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Abstract

In a Nisan-Wigderson design polynomial (in short, a design polynomial), the gcd of every
pair of monomials has a low degree. A useful example of such a polynomial, introduced in
[KSS14], is the following:

NWd,k(x) = ∑
h∈Fd [z], deg(h)≤k

d−1

∏
i=0

xi,h(i),

where d is a prime, Fd is the finite field with d elements, and k � d. The degree of the gcd
of every pair of monomials in NWd,k is at most k. For concreteness, let us fix k = d

√
de. The

family of polynomials NW := {NWd,k : d is a prime} and close variants of it have been used
as hard explicit polynomial families in several recent arithmetic circuit lower bound proofs.
But, unlike the permanent, very little is known about the various complexity and structural
aspects of NW beyond the fact that NW ∈ VNP. Is NW VNP-complete? Is NWd,k character-
ized by its symmetries? Is it circuit-testable, i.e., given a circuit C can we check efficiently if C
computes NWd,k? Characterization of polynomials by their symmetries plays a central role in
the geometric complexity theory program. Here, we answer the last two questions.

We show that NWd,k is characterized by its group of symmetries over C. We also show
that NWd,k is characterized by circuit identities which implies that NWd,k is circuit-testable in
randomized polynomial time. As another implication, we obtain the “flip theorem” for NW :
Suppose NWd,k is not computable by circuits of size s. Then, there exist poly(s) many points
a1, . . . , am such that for every circuit C of size s, there is an ` ∈ [m] satisfying C(a`) 6= NWd,k(a`).
These points can be computed deterministically in poly(s) time if black-box polynomial iden-
tity testing for size-s circuits can be derandomized in poly(s) time. It is well-known that the
permanent polynomial has the above-mentioned features.

We also show a structural similarity between the group of symmetries of the permanent
and that of NWd,k: If A is in the group of symmetries of NWd,k then A = D · P, where D and
P are diagonal and permutation matrices respectively. This is proved by completely character-
izing the Lie algebra of NWd,k, and using an interplay between the Hessian of NWd,k and the
evaluation dimension.
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1 Introduction

Proving super-polynomial lower bounds for Boolean and arithmetic circuits computing explicit
functions is the holy grail of circuit complexity. Over the past few decades, research on lower
bounds has gradually pushed the frontier by bringing in novel methods in the arena and carefully
building upon the older ones. Some of the notable achievements are – lower bounds for AC0 cir-
cuits [FSS81, Ajt83, Hås86], monotone circuits [Raz85, AB87], ACC(p) circuits [Raz87, Smo87] and
ACC circuits [Wil14, MW18] in the Boolean case, and lower bounds for homogeneous depth three
circuits [NW97], multilinear formulas [Raz09, RY09], homogeneous depth four circuits [GKKS14,
KLSS17, KS17b] and the lower bound on the depth of circuits for MaxFlow [Mul99] in the arith-
metic case. The slow progress in circuit lower bounds is explained by a few “barrier” type results,
particularly by the notion of natural proofs [RR97] for Boolean circuits, and the notion of alge-
braically natural proofs [FSV17, GKSS17] for arithmetic circuits 1. Most lower bound proofs, but
not all 2, do fit in the natural proof framework.

It is apparent from the concept of natural proofs and its algebraic version that in order to avoid
this barrier, we need to develop an approach that violates the so called constructivity criterion
or the largeness criterion. Focusing on the latter criterion, it means, if an explicit function has a
special property that random functions do not have, and if a lower bound proof for circuits com-
puting this explicit function uses this special property critically, then such a proof circumvents
the natural proof barrier automatically. For polynomial functions (simply polynomials), character-
ization by symmetries is such a special property3, and the geometric complexity theory (GCT) pro-
gram [MS01] is an approach to proving super-polynomial arithmetic circuit lower bound by cru-
cially exploiting this property of the permanent and the determinant polynomials. From hereon,
our discussion will be restricted to polynomial functions and arithmetic circuits.

The permanent family is complete for the class VNP and the determinant family is complete for
the class VQP under p-projections. Class VQP ⊆ VP consists of polynomial families that are com-
putable by poly-size algebraic branching programs; this class has another interesting complete
family, namely the iterated matrix multiplication (IMM) family. These three polynomial families
have appeared in quite a few lower bound proofs [NW97, GK98, MR04, Raz09, RY09, GKKS14,
FLMS15, KS17b, KST16b, CLS18] in the arithmetic circuit literature. That permanent and determi-
nant are characterized by their respective groups of symmetries are classical results [MM62,Fro97].
It has also been shown that IMM is characterized by its symmetries [Ges16, KNST17]. There are
two other polynomial families in VP, the power symmetric polynomials and the sum-product
polynomials, that are known to possess this rare property (see Section 2 in [CKW11]). However,
the elementary symmetric polynomial is not characterized by its symmetries [Hüt16].

In the recent years, another polynomial, namely the Nisan-Wigderson design polynomial (in

1Presently, the evidences in favor of existence of one-way functions (which implies the natural proof barrier) are
much stronger than that of existence of succinct hitting-set generators (which implies the algebraically natural proof
barrier). However, there are a few results in algebraic complexity that exhibit, unconditionally [EGdOW18] or based on
more plausible complexity theoretic assumptions [BIJL18], the limitations of some of the current techniques in proving
lower bounds for certain restricted arithmetic models.

2like the lower bounds for monotone and ACC circuits
3A random polynomial is not characterized by its symmetries with high probability (see Proposition 3.4.9 in [Gro12])
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short, design polynomial), and close variants of it have been used intensely as hard explicit
polynomials in several lower bound proofs for depth three, depth four and depth five circuits
[KSS14,CM14,KS14a,KS14b,KLSS17,KS17b,KS16a,KS16c,KS16b,KST16a,FKS16,KS17a]. In some
cases, the design polynomial (Definition 2.2) yielded lower bounds that are not known yet for the
permanent, determinant and IMM (as in [KS16a,KS16b,FKS16,KS17a]). It can be easily shown that
the design polynomial defines a family in VNP (see Observation A.1). But, very little is otherwise
known about the various complexity and structural aspects of this family. Like the permanent,
is it VNP-complete? Is it characterized by its symmetries? Is it circuit testable? It is reasonable
to seek answers to these fundamental questions for a natural family like the design polynomials.
Moreover, in the light of some recent developments in GCT [IP16,BIP16,IMW17], it may be worth
studying other polynomial families (like the design polynomials and the IMM) that have some of
the “nice features” of the permanent and the determinant and that may also fit in the GCT frame-
work. We refer the reader to [Gro12, Aar17, Mul12, Reg02] for an overview of GCT. If the design
polynomial family turns out to be in VP then that would be an interesting result by itself with
potentially important complexity theoretic and algorithmic consequences.

In this article, we answer some of the questions on the design polynomial pertaining to its group
of symmetries. Our results accord a fundamental status to this polynomial family.

1.1 Our results

Some of the basic definitions and notations are given in Section 2. The design polynomial NWd,k
is defined (in Definition 2.2) using two parameters, d (the degree) and k (the “intersection” pa-
rameter). Our results hold for any k ∈ [1, d

2 − 2], but (from the lower bound point of view) it is
best to think of k as dε for some arbitrarily chosen constant ε ∈ (0, 1). The number of variables in
NWd,k is n = d2. Any polynomial can be expressed as an affine projection of NWd,k, for a possibly
large d (see Observation A.2). For notational convenience, we will drop the subscripts d and k
whenever they are clear from the context. Let G f be the group of symmetries of a polynomial f
over an underlying field F (see Definition 2.6).

Theorem 1 (Characterization by symmetries). Let F = C be the underlying field and f be a homoge-
neous degree-d polynomial in n = d2 variables. If GNW ⊆ G f then f = α ·NW for some α ∈ C.

The theorem, proven in Section 3, holds over any field F that has a d-th root of unity ζ 6= 1 and
|F| 6= d + 1. We do not know if NW is characterized by its symmetries over R or Q (more on
this later). The symmetries of NW have a nice algorithmic application: Although, it is not known
if NW is computable by a poly(d) size circuit (which is defined in Definition 2.1), the following
theorem shows that checking if a given circuit computes NW can be done efficiently. In this article,
whenever we mention size-s circuit, we mean size-s circuit with degree bounded by δ(s), which
is an arbitrarily fixed polynomial function4 of s. Let x be the set of n variables of NW. We will
identify a circuit with the polynomial computed by it.

Theorem 2 (Circuit testability). There is a randomized algorithm that takes input black-box access to a
circuit C(x) of size s over a finite field F, where |F| ≥ 4 · δ(s), and determines correctly whether or not
C(x) = NW with probability 1− exp(−s), using poly(s) field operations.

4This is the interesting scenario in algebraic complexity theory as polynomial families in VP admit circuits with
degree bounded by a polynomial function of size.
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A suitable version of the theorem also holds over Q, R and C. Such a theorem is known for the
permanent with two different proofs, one using self-reducibility of the permanent [Lip89] and
the other using its symmetries [Mul10]. We do not know if NW has a self-reducible property like
the permanent, but its symmetries are powerful enough to imply the above result. The theorem
is proven in Section 4 by showing that NW is characterized by circuit identities over any field
(see Definition 2.10). This characterization, which uses the symmetries of NW, also implies the
following result. For this result, we can assume δ(s) ≥ d, without any loss of generality.

Theorem 3 (Flip theorem). Suppose NW is not computable by circuits of size s over a finite field F, where
|F| ≥ 4 · δ(s). Then, there exist points a1, . . . , am ∈ Fn, where m = poly(s), such that for every circuit C
over F of size at most s, there is an ` ∈ [m] satisfying C(a`) 6= NW(a`). A set of randomly generated points
a1, . . . , am ∈r Fn has this property with probability 1− exp(−s). Moreover, black-box derandomization
of polynomial identity testing for size-(10s) circuits over F using poly(s) field operations implies that the
above-mentioned points can be computed deterministically using poly(s) field operations.

An appropriate version of the theorem also holds over Q, R and C. The flip theorem is known
for the permanent [Mul10, Mul11] 5. Similar theorems have also been shown for the 3SAT prob-
lem [FPS08, Ats06]. Results of this kind show that if a certain function (3SAT or permanent or
NW) is not computable by small circuits then there exists a short list of efficiently computable
“hard instances” that fail all small circuits. Finally, we show a structural similarity between the
symmetries of permanent and NW.

Theorem 4 (Structure of GNW). Let F be the underlying field of size greater than (d
2) and char(F) 6= d.

If A ∈ GNW then A = D · P, where D, P ∈ GNW are diagonal and permutation matrices respectively.

The group of symmetries of the permanent has a similar structure [MM62]. The proof of the above
theorem is more technical than the other proofs and is given in Section 5. It involves a complete
characterization of the Lie algebra of NW, and an interplay between the Hessian of NW and the
evaluation dimension measure. Finally, in Section 6, we analyze the diagonal and permutation
symmetries of NW. Our analysis along with the above structure of GNW seem to indicate that NW
is not characterized by its symmetries over R.

2 Preliminaries

Notations. The set of natural numbers is N = {0, 1, 2 . . .} and N× = N\{0}. For r ∈ N×,
[r] = {0, . . . , r − 1}. The general linear group GLr(F) is the group of all r × r invertible matrices
over F. Throughout this article, poly(r) means rO(1) and exp(r) means 2r. For a prime d, Fd is the
finite field of order d whose elements are naturally identified with [d] = {0, 1, . . . , d− 1}. Let x be
the following disjoint union of variables,

x :=
⊎

i∈[d]
xi, (1)

where xi := {xi,0, . . . , xi,d−1}. The total number of variables in x is n = d2. F[x] and Fd[z] denote the
rings of multivariate and univariate polynomials over F and Fd in x and z variables respectively,

5We have borrowed the name ‘flip theorem’ from these work.
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and the set Fd[z]k := {h ∈ Fd[z] : deg(h) ≤ k}. We will represent elements of F by lower case
Greek alphabets (α, β, ...), elements of Fd by lower case Roman alphabets (a, b, ...), multivariate
polynomials over F by f , g and q, univariate polynomials over Fd by p and h, matrices over F by
capital letters (A, B, C, ...), and the set of variables by x, y, z and vectors over F by a, b. Variable
sets are interpreted as column vectors when left multiplied to a matrix. For instance, in A · x, x is
the vector (x0,0 x0,1 . . . x0,d−1 . . . xd−1,0 xd−1,1 . . . xd−1,d−1)

T, and we say A is applied on x.

2.1 Algebraic preliminaries

A polynomial f is homogeneous if the degree of all the monomials of f are the same. Polynomial
f ∈ F[x] is set-multilinear in the sets x0, . . . , xd−1 (as defined in Equation (1)) if every monomial
contains exactly one variable from each set xi for i ∈ [d].

Definition 2.1 (Arithmetic circuit). An arithmetic circuit C over F is a directed acyclic graph in
which a node with in-degree zero is labelled with either a variable or a F-element, an edge is
labelled with a F-element, and other nodes are labelled with + and ×. Computation proceeds in
a natural way: a node with in-degree zero computes its label, an edge scales a polynomial by its
label, and a node labelled with +/× computes the sum/product of the polynomials computed
at the end of the edges entering the node. The polynomials computed by nodes with out-degree
zero are the output of C. The size of C is the sum of the number of nodes and edges in the graph.
The degree of C is the maximum over the degree of the polynomials computed at all nodes of C.

Definition 2.2 (Nisan-Wigderson polynomial). Let d > 2 be a prime and k ∈ N. The Nisan-
Wigderson design polynomial is defined as in [KSS14] (which is inspired by the Nisan-Wigderson
set-systems [NW94]),

NWd,k(x) := ∑
h∈Fd[z]k

∏
i∈Fd

xi,h(i).

It is a degree-d homogeneous and set-multilinear polynomial in n = d2 variables, having dk+1

monomials. We drop the subscripts d, k for notational convenience. NW satisfies the ‘low inter-
section’ property, meaning any two monomials of NW have at most k variables in common. This
follows from the fact that the monomials are obtained from polynomials in Fd[z]k.

Definition 2.3 (Block-permuted matrix). A matrix A ∈ Fd2×d2
is a block-permuted matrix with

block size d if A = B · (P ⊗ Id), where B ∈ Fd2×d2
is a block-diagonal matrix with block size d,

P ∈ Fd×d is a permutation matrix, and Id is the d× d identity matrix.

Definition 2.4 (Evaluation dimension). Let f ∈ F[y] and z ⊆ y. The evaluation dimension of f
with respect to z is,

evalDimz( f ) := dim( F-span { f (y)|z=a : a ∈ F|z|} ).

Definition 2.5 (Hessian). Let f ∈ F[y] be a polynomial in y = {y1, y2, . . . , yn} variables. The
Hessian of f is the following matrix in (F[y])n×n,

H f (y) :=
( ∂2 f

∂yi · ∂yj

)
i,j∈[n]

.

We would need the following property of H f (y) that can be proved using chain-rule of derivatives.
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Lemma 2.1 (Lemma 2.6 of [CKW11]). Let g ∈ F[y] and f = g(A · y) for some A ∈ Fn×n. Then,

H f (y) = AT · Hg(A · y) · A.

Definition 2.6 (Group of symmetries). Let f ∈ F[y] be an n-variate polynomial. The set G f =
{A ∈ GLn(F) : f (A · y) = f (y)} forms a group under matrix multiplication and it is called the
group of symmetries of f over F.

Definition 2.7 (Lie algebra). Let f ∈ F[y] be a polynomial in y = {y1, y2, . . . , yn} variables. The
Lie algebra of f , denoted by g f , is the set of matrices B = (bi,j)i,j∈[n] ∈ Fn×n satisfying the relation,

∑
i,j∈[n]

bi,j · yj ·
∂ f
∂yi

= 0.

It is easy to check that g f is a vector space over F. The following property relates the Lie algebras
of f (y) and f (A · y) for A ∈ GLn(F). See Proposition 58 of [Kay12] for a proof of this fact.

Lemma 2.2 (Conjugacy of Lie algebras). Let g ∈ F[y] be an n-variate polynomial. If f (y) = g(A · y)
for A ∈ GLn(F), then g f = A−1 · gg · A.

Over C, the Lie algebra g f is related to the group of symmetries G f as stated in the following
definition. For B ∈ Cn×n, let eB := ∑i∈N

Bi

i! ∈ Cn×n (the series always converges).

Definition 2.8 (Continuous and discrete symmetries). Let f ∈ C[y]. If A ∈ g f then etA ∈ G f for
every t ∈ R (see [Hal15] for a proof of this fact). Elements of the set {etA : A ∈ g f and t ∈ R} are
the continuous symmetries of f . All the other symmetries in G f are the discrete symmetries of f .

Definition 2.9 (Characterization by symmetries). A homogeneous degree-d polynomial g ∈ F[y]
is said to be characterized by its symmetries if for every degree-d homogeneous polynomial f ∈ F[y],
Gg ⊆ G f implies that f (y) = α · g(y) for some α ∈ F.

Definition 2.10 (Characterization by circuit identities). Let g ∈ F[y] be an n-variate polynomial,
and z, u be two sets of constantly many variables and |z| = c. Suppose that there exist m = poly(n)
polynomials q1(z, u), . . . , qm(z, u) over F such that for every i ∈ [m], qi is computable by a constant
size circuit and there are matrices Ai1, . . . , Aic ∈ F[u]n×n computable by poly(n) size circuits, and
the following condition is satisfied: For f ∈ F[y], qi( f (Ai1 · y), . . . , f (Aic · y), u) = 0 for every
i ∈ [m] if and only if f = α · g for some α ∈ F. Then, g is characterized by circuit identities over F.

The above definition is taken (after slight modifications to suit our purpose) from Definition 3.4.7
in [Gro12] and is attributed to an article by Mulmuley [Mul07].

3 Symmetry characterization of the NW polynomial

Let F be a field having a d-th root of unity ζ 6= 1 and |F| 6= d + 1.6 As d is a prime, ζ is primitive,
i.e., ζd = 1 and ζt 6= 1 for 0 < t < d. For a polynomial p ∈ Fd[z], mp would refer to the monomial
∏i∈[d] xi,p(i). The rows and columns of a matrix in GNW are indexed by the set {(i, j) : i, j ∈ Fd}.

6For a prime d, |F| = d + 1 if and only if d is a Mersenne prime.
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Claim 3.1. The following matrices in Fn×n are in GNW:

1. Aβ, a diagonal matrix with ((i, j), (i, j))-th entry as βi ∈ F× for i, j ∈ [d], such that ∏i∈[d] βi = 1.

2. A`, a diagonal matrix with ((i, j), (i, j))-th entry as ζ i`·j for i, j ∈ [d], where ` ∈ [d− k− 1]. 7

3. Ah, where h ∈ Fd[z]k, the ((i, j), (i, j + h(i)))-th entry of Ah is 1 for i, j ∈ [d] and other entries are
0.

Proof. By definition, Aβ, A` ∈ GLn(F). Also, Ah ∈ GLn(F) as it is a permutation matrix. Ob-
serve that the polynomials NW(Aβ · x),NW(A` · x) and NW(Ah · x) are obtained from NW(x) by
replacing the variable xi,j with βi · xi,j, ζ i`·j · xi,j and xi,j+h(i) respectively, for i, j ∈ [d]. When Aβ

is applied on x, a monomial mp gets mapped to ∏i∈[d] βi · mp = mp as ∏i∈[d] βi = 1, implying
NW(Aβ · x) = NW. When Ah is applied on x, a monomial mp gets mapped to mp+h; in other
words, the monomials of NW are ’shifted around’ and so NW(Ah · x) = NW. When A` is applied
on x, a monomial mp is mapped to ∏i∈[d] ζ i`·p(i) · mp. We show below that ∏i∈[d] ζ i`·p(i) = 1 for
every ` ∈ [d− k− 1], thereby implying NW(A` · x) = NW.

Observation 3.1. For every p ∈ Fd[x]k and ` ∈ [d− k− 1], ∏i∈[d] ζ i`·p(i) = 1.

Proof. As ζ 6= 1 is a d-th root of unity, ∏i∈[d] ζ i`·p(i) = ζ∑i∈Fd
i`·p(i) and so it is sufficient to show that

∑i∈Fd
i` · p(i) = 0. Suppose p(z) = arzr + · · ·+ a0, where r ≤ k and ar, . . . , a0 ∈ Fd. Then

∑
i∈Fd

i` · p(i) = ar

(
∑

i∈Fd

ir+`

)
+ · · ·+ a0

(
∑

i∈Fd

i`
)

.

Each summand in the RHS of the above equation is of the form a ·
(
∑i∈Fd

is), where 0 ≤ s ≤ d− 2.
As ∑i∈Fd

i0 = 0, assume that 1 ≤ s ≤ d− 2. Let b be a generator of F×d . Then

∑
i∈Fd

is = ∑
i∈F×d

is = ∑
t∈[d−1]

bt·s =
1− b(d−1)·s

1− bs = 0, as bd−1 = 1 in Fd. (2)

Hence, ∑i∈Fd
i` · p(i) = 0 implying ∏i∈[d] ζ i`·p(i) = 1.

Thus, Aβ, A` and Ah belong to GNW over F.

3.1 Proof of Theorem 1

Claim 3.2. Let f be a homogeneous degree-d polynomial in F[x]. If G f contains the matrices Aβ, A` and
Ah (for all choices of β, ` and h, as mentioned in Claim 3.1) then f = α ·NW for some α ∈ F.

Proof. Let f 6= 0, otherwise we have nothing to prove. The presence of Aβ in G f implies that f
is a set-multilinear polynomial with respect to the partition

⊎
i∈[d] xi. If not then there is a term

α · m in f , where α ∈ F× and m is a degree-d monomial with no xt-variables for some t ∈ [d].
Pick a γ ∈ F× such that γd 6= 1 8. Now, set βi = γ for i ∈ [d]\{t} and βt = γ−(d−1) so that

7Recall, [d− k− 1] = {0, 1, . . . , d− k− 2}
8As |F| 6= d + 1, such a γ always exists.
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∏i∈[d] βi = 1 is satisfied. When Aβ is applied on x, the term α ·m maps to αγd ·m 6= α ·m, imply-
ing that f (Aβ · x) 6= f (x).

As f is set-multilinear, every term of f is of the kind αp · mp, where αp ∈ F× and p ∈ Fd[z] with
deg(p) ≤ d − 1. This is because any function from Fd to Fd can be represented by a univariate
polynomial of degree at most d − 1. We now show that deg(p) ≤ k for every term αp · mp in
f . Suppose not. Then, there is a term αp · mp such that p = arzr + · · · + a0, r > k and ar 6= 0.
When A` is applied on x, the term αp · mp gets mapped to ∏i∈[d] ζ i`·p(i) · αp · mp. Now choose

` = d− r− 1 ≤ d− k− 2. That ∏i∈[d] ζ i`·p(i) 6= 1 for this choice of ` can be argued as follows: Since

∏i∈[d] ζ i`·p(i) = ζ∑i∈Fd
i`·p(i), it is sufficient to show that ∑i∈Fd

i` · p(i) 6= 0. Expanding the sum,

∑
i∈Fd

i` · p(i) = ar

(
∑

i∈Fd

id−1

)
+ ar−1

(
∑

i∈Fd

id−2

)
+ · · ·+ a0

(
∑

i∈Fd

id−r−1

)
.

As argued in Equation (2), the above sum is ar · (d− 1) 6= 0, implying f (A` · x) 6= f (x). Hence,
every term αp ·mp of f must have deg(p) ≤ k.

When Ah is applied on x, a term αp ·mp maps to αp ·mp+h which implies αp = αp+h. Running over
all h ∈ Fd[z]k, we get αp = α for every p ∈ Fd[z]k, for some α ∈ F×. Hence, f = α ·NW.

4 Circuit testability for the NW polynomial and the flip theorem

In the following lemma, we show that NW is characterized by circuit identities (as defined in
Definition 2.10). The proofs of Theorem 2 and 3 would follow from this characterization.

4.1 Characterization by circuit identitites

Lemma 4.1. Polynomial NW is characterized by circuit identities over any field F.

Proof. Recall, n = |x| = d2. We show that if an n-variate polynomial f ∈ F[x] satisfies the follow-
ing polynomial identities then f = α · NW for some α ∈ F. The rows and columns of the n× n
matrices in the identities below are indexed by the set {(i, j) : i, j ∈ Fd}.

1. q1( f (Ai(u) · x), f (x), u) = 0, for i ∈ [d], where q1(z1, z2, u) := z1 − u · z2. Here, Ai(u) ∈
F[u]n×n is a diagonal matrix with the ((i, j), (i, j))-th entry as u, for every j ∈ [d], and the
other diagonal entries as 1.

2. q2( f (Aa,r · x), f (x)) = 0, for a ∈ F×d and r ∈ [k + 1], where q2(z1, z2) := z1 − z2. Here,
Aa,r ∈ Fn×n with the ((i, j), (i, j + a · ir))-th entry as 1, for every i, j ∈ Fd, and the other
entries as 0.

3. q3( f (At · x)) = 0, for t ∈ [d]\[k + 1], where q3(z) := z. Here, At ∈ Fn×n is a diagonal matrix
with the ((t, 0), (t, 0))-th and the ((i, j), (i, j))-th entries as 0, for every i ∈ [k + 1], j ∈ [d]\{0},
and the remaining diagonal entries as 1.

8



Observe that there are poly(n) many identities above: d many under item 1, (d− 1)(k + 1) many
under item 2, and (d − k − 1) many under item 3. Also, it is clear that every qi is computable
by a constant size circuit, and the matrices Ai(u), Aa,r and At are computable by poly(n) size
circuits. The identities under item 1 imply that f is a set-multilinear, homogeneous, degree-d
polynomial. If not then f contains a term β ·m, where the degree of the xi-variables in m is e 6= 1
for some i ∈ [d]. On applying Ai(u) to x, the term β ·m gets mapped to ueβ ·m 6= uβ ·m, implying
f (Ai(u) · x) 6= u · f (x), i.e., q1( f (Ai(u) · x), f (x), u) 6= 0.

As f is set-multilinear and homogeneous, every term of f looks like αp ·mp, where αp ∈ F× and
mp = ∏i∈Fd

xi,p(i) for some p ∈ Fd[z] with deg(p) ≤ d− 1. When Aa,r is applied on x, for some
a ∈ F×d and r ∈ [k + 1], a term αp ·mp maps to αp ·mp+h, where h = azr ∈ Fd[z]k. Since, f satisfies
the identities in item 2, f (Aa,r · x) = f (x) and so αp ·mp+h is also a term in f . By varying a ∈ F×d
and r ∈ [k + 1], we see that f contains the term αp ·mp+h for every h ∈ Fd[z]k. Thus, there is a set
S ⊆ Fd[z]d−1 such that f is of the form,

f = ∑
p∈S

αp · ∑
h∈Fd[z]k

mp+h. (3)

If f 6= α · NW for all α ∈ F, then there is a p ∈ Fd[z] with deg(p) > k such that f contains a
term αp · mp for some αp ∈ F×. Let h be the polynomial in Fd[z]k such that h(i) = −p(i) for all
i ∈ [k + 1]. From Equation (3), f contains the term αp · mp+h. As deg(p) > k, h(z) 6= −p(z).
So, there is a t ∈ [d]\[k + 1] such that p(t) + h(t) 6= 0. On applying At to x, only those terms
of f survive that contain the variables x0,0, . . . , xk,0 but do not contain xt,0, and αp · mp+h is such
a term. Hence, q3( f (At · x)) = f (At · x) 6= 0. This contradicts f satisfying the identities in item
3. Therefore, f = α · NW, for some α ∈ F. On the other hand, any f = α · NW satisfies all the
identities.

4.2 Proof of Theorem 2

Let C be a given circuit of size s over F that computes a n-variate polynomial f = C(x). Naturally,
deg( f ) ≤ δ(s). Algorithm 1 intends to check, in steps 2 and 3, if f satisfies the identities given
in the proof of Lemma 4.1. If f 6= α · NW for all α ∈ F, then at least one of the identities is not
satisfied. Observe that the polynomial q1( f (Ai(u) · x), f (x), u) has degree bounded by 2 · δ(s),
whereas the degrees of q2( f (Aa,r · x), f (x)) and q3( f (At · x)) are at most δ(s). As |F| ≥ 4 · δ(s),
by Schwartz-Zippel lemma [Zip79, Sch80], step 4 returns ‘False’ with probability at least 1

2 . If
f = α · NW for some α ∈ F then all the identities are satisfied, and step 7 ensures that α = 1.
Clearly, the algorithm uses poly(s) field operations. The success probability can be boosted from
1
2 to 1− exp(−s) by repeating the algorithm poly(s) times.

4.3 Proof of Theorem 3

Let C be a circuit of size s over a finite field F. As NW is not computable by size-s circuits over
F (by assumption), C(x)− NW 6= 0. The polynomial C(x)− NW has degree bounded by δ(s), as
δ(s) ≥ d. By Schwartz-Zippel lemma, for any m ∈N,

Pr
a1,...,am∈rFn

[C(a`) = NW(a`), for all ` ∈ [m]] ≤
(

δ(s)
|F|

)m

.
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Algorithm 1 Circuit testing for NW
Input: Black-box access to a circuit C of size s over F.
Output: ‘True’ if C(x) = NW, else ‘False’.

1. Pick a ∈r Fn and µ ∈r F.
2. for i ∈ [d], a ∈ F×d , r ∈ [k + 1], t ∈ [d]\[k + 1] do
3. if (C(Ai(µ) · a)− µ · C(a) 6= 0) or (C(Aa,r · a)− C(a) 6= 0) or (C(At · a) 6= 0) then
4. return ‘False’.
5. end if
6. end for
7. Let b ∈ Fn be an assignment obtained by setting xi0 = 1, for i ∈ [d], and all other variables to

zero. If f (b) 6= 1, return ‘False’. Else, return ‘True’.

The number of size-s circuits over F is at most 2s2+s · |F|s (as there are 2s ways to label the nodes as
+ and × gates, at most 2s2

ways to choose the adjacency matrix of the underlying directed graph,
and |F|s ways to label the edges of a given graph). Therefore,

Pr
a1,...,am∈rFn

[∃ a size-s circuit C such that C(a`) = NW(a`), for all ` ∈ [m]] ≤ |F|s · 2s2+s ·
(

δ(s)
|F|

)m

.

By fixing m = s2 + 2s, the above probability can be upper bounded by exp(−s) as |F| ≥ 4 · δ(s).

Now, let us show that black-box derandomization of identity testing implies that such points
a1, . . . , am can be computed deterministically. Consider the class C of size-(10s) circuits over F on
n+ 1 variables x] u. Assume thatH = {(b0, µ0), . . . , (bw−1, µw−1)} ⊆ Fn+1 is a hitting set9 for the
circuit class C, andH is computable using poly(s) field operations. Let P ⊆ Fn be the set of points
that includes b0, . . . bw−1 along with Ai(µ`) · b`, Aa,r · b` and At · b` for every ` ∈ [w], i ∈ [d], a ∈
F×d , r ∈ [k + 1] and t ∈ [d]\[k + 1]. Finally, P also contains the point b ∈ Fn obtained by setting
xi0 = 1, for i ∈ [d], and all other variables to zero. Observe that |P| = poly(s) as |H| = poly(s).

Claim 4.1. For every size-s circuit C on n inputs, there is a point a in P such that C(a) 6= NW(a).

Proof. As NW is not computable by size-s circuits, f = C(x) 6= α · NW for all α ∈ F× 10. Hence, at
least one of the identities, in the proof of Lemma 4.1, is not satisfied by f unless f = 0. If f = 0
then f (b) 6= NW(b) = 1, and so let f 6= 0. The degrees of the polynomials q1( f (Ai(u) · x), f (x), u),
q2( f (Aa,r · x), f (x)) and q3( f (At · x)) are upper bounded by 2 · δ(s). Also, it can be verified that the
polynomials q1( f (Ai(u) · x), f (x), u), q2( f (Aa,r · x), f (x)) and q3( f (At · x)) are computable by size-
(10s) circuits on n+ 1 variables x] u. Hence,H is a hitting-set for these polynomials. Without loss
of generality, let q1( f (Ai(u) · x), f (x), u) = 0 be an identity that is not satisfied by f . Then, there is
a (b`, µ`) ∈ H such that q1( f (Ai(µ`) · b`), f (b`), µ`) 6= 0 implying f (Ai(µ`) · b`) 6= µ` · f (b`). On
the other hand, NW(Ai(µ`) · b`) = µ` ·NW(b`) as NW satisfies all the identities. Therefore, either
f (Ai(µ`) · b`) 6= NW(Ai(µ`) · b`) or f (b`) 6= NW(b`). This implies the claim as Ai(µ`) · b` and
b` belong to P .

9A set of points H is a hitting-set for a circuit class C if for every circuit C ∈ C computing a non-zero polynomial,
there exists a point b ∈ H such that C(b) 6= 0. Black-box derandomization of identity testing for a circuit class amounts
to constructing a hitting-set for the class.

10If α · NW is computable by a size-s circuit C, for some α ∈ F×, then NW is also computable by a size-s circuit by
appropriately scaling some of the edges feeding into the output gate of C by α−1.
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The proof of the theorem follows from the above claim and by observing that P can be constructed
fromH using poly(s) field operations.

5 Structure of the group of symmetries of NW

The Lie algebra gNW is a useful tool in investigating the symmetries of NW. In this section, we
give a complete description of gNW by giving an explicit F-basis. The rows and columns of a n× n
matrix in gNW and GNW are indexed by the set {(i, j) : i, j ∈ Fd}, which is naturally identified with
the x-variables, where x = (x0,0 x0,1 . . . x0,d−1 . . . xd−1,0 xd−1,1 . . . xd−1,d−1)

T.

5.1 Lie algebra of NW

Lemma 5.1. Let F be a field and char(F) 6= d. The dimension of gNW over F is d− 1, and the diagonal
matrices B1, . . . , B` (defined below) form a F-basis of gNW. For ` ∈ {1, . . . , d− 1},

(B`)(i,j),(i,j) =


1, if i = 0, j ∈ [d]
−1, if i = `, j ∈ [d]

0, otherwise.

The lemma is proven in Section A.2 by carefully analysing a system of linear equations obtained
from the monomials of NW. It follows that every B ∈ gNW is of the form diag(α0, . . . , αd−1)⊗ Id,
where each αi ∈ F and ∑i∈[d] αi = 0. It also follows that the continuous symmetries of NW consist
of matrices of the form A = diag(β0, . . . , βd−1)⊗ Id, where each βi ∈ C and ∏i∈[d] βi = 1.

Corollary 5.1. If |F| > (d
2) then there exists a B = diag(α0, . . . , αd)⊗ Id ∈ gNW such that α0, . . . , αd−1

are distinct elements of F and ∑i∈[d] αi = 0.

Proof. Treat α0, . . . , αd−2 as formal variables and let αd−1 = −(α0 + · · ·+ αd−2). By the Schwartz-
Zippel lemma,

Pr
α0,...,αd−2∈rF

[there exist i, l ∈ [d] such that i 6= l and αi = αl ] ≤
(d

2)

|F| < 1.

Hence, there exists such a B ∈ gNW.

Let A ∈ GNW. For i, l ∈ [d], the (i, l)-th block of A, denoted Ail , is a sub-matrix of A whose rows
are indexed by the set {(i, j) : j ∈ [d]} (called the i-th block of rows) and columns indexed by
{(l, j) : j ∈ [d]} (called the l-th block of columns).

Corollary 5.2. Every A ∈ GNW is a block-permuted matrix with block size d.

Proof. Choose a B ∈ gNW arbitrarily. From Lemma 2.2, there exists a C ∈ gNW such that

A · C = B · A.

From Lemma 5.1, B = diag(α0, . . . , αd−1)⊗ Id and C = diag(γ0, . . . , γd−1)⊗ Id, where ∑i∈[d] αi =

∑i∈[d] γi = 0. The above equation implies, for every i, l ∈ [d],

γl · Ail = αi · Ail ,

where Ail is the (i, l)-th block of A. If A is not block-permuted then for some l ∈ [d], there are
non-zero blocks Ail and Ai′ l such that i 6= i′ (as A is non-singular). For this choice of l, i and i′, the
last equation implies γl = αi = αi′ . This contradicts Corollary 5.1, as B is chosen arbitrarily.
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5.2 Proof of Theorem 4

Let A ∈ GNW. The goal is to show that A = D · P, where D, P ∈ GNW are diagonal and permutation
matrices respectively. As A is block-permuted (by Corollary 5.2), there is a permutation µ on [d]
such that the only non-zero blocks of A are the (i, µ(i))-th blocks for i ∈ [d]. Lemma 2.1 implies,

HNW(x) = AT · HNW(A · x) · A. (4)

The rows and columns of HNW(x) and HNW(A · x) are indexed by the x-variables, and the i-th block
of rows and columns by the xi-variables for i ∈ [d]. We can also view HNW(x) and HNW(A · x) as
block matrices with the (i, l)-th block defined by the i-th block of rows and l-th block of columns.
Let Cil and Bil be the (i, l)-th blocks of HNW(x) and HNW(A · x) respectively. Then

Cil =

(
∂2NW

∂xi,j∂xl,r

)
j,r∈[d]

and Bil =

(
∂2NW

∂xi,j∂xl,r
(A · x)

)
j,r∈[d]

. (5)

Observation 5.1. Let π = µ−1. Then, for every i, l ∈ [d],

(AT
π(i)i)

−1 · Cil · (Aπ(l)l)
−1 = Bπ(i)π(l). (6)

Proof. The only non-zero block among the i-th block of rows in AT is AT
π(i)i, and the only non-

zero block among the l-th block of columns in A is Aπ(l)l . Hence, from Equation (4), we have Cil =

AT
π(i)i · Bπ(i)π(l) · Aπ(l)l . As A is block-permuted and invertible, AT

π(i)i, Aπ(l)l are also invertible.

For contradiction, suppose A is not a product of a diagonal matrix and a permutation matrix. As
A is block-permuted, there is a l ∈ [d] such that Aπ(l)l has a column containing more than one
non-zero entries which implies (Aπ(l)l)

−1 also has a column containing more than one non-zero
entries; let this be the r-th column of (Aπ(l)l)

−1, where r ∈ [d]. We work with this choice of l and r,
and fix i ∈ [d]\{l} arbitrarily, in Equation (6). For j ∈ [d], let gjr and f jr be the (j, r)-th entries of the
matrices in the LHS and RHS of Equation (6) respectively. As gjr = f jr, the evaluation dimensions
of gjr and f jr must be equal with respect to every z ⊆ x. However, the following claim shows that
this is false. Thus, A is a product of a diagonal matrix and a permutation matrix.

Claim 5.1. Let d ≥ 2k+ 4. For every j ∈ [d], there exists z ⊆ x such that evalDimz(gjr) > evalDimz( f jr).

The proof of Claim 5.1 is given in Section A.3. It is a simple exercise to show that if A ∈ GNW and
A = D · P, where D and P are diagonal and permutation matrices respectively, then D, P ∈ GNW.

6 Is NW characterized by its symmetries over R?

The permanent is characterized by its symmetries over reals. It is natural to ask if this is also true
for the NW polynomial. To answer the question, we need a detailed understanding of the diagonal
and permutation symmetries of NW. As mentioned in the last section, the set of continuous sym-
metries of NW consists of diagonal matrices of the form A = diag(β0, . . . , βd−1)⊗ Id, where each
βi ∈ C and ∏i∈[d] βi = 1. We have seen, in Claim 3.1, that NW has discrete diagonal symmetries
over C (obtained from a d-th root of unity) which play a crucial role in its symmetry character-
ization over C. However, we show in the following lemma that NW does not have any discrete
diagonal symmetry over R. The proof of the lemma is given in Appendix A.4.
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Lemma 6.1. If D ∈ GNW is a diagonal matrix with real entries then D is a continuous symmetry of NW.
In other words, D is of the form D = diag(β0, . . . , βd−1)⊗ Id, where each βi ∈ R and ∏i∈[d] βi = 1.

Any set-multilinear polynomial with respect to the partition ]i∈[d]xi has the above kind of di-
agonal symmetries. As the diagonal symmetries of NW over R are not special, we turn to the
permutation symmetries. Could it be that the permutation symmetries of NW imply a symmetry
characterization over R?

Let P ∈ GNW be a permutation matrix, and σ the corresponding permutation on x, i.e. σ(xi,j) =
(P · x)(i, j). As P is block-permuted (by Corollary 5.2), there exist a permutation µ on Fd and a
permutation ψ on Fd[z]k such that for every h ∈ Fd[z]k, σ(xi,h(i)) = xµ(i),ψ(h)(µ(i)). It can be easily
verified that a (µ, ψ) pair (where µ is a permutation on Fd and ψ is a permutation on Fd[z]k) yields
a permutation symmetry of NW via the map σ : xi,h(i) 7→ xµ(i),ψ(h)(µ(i)) if and only if for every i ∈ Fd
and h, p ∈ Fd[z]k, the following is satisfied:

h(i) = p(i) implies ψ(h)(µ(i)) = ψ(p)(µ(i)) and vice versa. (7)

The task now boils down to understanding which (µ, ψ) pairs satisfy the above condition. To-
wards this, we have the following observation, which is easy to prove using Equation (7).

Observation 6.1. Fix a, b ∈ F×d , c ∈ Fd and h0 ∈ Fd[z]k arbitrarily. Let µ(i) = bi + c for all i ∈ Fd
and ψ(h) = a · h( z−c

b ) + h0 for all h ∈ Fd[z]k. Then, µ is a permutation on Fd, ψ is a permutation on
Fd[z]k and the (µ, ψ) pair yields a permutation symmetry of NW via the map σ : xi,h(i) 7→ xµ(i),ψ(h)(µ(i)),
i.e., xi,j 7→ xµ(i),aj+h0(µ(i)) for every i, j ∈ [d].

Are all permutation symmetries of NW obtained from the (µ, ψ) pairs given in the above observa-
tion? We have a partial answer: If there exist b ∈ F×d and c ∈ Fd such that µ(i) = bi + c for all
i ∈ Fd then ψ has to be of the form given in Observation 6.1 for the (µ, ψ) pair to yield a permu-
tation symmetry of NW (we omit the proof of this fact here). If the answer to the question turns
out to be yes unconditionally, then NW is not symmetry characterized over R. For example, the
polynomial NW′d,k := ∑e∈F×d , h∈Fd[z]k ∏i∈Fd

xi, e.ik+1+h(i) also has these permutation symmetries.

7 Few problems

In conclusion, we state a few problems on the NW polynomial which, if resolved, would shed
more light on this fundamental polynomial family.

1. Is the NW = {NWd,k : d is a prime} family VNP-complete for a suitable choice of k (say,
k = dε for a constant ε > 0)?

2. Is there an efficient algorithm to check if NW(a) = 0 for a given point a ∈ {0, 1}n ?

3. Is there an efficient algorithm to do equivalence testing for NW, i.e. given black-box access
to an n-variate polynomial f , check if there exists a A ∈ GLn(F) such that f = NW(A · x) ?

4. Give a complete description of the permutation symmetries of NW. In other words, are all
the permutation symmetries captured in Observation 6.1?

For the permanent polynomial, the answers to the first three questions are known to be positive.
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A Appendix

A.1 Two observations on the design polynomial family

Observation A.1. Let k = k(d) ∈ [d] be an arbitrarily fixed, poly(d)-time computable, function of d.
The design polynomial family NW := {NWd,k : d is a prime} is in VNP.

Proof. Owing to the density of primes, NW is a p-bounded family [Val79] as the number of vari-
ables and the degree of NWd,k are both polynomial functions of d. By Proposition 2.20 of [B0̈0],
a p-bounded family { fi}i∈N is in VNP (i.e. p-definable) if the coefficient computing function for fi
is in #P. The coefficient computing function for fi takes input a monomial in the variables of fi
and outputs the coefficient of the monomial in fi. The coefficient computing function for NWd,k
can be shown to be in P as follows: Given a monomial m, check if it is set-multilinear in the sets
x0, . . . , xd−1. If not, the coefficient of m is 0 in NWd,k. Otherwise, let m = x0,j0 · · · xd−1,jd−1 . Obtain a
polynomial h ∈ Fd[z]d−1 by interpolating the points (0, j0), . . . , (d− 1, jd−1). Compute k from d. If
deg(h) ≤ k then coefficient of m in NWd,k is 1 else it is 0.

Observation A.2. Suppose f ∈ F[y] is a degree-r polynomial having s monomials. Then, for d ≥ s and
d− k ≥ r, f is an affine projection of NWd,k.

Proof. Fix a univariate h ∈ Fd[z]k and set the variables x0,h(0), . . . , xk−1,h(k−1) to 1 and other vari-
ables of x0, . . . , xk−1 to 0. The low-intersection property of NWd,k ensures that under this setting,
exactly d monomials remain in NWd,k. Moreover, these d monomials are pairwise variable disjoint
and each monomial contains d− k variables. As d ≥ s and d− k ≥ r, we can map these d monomi-
als to monomials of f via a simple substitution map from x to y ∪ F. Hence, there is a A ∈ Fn×|y|

and b ∈ Fn such that NWd,k(A · y + b) = f ; in other words, f is an affine projection of NWd,k.

A.2 Proof of Lemma 5.1

Recall that the rows and columns of a matrix in gNW are indexed by the set {(i, j) : i, j ∈ Fd}. By
Definition 2.7, B = (α(i,j),(l,r))i,j,l,r∈[d] ∈ gNW if and only if the following equation is satisfied:

∑
i,j,l,r∈[d]

α(i,j),(l,r) · xl,r · ∂ijNW = 0, where ∂ijNW :=
∂NW

∂xi,j
. (8)

Claim A.1. Every B = (α(i,j),(l,r))i,j,l,r∈[d] ∈ gNW is a diagonal matrix.

Proof. Let i, j, l, r ∈ [d], such that (i, j) 6= (l, r). It follows from the low-intersection property of
NW that the terms xl,r · ∂ijNW and xu,v · ∂stNW in Equation (8) are monomial disjoint for every
s, t, u, v ∈ [d] satisfying (s, t) 6= (i, j) or (u, v) 6= (l, r). Hence, α(i,j),(l,r) = 0 and B is diagonal.

Thus, gNW can be viewed as a subspace of Fn by associating a column vector wB := B · 1 ∈ Fn

with every B ∈ gNW, where 1 is the all-one column vector in Fn. The coordinates of wB are in-
dexed by {(l, r) : l, r ∈ Fd} and wB(l, r) = α(l,r),(l,r) is its (l, r)-th coordinate. Now, we construct a
matrix D ∈ Fn×n using degree-0 and degree-1 polynomials in Fd[z]k, such that gNW (viewed as a
subspace of Fn) is contained in KerF(D), the kernel of D 11. This would help us find dimF(gNW).

11Matrix D would just be a part of the coefficient matrix of the linear system obtained from the equations
∑l∈[d] α(l,h(l)),(l,h(l)) = 0, for all h ∈ Fd[z]k. Here, {α(l,r),(l,r) : l, r ∈ Fd} are the d2 variables of the system.
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Construction of matrix D. The rows of D are indexed by {(a, b) : a, b ∈ Fd}, where (a, b) corre-
sponds to the univariate bz + a ∈ Fd[z]. The columns are indexed by {(l, r) : l, r ∈ Fd}, where
(l, r) corresponds to the variable xl,r (as before). D is a 0/1 matrix. The ((a, b), (l, r))-th entry of D
is 1 if xl,r is present in the monomial ∏i∈Fd

xi,bi+a, else it is 0. Denote the (a, b)-th row of D by Rab.
We record a few easy-to-verify properties of D below:

1. For a, b ∈ [d],Rab contains d many 1.

2. For every a ∈ [d], the rows {Rab : b ∈ [d]} contain 1 in the (0, a)-th column and 0 in the
columns indexed by (0, r) where r 6= a.

3. Let B ∈ gNW and wB(l, r) = α(l,r),(l,r) for l, r ∈ Fd. Then, (D ·wB)(a, b) = ∑l∈[d] α(l,bl+a),(l,bl+a),
which is the coefficient of monomial ∏l∈Fd

xl,bl+a in the LHS of Equation (8). This implies
(D ·wB)(a, b) = 0 for every a, b ∈ [d], and hence, wB ∈ KerF(D).

We argue that the rank of D is at least d2− d+ 1, by showing the F-linear independence of the rows
indexed by {(a, b) : a ∈ [d− 1], b ∈ [d]} and (d− 1, 0). This, along with property 3, would imply
that dimF(gNW) ≤ d− 1. Property 2 implies that it is sufficient to show the F-linear independence
of the d2 − d rows indexed by {(a, b) : a ∈ [d − 1], b ∈ [d]}, as the row indexed by (d − 1, 0)
contains 1 in the column indexed by (0, d− 1) and this column contains 0 in the rows indexed by
{(a, b) : a ∈ [d− 1], b ∈ [d]}.

Claim A.2. The rows {Rab : a ∈ [d− 1], b ∈ [d]} are F-linearly independent, if char(F) 6= d.

Proof. We multiply these rows with formal variables Γ := {γab : a ∈ [d− 1], b ∈ [d]}, and show
that if the following equation holds then each γab = 0. The number of Γ-variables is |Γ| = d2 − d.

∑
a∈[d−1],b∈[d]

γab · Rab = 0.

From the above equation, we get d2 linear equations in the Γ-variables, one for every coordinate
of the rows. Fix a ∈ [d− 1] and b ∈ [d] arbitrarily. From property 1, there are exactly d equations
(one for each l ∈ [d]) containing the variable γab. We can naturally identify these d equations with
l ∈ [d]. The variables γab and γa′b′ are present in the equation corresponding to a l ∈ [d] if and
only if bl + a = b′l + a′ over Fd. Equation (9) corresponds to l = 0 and Equation (10) corresponds
to a l ∈ [d]\{0}.

γa 0 + · · ·+ γa b + · · ·+ γa d−1 = 0, (9)(
∑

a′∈[d−1]\{a}
γa′b′

)
+ γab = 0, where b′ = b +

a− a′

l
. (10)

For a ∈ [d− 1] and b, l ∈ [d], denote the linear forms at the LHS of these equations as ’Equation
(9)a,b’ and ’Equation (10)a,b,l’. A simple counting argument imply the following.

Observation A.3. Let a ∈ [d− 1] and b ∈ [d]. Consider the d linear forms, Equation (9)a,b and Equation
(10)a,b,l for l ∈ [d]\{0}. Every pair of these d linear forms has γab as the only common Γ-variable. Further,
these d linear forms together contain all the Γ-variables except the variables in {γa′b : a′ ∈ [d− 1] \ {a}}.

The next two observations will help us conclude that γab = 0.
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Observation A.4. Let a ∈ [d − 1], b ∈ [d] and b′ ∈ [d] \ {b}. There is exactly one linear form in
{Equation (10)a,b′,l : l ∈ [d] \ {0}} that contains no Γ-variable from {γa′b : a′ ∈ [d− 1] \ {a}}. This

unique linear form is Equation (10)a,b′,l(b′), where l(b′) = (d−1)−a
b′−b .

Proof. The linear form Equation (10)a,b′,l contains a variable γa′b if and only if l = a′−a
b′−b . If we

choose l = l(b′) = (d−1)−a
b′−b then a′ is forced to take value d− 1. Thus, Equation (10)a,b′,l(b′) contains

no variable from {γa′b : a′ ∈ [d− 1] \ {a}}. On the other hand, for l ∈ [d]\{0} and l 6= l(b′), there
is exactly one variable in {γa′b : a′ ∈ [d− 1] \ {a}} that belongs to Equation (10)a,b′,l .

With l(b′) defined as above, we have the following observation.

Observation A.5. Let a ∈ [d− 1], b ∈ [d] and b′, b′′ be two distinct elements in [d] \ {b}. The linear
forms Equation (10)a,b′,l(b′) and Equation (10)a,b′′,l(b′′) do not have any Γ-variable in common.

Proof. For contradiction, suppose γãb̃ appears in both Equation (10)a,b′,l(b′) and Equation (10)a,b′′,l(b′′).
Then, b̃ = b′ + a−ã

l(b′) = b′′ + a−ã
l(b′′) . Hence,

b′ − b′′ = (a− ã) ·
(

1
l(b′′)

− 1
l(b′)

)
= (a− ã) · b′′ − b′

(d− 1)− a
,

by plugging in the values of l(b′) and l(b′′). As ã 6= d− 1, the above equality cannot hold.

Finally, consider the following equation, which is implied from Equations (9) and (10),

Equation (9)a,b + ∑
l∈[d]\{0}

Equation (10)a,b,l − ∑
b′∈[d]\{b}

Equation (10)a,b′,l(b′) = 0.

By Observation A.3, Equation (9)a,b + ∑l∈[d]\{0} Equation (10)a,b,l is the sum of d · γab and all the
Γ-variables barring {γa′b : a′ ∈ [d− 1] \ {a}} ] {γab}. On the other hand, Observations A.4 and
A.5 and a simple counting argument, imply that ∑b′∈[d]\{b} Equation (10)a,b′,l(b′) is the sum of all
the Γ-variables barring {γa′b : a′ ∈ [d − 1] \ {a}} ] {γab}. Therefore, γab = 0 as char(Fd) 6= d.
This proves the F-linear independence of {Rab : a ∈ [d− 1], b ∈ [d]}.

Thus, we have shown that dimF(gNW) ≤ d− 1. This immediately implies that dimF(gNW) = d− 1,
as the matrices B1, . . . , Bd−1 (in the statement of Lemma 5.1) are F-linearly independent and they
belong to gNW (as they satisfy Equation (8)).

A.3 Proof of Claim 5.1

Recall the choice of l, r and i from the paragraph before the statement of Claim 5.1.

Observation A.6. For every j, s ∈ [d], the (j, s)-th entry of Cil equals

∑
h∈Fd[z]k

h(i)=j, h(l)=s

∏
t∈[d]\{i,l}

xt,h(t).

The number of monomials in the above polynomial is dk−1.

Proof. The proof follows directly from Equation (5).
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Observation A.7. The polynomials in two distinct entries of Cil are monomial disjoint.

Proof. Let (j, s) 6= (j′, s′). The monomials of the polynomial at the (j, s)-th entry of Cil correspond
to univariate polynomials h ∈ Fd[z]k such that h(i) = j and h(l) = s, whereas the monomials of
the polynomial at the (j′, s′)-th entry of Cil correspond to univariate polynomials h′ ∈ Fd[z]k such
that h′(i) = j′ and h′(l) = s′. As two distinct degree-k univariates share at most k roots over Fd
and d− 2 ≥ k + 1, the two polynomials must be monomial disjoint.

Recall that gjr is the (j, r)-th entry of (AT
π(i)i)

−1 · Cil · (Aπ(l)l)
−1 and f jr is the (j, r)-th entry of

Bπ(i)π(l).

Observation A.8. For every j ∈ [d], gjr 6= 0 is a F-linear combination of at least two entries of Cil .

Proof. The proof follows immediately from the choice of l and r, and by observing that none of the
rows of (AT

π(i)i)
−1 has all zero entries.

Now, pick an arbitrary set T ⊆ [d] \ {i, l} such that |T| = k + 1; this is possible as d− 2 ≥ k + 1.
Fix z =

⊎
w∈T xw.

Observation A.9. For every j ∈ [d], evalDimz( f jr) ≤ dk−1.

Proof. From Equation (5), we have

f jr =
∂2NW

∂xπ(i),j∂xπ(l),r
(A · x).

Thus, f jr is computed by a depth three circuit having top fan-in dk−1. Further, as A is block-
permuted, the circuit is set-multilinear with respect to the partition

⊎
t∈[d]\{i,l} xt. In other words,

f jr can be expressed as a sum of dk−1 many products of linear forms such that each product term is
of the form ∏t∈[d]\{i,l} `t(xt), where `t is a linear form. The proof is immediate from this point.

Observation A.10. For every j ∈ [d], evalDimz(gjr) ≥ 2 · dk−1.

Proof. From Observations A.6, A.7 and A.8, we can infer that there exists a set P ⊆ Fd[z]k of size
|P| ≥ 2 · dk−1 such that

gjr = ∑
h∈P

βh · ∏
t∈[d]\{i,l}

xt,h(t), where βh ∈ F\{0}.

Now, we argue that evalDimz(gjr) = |P|. Clearly, evalDimz(gjr) ≤ |P|. For a fixed h ∈ P and
every w ∈ T, set the variables xw,h(w) = 1 and the remaining variables of z to 0. This substitution
reduces the above sum to a single term βh ·∏t∈[d]\({i,l}]T) xt,h(t), as d− 2 ≥ k + 1. Moreover,

∏
t∈[d]\({i,l}]T)

xt,h(t) 6= ∏
t∈[d]\({i,l}]T)

xt,h′(t),

for distinct h, h′ ∈ P, as (d− 2)− (k + 1) ≥ k + 1 (by assumption). Hence, under various similar
substitutions of the z-variables, we get |P| distinct monomials implying evalDimz(gjr) ≥ |P|.
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A.4 Proof of Lemma 6.1

Evidently, the proof of Lemma 5.1 gives a proof of the following fact.

Fact 1. Suppose char(F) 6= d. Consider the linear system over F obtained from the equations ∑i∈[d] yi,h(i) =
0 for all h ∈ Fd[z]k, where {yij : i, j ∈ [d]} are the variables. The solution space of the system consists of the
solutions yi,0 = yi,1 = . . . = yi,d−1 = αi for every i ∈ [d], where α0, . . . , αd−1 ∈ F satisfy ∑i∈[d] αi = 0,
and these are the only solutions.

Let D ∈ GNW be a diagonal matrix with real entries, and the ((i, j), (i, j))-th entry of D be βi,j ∈ R

for i, j ∈ [d]. We can express βi,j as βi,j = (−1)λi,j · 2γi,j , where λi,j ∈ {0, 1} and γi,j ∈ R. When D is

applied on x, a monomial mh = ∏i∈Fd
xi,h(i) of NW gets mapped to

(
∏i∈Fd

(−1)λi,h(i) · 2γi,h(i)

)
·mh,

implying ∏i∈Fd
(−1)λi,h(i) = ∏i∈Fd

2γi,h(i) = 1. In other words,

∑
i∈[d]

λi,h(i) = 0 over F2, for all h ∈ Fd[z]k, and

∑
i∈[d]

γi,h(i) = 0 over R, for all h ∈ Fd[z]k.

By invoking Fact 1 (over F = F2 and over F = R) for the above two linear systems, we get
λi,0 = . . . = λi,d−1 = λi and γi,0 = . . . = γi,d−1 = γi for every i ∈ [d], where λ0, . . . , λd−1 ∈ F2
(similarly, γ0, . . . , γd−1 ∈ R) satisfy ∑i∈[d] λi = 0 in F2 (similarly, ∑i∈[d] γi = 0 in R). This implies
βi,0 = . . . = βi,d−1 = βi for every i ∈ [d], where β0, . . . , βd−1 ∈ R satisfy ∏i∈[d] βi = 1.
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