1,...,ūκ})

[¬Correct(z̄) ∧ Correct(ū1) ∧ · · · ∧ Correct(ūκ)] .

Fix ȳ. We will show, by induction on 0 ≤ ` ≤ s, a bound on pȳ,` that implies the desired bound
on pȳ,s (which corresponds to the statement of Proposition 10.9). We start with the base case.

Claim 10.9.1.
pȳ,0 ≤ O(κ2 · |F|2 · ε).

72

Proof. Let z̄ ∈ {ȳ+1}×{0, 1}s. Denote by Suffixs : {0, 1}t+s → {0, 1}s the function that outputs
the last s bits of its input, and let W ⊆ {ȳ} × {0, 1}s be such that that Cȳ+1(Suffixs(z̄)) is
determined by {Cȳ(Suffixs(ū))}ū∈W as in Definition 7.3. Then, by Lemma 10.7 we have that:

Pr
Q(W∪{z̄})

[¬Correct(z̄) ∧ Correct(W)] ≤ O(t · |F| · ε). (32)

Since |W | = O(1), by Proposition 10.8, a union bound, and the no-signaling condition, it holds
that:

Pr
~u←({ȳ}×Fs)κ
Q(W∪{ū1,...,ūκ})

[¬Correct(W) ∧ Correct(ū1) ∧ · · · ∧ Correct(ūκ)] ≤ O(κ2 · |F|2 · ε). (33)

By Eqs. (32) and (33), the no-signaling condition, and elementary probability,

Pr
~u←({ȳ}×Fs)κ

Q(W∪{z,u1,...,uκ})

[¬Correct(z) ∧ Correct(~u)] ≤ Pr
Q(W∪{z}})

[¬Correct(z) ∧ Correct(W)]

+ Pr
~u←({ȳ}×Fs)κ
Q(W∪{ū1,...,ūκ})

[¬Correct(W) ∧ Correct(~u)] + 2δ

≤ O(t · |F| · ε) +O(κ2 · |F|2 · ε) + 2δ

≤ O(κ2 · |F|2 · ε). (34)

The claim now follows from the no-signaling condition.

We proceed to the inductive argument, which is summarized in the following claim.

Claim 10.9.2. There exists ε′′ = O(|F| · ε) such that for every ` ∈ {1, . . . , s} it holds that

pȳ,` ≤ 2 · pȳ,`−1 + ε′′.

Proof. For ` ∈ [s], σ ∈ {0, 1} and z̄ ∈ {ȳ + 1} × F` × {0, 1}s−`, define the function

π`,σ(z̄)
def
= (z1, . . . , zt+`−1, σ, zt+`+1, . . . , zt+s) ∈ {ȳ + 1} × F`−1 × {0, 1}s−`+1,

which replaces z`, the (t+ `)th component of z̄, with the value σ (which is in {0, 1}). Consider the
following probabilistic experiment.

1. Sample ~u = (ū1, . . . , ūκ)← ({ȳ} × Fs)κ.

2. For each i, j ∈ [κ], sample a uniformly random line L
(j)
ūi

: F→ Ft+s such that L
(j)
ūi

(0) = ūi.

3. For each j ∈ [κ], sample a uniformly random line L
(j)
z̄ : F→ Ft+s such that L

(j)
z̄ (0) = z̄.

4. Define Q̄
def
=
{
L

(j)
ūi

(α)
}
i,j∈[κ],α∈F\{0}

∪
{
L

(j)
z̄ (α) + β · ēt+`

}
j∈[κ],α∈F\{0},β∈F

, where ēt+` is the

(t+ `)th standard basis vector (i.e., it has 1 in the (t+ `)th coordinate and 0 elsewhere).

5. Sample X∗ ← P ∗(Q̄) (observe that |Q̄| ≤ κ2 · |F| + κ · |F|2 ≤ kmax and so P ∗(Q̄) is well
defined).

73

For q ∈ {z̄, ū1, . . . , ūκ}, define vq and Correct(q) as in Q
(
{z̄} ∪ {ūi}i∈[κ]

)
. For q ∈ {π`,σ(z̄)}σ∈{0,1},

define vq and Correct(q) with respect to the lines L
(j)
π`,σ(z̄)

def
= L

(j)
z̄ + (σ − zt+`) · ēt+` (it is easy to

check that L
(j)
π`,σ(z̄)(F \ {0}) is contained in Q̄).

For any fixed value of σ ∈ {0, 1}, the lines {L(j)
π`,σ(z̄)}j∈[κ] together with {L(j)

ūi
}i,j∈[κ] are mutually

independent conditioned on ~u. Thus, by the definition of pȳ,`−1 (and the no-signaling condition)
for each σ ∈ {0, 1},

Pr
[
¬Correct(π`,σ(z̄)) ∧ Correct(~u)

]
≤ pȳ,`−1 + δ,

where we write Correct(~u) as short-hand for Correct(ū1)∧ · · · ∧Correct(ūκ). Taking a union bound
over both values of σ ∈ {0, 1} yields

Pr

Correct(~u) ∧
⋃

σ∈{0,1}

¬Correct(π`,σ(z̄))

 ≤ 2pȳ,`−1 + 2δ. (35)

For a fixed value of α ∈ F\{0}, observe that the line
{
β 7→ L

(j)
z̄ (α) + β · et+`

}
β∈F

is a uniformly

random line that is parallel to the (t+ `)-th axis. Because of our “Axis-Parallel Low-Degree Test”
(see Section 7.3) and the no-signaling condition, for each α ∈ F \ {0}, it holds with all but ε + δ
probability that for all but r of the values j ∈ [κ],

Deg

({
β 7→ X∗

(
L

(j)
z̄ (α) + β · ēt+`

)}
β∈F

)
≤ 1, (36)

and in fact by union bounding over α ∈ F \ {0}, with all but |F| · (ε+ δ) probability, Eq. (36) holds
for all but |F| · r values of j ∈ [κ] and all α 6= 0. Let G denote this event.

Suppose that G occurs and fix j ∈ [κ]. Then, X∗(z̄) is a linear combination of X∗(π`,0(z̄))

and X∗(π`,1(z̄)). Thus, if X∗(π`,σz̄) = X̂correct(π`,σ(z̄)) for both σ ∈ {0, 1}, then also X∗(z̄) =

X̂correct(z̄). Thus, if G and {Correct(π`,σ(z̄)}σ∈{0,1} occur then:∣∣∣∣{j ∈ [κ] : Interpd

({
α 7→ X∗(L

(j)
z̄ (α))

}
α∈F\{0}

)
(0) = X̂correct(z̄)

}∣∣∣∣ ≥ κ− (2r′ + |F| · r). (37)

Note that Eq. (37) has a κ − (2r′ + |F| · r) on the right hand side, whereas we would like to
have κ − r′ (i.e., that Correct(z̄) occurs). However, if also the event vz̄ 6= ⊥ occurs, then these
are equivalent (since all but r′ of the lines interpolate to the same value). Denote by G′ the event
that G happens and vz̄ 6= ⊥. Then on one hand if G′ happens and {Correct(π`,σ(z̄)}σ∈{0,1} then
Correct(z̄) occurs. On the other hand, by a union bound and the no-signaling condition:

Pr[¬G′] ≤ |F| · (ε+ 2δ) +O(|F| · ε) ≤ O(|F| · ε). (38)

Thus, for every z̄ ∈ {ȳ + 1} × F` × {0, 1}s−`

Pr[¬Correct(z̄) ∧ Correct(~u)] ≤ Pr[¬G′] + Pr[¬Correct(z̄) ∧ Correct(~u) ∧G′]

≤ Pr[¬G′] + Pr
[
Correct(~u) ∧

(
¬Correct(π`,0(z̄)) ∨ ¬Correct(π`,1(z̄))

)
∧G′

]
≤ Pr[¬G′] + Pr

[
Correct(~u) ∧

(
¬Correct(π`,0(z̄)) ∨ ¬Correct(π`,1(z̄))

)]
≤ O(|F| · ε) + 2 · (pȳ,`−1 + δ)

≤ 2 · pȳ,`−1 +O(|F| · ε),

74

where the first and third inequality follow from elementary probability theory, the second inequality
follows from the discussion above, and the penultimate inequality follows from Eqs. (35) and (38).

This completes the proof of Claim 10.9.2.

Proposition 10.9 follows from the following fact (easily proved by induction).

Fact 10.10. Suppose x0 ∈ R is arbitrary and for n ≥ 1, xn is defined as xn = a · xn−1 + b for
a 6= 1. Then

xn = an · x0 +
an − 1

a− 1
· b

for all n ≥ 1.

The following proposition shows that correctness of a random set of points in one layer, implies
the correctness of a random set of points in the subsequent layer (with only a small additive increase
in the error).

Proposition 10.11. There exists ε′ = O(2s · κ3 · |F|2 · ε) such that for every y ∈ {0, . . . , T − 2} it
holds that:

Pr
~u←({ȳ+1}×Fs)κ
Q({ū1,...,ūκ})

[¬Correct(~u)] ≤ Pr
~u←({ȳ}×Fs)κ
Q({ū1,...,ūκ})

[¬Correct(~u)] + ε′.

Proof.

Pr
~u←({ȳ+1}×Fs)κ
Q({ū1,...,ūκ})

[¬Correct(~u)] ≤ Pr
~u←({ȳ+1}×Fs)κ
~u′←({ȳ}×Fs)κ

Q({ū1,...,ūκ,ū′1,...,ū
′
κ})

[
¬Correct(~u) ∧ Correct(~u′)

]

+ Pr
~u′←({ȳ}×Fs)κ
Q({ū′1,...,ū′κ})

[
¬Correct(~u′)

]
+ 2δ

≤
∑
i∈[κ]

Pr
ūi←({ȳ+1}×Fs)
~u′←({ȳ}×Fs)κ
Q({ūi,ū′1,...,ū′κ})

[
¬Correct(ūi) ∧ Correct(~u′)

]

+ Pr
~u′←({ȳ}×Fs)κ
Q({ū′1,...,ū′κ})

[
¬Correct(~u′)

]
+ 2δ + κ · δ

≤ Pr
~u′←({ȳ}×Fs)κ
Q({ū′1,...,ū′κ})

[
¬Correct(~u′)

]
+O(2s · κ3 · |F|2 · ε), (39)

where the first inequality follows from elementary probability and the no-signaling condition, the
second inequality follows from a union bound and the non-signaling condition, and the third in-
equality follows from Proposition 10.9.

75

10.1.4 Establishing Weak Soundness

Given the above propositions, we are almost ready to prove Lemma 10.3. We first establish the
following proposition, which shows that random points in the first layer of the computation are
“read” correctly.

Proposition 10.12 (Correctness in Layer 0). There exists ε′ = O(|F| · ε) such that for any z̄ ∈
{0} × Fs,

Pr
Q({z̄})

[¬Correct(z̄)] ≤ ε′.

Proof. Fix z̄ ∈ {0} × Fs.
Consider the following experiment. Sample κ planes M (1), . . . ,M (κ) : F2 → F uniformly at

random conditioned on the event that for every j ∈ [κ], it holds that M (j)(0, 0) = z̄ and the line
M (j)(·, 0) is fully contained in ⊆ {0}×Fs ⊆ Ft×Fs. Define Q̄ = {M (j)(α, β)}α,β∈F,j∈[κ], and sample
X∗ ← P ∗(Q̄).

The lines {M (j)(0, ·)}j∈[κ] are uniformly random conditioned M (j)(0, 0) = z̄. Thus, to prove the
proposition, it suffices (using also the no-signaling condition) to show that with all but O(|F| · ε)
probability, it holds for all but r values of j ∈ [κ] that

Interpd

({
β 7→ X∗

(
M (j)(0, β)

)}
β∈F\{0}

)
(0) = X̂correct(z̄). (40)

Observe that for every α 6= 0, the lines {M (j)(α, ·)}j∈[κ] are uniformly random conditioned on

the event M (j)(α, 0) ∈ {0} × Fs. Therefore, by the verifier’s “Correct Initial Input Test” and the
no-signaling condition, for every α 6= 0, with all but ε+ δ probability, it holds for all but r values
of j ∈ [κ] that:

Interpd

({
β 7→ X∗

(
M (j)(α, β)

)}
β∈F\{0}

)
(0) = X̂correct

(
M (j)(α, 0)

)
. (41)

Observe also that for every β 6= 0, the lines {M (j)(·, β)}j∈[κ] are uniformly random conditioned

on the event that each line M (j)(·, β) is contained in {ūj} × Fs for some ūj ∈ Ft (i.e., the line is
orthogonal to the first t coordinates). Therefore, by the “Layer-Parallel Low-Degree Test” and the
no-signaling condition, for every β 6= 0, with all but ε+ δ probability, it holds for all but r values
of j ∈ [κ] that:

Deg
(
X∗
(
M (j)(·, β)

))
≤ s. (42)

By a union bound, with all but 2|F| · (ε+ δ) probability, Eqs. (41) and (42) hold simultaneously
for every α, β 6= 0 and all but 2|F| · r values of j ∈ [κ]. For every j ∈ [κ], let Fj : F→ F denote the
function

Fj(α) = Interpd

({
β 7→ X∗

(
M (j)(α, β)

)}
β∈F\{0}

)
(0).

Let j ∈ [κ] for which Eqs. (41) and (42) holds. Observe that Fj is a linear combination of the
degree s polynomials X∗

(
M (j)(·, β)

)
(see Eq. (42)), so Fj also has degree at most s. Furthermore,

Fj agrees with the degree s polynomial X̂correct

(
M (j)(·, 0)

)
on all inputs α 6= 0 (Eq. (41)). Since

|F| − 1 > s, it must also hold that Fj(0) = X̂correct

(
M (j)(0, 0)

)
= X̂correct(z̄).

76

Thus, we have shown that with all but 2|F| · (ε + δ) probability, Eq. (40) holds for all but
2|F| · r values of j ∈ [κ]. In contrast, we want to show that it holds for all but r′ values of j. But
Lemma 10.5 and the no-signaling condition together imply that with all but O(|F| · ε) probability,
at least κ− r′ of the values {Fj(0)}j∈[κ] are equal to each other. Because κ− 2|F|r > r′, by a union
bound it holds with all but O(|F| · ε) probability that Eq. (40) holds for all but r′ values of κ. The
proposition follows.

We now show that random points in each layer are “read” correctly.

Proposition 10.13. There exists ε′ = O(2s · κ3 · |F|2 · ε) such that for every ȳ ∈ {0, . . . , T − 1} it
holds that:

Pr
~u←({ȳ}×Fs)κ
Q({ū1,...,ūκ})

[¬Correct(~u)] ≤ (ȳ + 1) · ε′.

Proof. We prove by induction on ȳ, where the base case ȳ = 0 follows from Proposition 10.12, the
no-signaling condition and a union bound. The inductive step follows from Proposition 10.11.

Recall that the point (2t − 1, 0) ∈ {0, 1}t+s refers to the output bit (i.e., result) of the compu-
tation.

Pr
Q({(2t−1,0)})

[
¬Correct((2t − 1, 0))

]
≤ Pr

~u←({2t−1}×Fs)
κ

Q({ū1,...,ūκ,(2t−1,0)})

[
¬Correct((2t − 1, 0))

]
+ δ

≤ Pr
~u←({2t−1}×Fs)

κ

Q({ū1,...,ūκ,(2t−1,0)})

[
¬Correct((2t − 1, 0)) ∧ Correct(~u)

]
+ Pr
~u←({2t−1}×Fs)

κ

Q({ū1,...,ūκ})

[¬Correct(~u)] + 2δ

≤ O(2t+s · κ3 · |F|2 · ε), (43)

where the first inequality follows from the no-signaling condition, the second inequality follows
from elementary probability and the no-signaling condition, and the third inequality follows from
Propositions 10.8 and 10.11.

On the other hand, by the verifier V ’s “Accepting Final State Test” and the no-signaling
condition, it holds that

Pr
Q((2t−1,0))

[vz̄ = (qacc, γ, e) for some γ, e] ≥ 1− ε− δ. (44)

Since x 6∈ L, and the right hand side of Eq. (43) is less than 1− ε− δ, we obtain a contradiction
between Eqs. (43) and (44). This concludes the proof of Lemma 10.3.

10.2 Soundness of V ⊗κ – Proving Lemma 10.1

To prove Lemma 10.1, we invoke a generic transformation from the literature, due to [KRR14,
Lemma 6.1] and [BHK16, Lemma 1],which transforms weak soundness (i.e., 1−1/poly(κ) soundness
error) for the relaxed verifier V ≥κ−r into strong soundness (i.e., negligible soundness error).

77

Lemma 10.14. There exists δ∗ = Ω
(

ε

|F|24κ·t·|F|2

)
such that the following holds. Suppose that there

exists a (kmax, δ)-no-signaling strategies that makes V ⊗κ accept x 6∈ L with probability ε, where
δ ≤ δ∗. Then, there exists a (k′max, δ

′)-no-signaling strategy that convinces V ≥k−r to accept x 6∈ L
with probability 1− ε′, where k′max = kmax/2, ε′ = O

(
t·|F|·2−r+δ

ε

)
and δ′ = O

(
δ · |F|24·κ·t·|F|2/ε

)
.

Lemma 10.1 now follows by combining Lemma 10.14 and Lemma 10.3.

10.2.1 Proof of Lemma 10.1

Suppose that F, kmax, δ, ε, κ are such that:

• kmax = O(κ2 · |F|2).

• |F| = ω(t).

• δ ≤ o(|F|−25·κ·t·|F|2).

• ε ≥ ω
(

2t+s · κ3 · |F|3 · t · 2−κ/|F|3
)

.

Suppose that there exists a (kmax, δ)-no-signaling strategy that makes V ⊗κ accept x 6∈ L with
probability ε, where δ ≤ δ∗. Let r = κ/|F|3 (note that r = o(κ/|F|2)).

Then, by Lemma 10.14 there exists a (k′max, δ
′)-no-signaling strategy that convinces V ≥k−r to

accept x 6∈ L with probability 1− ε′, where

• k′max = kmax/2,

• ε′ = Θ
(
t·|F|·2−r+δ

ε

)
, and

• δ′ = O
(
δ · |F|24·κ·t·|F|2/ε

)
.

Observe that:

• δ′ ≤ ε′.

• r = o(κ/|F|2).

• κ ≥ log(1/ε′).

• |F| = ω(t).

• ε′ = o
(

1
2t+s·κ3·|F|2

)
.

Thus, we obtain a contradiction to Lemma 10.3. This concludes the proof of Lemma 10.1.

Remark 10.15. [Classical Soundness for Non-Deterministic Computations] Lemma 10.1 shows
that our PCP has soundness against no-signaling strategies for any deterministic computation. By
results of [DLN+01, IKM09] the restriction to deterministic computations is inherent. However, our
PCP can easily be adapted to provide classical soundness even for non-deterministic computations
as follows.

Given an input x and witness w, the PCP proof is the same as that in Section 7 applied to
the input (x,w). The verifier’s input check is applied only to x. In the classical setting, one only
needs to consider fixed (rather than randomized) PCP strings and Lemma 10.1 implies that the
computation was done correctly wrt x and some witness w.

78

11 Putting it All Together: Proving Theorems 6.1 and 6.4

11.1 Proof of Theorem 6.1

Let W = poly(w) be the maximal complexity of implementing any (standard) word operation by a
single-tape Turing machine on w-bit inputs, let S′ = max(n, S), and let Tree(M) be the tree machine

from Construction 4.32 that simulates M in time T ′ = Θ(T ·W 2 · logS′). Let s
def
= dlogS′e+dlogW e

and t
def
= dlog T ′e.

Let F be an explicit field ensemble of size |F| = Θ(t) and let κ be such that κ = Θ(λ · |F|3 +
t+ s+ log(κ) + log(|F|)). Let (P, V ⊗κ) be the PCP defined in Section 7 with respect to the RAM
machine M and security parameter κ.

Then, by Lemma 10.1 the verifier V ⊗κ has ε-soundness against (kmax, δ)-NS provers, where:

• ε ≥ ω
(

2t+s · κ3 · |F|3 · t · 2−κ/|F|3
)

,

• δ ≤ o(|F|−25·κ·t·|F|2), and

• kmax = O(κ2 · |F|2).

By our setting of κ it holds that ε = 2−λ, δ = 2−λ·poly(t)) and kmax = λ · poly(t).
The efficiency of V ⊗κ follows from Lemma 8.1 and the efficiency of P follows from Lemma 9.1.

11.2 Proof of Theorem 6.4

To prove Theorem 6.4 we rely on the following lemma that shows that PCPs with soundness against
no-signaling strategies can be converted into argument schemes. The proof follows directly from
the analysis in [KRR14].

Lemma 11.1 ([KRR14]). Assume the existence of (sFHE, δFHE)-secure homomorphic encryption
that supports evaluation of arithmetic circuits of size T and multiplicative depth D. Suppose that
the language L is accepted by a PCP with soundness error εPCP against (kmax, δPCP)-NS strategies,
where the alphabet is a binary finite field F of size 2f and the length of the PCP is 2`. Suppose
further that the verifier runs in time TV and space SV and that each symbol from the PCP can be
generated by a TISP(T, S)-uniform ASLP over F with K registers and multiplicative depth D.

Then, if δFHE ≤ δPCP
`·kmax

, there exists a 2-message argument scheme for L with (sargument, εargument)-

soundness, where sargument = sFHE − 2σ·kmax and εargument = εPCP.
The verifier of the argument-system runs in time TV + kmax · (σ + `) · poly(λ) and space SV +

kmax · (σ + `) · poly(λ). The prover runs in time t · ` · poly(λ) and space s + K · poly(λ). The
communication complexity is kmax · (`+ σ) · poly(λ).

Proof Sketch. Following the original proposal of Biehl et al. [BMW98], the protocol proceeds as
follows. The verifier generates the PCP queries Q. Each query qi is encrypted under the encryption
scheme, using a fresh public key pki, to produce q̂i = Epki(qi). The encrypted queries (q̂1, . . . , q̂`) are
all sent to the prover, who in turn generates âi = Epki(ai) by running the homomorphic evaluation
algorithm on the ciphertext q̂i wrt the circuit Cx that has the main input x hardcoded and given
as input a query qi for the PCP, produces the qthi symbol of the PCP. The verifier is then able to
decrypt these answers, interpret them as a sequence (a1, . . . , a`) of answers for the PCP and decide
whether to accept or reject based on whether the PCP verifier’s decision.

79

The analysis in [KRR13] shows that this argument-system is (computationally) sound, as long
as the PCP is sound against δ-no-signaling strategies (for non-negligible δ).42

For the prover complexity, we observe that if Cx can be generated by a (TISP(T, S)-uniform
ASLP with K registers and multiplicative depth D, and the homomorphic encryption scheme works
in a gate-by-gate manner (as is the case for all such schemes, see Section 3.2), then we can do the
homomorphic operation as follows. We generate the ASLP on-the-fly and for every instruction
generated, we perform the corresponding homomorphic operation on the input ciphertext. This
allows us to only use space S+K ·poly(λ) and bounds the multiplicative depth of the homomorphic
operation by D.

Note that the above description assumes that the FHE scheme supports addition and multipli-
cation over F. However, current schemes only natively support GF(2) addition and multiplication
over GF(2). As noted in Remark 3.5, we can use the fact that for a binary field F, emulating
addition and multiplication over F by the corresponding operations over GF(2) does not increase
the multiplicative degree, and only increases the size of the arithmetic circuit by an O(log(|F|)
factor.

Theorem 6.4 now follows by combining Lemma 11.1 and Theorem 6.1, instantiated with a binary
finite field.

Remark 11.2 (Improved Usage of Homomorphic Encryption). If our scheme were to be imple-
mented, the following ideas may yield fruitful optimizations:

1. Utilizing homomorphic encryption that works over larger fields (rather than just GF(2)). Note
that we only require fields of size logarithmic in T (i.e., fields elements are represented by
log log(T) bits).

2. By utilizing ciphertext packing and SIMD operations [SV10, GHS12, BGH13, SV14].

We leave studying these and other optimizations to future work.

Acknowledgments

We thank Yael Kalai for collaborating with us on the initial stages of this project and for multiple
useful discussions. We also thank the anonymous reviewers for valuable comments on a previous
version of this manuscript that led us to improve both the results and the presentation.

References

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In ICALP (1), pages 152–163, 2010.

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and
related problems. Commun. ACM, 31(9):1116–1127, 1988.

42To be more precise, for the PCP needs to be converted into a no-signaling MIP. [KRR13] give a simple procedure
for doing so which does not affect the efficiency of neither the prover nor verifier.

80

[BBC+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan
Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and
Madars Virza. Computational integrity with a public random string from quasi-
linear pcps. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part III, pages 551–579, 2017.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. IACR Cryptology ePrint
Archive, 2018:46, 2018.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive
proofs and their efficiency benefits. In Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, pages 255–272, 2012.

[BCCT12a] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In ITCS, pages 326–349, 2012.

[BCCT12b] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composi-
tion and bootstrapping for snarks and proof-carrying data. IACR Cryptology ePrint
Archive, 2012:95, 2012.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,
USA, May 18-21, 2014, pages 459–474, 2014.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete
efficiency of probabilistically-checkable proofs. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 585–594, 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In TCC, pages 315–
333, 2013.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing,
China, October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016.

[BF91] László Babai and Lance Fortnow. Arithmetization: A new method in structural com-
plexity theory. Computational Complexity, 1:41–66, 1991.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium

81

on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31,
1991.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based ho-
momorphic encryption. In Public-Key Cryptography - PKC 2013 - 16th International
Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, Febru-
ary 26 - March 1, 2013. Proceedings, pages 1–13, 2013.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. TOCT, 6(3):13:1–13:36, 2014.

[BHK16] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive RAM and
batch NP delegation from any PIR. IACR Cryptology ePrint Archive, 2016:459, 2016.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation
and batch NP verification from standard computational assumptions. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 474–482, 2017.

[BKK+18] Saikrishna Badrinarayanan, Yael Kalai, Dakshita Khurana, Amit Sahai, and Daniel
Wichs. Non-interactive delegation for low-space non-deterministic computation. Elec-
tronic Colloquium on Computational Complexity (ECCC), 25:9, 2018.

[BMW98] Ingrid Biehl, Bernd Meyer, and Susanne Wetzel. Ensuring the integrity of agent-based
computations by short proofs. In Mobile Agents, volume 1477 of Lecture Notes in
Computer Science, pages 183–194. Springer, 1998.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short pcps with polylog query complexity. SIAM
J. Comput., 38(2):551–607, 2008.

[BTVW14] Andrew J. Blumberg, Justin Thaler, Victor Vu, and Michael Walfish. Verifiable com-
putation using multiple provers. IACR Cryptology ePrint Archive, 2014:846, 2014.

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai
Lin, and Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability
obfuscation. In ITCS, pages 179–190. ACM, 2016.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and
correlation intractability from strong kdm-secure encryption. IACR Cryptology ePrint
Archive, 2018:131, 2018.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In ITCS, pages
169–178. ACM, 2016.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In CRYPTO, pages 483–501, 2010.

82

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, pages 468–497, 2015.

[CMS18] Alessandro Chiesa, Peter Manohar, and Igor Shinkar. Probabilistic checking against
non-signaling strategies from linearity testing. Electronic Colloquium on Computa-
tional Complexity (ECCC), 25:123, 2018.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified com-
putation with streaming interactive proofs. In ITCS, pages 90–112. ACM, 2012.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In TCC, pages 54–74, 2012.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryp-
tion and its applications. In Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part III, pages 93–122, 2016.

[DLN+01] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold.
Succinct proofs for np and spooky interactions. Unpublished manuscript, 2001.

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In FOCS, pages 285–298. IEEE Computer Society, 1999.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, pages 186–194, 1986.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 169–178, 2009.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In CRYPTO, pages 465–482,
2010.

[GGPR12] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. IACR Cryptology ePrint Archive,
2012:215, 2012.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, pages 465–482, 2012.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015.

83

[GLR+91] Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigder-
son. Self-testing/correcting for polynomials and for approximate functions. In Proceed-
ings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 32–42, 1991.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation with-
out rejection problem from designated verifier cs-proofs. IACR Cryptology ePrint
Archive, 2011:456, 2011.

[GR17] Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of prox-
imity. In Proceedings of the 2017 Conference on Innovations in Theoretical Computer
Science, ITCS 2017, 2017.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, pages 321–340, 2010.

[GS89] Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik ’89, Sym-
posium on Logical Foundations of Computer Science, Pereslav-Zalessky, USSR, July
3-8, 1989, Proceedings, pages 108–118, 1989.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pages 75–92, 2013.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, pages 99–108. ACM, 2011.

[IKM09] Tsuyoshi Ito, Hirotada Kobayashi, and Keiji Matsumoto. Oracularization and two-
prover one-round interactive proofs against nonlocal strategies. In Proceedings of
the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris,
France, 15-18 July 2009, pages 217–228, 2009.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732, 1992.

[Kiy18] Susumu Kiyoshima. No-signaling linear pcps. IACR Cryptology ePrint Archive,
2018:649, 2018.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfus-
cation for turing machines with unbounded memory. In STOC, pages 419–428. ACM,
2015.

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October
31 - November 3, 2016, Proceedings, Part II, pages 91–118, 2016.

[KR15] Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity - [extended ab-
stract]. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
422–442, 2015.

84

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space.
In STOC, pages 565–574. ACM, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In STOC, pages 485–494. ACM, 2014.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of fiat-shamir for proofs. In Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part II, pages 224–251, 2017.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In TCC, pages 169–189, 2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–109,
2003.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J.
ACM, 26(2):361–381, 1979.

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and
publicly verifiable non-interactive arguments. In Theory of Cryptography - 15th Inter-
national Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Pro-
ceedings, Part II, pages 283–315, 2017.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In TCC,
pages 422–439, 2012.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 49–62, 2016.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update
and paging rules. Commun. ACM, 28(2):202–208, 1985.

[Sud00] Madhu Sudan. Probabilistically checkable proofs - lecture notes, 2000. Available at
http://people.csail.mit.edu/madhu/pcp/pcp.ps.

85

http://people.csail.mit.edu/madhu/pcp/pcp.ps

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In Public Key Cryptography - PKC 2010, 13th
International Conference on Practice and Theory in Public Key Cryptography, Paris,
France, May 26-28, 2010. Proceedings, pages 420–443, 2010.

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Des.
Codes Cryptography, 71(1):57–81, 2014.

[SVP+12] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blum-
berg, and Michael Walfish. Taking proof-based verified computation a few steps closer
to practicality. In Proceedings of the 21th USENIX Security Symposium, Bellevue,
WA, USA, August 8-10, 2012, pages 253–268, 2012.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, pages 71–89, 2013.

[Vit06] Jeffrey Scott Vitter. Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science, 2(4):305–474, 2006.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting
them. Commun. ACM, 58(2):74–84, 2015.

[WJB+17] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler, Michael
Walfish, and Thomas Wies. Full accounting for verifiable outsourcing. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 2071–2086, 2017.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. vsql: Verifying arbitrary SQL queries over dynamic outsourced
databases. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017, pages 863–880, 2017.

A Deferred Proofs

Proposition A.1. For any d and fixed ā ∈ {0, 1}i, the set {ā′ : ā ∼d ā′} has size at most 2 and is
computable in time poly(i) given ā. Similarly, for any ā′, the set {ā : ā ∼d ā′} has size at most 2
and is computable in time poly(i) given ā′.

Proof. We explicitly describe the ∼d relation for each d. Let ā and ā′ be i-bit strings. If i > dlogS′e,
write ā = v̄‖z̄ and ā′ = v̄′‖z̄′ for v̄, v̄′ ∈ {0, 1}dlogS′e.

• If d = ↑, then ā ∼d ā′ iff either

– i ≤ dlogS′e and ā′ = bā/2c or

– i > dlogS′e and v̄′ = bv̄/2c and z̄′ = z̄.

• If d =↙ (resp., ↘), ā ∼d ā′ iff either

86

– i ≤ dlogS′e and ā′ = 2 · ā (resp., ā′ = 2 · ā + 1) or

– i > dlogS′e and v̄′ = 2 · v̄ (resp., v̄′ = 2 · v̄ + 1) and z̄′ = z̄.

• If d = ⊗, then ā ∼d ā′ iff ā and ā′ agree on the first dlogS′e bits, and ā′ ∈ {ā, ā + 1}.

• If d = �, then ā ∼d ā′ iff ā and ā′ agree on the first dlogS′e bits, and ā′ ∈ {ā, ā− 1}.

• If d = ∅, then ā ∼d ā′ iff ā = ā′.

87

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

