
Adventures in Monotone Complexity and TFNP

Mika Göös† Pritish Kamath Robert Robere† Dmitry Sokolov
IAS MIT Simons Institute KTH

September 18, 2018

Abstract

Separations: We introduce a monotone variant of Xor-Sat and show it has exponential
monotone circuit complexity. Since Xor-Sat is in NC2, this improves qualitatively on the
monotone vs. non-monotone separation of Tardos (1988). We also show that monotone span
programs over R can be exponentially more powerful than over finite fields. These results
can be interpreted as separating subclasses of TFNP in communication complexity.

Characterizations: We show that the communication (resp. query) analogue of PPA
(subclass of TFNP) captures span programs over F2 (resp. Nullstellensatz degree over F2).
Previously, it was known that communication FP captures formulas (Karchmer–Wigderson,
1988) and that communication PLS captures circuits (Razborov, 1995).

Contents

1 Our Results 1
1.1 Monotone C-Sat . 1
1.2 Separations . 2
1.3 Characterizations . 3

2 Survey: Communication TFNP 5
2.1 Open problems . 7

3 Preliminaries 7

4 Proofs of Separations 8
4.1 Reduction . 9
4.2 Monotone circuit lower bounds . 10
4.3 Monotone span program lower bounds . 11

5 Proofs of Characterizations 13
5.1 Communication PPA = span programs . 13
5.2 Query PPA = Nullstellensatz . 16

A Appendix: TFNP Class Definitions 17

References 19

†Work done while M.G. was at Harvard University and R.R. was at University of Toronto.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 163 (2018)

1 Our Results

We study the complexity of monotone boolean functions f : {0, 1}n → {0, 1}, that is, functions
satisfying f(x) ≤ f(y) for every pair x ≤ y (coordinate-wise). (An excellent introduction to monotone
complexity is the textbook [Juk12].) Our main results are new separations of monotone models
of computation and characterizations of those models in the language of query/communication
complexity. At the core of these results are two conceptual innovations.

1. We introduce a natural monotone encoding of the usual CSP satisfiability problem (Section 1.1).
This definition unifies many other monotone functions considered in the literature.

2. We extend and make more explicit an intriguing connection between circuit complexity and
total NP search problems (TFNP) via communication complexity. Several prior characteriza-
tions [KW88, Raz95] can be viewed in this light. This suggests a potentially useful organiza-
tional principle for circuit complexity measures; see Section 2 for our survey.

1.1 Monotone C-Sat

The basic conceptual insight in this work is a new simple definition: a monotone encoding of the
usual constraint satisfaction problem (CSP). For any finite set of constraints C, we introduce a
monotone function C-Sat. A general definition is given in Section 3, but for now, consider as an
example the set C = 3Xor of all ternary parity constraints

3Xor :=
{

(v1 ⊕ v2 ⊕ v3 = 0), (v1 ⊕ v2 ⊕ v3 = 1)
}
.

We define 3Xor-Satn : {0, 1}N → {0, 1} over N := |C|n3 = 2n3 input bits as follows. An input
x ∈ {0, 1}N is interpreted as (the indicator vector of) a set of 3Xor constraints over n boolean
variables v1, . . . , vn (there are N possible constraints). We define 3Xor-Satn(x) := 1 iff the set x is
unsatisfiable, that is, no boolean assignment to the vi exists that satisfies all constraints in x. This is
indeed a monotone function: if we flip any bit of x from 0 to 1, this means we are adding a new
constraint to the instance, thereby making it even harder to satisfy.

Prior work. Our C-Sat encoding generalizes several previously studied monotone functions.

(NL) Karchmer and Wigderson [KW88] (also [GS92, Pot17, RPRC16] and textbooks [KN97, Juk12])
studied the NL-complete st-connectivity problem. This is equivalent to a C-Sat problem with
C consisting of a binary implication (v1 → v2) and unit clauses (v1) and (¬v1).

(P) Raz and McKenzie [RM99] (also [Cha13, CP14, GP14, dRNV16, RPRC16, PR18]) studied
a certain P-complete generation problem. In hindsight, this is simply Horn-Sat, that is, C
consists of Horn clauses: clauses with at most one positive literal, such as (¬v1 ∨ ¬v2 ∨ v3).

(NP) Göös and Pitassi [GP14] and Oliveira [Oli15, §3] (also [PR17, PR18]) studied the NP-complete
(dual of) Cnf-Sat problem, where C consists of bounded-width clauses.

These prior works do not exhaust all interesting classes of C, as is predicted by various classification
theorems for CSPs [Sch78, FV98, Bul17, Zhu17]. In this work, we focus on linear constraints over
finite fields Fp (for example, 3Xor-Sat corresponding to F2) and over the reals R.

1

1.2 Separations

First, we show that 3Xor-Satn cannot be computed efficiently with monotone circuits.

Theorem 1. 3Xor-Satn requires monotone circuits of size 2n
Ω(1).

This theorem stands in contrast to the fact that there exist fast parallel (non-monotone) algorithms
for linear algebra [Mul87]. In particular, 3Xor-Sat is in NC2. Consequently, our result improves
qualitatively on the monotone vs. non-monotone separation of Tardos [Tar88] who exhibited a
monotone function in P (computed by solving a semidefinite program) with exponential monotone
circuit complexity. For further comparison, another famous candidate problem to witness a monotone
vs. non-monotone separation is the perfect matching function: it is in RNC2 [Lov79] while it is widely
conjectured to have exponential monotone circuit complexity (a quasipolynomial lower bound was
proved by Razborov [Raz85a]).

Span programs. The computational easiness of 3Xor-Satn can be stated differently: it can be
computed by a linear-size monotone F2-span program. Span programs are a model of computation
introduced by Karchmer and Wigderson [KW93] (see also [Juk12, §8] for exposition) with an
extremely simple definition. An F-span program, where F is a field, is a matrix M ∈ Fm×m′ each row
of which is labeled by a literal, xi or ¬xi. We say that the program accepts an input x ∈ {0, 1}n iff
the rows of M whose labels are consistent with x (literals evaluating to true on x) span the all-1 row
vector. The size of a span program is its number of rows m. A span program is monotone if all its
literals are positive; in this case the program computes a monotone function.

A corollary of Theorem 1 is that monotone F2-span programs cannot be simulated by monotone
circuits without exponential blow-up in size. This improves on a separation of Babai, Gál, and
Wigderson [BGW99] who showed that monotone circuit complexity can be quasipolynomially larger
than monotone F2-span program size.

Furthermore, Theorem 1 holds more generally over any field F: an appropriately defined function
3Lin(F)-Satn (ternary F-linear constraints; see Section 3) is easy for monotone F-span programs, but
exponentially hard for monotone circuits. No such separation, even superpolynomial, was previously
known for fields of characteristic other than 2.

This brings us to our second theorem.

Theorem 2. 3Lin(R)-Satn requires monotone Fp-span programs of size 2n
Ω(1) for any prime p.

In other words: monotone R-span programs can be exponentially more powerful than monotone
span programs over finite fields. This separation completes the picture for the relative powers of
monotone span programs over distinct fields, since the remaining cases were exponentially separated
by Pitassi and Robere [PR18].

Finally, our two results above yield a bonus result in proof complexity as a byproduct: the
Nullstellensatz proof system over R can be exponentially more powerful than the Cutting Planes
proof system (see Section 4.2).

Techniques. The new lower bounds are applications of the lifting theorems for monotone cir-
cuits [GGKS18] and monotone span programs [PR18]. We show that, generically, if some unsatisfiable
formula composed of C constraints is hard to refute for the Resolution (resp. Nullstellensatz) proof sys-
tem, then the C-Sat problem is hard for monotone circuits (resp. span programs). Hence we can invoke
(small modifications of) known Resolution and Nullstellensatz lower bounds [BR98, BW01, ABRW04].
The key conceptual innovation here is a reduction from unsatisfiable C-CSPs (or their lifted versions)
to the monotone Karchmer–Wigderson game for C-Sat. This reduction is extremely slick, which we
attribute to having finally found the “right” definition of C-Sat.

2

1.3 Characterizations

There are two famous “top-down” characterizations of circuit models (both monotone and non-
monotone variants) using the language of communication complexity; these characterizations are
naturally related to communication analogues of subclasses of TFNP.

(FP) Karchmer and Wigderson [KW88] showed that the logarithm of the (monotone) formula
complexity of a (monotone) function f : {0, 1}n → {0, 1} is equal, up to constant factors, to
the communication complexity of the (monotone) Karchmer–Wigderson game:

Search problem KW(f)
=

input: a pair (x, y) ∈ f−1(1)× f−1(0)
[resp. KW+(f)] output: an i ∈ [n] with xi 6= yi [resp. xi > yi]

We summarize this by saying that the communication analogue of FP captures formulas. Here
FP ⊆ TFNP is the classical (Turing machine) class of total NP search problems efficiently
solved by deterministic algorithms [MP91].

(PLS) Razborov [Raz95] (see also [Pud10, Sok17]) showed that the logarithm of the (monotone)
circuit complexity of a function f : {0, 1}n → {0, 1} is equal, up to constant factors, to the least
cost of a PLS-protocol solving the KW(f) (or KW+(f)) search problem. Here a PLS-protocol
(Definition 4 in Appendix A) is a natural communication analogue of PLS ⊆ TFNP [JPY88].
We summarize this by saying that the communication analogue of PLS captures circuits.

We contribute a third characterization of this type: the communication analogue of PPA captures
F2-span programs. The class PPA [Pap94] is a well-known subclass of TFNP embodying the combi-
natorial principle “every graph with an odd degree vertex has another”. Informally, a search problem
is in PPA if for every n-bit input x we may describe implicitly an undirected graph Gx = (V,E)
(typically of size exponential in n; the edge relation is computed by a polynomial-size circuit) such
that G has degree at most 2, there is a distinguished degree-1 vertex v∗ ∈ V , and every other degree-1
vertex v ∈ V is associated with a feasible solution to the instance x (that is, the solution can be
efficiently computed from v).

Gx :

v∗

feasible
solutions

Communication PPA. The communication analogue of PPA is defined canonically by letting
the edge relation be computed by a (deterministic) communication protocol. Specifically, first fix
a two-party search problem S ⊆ X × Y ×O, that is, Alice gets x ∈ X , Bob gets y ∈ Y, and their
goal is to find a feasible solution in S(x, y) := {o ∈ O : (x, y, o) ∈ S}. A PPA-protocol Π solving
S consists of a vertex set V , a distinguished vertex v∗ ∈ V , and for each vertex v ∈ V there is an
associated solution ov ∈ O and a protocol Πv (taking inputs from X × Y). Given an input (x, y),

3

the protocols Πv implicitly describe a graph G = Gx,y on the vertex set V as follows. The output
of protocol Πv on input (x, y) is interpreted as a subset Πv(x, y) ⊆ V of size at most 2. We define
{u, v} ∈ E(G) iff u ∈ Πv(x, y) and v ∈ Πu(x, y). The correctness requirements are:

(C1) if deg(v∗) 6= 1, then ov∗ ∈ S(x, y).
(C2) if deg(v) 6= 2 for v 6= v∗, then ov ∈ S(x, y).

The cost of Π is defined as log |V |+ maxv |Πv| where |Πv| is the communication cost of Πv. Finally,
define PPAcc(S) as the least cost of a PPA-protocol that solves S.

For a (monotone) function f , define SPF(f) (resp. mSPF(f)) as the least size of a (monotone)
F-span program computing f . Our characterization is in terms of S := KW(f).

Theorem 3. For any boolean function f , we have log SPF2(f) = Θ(PPAcc(KW(f))). Furthermore,
if f is monotone, we have log mSPF2(f) = Θ(PPAcc(KW+(f))).

Query PPA. Our second characterization concerns the Nullstellensatz proof system; see Section 3
for the standard definition. Span programs and Nullstellensatz are known to be connected via
interpolation [PS98] and lifting [PR18]. Given our first characterization (Theorem 3), it is no surprise
that a companion result should hold in query complexity: the query complexity analogue of PPA
captures the degree of Nullstellensatz refutations over F2.

The query analogue of PPA is defined in the same way as the communication analogue, except
we replace protocols by (deterministic) decision trees. In fact, query PPA was already studied by
Beame et al. [BCE+98] who separated query analogues of different subclasses of TFNP. To define it,
first fix a search problem S ⊆ {0, 1}n ×O, that is, on input x ∈ {0, 1}n the goal is to find a feasible
solution in S(x) := {o ∈ O : (x, o) ∈ S}. A PPA–decision tree T solving S consists of a vertex set V ,
a distinguished vertex v∗ ∈ V , and for each vertex v ∈ V there is an associated solution ov ∈ O and
a decision tree Tv (querying bits of an n-bit input). Given an input x ∈ {0, 1}n, the decision trees Tv
implicitly describe a graph G = Gx on the vertex set V as follows. The output of Tv on input x is
interpreted as a subset Tv(x) ⊆ V of size at most 2. We then define {u, v} ∈ E(G) iff u ∈ Tv(x) and
v ∈ Tu(x). The correctness requirements are the same as before, (C1) and (C2). The cost of T is
defined as the maximum over all v ∈ V and all inputs x of the number of queries made by Tv on
input x. Finally, define PPAdt(S) as the least cost of a PPA–decision tree that solves S.

With any unsatisfiable n-variate boolean CSP F one can associate a canonical search problem:

CSP search problem S(F) = input: an n-variate truth assignment x ∈ {0, 1}n
output: constraint C of F falsified by x (i.e., C(x) = 0)

Theorem 4. The F2-Nullstellensatz degree of an k-CNF formula F equals Θ(PPAdt(S(F))).

The easy direction of this characterization is that Nullstellensatz degree lower bounds PPAdt.
This fact was already observed and exploited by Beame et al. [BCE+98] to prove lower bounds
for PPAdt. Our contribution is to show the other (less trivial) direction.

Let us finally mention a related result in Turing machine complexity due to Belovs et al. [BIQ+17]:
a circuit-encoded version of Nullstellensatz is PPA-complete. Their proof is highly nontrivial whereas
our characterizations admit relatively short proofs, owing partly to us working with simple nonuniform
models of computation.

4

FP

EoML

SoML PPAD

PPADS

PLS PPP PPA

TFNP

= formulas

circuits = = F2-span programs

comparator circuits ≤

Figure 1: The landscape of communication search problem classes (uncluttered by the usual ‘cc’
superscripts). A solid arrow C1 → C2 denotes C1 ⊆ C2, and a dashed arrow C1 99K C2 denotes
C1 * C2 (in fact, an exponential separation). The yellow arrows are new separations. Some classes
can characterize other models of computation (printed in blue). See Appendix A for definitions.

2 Survey: Communication TFNP

Given the results in Section 1, it is natural to examine other communication analogues of subclasses
of TFNP. The goal in this section is to explain the current state of knowledge as summarized in
Figure 1. The formal definitions of the communication classes appear in Appendix A.

TFNP. As is customary in structural communication complexity [BFS86, HR90, GPW16] we
formally define TFNPcc (resp. PLScc, PPAcc, etc.) as the class of all two-party n-bit search problems
that admit a nondeterministic protocol (resp. PLS-protocol, PPA-protocol, etc.) of communication
cost polylog(n). For example, Karchmer–Wigderson games KW(f) and KW+(f), for an n-bit
boolean function f , have efficient nondeterministic protocols: guess a log n-bit coordinate i ∈ [n]
and check that xi 6= yi or xi > yi. Hence these problems are in TFNPcc. In fact, a converse holds:
any total two-party search problem with nondeterministic complexity c can be reduced to KW+(f)
for some 2c-bit partial monotone function f , see [Gál01, Lemma 2.3]. In summary, the study of
total NP search problems in communication complexity is equivalent to the study of monotone
Karchmer–Wigderson games for partial monotone functions.

Sometimes a partial function f can be canonically extended into a total one f ′ without increasing
the complexity of KW(f) (or KW+(f)). This is possible whenever KW(f) lies in a communication
class that captures some associated model of computation. For example, if KW(f) is solved by a

5

deterministic protocol (resp. PLS-protocol, PPA-protocol) then the Karchmer–Wigderson connection
can build us a corresponding formula (resp. circuit, F2-span program) that computes some total
extension f ′ of f . Consequently, separating two communication classes that capture two monotone
models is equivalent to separating the monotone models themselves.

FP. Raz and McKenzie [RM99] showed an exponential separation between monotone formula size
and monotone circuit size. This can be rephrased as PLScc * FPcc. Their technique is much more
general: they develop a query-to-communication lifting theorem for deterministic protocols (see
also [GPW15] for exposition). By plugging in known query complexity lower bounds against the
class EoML (combinatorial subclass of CLS [DP11] introduced by [HY17, FGMS18]), one can obtain
a stronger separation EoMLcc * FPcc.

A related question is whether randomization helps in solving TFNPcc problems. Lower bounds
against randomized protocols have applications in proof complexity [IPU94, BPS07, HN12, GP14]
and algorithmic game theory [RW16, BR17, GR18, Rou18, GS18, BDN18]. In particular, some
of these works (for finding Nash equilibria) have introduced a communication analogue of the
PPAD-complete End-of-Line problem, which we will continue to study in Section 4.2.

PLS. Razborov’s [Raz85b] famous monotone circuit lower bound for the clique/coloring problem
(which is in PPPcc) can be interpreted as an exponential separation PPPcc * PLScc. We show a
stronger separation PPADcc * PLScc using the End-of-Line problem in Section 4.2. Note that this
is even slightly stronger than Theorem 1, which only implies PPAcc * PLScc.

PPA(D). In light of our characterization of PPAcc, we may interpret the inability of monotone
F2-span program to efficiently simulate monotone circuits [PR18] as a separation PLScc * PPAcc.
We show an incomparable separation PPADScc * PPAcc in Section 4.3.

In the other direction, prior work implies PPAcc * PPADcc as follows. Pitassi and Robere [PR18]
exhibit a monotone f (in hindsight, one can take f := 3Xor-Satn) computable with a small
monotone F2-span program (hence KW+(f) ∈ PPAcc) and such that KW+(f) has an exponentially
large R-partition number (see Section 3 for a definition); however, we observe that all problems in
PPADcc have a small R-partition number (see Remark 4.2).

PPP. There are no lower bounds against PPPcc for an explicit problem in TFNPcc. However, we can
show non-constructively the existence of KW(f) ∈ TFNPcc such that KW(f) /∈ PPPcc, which implies
PPPcc 6= TFNPcc. Indeed, we argue in Remark 4.1 that every S reduces to KW+(3Cnf-SatN) over
N := exp(O(PPPcc(S))) variables. Applying this to S := KW(f) for an n-bit f , we conclude that
f is a (non-monotone) projection of 3Cnf-SatN for N := exp(O(PPPcc(KW(f)))). In particular,
if KW(f) ∈ PPPcc (i.e., PPPcc(KW(f)) ≤ polylog(n)), then f is in non-uniform quasipoly-size NP.
Therefore KW(f) /∈ PPPcc for a random f .

EoML, SoML, and comparator circuits. One prominent circuit model that currently lacks a
characterization via a TFNPcc subclass is comparator circuits [MS92, CFL14]. These circuits are
composed only of comparator gates (taking two input bits and outputting them in sorted order) and
input literals (positive literals in the monotone case).

We can show an upper bound better than PLScc for comparator circuits. Indeed, we introduce a
new class SoML generalizing EoML [HY17, FGMS18] as follows. Recall that EoML is the class of
problems reducible to End-of-Metered-Line: we are given a directed graph of in/out-degree at
most 1 with a distinguished source vertex v∗ (in-degree 0), and moreover, each vertex is labeled

6

with an integer “meter” that is strictly decreasing along directed paths; a solution is any sink or
source distinct from v∗. The complete problem defining SoML is Sink-of-Metered-Line, which is
the same as End-of-Metered-Line except only sinks count as solutions. It is not hard (left as
an exercise) to adapt the characterization of circuits via PLScc [Raz95, Pud10, Sok17] to show that
KW(f) is in SoMLcc if f is computed by a small comparator circuit. However, we suspect that the
converse (SoML-protocol for KW(f) implies a comparator circuit) is false.

2.1 Open problems

In query complexity, the relative complexities of TFNP subclasses are almost completely under-
stood [BCE+98, BM04, Mor05]. In communication complexity, by contrast, there are huge gaps in
our understanding as can be gleaned from Figure 1. For example:

(1) There are no lower bounds against classes PPADScc and PPPcc for an explicit problem in
TFNPcc. For starters, show PLScc * PPADScc or PPAcc * PPADScc.

(2) Find computational models captured by EoMLcc, SoMLcc, PPADcc, PPADScc, PPPcc.

(3) Query-to-communication lifting theorems are known for FP [RM99], PLS [GGKS18], PPA [PR18].
Prove more. (This is one way to attack Question (1) if proved for PPADS.)

(4) Prove more separations. For example, can our result PPADScc * PPAcc be strengthened to
SoMLcc * PPAcc? This is closely related to whether monotone comparator circuits can be
more powerful than monotone F2-span programs (no separation is currently known).

3 Preliminaries

C-Sat. Fix an alphabet Σ (potentially infinite, e.g., Σ = R). Let C be a finite set of k-ary
predicates over Σ, that is, each C ∈ C is a function C : Σk → {0, 1}. We define a monotone function
C-Satn : {0, 1}N → {0, 1} over N = |C|nk input bits as follows. An input x ∈ {0, 1}N is interpreted
as a C-CSP instance, that is, x is (the indicator vector of) a set of C-constraints, each applied to a
k-tuple of variables from v1, . . . , vn. We define C-Satn(x) := 1 iff the C-CSP x is unsatisfiable: no
assignment v ∈ Σn exists such that C(v) = 1 for all C ∈ x.

For a field F, we define kLin(F) as the set of all F-linear equations of the form∑
i∈[k] aivi = a0, where ai ∈ {0,±1}.

In particular, we recover 3Xor-Satn defined in Section 1 essentially as 3Lin(F2)-Satn. We could
have allowed the ai to range over F when F is finite, but we stick with the above convention as it
ensures that the set kLin(R) is always finite.

Boolean alphabets. We assume henceforth that all alphabets Σ contain distinguished elements 0
and 1. We define Cbool to be the constraint set obtained from C by restricting each C ∈ C to the
boolean domain {0, 1}k ⊆ Σk. Moreover, if F is a C-CSP, we write Fbool for the Cbool-CSP obtained
by restricting the constraints of F to boolean domains. Consequently, any S(Fbool) associated with
a C-CSP F is a boolean search problem.

7

Algebraic partitions. We say that a subset A ⊆ X ×Y is monochromatic for a two-party search
problem S ⊆ X ×Y ×O if there is some o ∈ O such that o ∈ S(x, y) for all (x, y) ∈ A. Moreover, if
M ∈ FX×Y is a matrix, we say M is monochromatic if the support of M is monochromatic. For any
field F, an F-partition of a search problem S is a setM of rank-1 matrices M ∈ FX×Y such that∑

M∈MM = 1 and each M ∈ M is monochromatic for S. The size of the partition is |M|. The
F-partition number χF(S) is the least size of an F-partition of S. In the following characterization,
recall that we use SPF and mSPF to denote (monotone) span program complexity.

Theorem 5 ([Gál01]). For any boolean function f and any field F, SPF(f) = χF(KW(f)). Further-
more, if f is monotone then mSPF(f) = χF(KW+(f)).

Nullstellensatz. Let P := {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable system of polynomial
equations in F[z1, z2, . . . , zn] for a field F. An F-Nullstellensatz refutation of P is a sequence of
polynomials q1, q2, . . . , qm ∈ F[z1, z2, . . . , zn] such that

∑m
i=1 qipi = 1 where the equality is syntactic.

The degree of the refutation is maxi deg(qipi). The F-Nullstellensatz degree of P , denoted NSF(P),
is the least degree of an F-Nullstellensatz refutation of P .

Moreover, if F is a k-CNF formula (or a boolean k-CSP), we often tacitly think of it as a
polynomial system PF by using the standard encoding (e.g., (z1 ∨ ¬z2) ; (1− z1)z2 = 0) and also
including the boolean axioms z2

i − zi = 0 in PF if we are working over F 6= F2.

Lifting theorems. Let S ⊆ {0, 1}n ×O be a boolean search problem and g : X × Y → {0, 1} a
two-party function, usually called a gadget. The composed search problem S ◦ gn ⊆ X n × Yn ×O is
defined as follows: Alice holds x ∈ X n, Bob holds y ∈ Yn, and their goal is to find an o ∈ S(z) where
z := gn(x, y) = (g(x1, y1), . . . , g(xn, yn)). We focus on the usual index gadget Indm : [m]×{0, 1}m →
{0, 1} given by Indm(x, y) := yx.

The main results of [GGKS18, PR18] can be summarized as follows (we define more terms below).

Theorem 6. Let k ≥ 1 be a constant and let m = m(n) := nC for a large enough constant C ≥ 1.
Then for any an unsatisfiable boolean n-variate k-CSP F ,

[GGKS18]: PLScc(S(F) ◦ Indnm) = PLSdt(S(F)) ·Θ(log n),
[PR18]: PPAcc(S(F) ◦ Indnm) = PPAdt(S(F)) ·Θ(log n),
[PR18]: logχF(S(F) ◦ Indnm) = NSF(F) ·Θ(log n), ∀F ∈ {Fp,R}.

For aesthetic reasons, we have used PLSdt(S(F)) here to denote the Resolution width of F
(introduced in [BW01]), which is how the result of [GGKS18] was originally stated. (But one
can check that the query analogue of PLS, obtained by replacing protocols with decision trees in
Definition 4, is indeed equivalent to Resolution width.) We also could not resist incorporating our
new characterizations of PPAcc and PPAdt to interpret the result of [PR18] specialized to F2.

4 Proofs of Separations

In this section, we show lower bounds for C-Sat against monotone circuits (Theorem 1) and
monotone span programs (Theorem 2), plus some bonus results (PPADcc * PLScc, PPADScc * PPAcc,
Nullstellensatz degree over R vs. Cutting Planes).

8

4.1 Reduction

The key to our lower bounds is a new reduction. We show that a lifted version of S(Fbool), where F
is an unsatisfiable C-CSP, reduces to the monotone Karchmer–Wigderson game for C-Sat. Note
that we require F to be unsatisfiable over its original alphabet Σ, but the reduction is from the
booleanized (and hence easier-to-refute) version of F .

Lemma 7. Let F be an unsatisfiable C-CSP. Then S(Fbool) ◦ Indnm reduces to KW+(C-Satnm).

Proof. Suppose the C-CSP F consists of constraints C1, . . . , Ct applied to variables z1, . . . , zn. We
reduce S(Fbool) ◦ Indnm ⊆ [m]n × ({0, 1}m)n × [t] to the problem KW+(f) ⊆ f−1(1)× f−1(0)× [N]
where f := C-Satmn over N := |C|(mn)k input bits. The two parties compute locally as follows.

Alice: Given (x1, . . . , xn) ∈ [m]n, Alice constructs a C-CSP over variables {vi,j : (i, j) ∈ [n]× [m]}
that is obtained from F by renaming its variables z1, . . . , zn to v1,x1 , . . . , vn,xn (in this order).
Since F was unsatisfiable, so is Alice’s variable-renamed version of it. Thus, when interpreted
as an indicator vector of constraints, Alice has constructed a 1-input of C-Satmn.

Bob: Given y ∈ ({0, 1}m)n, Bob constructs a C-CSP over variables {vi,j : (i, j) ∈ [n] × [m]} as
follows. We view y naturally as a boolean assignment to the variables vi,j . Bob includes in
his C-CSP instance all possible C-constraints C applied to the vi,j such that C is satisfied
under the assignment y (i.e., C(y) = 1). This is clearly a satisfiable C-CSP instance, as the
assignment y satisfies all Bob’s constraints. Thus, when interpreted as an indicator vector of
constraints, Bob has constructed a 0-input of C-Satmn.

It remains to argue that any solution to KW+(C-Satmn) gives rise to a solution to S(Fbool)◦Indnm.
Indeed, a solution to KW+(C-Satmn) corresponds to a C-constraint C that is present in Alice’s
C-CSP but not in Bob’s. By Bob’s construction, such a C must be violated by the assignment y (i.e.,
C(y) = 0). Since all Alice’s constraints involve only variables v1,x1 , . . . , vn,xn , the constraint C must
in fact be violated by the partial assignment to the said variables, which is z = Indnm(x, y). Thus
the constraint of F from which C was obtained via renaming is a solution to S(Fbool) ◦ Indnm.

Remark 4.1 (Generic reduction to Cnf-Sat). We claim that any problem S ⊆ X × Y × O
that lies in one of the known subclasses of TFNPcc (as listed in Section 2) reduces efficiently to
KW+(kCnf-Satn) for constant k (one can even take k = 3 by standard reductions). Let us sketch
the argument for S ∈ PPPcc; after all, better reductions are known for PLScc and PPAcc, namely to
Horn-Sat and 3Xor-Sat (see Lemma 10).

Proof sketch. Let Π := (V, v∗, ov,Πv) be a PPP-protocol solving S of cost c := PPPcc(S). We
may assume wlog that all the Πv have constant communication cost k ≤ O(1) by embedding the
protocol trees of the Πv as part of the implicitly described bipartite graph. In particular, we view
each Πv as a function X ×Y → {0, 1}k where the output is interpreted according to some fixed map
{0, 1}k → V . Consider a set of n := k|V | (|V | ≤ 2c) boolean variables {zv,i : (v, i) ∈ V × [k]} with
the intuitive interpretation that zv,i is the i-th output bit of Πv. We may encode the correctness
conditions for Π as an unsatisfiable 2k-CNF formula F over the zv,i that has, for each {v, u} ∈

(
V
2

)
,

clauses requiring that the outputs of Πv and Πu (as encoded by the zv,i) should point to distinct
vertices. Finally, we note that computing the i-th output bit (Πv)i : X ×Y → {0, 1} reduces to a large
enough constant-size index gadget IndO(1) (which embeds any two-party function of communication
complexity k ≤ O(1)). Therefore S naturally reduces to S(F) ◦ IndnO(1), which by Lemma 7 reduces
to KW+(2kCnf-SatO(n)), as desired.

9

4.2 Monotone circuit lower bounds

Xor-Sat. The easiest result to prove is Theorem 1: an exponential monotone circuit lower bound
for 3Xor-Satn. By the characterization of [Raz95] it suffices to show

PLScc(KW+(3Xor-Satn)) ≥ nΩ(1). (1)

Urquhart [Urq87] exhibited unsatisfiable n-variate 3Xor-CSPs F (aka Tseitin formulas) requiring
linear Resolution width, that is, PLSdt(S(F)) ≥ Ω(n) in our notation. Hence Theorem 6 implies
that PLScc(S(F) ◦ Indnm) ≥ Ω(n) for some m = nO(1). By the reduction in Lemma 7, we get that
PLScc(KW+(3Xor-Satnm)) ≥ Ω(n). (Note that 3Xor has a boolean alphabet, so F = Fbool.) This
yields the claim (1) by reparameterizing the number of variables.

Lin(F)-Sat. More generally, we can prove a similar lower bound over any field F ∈ {Fp,R}:

PLScc(KW+(3Lin(F)-Satn)) ≥ nΩ(1). (2)

Fix such an F henceforth. This time we start with a kLin(F)-CSP introduced in [BGIP01] for F = Fp
(aka mod-p Tseitin formulas), but the definition generalizes to any field. The CSP is constructed
based on a given directed graph G = (V,E) that is regular : in-deg(v) = out-deg(v) = k/2 for
all v ∈ V . Fix also a distinguished vertex v∗ ∈ V . Then F = FG,F is defined as the following
kLin(F)-CSP over variables {ze : e ∈ E}:

∀v ∈ V :
∑

(v,u)∈E

z(v,u) −
∑

(u,v)∈E

z(u,v) = 1v∗(v), (FG,F)

where 1v∗(v∗) = 1 and 1v∗(v) = 0 for v 6= v∗. This system is unsatisfiable because the sum over
v ∈ V of the RHS equals 1 whereas the sum of the LHS equals 0 (each variable appears once with a
positive sign, once with a negative sign).

We claim that the booleanized k-CSP Fbool (more precisely, its natural k-CNF encoding) has
linear Resolution width, that is, PLSdt(S(Fbool)) ≥ Ω(n) in our notation. Indeed, the constraints
of Fbool are k/2-robust in the sense that if a partial assignment ρ ∈ {0, 1, ∗}k fixes the value of
a constraint of Fbool, then ρ must set more than k/2 variables. Alekhnovich et al. [ABRW04,
Theorem 3.1] show that if k is a large enough constant, there exist regular expander graphs G such
that Fbool (or any k-CSP with Ω(k)-robust constraints) has Resolution width Ω(n), as desired.

Combining the above with the lifting theorem in Theorem 6 and the reduction in Lemma 7 yields
PLScc(kLin(F)-Satn) ≥ nΩ(1) for large enough k. Finally, we can reduce the arity from k to 3 by a
standard trick. For example, given the linear constraint a1v1+a2v2+a3v3+a4v4 = a0 we can introduce
a new auxiliary variable u and two equations a1v1 + a2v2 + u = 0 and −u+ a3v3 + a4v4 = a0. In
general, we replace each equation on k > 3 variables with a collection of k−2 equations by introducing
k− 3 auxiliary variables to create an equisatisfiable instance. This shows that kLin(F)-Satn reduces
to (i.e., is a monotone projection of) 3Lin(F)-Satkn, which concludes the proof of (2).

PPADcc *** PLScc via End-of-Line. Consider the R-linear system F = FG,R defined above. We
observe that S(Fbool) is in fact equivalent to (a query version of) the PPAD-complete End-of-Line
problem. In the End-of-Line problem, we are given a directed graph of in/out-degree at most 1 and
a distinguished source vertex v∗ (in-degree 0); the goal is to find a sink or a source distinct from v∗ (cf.
Definition 5). On the other hand, in S(Fbool) we are given a boolean assignment z ∈ {0, 1}E , which
can be interpreted as (the indicator vector of) a subset of edges defining a (spanning) subgraph Gz
of G; the goal is to find a vertex v ∈ V such that either

10

(1) v = v∗ and out-deg(v) 6= in-deg(v) + 1 in Gz; or
(2) v 6= v∗ and out-deg(v) 6= in-deg(v) in Gz.

The only essential difference between S(Fbool) and End-of-Line is that the graph Gz can have
in/out-degree a large constant k/2 rather than 1. But there is a standard reduction between the two
problems [Pap94]: we may locally interpret a vertex v ∈ V (Gz) with out-deg(v) = in-deg(v) = ` as `
distinct vertices of in/out-degree 1. This reduction also shows that the lifted problem S(Fbool)◦Indm
for m = nO(1) admits a O(log n)-cost PPAD-protocol, and is thus in PPADcc. By contrast, we proved
above that this problem is not in PLScc (for appropriate G).

Remark 4.2 (Algebraic partitions for PPADcc). We claim that every problem S ∈ PPADcc admits
a small Z-partition, and hence a small F-partition over any field F. More precisely, we argue that
logχZ(S) ≤ O(PPADcc(S)). Indeed, let Π := (V, v∗, ov,Πv) be an optimal PPAD-protocol for S.
We define a Z-partitionM by describing it as a nondeterministic protocol for S whose accepting
computations output weights in Z (interpreted as values of the entries of an M ∈ M): On input
(x, y), guess a vertex v ∈ V ; if v is a sink in Gx,y, accept with weight 1; if v is a source distinct from
v∗, accept with weight −1; otherwise reject (i.e., weight 0). This protocol accepts with overall weight
#(sinks)−#(non-distinguished sources) = 1 on every input (x, y), as desired.

A similar argument yields an analogous query complexity bound NSZ(F) ≤ O(PPADdt(S(F)))
where PPADdt(S) is the least cost of a PPAD–decision tree (Definition 5) solving S.

R-Nullstellensatz vs. Cutting Planes. By the above remark, Fbool for F = FG,R admits a
low-degree—in fact, constant-degree—Nullstellensatz refutation over R. Nullstellensatz degree
behaves well with respect to compositions: if we compose Fbool with a gadget Indnm, m = nO(1) (see,
e.g., [GGKS18, §8] how this can be done), the Nullstellensatz degree can only increase by the query
complexity of the gadget, which is O(log n) for Indnm. This gives us an nO(1)-variate boolean k-CSP
F ′ := Fbool ◦ Indnm (where k is constant [GGKS18, §8]) such that NSR(F ′) ≤ O(log n). On the other
hand, we can invoke the strong version of the main result of [GGKS18]: if F has Resolution width
w, then F ◦ Indnm requires Cutting Planes refutations of length nΩ(w). In summary, F ′ witnesses
that R-Nullstellensatz can be exponentially more powerful than log of Cutting Planes length.

4.3 Monotone span program lower bounds

Let us prove Theorem 2: 3Lin(R)-Satn requires exponential-size monotone Fp-span programs, i.e.,

χFp(KW+(3Lin(R)-Satn)) ≥ nΩ(1). (3)

Using Theorem 6 and Lemma 7 similarly as in Section 4.2, it suffices to show that NSFp(Fbool) ≥ nΩ(1),
for some unsatisfiable kLin(R)-CSP F where k is a constant. To this end, we consider an R-linear
system F = FG,U,R that generalizes FG,R defined above:

∀v ∈ V :
∑

(v,u)∈E

z(v,u) −
∑

(u,v)∈E

z(u,v) = 1U (v), (FG,U,R)

where 1U : V → {0, 1} is the indicator function for U ⊆ V . This is unsatisfiable as long as U 6= ∅.
Combinatorially, the boolean search problem S(Fbool) can be interpreted as an End-of-`-Lines
problem for ` := |U |: given a graph with distinguished source vertices U , find a sink or a source not
in U . It is important to have many distinguished sources, |U | ≥ nΩ(n), as otherwise S(Fbool) is in
PPADdt [HG18] and hence Fbool has too low an Fp-Nullstellensatz degree (by Remark 4.2).

11

G :

U

xijD R

Figure 2: Graph G = (V,E), a bounded-degree version of the biclique D ×R.

Nullstellensatz lower bound. To show NSFp(Fbool) ≥ nΩ(1) for an appropriate F = FG,U,R,
we adapt a result of Beame and Riis [BR98]. They proved a Nullstellensatz lower bound for a
related bijective pigeonhole principle Pn whose underlying graph has unbounded degree; we obtain a
bounded-degree version of their result by a reduction.

Lemma 8 ([BR98, §8]). Fix a prime p. The following system of polynomial equations over variables
{xij : (i, j) ∈ D ×R}, where |D| = n and |R| = n− nΩ(1), requires Fp-Nullstellensatz degree nΩ(1):

(i) ∀i ∈ D :
∑

j∈R xij = 1 “each pigeon occupies a hole”,
(ii) ∀j ∈ R :

∑
i∈D xij = 1 “each hole houses a pigeon”,

(iii) ∀i ∈ D, {j, j′} ∈
(
R
2

)
: xijxij′ = 0 “no pigeon occupies two holes”,

(iv) ∀j ∈ R, {i, i′} ∈
(
D
2

)
: xijxi′j = 0 “no hole houses two pigeons”.

(Pn)

We construct a natural bounded-degree version G of the complete bipartite graph D ×R and
show that each constraint of Fbool for F = FG,U,R is a low-degree Fp-Nullstellensatz consequence
of Pn. Hence, if Fbool admits a low-degree Fp-Nullstellensatz proof, so does Pn (see, e.g., [BGIP01,
Lemma 1] for composing proofs), which contradicts Lemma 8.

The directed graph G = (V,E) is obtained from the complete bipartite graph D×R as illustrated
in Figure 2 (for |D| = 4 and |R| = 3). Specifically, each vertex of degree d in D×R is replaced with
a binary tree of height log d. The result is a layered graph with the first and last layers identified
with D and R, respectively. We also add a “feedback” edge from each vertex in R to a vertex in
D according to some arbitrary injection R→ D (dashed edges in Figure 2). The vertices in D not
incident to feedback edges will form the set U (singleton in Figure 2).

This defines a boolean 3-CSP Fbool for F = FG,U,R over variables {ze : e ∈ E}. In order to reduce
Pn to Fbool, we define an affine map between the variables xij of Pn and ze of Fbool. Namely, for a

12

feedback edge e we set ze := 1, and for every other e = (v, u) we set

z(v,u) :=
∑

i∈Dv j∈Ru

xij ,

where Dv := {i ∈ D : v is reachable from i without using feedback edges},
Ru := {j ∈ R : j is reachable from u without using feedback edges}.

Note in particular that this map naturally identifies the edge-variables ze in the middle of G (yellow
edges) with the variables xij of Pn. The other variables ze are simply affinely dependent on the
middle edge-layer. We then show that from the equations of Pn we can derive each constraint of
Fbool. Recall that the constraint for v ∈ V requires that the out-flow

∑
(v,u)∈E z(v,u) equals the

in-flow
∑

(u,v)∈E z(u,v) (plus 1 iff v ∈ U).

v /∈ D ∪R: Suppose v is on the left side of G (right side is handled similarly) so that z(v,u) =∑
j∈Ru

xij for some fixed i ∈ D. The out-flow is∑
(v,u)∈E z(v,u) =

∑
(v,u)∈E

∑
j∈Ru

xij =
∑

j∈Rv
xij . (4)

On the other hand, v has a unique incoming edge (u∗, v) so the in-flow is
∑

(u,v)∈E z(u,v) =
z(u∗,v) =

∑
j∈Rv

xij , which equals (4).

v ∈ D: (Case v ∈ R is handled similarly). The in-flow equals 1 (either v ∈ U so that we have
the +1 term from 1U (v); or v /∈ U and the value of a feedback-edge variable gives +1).
The out-flow equals

∑
j∈Rv

xij =
∑

j∈R xij = 1 by (4), Rv = R, and (ii).

Finally, we can verify the boolean axioms z2
e = ze. This holds trivially for feedback edges e. Let

e = (v, u) be an edge in the left side of G (right side is similar) so that ze =
∑

j∈Ru
xij for some

fixed i ∈ D. We have z2
e = (

∑
j∈Ru

xij)
2 =

∑
j∈Ru

x2
ij =

∑
j∈Ru

xij = ze by (iii) and the boolean
axioms for Pn.

This concludes the reduction and hence the proof of (3).

PPADScc *** PPAcc via End-of-`-Lines. It is straightforward to check that Fbool for F = FG,U,R
is in the query class PPADSdt (Definition 6). In particular, in the PPADS–decision tree, we can
define the distinguished vertex v∗ as being associated with any vertex from U . Similarly, the lifted
problem S′ := S(Fbool) ◦ Indmn for m = nO(1) is in the communication class PPADScc. By contrast,
we just proved that χF2(S′) ≥ nΩ(1), which implies that S′ /∈ PPAcc.

5 Proofs of Characterizations

In this section, we prove our characterizations for PPAcc (Theorem 3) and PPAdt (Theorem 4).

5.1 Communication PPA = span programs

We first show that communication PPA captures F2-span program size. Constructing a span program
from a PPA-protocol is almost immediate from Gál’s [Gál01] characterization of span program size
(Theorem 5). The other direction is more involved and proceeds in two steps: (1) we show that
3Xor-Satn is complete for (monotone) span programs under (monotone) projections, and then (2)
give a PPA-protocol for 3Xor-Satn.

13

Span programs from PPA-protocols. To show log SPF2(f) ≤ O(PPAcc(KW(f))) for a boolean
function f , we apply the below lemma with S := KW(f) and use the characterization SPF2(f) =
χF2(KW(f)) in Theorem 5. The monotone case is similar.

Lemma 9. For any search problem S ⊆ X × Y ×O we have logχF2(S) ≤ O(PPAcc(S)).

Proof. From a PPA-protocol Π := (V, v∗, ov,Πv) we can obtain canonically a nondeterministic
protocol Γ for S. The protocol Γ computes as follows on input (x, y): guess a vertex v ∈ V ; if v = v∗

and deg(v) 6= 1 in Gx,y, then accept (with solution ov); if v 6= v∗ and deg(v) = 1 in Gx,y, then accept
(with solution ov); otherwise reject. In particular, Γ runs Πv(x, y) and then Πu(x, y) for each of
the two potential neighbors u ∈ Πv(x, y). The communication cost is thus at most thrice that of Π.
Since we started with a PPA-protocol, it follows that Γ accepts each input (x, y) an odd number of
times. This implicitly defines an F2-partition for S of log-size O(PPAcc(S)).

PPA-protocols from span programs. As mentioned above, the converse is more involved. We
begin by showing that 3Xor-Satn is complete for F2-span programs under projections.

Lemma 10. Let f be a (monotone) boolean function computable by a (monotone) F2-span program
of size s. Then f can be written as a (monotone) projection of 3Xor-Sats2 .

Proof. Let M be an F2-span program for f . We may assume wlog that it is an s× s matrix with 0, 1
entries and with each row labeled by an input literal, xi or ¬xi (or just xi in the monotone case).
By a change of basis we may assume that, instead of the all-1 row vector, the target is to span the
row vector (0, 0, . . . , 0, 1). Let us thus write M = [A b] where A is an s× (s− 1) matrix and b is an
s× 1 vector. This suggests the following alternative interpretation of the span program M : given an
input x ∈ {0, 1}n, accept if and only if the corresponding system of linear equations A(x)w = b(x)

consistent with x is unsatisfiable; observe that this is witnessed by some linear combination of rows
yielding the vector (0, 0, . . . , 0, 1). This is nearly a projection of 3Xor-Sat, except, the number of
variables occurring in each linear equation in Aw = b may be greater than 3. This is straightforward
to fix by a standard reduction (already described in Section 4.2): we replace each equation on k > 3
variables with a collection of k − 2 equations by introducing k − 3 auxiliary variables to create an
equisatisfiable instance. The final instance has at most s2 variables and s2 equations.

The following lemma completes the proof that any span program implies a PPA-protocol. We
prove the lemma only for the monotone game KW+(f) as it implies the same bound for KW(f).

Lemma 11. PPAcc(KW+(3Xor-Satn)) ≤ O(log n).

Proof. Write Az = b for the list of all N := 2n3 many 3Xor-equations over n variables z1, . . . , zn.
In the game KW+(3Xor-Satn) Alice holds a subset x ⊆ [N] of the rows of Az = b defining
an unsatisfiable system Axz = bx, and Bob holds a subset y ⊆ [N] defining a satisfiable system
Ayz = by. Their goal is to find an equation which is included in Alice’s system but not in Bob’s. We
fix henceforth some satisfying assignment w ∈ Fn2 to Bob’s system. It suffices to find an equation in
Alice’s system that w does not satisfy.

For convenience, we assume that the graph Gx,y implicitly described by the soon-to-be-defined
PPA-protocol Π = (V, v∗, ov,Πv) can have maximum degree O(1) instead of 2. The modified
correctness conditions are:

(C1’) if deg(v∗) is even, then ov∗ is a feasible solution,
(C2’) if deg(v) is odd for v 6= v∗, then ov is a feasible solution.

14

This assumption can be made wlog due to a standard reduction [Pap94] already discussed in
Section 4.2 (e.g., a degree-2k vertex can be locally split into k separate degree-2 vertices).

For further simplicity, we first describe a PPA-protocol when Alice’s system Axz = bx satisfies:

(∗)


1. The vector bx has only a single 1 entry, say, in position j.
2. Every variable in Axz = bx appears in at most two equations.
3. Every equation contains at most four variables (i.e., we relax the 3Xor assumption).

The PPA-protocol is defined as follows. The vertex set V will contain, for each i ∈ [N], a vertex
vi corresponding to the i-th equation aiz = bi of Az = b (with the label ovi naturally naming that
equation) and a separate distinguished vertex v∗ (whose label ov∗ is arbitrary). For v ∈ V the
protocol Πv computes as follows.

• If v = v∗, Alice outputs vj as the sole neighbor.

• If v = vi, Alice checks if the i-th equation is in her input x.

– If not, the protocol outputs the empty set (resulting in deg(v) = 0 in Gx,y).
– If yes, Bob tells Alice the set of variables Z that appear in aiz = bi and that are set to 1

under w. Then Alice outputs all vertices that correspond to equations in x containing
variables from Z and, if i = j, the vertex v∗.

Note that Πv communicates O(log n) bits, as each equation contains at most four variables. Since
every variable appears in at most two equations, Gx,y will have maximum degree at most 5 (where 4
comes from arity of equations, and 1 from v∗). Let us check the correctness requirements.

v = v∗: Observe that v∗ has degree 1 (with neighbor vj), so (C1’) is trivially satisfied.

v = vj : Suppose vj has odd degree. Recall that vj is associated with equation ajz = bj that
uniquely has bj = 1. By construction, Alice holds the j-th equation and an even number
of its variables are set to true in Bob’s w (since vj has v∗ as an additional neighbor),
meaning aiz = bi is violated by w. Hence the j-th equation is a feasible solution, as
required by (C2’).

v = vi: Suppose vi (6= vj) has odd degree. Recall that vi is associated with equation aiz = bi
where bi = 0. By construction, Alice holds the i-th equation and an odd number of its
variables are set to true in Bob’s w, meaning aiz = bi is violated by w. Hence the i-th
equation is a feasible solution, as required by (C2’).

This concludes the proof under the simplifying assumptions (∗). It remains to show how to
re-interpret Alice’s input to satisfy the assumptions (∗).

Starting with any unsatisfiable 3Xor system Axz = bx, Alice can choose a minimal subset x′ ⊆ x
such that, viewing x′ as an indicator vector, x′ · [A b] = (0, 0, . . . , 0, 1). The subsystem Ax′z = bx′ is
still unsatisfiable, but now we ensure that bx′ contains an odd number of 1s and each variable zi
occurs in an even number of equations of Ax′z = bx′ .

Alice re-interprets her input as follows. First, to eliminate all 1s in bx′ except for one, Alice
chooses a matching of the 1s of bx′ except for one; this induces a partial matching of the rows of
Az = b. For each pair of equations aiz = bi and ai′z = bi′ that are matched, Alice changes bi
and bi′ to 0 and adds to the sums aiz and ai′z a new variable that will always take value 1 in
the PPA-protocol. (Note that this increases the number of variables per equation from 3 to 4).
Next, consider a variable zi and suppose it occurs in 2k of Alice’s equations. Alice creates k copies
z1
i , . . . , z

k
i of zi, each z

j
i replacing two occurrences of zi. In the PPA-protocol, when Alice needs the

value of a zji , she asks Bob for the value of zi.

15

5.2 Query PPA = Nullstellensatz

We now show that query PPA captures F2-Nullstellensatz degree. Showing that F2-Nullstellensatz
degree lower bounds PPAdt complexity was already proven by Beame et al. [BCE+98], but we include
the simple argument for completeness. Our contribution is to show the (less trivial) converse.

NS refutations from PPA–decision trees. The following is a query analogue of Lemma 9.

Lemma 12. NSF2(F) ≤ O(PPAdt(S(F))) for any unsatisfiable k-CNF formula F .

Proof. Suppose F :=
∧
i∈[m]Ci, and let pi be the natural polynomial encoding of Ci (see Section 3)

so that pi(x) = 0 iff Ci(x) = 1. Fix a PPA–decision tree T := (V, v∗, ov, Tv) of cost d := PPAdt(S(F)).
For each v ∈ V , we can define a depth-3d decision tree Sv such that Sv(x) = 1 iff (1) v = v∗ and
deg(v∗) 6= 1 in Gx, or (2) v 6= v∗ and deg(v) = 1 in Gx. (First run Tv(x) and then Tu(x) for the two
potential neighbors u ∈ Tv(x).) We can then convert each Sv into a degree-3d F2-polynomial sv
in the standard way (sv is the sum over all accepting paths of Sv of the product of the literals, xi
or (1− xi), recording the query outcomes on that path). Since the sv came from a PPA–decision
tree, where each x is accepted by an odd number of the Sv, we have that

∑
v∈V sv(x) = 1 for all x.

Moreover, we have that piv(x) = 0⇒ sv(x) = 0 where iv is such that ov = Civ ; this is because sv is
only supported on inputs x for which ov = Civ is feasible (i.e., Civ(x) = 0 and piv(x) = 1). Thus we
may factor each sv as qvpiv for some qv. Hence we have our refutation,

∑
v∈V qvpiv = 1.

PPA–decision trees from NS refutations. Here is the converse.

Lemma 13. PPAdt(S(F)) ≤ O(NSF2(F)) for any unsatisfiable k-CNF formula F .

Proof. Suppose F :=
∧
i∈[m]Ci, and let pi be the natural polynomial encoding Ci. Let

∑
i∈[m] qipi = 1

be a degree-d F2-Nullstellensatz refutation of F for d := NSF2(F).
We define a cost-d PPA–decision tree T := (V, v∗, ov, Tv) solving S(F). The vertices V will be

grouped into m + 1 groups V ∗, V1, V2, . . . , Vm. The group V ∗ will contain only the distinguished
vertex v∗, which we think of as associated with the constant-1 term on the RHS of the refutation
(the label ov∗ is arbitrary). For group Vi, consider expanding the polynomial qipi into a sum of
monomials (which we may assume are pair-wise distinct and multilinear). The group Vi will contain
one vertex vm associated with each monomial m appearing in the expansion of qipi. Moreover, each
v ∈ Vi will have ov := Ci as its associated solution.

Let us describe the edges of Gx and how to compute them. Each vertex will have at most one
neighbor outside its group and at most one inside its group.

− Out-group. Since the polynomials qipi come from an F2-Nullstellensatz refutation, it follows
that each monomial will occur an even number of times globally in the construction of V . Thus
we can fix some global perfect matching M of V where only vertices which correspond to the
same monomial are matched. For instance, if a monomial m occurs in the expansions of qipi
and qjpj , the vertices um ∈ Vi and vm ∈ Vj corresponding to m are allowed to be matched. In
particular, the constant-1 term of v∗ ∈ V ∗ will be matched with some other constant-1 term in
another group. For each edge e ∈M corresponding to an m, we add e to Gx iff m(x) = 1.

− In-group. Consider group Vi. If pi(x) = 1 (i.e., Ci(x) = 0), then we will not add any edges
inside Vi. If pi(x) = 0, we will add many edges: First let ρ := x � vars(pi) ∈ {0, 1, ∗}n be the
partial assignment obtained by restricting x to the variables of pi (at most k many). Consider
the multiset of non-zero monomials Tρ obtained by applying ρ to each monomial m in Vi and

16

including the resulting monomial m′ := m(ρ) in Tρ iff m′ 6= 0. (This is truly a multiset, e.g.,
monomials x1x2 and x1x3 both reduce to x1 under the partial assignment x2 = x3 = 1.) Since
pi(ρ) = 0, we of course have qipi(ρ) = 0, and so it must be the case that each m′ ∈ Tρ occurs
an even number of times in Tρ. With this in mind, we can fix a matching Mρ between the
vertices of Vi corresponding to like terms in Tρ. For each edge e ∈ Mρ corresponding to an
m′ := m(ρ), we add e to Gx iff m(x) = 1 (= m′(x)).

The edges incident to an vm ∈ Vi can be determined by querying the variables of pi (which defines ρ
and hence Mρ) and m. Hence the graph Gx can be described by depth-d decision trees Tv. Let us
finally check the correctness requirements. As in the proof of Lemma 11, we may check the simpler
conditions (C1’) and (C2’).

v∗ ∈ V ∗: Observe that v∗ has always degree 1: it has a fixed out-group neighbor determined
by M (independent of x) and no in-group neighbors. Hence (C1’) is trivially satisfied.

vm ∈ Vi: If pi(x) = 1 (i.e., Ci(x) = 0 and ovm = Ci is a feasible solution for x), then (C2’) is
trivially satisfied. So suppose pi(x) = 0 (i.e., Ci(x) = 1 and ovm = Ci is not a feasible
solution). We show that deg(vm) is even, which will verify (C2’). Let ρ := x � vars(pi)
and m′ := m(ρ). If m(x) = 0, then deg(v2) = 0 is even. If m(x) = 1, then m′

is non-zero. In this case vm will have both an out- and in-group neighbor so that
deg(vm) = 2 is even.

A Appendix: TFNP Class Definitions

For each TFNP subclass there is a canonical definition of its communication or query analogue: we
simply let communication protocols or decision trees (rather than circuits) implicitly define the
objects that appear in the original Turing machine definition. Each communication class Ccc (resp.
query class Cdt) is defined via a C-protocol (resp. C–decision tree) that solves a two-party search
problem S ⊆ {0, 1}n/2 × {0, 1}n/2 × O (resp. S ⊆ {0, 1}n × O). The class Ccc (resp. Cdt) is then
defined as the set of all n-bit search problems S that admit a polylog(n)-cost C-protocol (resp.
C–decision tree). We only define the communication analogues below with the understanding that a
query version can be obtained by replacing mentions of a protocol Πv(x, y) by a decision tree Tv(x);
the cost of a C–decision tree is defined as maxv,x #(queries made by Tv(x)). In what follows, sink
means out-degree 0, and source means in-degree 0.

Definition 1. (FP)

Syntax: Π is a (deterministic) protocol outputting values in O.
Object: n/a

Correctness: Π(x, y) ∈ S(x, y).
Cost: |Π| := communication cost of Π.

Definition 2. (EoML)

Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and Πv

is a protocol outputting a tuple (sv(x, y), pv(x, y), `v(x, y)) ∈ V × V × Z.
Object: Dag Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u, pu(x, y) = v, `v(x, y) > `u(x, y).

Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).
If v 6= v∗ is a sink or source in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

17

Definition 3. (SoML)

Syntax: Same as in Definition 2.
Object: Same as in Definition 2.

Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).
If v 6= v∗ is a sink in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

Definition 4. (PLS)

Syntax: V is a vertex set. For each v ∈ V : ov ∈ O and Πv is a protocol outputting a pair
(sv(x, y), `v(x, y)) ∈ V × Z.

Object: Dag Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u and `v(x, y) > `u(x, y).
Correctness: If v is a sink in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

Definition 5. (PPAD)

Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and Πv

is a protocol outputting a pair (sv(x, y), pv(x, y)) ∈ V × V .
Object: Digraph Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u and pu(x, y) = v.

Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).
If v 6= v∗ is a sink or source in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

Definition 6. (PPADS)

Syntax: Same as in Definition 5.
Object: Same as in Definition 5.

Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).
If v 6= v∗ is a sink in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

Definition 7. (PPA)

Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and Πv

is a protocol outputting a subset Πv(x, y) ⊆ V of size at most 2.
Object: Undirected graph Gx,y = (V,E) where {v, u} ∈ E iff v ∈ Πu(x, y) and u ∈ Πv(x, y).

Correctness: If v∗ has degree 6= 1 in Gx,y, then ov∗ ∈ S(x, y).
If v 6= v∗ has degree 6= 2 in Gx,y, then ov ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

Definition 8. (PPP)

Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each unordered pair
{v, u} ∈

(
V
2

)
: o{v,u} ∈ O. For each v ∈ V : Πv is a protocol outputting values in V − v∗.

Object: Bipartite graph Gx,y = (V × (V − v∗), E) where (v, w) ∈ E iff Πv(x, y) = w.
Correctness: If (v, w) and (u,w), v 6= u, are edges in Gx,y, then o{v,u} ∈ S(x, y).

Cost: log |V |+ maxv |Πv|.

18

Acknowledgements

We thank Ankit Garg (who declined a co-authorship) for extensive discussions about monotone
circuits. M.G. was supported by the Michael O. Rabin Postdoctoral Fellowship. P.K. was supported
in parts by NSF grants CCF-1650733, CCF-1733808, and IIS-1741137. R.R. was supported by
NSERC.

References

[ABRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, and Avi Wigderson. Pseu-
dorandom generators in propositional proof complexity. SIAM Journal on Computing,
34(1):67–88, 2004. doi:10.1137/S0097539701389944.

[BCE+98] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The
relative complexity of NP search problems. Journal of Computer and System Sciences,
57(1):3–19, 1998. doi:10.1006/jcss.1998.1575.

[BDN18] Yakov Babichenko, Shahar Dobzinski, and Noam Nisan. The communication complexity
of local search. Technical report, arXiv, 2018. arXiv:1804.02676.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication
complexity theory. In Proceedings of the 27th Symposium on Foundations of Computer
Science (FOCS), pages 337–347. IEEE, 1986. doi:10.1109/SFCS.1986.15.

[BGIP01] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. Journal of Computer
and System Sciences, 62(2):267–289, 2001. doi:10.1006/jcss.2000.1726.

[BGW99] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone
span programs. Combinatorica, 19(3):301–319, 1999. doi:10.1007/s004930050058.

[BIQ+17] Aleksandrs Belovs, Gábor Ivanyos, Youming Qiao, Miklos Santha, and Siyi Yang. On
the polynomial parity argument complexity of the combinatorial Nullstellensatz. In
Proceedings of the 32nd Computational Complexity Conference (CCC), volume 79, pages
30:1–30:24. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.CCC.2017.30.

[BM04] Joshua Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and
propositional proof systems. In Proceedings of the 19th Conference on Computational
Complexity (CCC), pages 54–67, 2004. doi:10.1109/CCC.2004.1313795.

[BPS07] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász–Schrijver
systems and beyond follow from multiparty communication complexity. SIAM Journal
on Computing, 37(3):845–869, 2007. doi:10.1137/060654645.

[BR98] Paul Beame and Søren Riis. More on the relative strength of counting principles. In
Proceedings of the DIMACS Workshop on Proof Complexity and Feasible Arithmetics,
volume 39, pages 13–35, 1998.

[BR17] Yakov Babichenko and Aviad Rubinstein. Communication complexity of approximate
Nash equilibria. In Proceedings of the 49th Symposium on Theory of Computing (STOC),
pages 878–889. ACM, 2017. doi:10.1145/3055399.3055407.

19

http://dx.doi.org/10.1137/S0097539701389944
http://dx.doi.org/10.1006/jcss.1998.1575
http://arxiv.org/abs/1804.02676
http://dx.doi.org/10.1109/SFCS.1986.15
http://dx.doi.org/10.1006/jcss.2000.1726
http://dx.doi.org/10.1007/s004930050058
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.30
http://dx.doi.org/10.1109/CCC.2004.1313795
http://dx.doi.org/10.1137/060654645
http://dx.doi.org/10.1145/3055399.3055407

[Bul17] Andrei Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceedings of the
58th Symposium on Foundations of Computer Science (FOCS), pages 319–330, 2017.
doi:10.1109/FOCS.2017.37.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, 2001. doi:10.1145/375827.375835.

[CFL14] Stephen Cook, Yuval Filmus, and Dai Tri Man Lê. The complexity of the comparator
circuit value problem. ACM Transactions on Computation Theory, 6(4):15:1–15:44, 2014.
doi:10.1145/2635822.

[Cha13] Siu Man Chan. Just a pebble game. In Proceedings of the 28th Conference on Computa-
tional Complexity (CCC), pages 133–143, 2013. doi:10.1109/CCC.2013.22.

[CP14] Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching networks via
fourier analysis. Theory of Computing, 10(15):389–419, 2014. doi:10.4086/toc.2014.v010a015.

[DP11] Constantinos Daskalakis and Christos Papadimitriou. Continuous local search. In
Proceedings of the 22nd Symposium on Discrete Algorithms (SODA), pages 790–804.
SIAM, 2011. URL: http://dl.acm.org/citation.cfm?id=2133036.2133098.

[dRNV16] Susanna de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction
hinders real communication (and what it means for proof and circuit complexity). In
Proceedings of the 57th Symposium on Foundations of Computer Science (FOCS), pages
295–304. IEEE, 2016. doi:10.1109/FOCS.2016.40.

[FGMS18] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. End of potential line.
Technical report, arXiv, 2018. arXiv:1804.03450.

[FV98] Tomás Feder and Moshe Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM Journal
on Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

[Gál01] Anna Gál. A characterization of span program size and improved lower bounds for
monotone span programs. Computational Complexity, 10(4):277–296, 2001. doi:10.1007/
s000370100001.

[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. In Proceedings of the 50th Symposium on Theory of Computing
(STOC), pages 902–911. ACM, 2018. doi:10.1145/3188745.3188838.

[GP14] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.
In Proceedings of the 46th Symposium on Theory of Computing (STOC), pages 847–856.
ACM, 2014. doi:10.1145/2591796.2591838.

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs.
partition number. In Proceedings of the 56th Symposium on Foundations of Computer
Science (FOCS), pages 1077–1088. IEEE, 2015. doi:10.1109/FOCS.2015.70.

[GPW16] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication
complexity classes. In Proceedings of the 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), pages 86:1–86:15. Schloss Dagstuhl, 2016. doi:
10.4230/LIPIcs.ICALP.2016.86.

20

http://dx.doi.org/10.1109/FOCS.2017.37
http://dx.doi.org/10.1145/375827.375835
http://dx.doi.org/10.1145/2635822
http://dx.doi.org/10.1109/CCC.2013.22
http://dx.doi.org/10.4086/toc.2014.v010a015
http://dl.acm.org/citation.cfm?id=2133036.2133098
http://dx.doi.org/10.1109/FOCS.2016.40
http://arxiv.org/abs/1804.03450
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1007/s000370100001
http://dx.doi.org/10.1007/s000370100001
http://dx.doi.org/10.1145/3188745.3188838
http://dx.doi.org/10.1145/2591796.2591838
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86

[GR18] Mika Göös and Aviad Rubinstein. Near-optimal communication lower bounds for
approximate Nash equilibria. In Proceedings of the 59th Symposium on Foundations of
Computer Science (FOCS), 2018. To appear. arXiv:1805.06387.

[GS92] Michelangelo Grigni and Michael Sipser. Monotone complexity. In Proceedings of the
London Mathematical Society Symposium on Boolean Function Complexity, pages 57–75.
Cambridge University Press, 1992. URL: http://dl.acm.org/citation.cfm?id=167687.167706.

[GS18] Anat Ganor and Karthik C. S. Communication complexity of correlated equilibrium with
small support. In Proceedings of the 22nd International Conference on Randomization
and Computation (RANDOM), volume 116, pages 12:1–12:16. Schloss Dagstuhl, 2018.
doi:10.4230/LIPIcs.APPROX-RANDOM.2018.12.

[HG18] Alexandros Hollender and Paul Goldberg. The complexity of multi-source variants of the
End-of-Line problem, and the concise mutilated chessboard. Technical report, Electronic
Colloquium on Computational Complexity (ECCC), 2018. URL: https://eccc.weizmann.ac.
il/report/2018/120/.

[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying
communication complexity hardness to time–space trade-offs in proof complexity. In
Proceedings of the 44th Symposium on Theory of Computing (STOC), pages 233–248.
ACM, 2012. doi:10.1145/2213977.2214000.

[HR90] Bernd Halstenberg and Rüdiger Reischuk. Relations between communication complexity
classes. Journal of Computer and System Sciences, 41(3):402–429, 1990. doi:10.1016/
0022-0000(90)90027-I.

[HY17] Pavel Hubáček and Eylon Yogev. Hardness of continuous local search: Query complexity
and cryptographic lower bounds. In Proceedings of the 28th Symposium on Discrete
Algorithms (SODA), pages 1352–1371, 2017. doi:10.1137/1.9781611974782.88.

[IPU94] Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower bounds
for tree-like cutting planes proofs. In Proceedings of the 9th Symposium on Logic in
Computer Science (LICS), pages 220–228. IEEE, 1994. doi:10.1109/LICS.1994.316069.

[JPY88] David Johnson, Christos Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/
0022-0000(88)90046-3.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of
Algorithms and Combinatorics. Springer, 2012.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

[KW88] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In Proceedings of the 20th Symposium on Theory of Computing
(STOC), pages 539–550. ACM, 1988. doi:10.1145/62212.62265.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the 8th
Structure in Complexity Theory Conference, pages 102–111, 1993. doi:10.1109/SCT.1993.
336536.

21

http://arxiv.org/abs/1805.06387
http://dl.acm.org/citation.cfm?id=167687.167706
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.12
https://eccc.weizmann.ac.il/report/2018/120/
https://eccc.weizmann.ac.il/report/2018/120/
http://dx.doi.org/10.1145/2213977.2214000
http://dx.doi.org/10.1016/0022-0000(90)90027-I
http://dx.doi.org/10.1016/0022-0000(90)90027-I
http://dx.doi.org/10.1137/1.9781611974782.88
http://dx.doi.org/10.1109/LICS.1994.316069
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1145/62212.62265
http://dx.doi.org/10.1109/SCT.1993.336536
http://dx.doi.org/10.1109/SCT.1993.336536

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In Proceedings
of the 2nd Conference on Fundamentals of Computation Theory (FCT), pages 565–574,
1979.

[Mor05] Tsuyoshi Morioka. Logical Approaches to the Complexity of Search Problems: Proof
Complexity, Quantified Propositional Calculus, and Bounded Arithmetic. PhD thesis,
University of Toronto, 2005.

[MP91] Nimrod Megiddo and Christos Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–324, 1991.
doi:10.1016/0304-3975(91)90200-L.

[MS92] Ernst Mayr and Ashok Subramanian. The complexity of circuit value and network
stability. Journal of Computer and System Sciences, 44(2):302–323, 1992. doi:10.1016/
0022-0000(92)90024-D.

[Mul87] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. Combinatorica, 7(1):101–104, 1987. doi:10.1007/BF02579205.

[Oli15] Igor Oliveira. Unconditional Lower Bounds in Complexity Theory. PhD thesis, Columbia
University, 2015. doi:10.7916/D8ZP45KT.

[Pap94] Christos Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.
doi:10.1016/S0022-0000(05)80063-7.

[Pot17] Aaron Potechin. Bounds on monotone switching networks for directed connectivity.
Journal of the ACM, 64(4):29:1–29:48, 2017. doi:10.1145/3080520.

[PR17] Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for monotone
computation. In Proceedings of the 49th Symposium on Theory of Computing (STOC),
pages 1246–1255. ACM, 2017. doi:10.1145/3055399.3055478.

[PR18] Toniann Pitassi and Robert Robere. Lifting Nullstellensatz to monotone span programs
over any field. In Proceedings of the 50th Symposium on Theory of Computing (STOC),
pages 1207–1219. ACM, 2018. doi:10.1145/3188745.3188914.

[PS98] Pavel Pudlák and Jiří Sgall. Algebraic models of computation and interpolation for
algebraic proof systems. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 39:279–295, 1998. doi:10.1090/dimacs/039.

[Pud10] Pavel Pudlák. On extracting computations from propositional proofs (a survey). In
Proceedings of the 30th Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), volume 8, pages 30–41. Schloss Dagstuhl, 2010. doi:10.4230/LIPIcs.
FSTTCS.2010.30.

[Raz85a] Alexander Razborov. Lower bounds on monotone complexity of the logical permanent.
Mathematical notes of the Academy of Sciences of the USSR, 37(6):485–493, 1985.
doi:10.1007/BF01157687.

[Raz85b] Alexander Razborov. Lower bounds on the monotone complexity of some Boolean
functions. Doklady Akademii Nauk USSR, 285:798–801, 1985.

22

http://dx.doi.org/10.1016/0304-3975(91)90200-L
http://dx.doi.org/10.1016/0022-0000(92)90024-D
http://dx.doi.org/10.1016/0022-0000(92)90024-D
http://dx.doi.org/10.1007/BF02579205
http://dx.doi.org/10.7916/D8ZP45KT
http://dx.doi.org/10.1016/S0022-0000(05)80063-7
http://dx.doi.org/10.1145/3080520
http://dx.doi.org/10.1145/3055399.3055478
http://dx.doi.org/10.1145/3188745.3188914
http://dx.doi.org/10.1090/dimacs/039
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.1007/BF01157687

[Raz95] Alexander Razborov. Unprovability of lower bounds on circuit size in certain fragments
of bounded arithmetic. Izvestiya of the RAN, pages 201–224, 1995.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, 1999. doi:10.1007/s004930050062.

[Rou18] Tim Roughgarden. Complexity theory, game theory, and economics. Technical report,
arXiv, 2018. arXiv:1801.00734.

[RPRC16] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen Cook. Exponential
lower bounds for monotone span programs. In Proceedings of the 57th Symposium on
Foundations of Computer Science (FOCS), pages 406–415. IEEE, 2016. doi:10.1109/FOCS.
2016.51.

[RW16] Tim Roughgarden and Omri Weinstein. On the communication complexity of approximate
fixed points. In Proceedings of the 57th Symposium on Foundations of Computer Science
(FOCS), pages 229–238. IEEE, 2016. doi:10.1109/FOCS.2016.32.

[Sch78] Thomas Schaefer. The complexity of satisfiability problems. In Proceedings of the
10th Symposium on Theory of Computing (STOC), pages 216–226. ACM, 1978. doi:
10.1145/800133.804350.

[Sok17] Dmitry Sokolov. Dag-like communication and its applications. In Proceedings of the
12th Computer Science Symposium in Russia (CSR), pages 294–307. Springer, 2017.
doi:10.1007/978-3-319-58747-9_26.

[Tar88] Éva Tardos. The gap between monotone and non-monotone circuit complexity is
exponential. Combinatorica, 8(1):141–142, 1988. doi:10.1007/BF02122563.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,
1987. doi:10.1145/7531.8928.

[Zhu17] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Proceedings of the 58th
Symposium on Foundations of Computer Science (FOCS), pages 331–342, 2017. doi:
10.1109/FOCS.2017.38.

23
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://dx.doi.org/10.1007/s004930050062
http://arxiv.org/abs/1801.00734
http://dx.doi.org/10.1109/FOCS.2016.51
http://dx.doi.org/10.1109/FOCS.2016.51
http://dx.doi.org/10.1109/FOCS.2016.32
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1007/978-3-319-58747-9_26
http://dx.doi.org/10.1007/BF02122563
http://dx.doi.org/10.1145/7531.8928
http://dx.doi.org/10.1109/FOCS.2017.38
http://dx.doi.org/10.1109/FOCS.2017.38

