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Abstract

We investigate the size complexity of proofs in Res(s) — an extension of Resolution working on
5-DNFs instead of clauses — for families of contradictions given in the unusual binary encoding. A
motivation of our work is size lower bounds of refutations in Resolution for families of contradic-
tions in the usual unary encoding. Our main interest is the k-Clique Principle, whose Resolution
complexity is still unknown. The approach is justified by the observation that for a large class of
combinatorial principles (those expressible as II5 first-order formulae) short Res(log n) refutations
for the binary encoding are reducible to short Resolution refutations of the unary encoding.

Our main result is a n‘2(*) lower bound for the size of refutations of the binary k-Clique Principle
in Res(| 3 loglogn]). This improves the result of Lauria, Pudldk et al. [24] who proved the lower
bound for Resolution, that is Res(1). A lower bound in Res(log n) for the binary k-Clique Principle
would prove a lower bound in Resolution for its unary version. Resolution lower bounds for the
(unary) k-Clique Principle are known only when refutations are either treelike [10] or read-once [4]
(regular Resolution).

To contrast the proof complexity between the unary and binary encodings of combinatorial prin-
ciples, we consider the binary (weak) Pigeonhole principle Bin-PHP" for m > n. Our second
lower bound proves that in Res(s) for s < logﬁ (n), the shortest proofs of the Bin-PHP}", requires
size 27" for any § > 0.

By a result of Buss and Pitassi [15] we know that for the (unary, weak) Pigeonhole principle
PHP’", exponential lower bounds (in the size of PHP."") are not possible in Resolution when m >
2vnlogn gince there is an upper bound of 2°(V1°e7) - Our lower bound for Bin-PHP!", together
with the fact short Res(1) refutations for PHP}" can be translated into short Res(logn) proofs for
Bin-PHP}", shows a form of tightness of the upper bound of [15]. Furthermore we prove that
Bin-PHP!" can be refuted in size 2°(") in treelike Res(1), contrasting with the unary case, where
PHP”" requires treelike Res(1) refutations of size 2("1°™) [9, 16].

In order to compare the complexity of refuting binary encodings in Resolution with respect to
their unary version, we study under what conditions the complexity of refutations in Resolution
will not increase significantly (more than a polynomial factor) when shifting between the unary
encoding and the binary encoding. We show that this is true, from unary to binary, for propositional
encodings of principles expressible as a IIp-formula and involving fotal variable comparisons. We
then show that this is true, from binary to unary, when one considers the functional unary encoding.
In particular, we derive a polynomial upper bound in Res(1) for the binary version Bin-rLOP, of a
variant of the Linear Ordering principle, rLOP,, which exponentially separates read-once Resolution
from Resolution (see [2]).

Finally we prove that the binary encoding of the general Ordering principle Bin-OP,, — with
no total ordering constraints — is polynomially provable in Resolution. These last results can be
interpreted as addressing the property that shifting to the binary encoding is preserving the proof
hardness of the corresponding unary encodings when working in Resolution.
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1 Introduction

Various fundamental combinatorial principles used in Proof Complexity may be given in first-order logic
as sentences ¢ with no finite models. Riis discusses in [30] how to generate from ¢ a family of CNFs,
the nth of which encodes that ¢ has a model of size n, which are hence contradictions. Following Riis, it
is typical to encode the existence of the witnesses in longhand with a big disjunction, that we designate
the unary encoding. As recently investigated in the works [19, 12, 13, 24, 21], it may also be possible
to encode the existence of such witnesses succinctly by the use of a binary encoding. Essentially, the
existence of the witness is now given implicitly as any propositional assignment to the relevant variables
gives a witness, whereas in the unary encoding a solitary true literal tells us which is the witness'.
Combinatorial principles encoded in binary are interesting to study since, loosely speaking, they still
preserve the hardness of the combinatorial principle encoded while giving a more succinct propositional
representation. In certain cases this leads to obtain significant lower bounds in an easier way than for
the unary case [19, 13, 24].

The central thrust of this work is to contrast the proof complexity (size) between the unary and binary
encodings of natural combinatorial principles. The main motivation is to approach size lower bounds
of refutations in Resolution for families of contradictions in the usual unary encoding, by looking at
the complexity of proofs in Res(s) for the corresponding families of contradictions where witnesses
are given in the binary encodings. Res(s), is a refutational proof system extending Resolution to s-
bounded DNFs, introduced by Krajicek in [22]. Our approach is justified by observing that (see Lemma
14), for a family of contradictions encoding a principle which is expressible as Il first-order formulae
having no finite models, short Res(log n) refutations of their binary encoding can be obtained from short
Resolution refutations for the unary encoding.

Our main interest is the k-Clique Principle, whose precise Resolution complexity is still unknown;
but we also study other principles, to make progress in the direction of our approach. The three
combinatorial principles we deal with in this paper are: (1) the k-Clique Formulas, Cliquep(G); (2)
the (weak) Pigeonhole Principle PHP]"; and (3) the (Linear) Ordering Principle, (L)OP,,. The k-
Cliqgue Formulas introduced in [10, 11, 6] are formulas stating that a given graph G does have a k-
clique and are therefore unsatisfiable when GG does not contain a k-clique. The Pigeonhole principle
states that a total mapping f : [m| — [n] has necessarily a collision when m > n. Its propo-
sitional formulation in the negation, PHP]" is well-studied in proof complexity (see among others:
[20, 31, 16, 27, 29, 28, 8, 15,9, 7, 5, 3, 25]). The LOP, formulas encodes the negation of the Linear
Ordering Principle which asserts that each finite linearly ordered set has a maximal element and was
introduced and studied, among others, in the works [23, 32, 14].

1.1 Contributions

Deciding whether a graph has a k-clique it is one of the central problems in Computer Science and can
be decided in time n°*) by a brute force algorithm. It is then of the utmost importance to understand
whether given algorithmic primitives are sufficient to design algorithms solving the Clique problem more
efficiently than the trivial upper bound. Resolution refutations for the formula Clique},(G) (respectively
any CNF F), can be thought as the execution trace of an algorithm, whose primitives are defined by the
rules of the Resolution system, searching for a k-Clique inside G (respectively deciding the satisfiabil-
ity of F'). Hence understanding whether there are nfk) size lower bounds in Resolution for refuting
Cliquep, (G) would then answer the above question for algorithms based on Resolution primitives. This
question was posed in [10], where it was also answered in the case of refutations in the form of trees
(treelike Resolution). Recently in a major breakthrough Atserias et al. in [4] prove the n**) lower
bound for the case of read-once proofs (Regular resolution). The graph G considered in [10, 4] to plug

Isee Subsection 1.1.2 in the Introduction for examples and a more formal statement.



in the formula Clique(G) to make it unsatisfiable was a random graph obtained by a slight variation
of Erdos-Rényi distribution of random graphs as defined in [10]. But the exact Resolution complexity
of Clique}(G), for G random is unknown. In the work [24], Lauria et al. consider the binary encod-
ing of Ramsey-type propositional statements, having as a special case a binary version of Clique}(G):
Bin-Clique}, (G). They obtain optimal lower bounds for Bin-Clique}, (G) in Resolution, which is Res(1).

Our main result (Theorem 1) is a n**(*) lower bound for the size of refutations of Bin-Clique} (G)
in Res(% loglogn), when G is a random graph as that defined in [10]. Lemma 2 in Section 3 proves
that a lower bound in Res(log) for the Bin-Clique] (G) would prove a lower bound in Resolution for
Cliquep(G).

1.1.1 Weak Pigeonhole principle

An interesting example to test the relative hardness of binary versions of combinatorial principle comes
from the (weak) Pigeonhole principle. In Section 4, we consider its binary version Bin-PHP]" and we

prove that in Res(s) for s < logi(n), the shortest proofs of the Bin-PHP]", require size 7'’ for
any 6 > 0 (Theorem 4). This is the first size lower bound known for the Bin-PHP]" in Res(s). As a
by-product of this lower bound we prove a lower bound of the order 9(ieem) (Theorem 2) for the size
of the shortest Resolution refutation of Bin-PHP}'. Our lower bound for Res(s) is obtained through a
technique that merges together, the random restriction method, an inductive argument on the s of Res(s)
and the notion of minimal covering of a k-DNF of [31]. Since we are not using any (even weak) form
of Switching Lemma (as for instance in [31, 1]), we consider how tight is our lower bound in Res(s).
We prove that Bin-PHP™ (Theorem 5) can be refuted in size 2°(") in treelike Res(1). Our upper bound
is contrasting with the unary case of the Pigeonhole Principle, PHP}', which instead requires treelike
Res(1) refutations of size 2f2(nlogn) a5 proved in [9, 16].

As for the k-Clique principle, also for the Pigeonhole Principle, we can prove that short Res(log n)
refutations for Bin-PHP]" can be efficiently obtained from short Res(1) of PHP]" (Lemma 4). Hence
another observation raising from our lower bound concerns the result of Buss and Pitassi in [15], who
proved a quasipolynomial upper bounds (in the number of variables of PHP]") for the size of refuting
PHP™ when m > 2V7™1°en  Indeed, they give the subexponential-in-n upper bound of 20(Vnlogn)
Hence no exponential-in-n lower bound is possible in Resolution when m > 2V™1°8™ Since we prove
that Bin-PHP}" requires 27'"* size in Res(s) for any m > n, then Lemma 4 is indicating that Buss and
Pitass’s result in [15] is essentially tight and cannot be be proved for the binary version of the Pigeonhole
principle.

1.1.2 Contrasting unary and binary principles

To work with a more general theory in which to contrast the complexity of refuting the binary and unary
versions of combinatorial principles, following Riis [30] we consider principles which are expressible
as first order formulas with no finite model in IIy-form, i.e. as VZ3we (&, W) where ¢ (Z, ) is a formula
built on a family of relations R. For example the Ordering Principle, which states that a finite partial
order has a maximal element is one of such principle. Its negation can be expressed in IIs-form as:

Va,y, z3w —R(z,x) A (R(x,y) A R(y, z) — R(z,2)) A R(z,w).
This can be translated into a unsatisfiable CNF OP,, using a unary encoding of the witness, as shown

below. In Definition 4 we explain how to generate a binary encoding Bin-C,, from any combinatorial
principle C, expressible as a first order formulas in IIz-form with no finite models and whose unary



encoding we denote by Un-C,,. For example Bin-OP, would be the conjunction of the clauses below.

OP,, : Unary encoding Bin-OP,, : Binary encoding

2 x € [n]
_ VUgy VUy Vg, x,y,2 € [n]
Uz, z €[] V. wiZv vy x7a’€ [n]
oy V Ty Vs 2,92 € [n] icllogn) Twi T me , ’

‘ ai ...aiegn binary representation of a

Viepm) Va.i x € [n] 4 )

WY =) Weg 45 =

“d Wej ;=0

As a second example we consider the Pigeonhole Principle which states that a total mapping from
[m] to [n] has necessarily a collision when m and n are integers with m > n. Following Riis [30] the
negation of its relational form can be expressed as a IIs-formula as

Va,y, z3w —R(z,0) A (R(z,2) AN R(y,z) = = =y) A R(xz,w)

and its usual unary and binary propositional encoding are:

PHP : Unary encoding Bin-PHP : Binary encoding
n - < _ 71 _ 1 -
. P e 3 .
Vit el VIR B vV Ty i €l

Vi VUi j i, 7’5 = [m},] S [n]

Notice that in the case of Pigeonhole Principle, the existential witness w to the type pigeon is of the
distinct type hole. Furthermore, pigeons only appear on the left-hand side of atoms R(x, z) and holes
only appear on the right-hand side. For the Ordering Principle instead, the transitivity axioms effectively
enforce the type of y appears on both the left- and right-hand side of atoms R(z, z). This account for
why, in the case of the Pigeonhole Principle, we did not need to introduce any new variables to give the
binary encoding, yet for the Ordering Principle a new variable w appears. In Section 6 we show that
binary encodings are most interesting to study for ITo combinatorial principles all of whose witnesses
are of a different type from the variables they are witnesses for.

In Section 6 we observe that Lemma 2 and 8 work also for the general case of Un-C,, and Bin-C,
(Lemma 14). We also prove in Lemma 4 that the usual binary encoding Bin-PHP of the PHP ([19, 12])
is provably equivalent in Resolution to the version of the binary version Pigeonhole principle defined
from our translation to binary of Definition 4. We finally propose a framework to compare lower bounds
for the Bin-C,, in Res(s) with lower bounds for Un-C,, in Res(1).

1.1.3 Total comparisons and Linear Ordering principles

LOP,, formulae took on a certain importance in Resolution. In their more general form they were used
in [14] to prove the optimality of the size-width tradeoffs for Resolution (see [8]). More importantly for
this work, a modification of the LOP,, formulas (rLOP,,) were used in [2] to exhibit a family of formulas
exponentially separating proof size in read-once Resolution from Resolution.

We study under what conditions the complexity of proofs in Resolution will not increase signifi-
cantly (by more than a polynomial factor) when shifting from the unary encoding to the binary encod-
ing. In Lemma 11 we prove that this is true for the negation of principles expressible as first order
formula in IIy-form involving fotal variable comparisons. Hence in particular (see Corollary 3) the bi-
nary version of the Linear Ordering principle Bin-LOP,, and its modification Bin-rLOP,, which separates
read-once Resolution from Resolution (see [2]) are polynomially provable in Resolution. It is worthy to
notice that Bin-rLOP,, is polynomially provable in Res(% loglog n), where we prove a lower bound for
Bin-Cliquep (G).



Finally, we also prove that the binary encoding of the general Linear Ordering Bin-OP,, principle,
where antisymmetry — which entails total comparisons — is not encoded, is also polynomially provable
in Resolution. Ordering Principles are typically used to provide hierarchy separations (see for instance
[31, 17]) inside Resolution-based proof systems. Hence, loosely speaking, they mark the maximal border
of what is still provable efficiently in a given proof system. For this reason the upper bounds explained
in this subsection for the binary version of the ordering principles should be interpreted broadly speak-
ing, as saying that shifting to the binary encodings is not destroying the hardness of a unary principle
when working in Resolution and hence binary encodings of combinatorial principles are still meaningful
benchmarks to prove lower bounds for.

1.1.4 Binary encodings of principles versus their Unary functional encodings

The unary functional encoding of a combinatorial principle replaces the big disjunctive clauses of the
formv;1 V...V v;p, withv; 1 + ... 4+ v;, = 1, where addition is made on the natural numbers. This
is equivalent to augmenting the axioms —v; j V —w; 1, for j # k € [n]. One might argue that the unary
functional encoding is the true unary analog to the binary encoding, since the binary encoding naturally
enforces that there is a single witness alone. It is likely that the non-functional formulation was preferred
for its simplicity (similarly as the Pigeonhole Principle is often given in its non-functional formulation).

In Subsection 5.2, we prove that the Resolution refutation size increases by only a quadratic factor
when moving from the binary encoding to the unary functional encoding. This is interesting because
the same does not happen for treelike Resolution, where the unary encoding has complexity 2°("1o&n)
[9, 16], while, as we prove in Subsection 4.1 (Theorem 5), the unary (functional) encoding is 29(n) The
unary encoding complexity is noted in [17] and remains true for the unary functional encoding with the
same lower-bound proof. The binary encoding complexity is addressed directly in this paper.

1.2 Techniques and Organization

The method of random restrictions in Proof Complexity is often employed to prove size lower bounds.
Loosely speaking the method works as follows: we consider formulae having a given specific combina-
torial property P; after hitting, with a suitable random partial assignment, on an allegedly short proof of
the formula we are refuting, we are left to prove that with high probability a formula with property P is
killed away from the proof. The growth rate as the probability approaches to 1 together with a count-
ing argument using averaging (as the union bound), implies a lower bound on the number of formulae
with property P in the proof. Lower bounds in Res(s) using random restrictions were known only for
s = 2 (see [5]). Using a weak form of the Switching Lemma, lower bounds for Res(s) were obtained
in [31, 1]. From the latter paper we use the notion of covering number of a k-DNF F, i.e. the minimal
size of a set of variables to hit all the k-terms in F'. In this work we merge the covering number with
the random restriction method together with an inductive argument on the s, to get size lower bounds in
Res(s) specifically for binary encoding of combinatorial principles.

After a section with the preliminaries, the paper is divided into four sections: one with the lower
bound for the k-Clique Principle, one containing all the results for the (weak) Pigeohole principle, one
for the contrasting the proof complexity between unary and binary principles containing all the results
about the various Ordering Principles, and finally the last section containing a general approach to unary
vs binary encodings for principle expressible as a 115 formulae.

2 Preliminaries

We denote by T and L the Boolean values “true” and “false”, respectively. A literal is either a propo-
sitional variable or a negated variable. We will denote literals by small letters, usually I’s. An s-



conjunction (s-disjunction) is a conjunction (disjunction) of at most k literals. A clause with s literals is
a s-disjunction. The width w(C') of a clause C'is the number of literals in C. A term (s-term) is either a
conjunction (s-conjunction) or a constant, T or L. A s-DNF or s-clause (s-CNF) is a disjunction (con-
junction) of an unbounded number of s-conjunctions (s-disjunctions). We will use calligraphic capital
letters to denote s-CNFs or s-DNFs, usually Cs for CNFs, Ds for DNFs and F's for both.

We can now describe the propositional refutation system Res (s) ([22]). It is used o refute (i.e. to
prove inconsistency) of a given set of s-clauses by deriving the empty clause from the initial clauses.
There are four derivation rules:

1. The A-introduction rule is
DiV Njenli D2V Ajenls

provided that |J; U Jo| < s.

2. The cut (or resolution) rule is

D1 v\/jGJlj Do \//\jEJ_'lj
D1V Dy ’

3. The two weakening rules are

D ind DV N\jenunli

D\//\jeJlj D\//\jEJllj ’

provided that |J| < s.

A Res(s) refutation can be considered as a directed acyclic graph (DAG), whose sources are the initial
clauses, called also axioms, and whose only sink is the empty clause. We shall define the size of a proof
to be the number of the internal nodes of the graph, i.e. the number of applications of a derivation rule,
thus ignoring the size of the individual s-clauses in the refutation.

In principle the s from “Res(s)” could depend on 7 — an important special case is Res(log n)

Clearly, Res(1) is (ordinary) Resolution, working on clauses, and using only the cut rule, which
becomes the usual resolution rule, and the first weakening rule. Given an unsatisfiable CNF C, and a
Res(1) refutation 7 of C the width of 7, w(r) is the maximal width of a clause in 7. The width refuting
C in Res(1), w(F C), is the minimal width over all Res(1) refutations of C.

A covering set for a s-DNF D is a set of literals L such that each term of D has for at least a literal
in L. The covering number c¢(D) of a s-DNF D is the minimal size of a covering set for D.

Let F(x1...,z,) be a boolean s-DNF (resp. s-CNF) defined over variables X = {x1,...,2,}. A
partial assignment p to F is a truth-value assignment to some of the variables of F: dom(p) C X. By
F1, we denote the formula F” over variables in X \ dom(p) obtained from F after simplifying in it the
variables in dom(p) according to the usual boolean simplification rules of clauses and terms.

2.1 Res(s) vs Resolution

Similarly to what was done for treelike Res(s) refutations in [18], if we turn a Res (s) refutation of
a given set of s-clauses X upside-down, i.e. reverse the edges of the underlying graph and negate the
s-clauses on the vertices, we get a special kind of restricted branching s-program. The restrictions are
as follows.

Each vertex is labelled by a s-CNF which partially represents the information that can be obtained
along any path from the source to the vertex (this is a record in the parlance of [26]). Obviously, the
(only) source is labelled with the constant T. There are two kinds of queries, which can be made by a
vertex:



1. Querying a new s-disjunction, and branching on the answer, which can be depicted as follows.

C
T N L
2. Querying a known s-disjunction, and splitting it according to the answer:
CA \/jGJ1UJ2 l]

? \/jEJ1 lj (2)

T N L

C/\vjEJ1 l; C/\Vjejz lj
There are two ways of forgetting information,

C1 NCo C/\\/jeJ1 lj

\ and 3 ; 3
C1 CAVjenumnls

the point being that forgetting allows us to equate the information obtained along two different branches
and thus to merge them into a single new vertex. A sink of the branching s-program must be labelled
with the negation of a s-clause from X. Thus the branching s-program is supposed by default to solve
the Search problem for 3: given an assignment of the variables, find a clause which is falsified under
this assignment.

The equivalence between a Res () refutation of ¥ and a branching s-program of the kind above is
obvious. Naturally, if we allow querying single variables only, we get branching 1-programs — decision
DAGs - that correspond to Resolution. If we do not allow the forgetting of information, we will not be
able to merge distinct branches, so what we get is a class of decision trees that correspond precisely to
the treelike version of these refutation systems.

Finally, we mention that the queries of the form (1) and (2) as well as forget-rules of the form (3)
give rise to a Prover-Adversary game (see [26] where this game was introduced for Resolution). In
short, Adversary claims that 3 is satisfiable, and Prover tries to expose him. Prover always wins if her
strategy is kept as a branching program of the form we have just explained, whilst a good (randomised)
Adversary’s strategy would show a lower bound on the branching program, and thus on any Res (k)
refutation of 3.

Lemma 1. [fa CNF ¢ has a refutation in Res(k+1) of size N, whose corresponding branching (k+1)-
program has no records of covering number > d, then ¢ has a Res(k) refutation of size 2% - N.

Proof. In the branching program, consider a (k + 1)-CNF record ¢ whose covering number < d is

witnessed by variable set V’ := {v1,...,v4}. Now in place of the record ¢ we expand a tree of size 27
questioning all the variables of V’. Each evaluation of these reduces ¢ to a k-CNF that logically implies
®. O

3 The binary encoding of k-Clique

Consider a graph G such that G is formed from & blocks of n nodes each: G = (Ube[k} Vi, E'), where
edges may only appear between distinct blocks. Thus, G is a k-partite graph. Let the edges in E be
denoted as pairs of the form F((i, a), (7,b)), where i # j € [k] and a,b € [n].



The (unary) k-Clique CNF formulas Cliquef (G) for G, has variables v; , with i € [k],a € [n], with
clauses —v; o V —w;; whenever ~E((i,a), (j,b)) (i.e. there is no edge between node a in block i and
node b in block 7), and clauses \/ ac[n] Vi,as for each block 7. This expresses that G;! has a k-clique, which
we take to be a contradiction, since we will arrange for G not to have a k-clique.

Bin-Clique};(G') variables w; ; range over i € [k],j € [logn]. Let a € [n] and let a; ... aign
be its binary representation. Each (unary) variable v; ; semantically corresponds to the conjunction

ajl Alog n
(Wit Ao Aw;ee,), where

ng‘ _ Wi 5 if aj = 1
v Wi j if a; = 0

Hence in Bin-Clique} (G) we encode the unary clauses —v; o V —v; 5, by the clauses

1— 1—aiogn 1-b 1=biogn
(Wit ™V VW o™ ) V(w17 Ve Vw5
By the next Lemma short Resolution refutations for Clique} (G') can be translated into short Res(log n)
refutations of Bin-Clique}, (G). hence to obtain lower bounds for Clique},(G) in Resolution, it suffices to
obtain lower bounds for Bin-Clique},(G) in Res(log n).

Lemma 2. Suppose there are Resolution refutations of Clique] (G) of size S. Then there are Res(logn)
refutations of Bin-Clique] (G) of size S.

Proof. Where the decision DAG for Clique} (G) questions some variable v; 4, the decision branching

L _ 1—alogn .
log n-program questions instead (wi VLV 102 ") where the out-edge marked true in the former
becomes false in the latter, and vice versa. What results is indeed a decision branching log n-program

for Bin-Clique]} (G), and the result follows. O

Following [10, 4, 24] we consider Bin-Clique} (G) formulas where G is a random graph distributed
according to a variation of the Erdés-Rényi as defined in [10]. In the standard model, random graphs
on n vertices are constructed by including every edge independently with probability p. It is known
that k-cliques appear at the threshold probability p* = N If p < p*, then with high probability
there is no k-clique. By G} (p) we denote the distribution on random multipartite Erd6s-Renyi graph
with & blocks V; of n vertices each, where each edge is present with probability p depending on €. For
p=n"UFIET we just write gr..

We use the notation G' = (Ul;e[k] W, E) ~ G}!(p) to say that G is a graph drawn at random from the
distribution G}! (p).

In the next section we explore lower bounds for Bin-Clique}(G) in Res(s) for s > 1, when G ~

i ().

3.1 Res(s) lower bounds for Bin-Clique]

Let e be a constant such that 0 < o« < 1. Define a set of vertices U in G, U C V to be an a-transversal
if: (1) |U| < ak, and (2) forall b € [k], |V, NU| < 1. Let B(U) C [k] be the set of blocks mentioned
in U, and let B(U) = [k] \ B(U). We say that U is extendible in a block b € B(U) if there exists a
vertex a € V}, which is a common neighbour of all nodes in U, i.e. a € N.(U) where N.(U) is the set

of common neighbours of vertices in U i.e. No(U) ={v eV |v e ,cy N(u)}.

Let o be a partial assignment (a restriction) to the variables of Bin-Clique} (G') and /3 a constant such
that 0 < 8 < 1. We call o, S-total if o assigns |5 logn] bits in each block b € [k], i.e. |Slogn]
variables wy,; in each block b. Let v = (i, a) be the a-th node in the i-the block in G. We say that a
restriction o is consistent with v if for all j € [logn], o(w; ;) is either a; or not assigned.



Definition 1. Let 0 < o, < 1. A a-transversal set of vertices U is (B-extendible, if for all B-total
restriction o, there is a node v° in each block b € B(U), such that o is consistent with vb.

Lemma 3. (Extension Lemma) Let 0 < € < 1, let k < logn. Let 1 > a > 0and 1 > 8 > 0 such that
1—8>a(2+¢€). Let G ~ G} . With high probability both the following properties hold:

1. all a-transversal sets U are [3-extendible;

2. G does not have a k-clique.

Proof. Let U be an a-transversal set and o be a 3-total restriction. The probability that a vertex w is in
N.(U) is p**. Hence w ¢ N.(U) with probability (1 —p®*). After o is applied, in each block b € B(U)
remain 21987 ~Alogn — ,1=6 available vertices. Hence the probability that we cannot extend U in each
block of B(U) after o is applied is (1 — pak)"l_ﬂ. Fixc =2+ eand § =1 — 3 — ac. Notice that
0 > 0 by our choice of o and 5. Since p = ni%, previous probability is (1 — 1/nac)"1_ﬁ, which is

nl=8
asymptotically e™ »n® = e~

There are (jk) possible a-transversal sets U and (

nd
logn

Blog n) - k possible S-total restrictions o.

k 1
(5 (8E0) b <k (ogm)oen &
— Qak log k+ 3 log n log log n+log k

< 210g2 n

Notice that the last inequality holds since k£ < logn. Hence the probability that there is in G no a-
transeversal set U which is S-extendible is going to 0 as n grows.

To bound the probability that G contains a k-clique, notice that the expected number of k cliques is
() - p(};) < nP . pk(k=1)/2) Recalling p = 1/n/*, we get that the probability that G' does not have a
k-clique is n¥ - n=¢(h=1/2 = ph—c(k=1)/2 Since ¢ = 2+ €, k —c(k —1)/2 = 1 — 5(k —1). Hence
nk . n=ch=1)/2 < 9=logn for qufficiently large n and since k < log n.

So the probability that either property (1) or (2) does not hold is bounded above by glog’n , —n® |
2-108° 1 which is below 1 for sufficiently large n. U

Let s > 1 be an integer. Call a ﬁ-total assignment to the variables of Bin-Clique}(G) an s-
restriction. A random s-restriction for Bin-Clique] (G) is an s-restriction obtained by choosing inde-
pendently in each block ¢, L# log n| variables among wj 1, . .. ,w; logn. and seting these uniformly at
random to O or 1.

Let s,k € N, s,k > 1 and let G be graph over nk nodes and & blocks which does not contain a
k-clique. Consider the following property.

Definition 2. (Property Clique(G, s, k)). For any s-restriction p, there are no Res(s) refutations of
k—1
Bin-Clique] (G, of size less n24%s.

Q(k)

If property Clique(G, s, k) holds, we immediately have n size lower bounds for refuting

Bin-Clique} (G) in Res(s).

Corollary 1. Let s,k be integers, s > 1,k > 1. Let G be a graph and assume that Clique(G, s, k)
k—1

holds. Then there are no Res(s) refutations of Bin-Clique (G) of size smaller that n24%s.

Proof. For p the empty assignment there are no Res(s) refutations of Bin-Clique (G) of size smaller

k—1
than n24% . O



We use the previous corollary to prove lower bounds for Bin-Cliquey(G) in Res(s) as long as s <
% log log n.

Theorem 1. Let 0 < € < 1 be given. Let k be an integer with k > 1. Let s be an integer with

1<s< % log logn. Then there exists a graph G such that Res(s) refutations of Bin-Clique} (G) have
ize nSk)

size 0\,

Proof. By Lemma 3, we can fix G ~ G}!_ such that:
1. all a-transversal sets U are $-extendible;
2. G does not have a k-clique.

We will prove, by induction on s < % log log n, that property Clique(s, k, G) does hold. The result then
follows by Corollary 1. Lemma 4 is the base case and Lemma 5 the inductive case. O

Lemma 4. (Base Case) Clique(1, k, G) does hold.

Proof. Fix § = % and o = (2 ) >3 1 . Let p be a 1-restriction, that is a f—total assignment. We claim
that any Resolution refutation of Bi n-CI|q uep (G, must have width at least . This is a consequence
of the extension property which allows Adversary to play against Prover with the following strategy: for
each block, while fewer than log" bits are known, Adversary offers Prover a free choice. Once 26"
bits are set then Adversary chooses an assignment for the remaining bits according to the extension
property. Since % =+ % = %, this allows the game to continue until some record has width at least

10%" . % -k 1;%”. Size-width tradeoffs for Resolution [8] tells us that minimal size to refute any unsat

klogn

CNF F is lower bounded by 2(w(-F)=w(F)*/V(F) 1 our case w(F) = 2log n, hence the minimal size
(Blogn _ 5106 15)2 log n( & —2)2 (L _2)2 K o\2
required is > 2 “togn =2 2 — n =% . Itis not difficult to see that (31-2) > (2221),

the result is proved. O

Lemma 5. (Inductive Case)
Clique(s — 1, k, G) implies Clique(s, k,G).

Proof. We prove the contrapositive. Fix § = 1/242. Let ((s) = (1 — ﬁ) and r = w.
Assume there is some s-restriction p such that there exists a Res(s) refutation 7 of Bin-Clique}(G)[,
with size less than n”. Notice that n” < 27 log(C(s)T Let us call a bottleneck, a record R in m whose
covering number is > d(k — 1)logn. In such a record it is always possible to find r = M
s-tuples of literals 71 = (£1,...,€5),..., T, = (£}, ..., ¢3) so that these s-tuples are pairwise disjoint
(when considered a sets of size s) such that the /\ 7;’s are the terms of the s-DNF forming the record.
By our size assumptions on 7, there are < n'” bottlenecks. Let o be a s-random restriction on the
variables of Bin-Clique]} (G)l,. Let us say that o kills a tuple T if it sets to 0 all literals in 7" (notice that
a record is the negation of s-DNF) and that T" survives o otherwise. And that o kills R if it kills at at
least one of the tuples in /R. Let X; be the event that T} survives o and X the event that R survives
o. We want to prove that with high probability o kills all bottlenecks from 7. We then study upper
bounds on Pr[¥g]. Since T1,...,T, are tuples in R, then Pr[Xr] < Pr[X; A ... A ¥,]. Moreover
Pr[El VAN Er] = H;:l PI‘[EZ‘El VAN Zi—l}-

Claim 1. Foralli=1,...,r, Pr[S;|21 A ... A XEioq] < Pr[3].

Proof. We will prove that Pr[3;|=%; V...V =X;_1] > Pr[%;]. This gives the claim using Lemma 6
(i). We claim that for i # j € [r]:

10



Hence repeated applications of Lemma 6 (ii), prove that Pr[¥;|=3; V...V =%, 1] > Pr[3;].

To prove Equation 4, let B(7;) be the set of blocks mentioned in 7;. If B(T;) and B(T}) are disjoint,
then clearly Pr[¥;|-%;] = Pr[¥;]. When B(T;) and B(T}) are not disjoint, we reason as follows: For
each ¢ € B(T;), let T be the set of variables in 7; mentioning block £. T; is hence partitioned into
Ure B(T}) Tf and hence the event ~I; surviving ¢”, can be partitioned into the sum of the events that Tf

survives to o, for £ € B(T;). Denote by ¢ the event "7 survives o” and let A=B(T;) N B(T}) and
B = B(T;) \ (B(T;) N B(T})). The following inequalities holds:

Pr(Sil-5y] = Prl3te BT : |5 )
=Y Py ©
LeB(Ty)
= ) Pr[E{-%;] + ) Pr[i|-%y) 2
leA leB
(®)

Since B is disjoint from B(T}), as for the case above for each £ € B, Pr[%f|-%;] = Pr[%{]. Then:

> Pr[E{-%;] =) Pr[s] ©9)
lteB leB
(10)

Notice that 7; and T are disjoint, hence knowing that some indices in blocks ¢ € A are already
chosen to kill 77, only increase the chances of T; to survive (since less positions are left in the blocks
¢ € A to potentially kill 75).

Hence:

D Pr[f-x;] > ) Pr(x] (11)
LeA leA
(12)

Which proves the claim since:
> Pr[si+ ) Pr[s] = Pr[s)] (13)
leA leB

O]

s

Let v = 1/25"1. Lemma 7 below shows that, Pr[%;] < 1 — 2 < ((s), foralli = 1,...,r. Then
by the Claim,

Pri¥gp] <((s)" =n"".

Consider now the restriction 7 = po. This is a (s —1)-restriction on the variables of Bin-Clique]} (G).
Since there are fewer than n” bottlenecks and Pr[¥ ] < n™", then by the union bound 7 is a (s — 1)-

restriction that kills all bottlenecks of 7. Then, by Lemma 1, we can morph 7 through the restriction 7 to

a Res(s — 1) refutation of Bin-Clique}, (G|~ of size 9 METIER o log(¢(s)) e ) S (1-log(¢(s)))

s(k—1)
But this is smaller than n"s=7 and this is contradicting Clique(s — 1, k, G).

Notice that the previous argument can be applied while s < 7 -logn = 12‘1%’} and since y = 1/2°T1,

it holds while log s + s + 1 < loglog n, which holds at s < % log log n. O

Lemma 6. Let A, B, C three events such that Pr[A], Pr[B], Pr[C] > 0:

11



(i) If Pr[A|=B] > Pr[A] then Pr[A|B] < Pr[A];
(13) Pr[A|B] > Pr[A] and Pr[A|C] > Pr[A]. Then Pr[A|B Vv C] > Pr[A].

Proof. For part (i) consider the following equivalences:

Pr[A] = Pr[A|B] Pr[B] + Pr[A|-B] Pr[-B]
Pr[A4] = Pr[A|B]|Pr[B] + Pr[A|-B](1 — Pr[B])
Pr[A] > Pr[A|B]Pr[B] + Pr[A|(1 — Pr[B])
Pr[A|Pr[B] > Pr[A|B]Pr[B]
Pr[A] > Pr[A|B]
For part (ii) consider the following inequalities:
Pr[A|BVC] = 7“%;4;?;%0)1
> Pr[AAB] + Pr[ANC]
= Pr[BVC Pr[BVC]
Pr A/\BJ PrkB} + Pr[A/\C} Pr[C]
Pr[B] ~ Pr[BVC] Pr[C] Pr[gvg}]
= PrlAIB): p +PrAIC] e
> o] - (B
> Pr[4]

Lemma 7. Let s be an integer, s > 1, v = 28%, and p be a s-random restriction. For all s-tuples S':

s

Pr[S survives p] <1 — €

228

Proof. LetT = (4;, ji, ..., 4, ,) be an s-tuple made of of disjoint literals of Bin-Clique] (G). We say
that 7' is perfect if all 11terals are bits of a same block.

We prove that Pr[T survives p] < 1 — . The result follows observing that Pr[T survives p| >
Pr[S survives p].

Lety = 25% A block with r distinct bits contributes a factor of

2

1
() 1
1
(") 2
to the probability that the s-tuple does not survive. Expanding the left-hand part of this we obtain
vlogn-vylogn —1---vylogn —r+1 _ logn logn—% logn—f—i—f
logn-logn —1---logn —r+1 logn logn—l logn—r+1

Next, let us note that

logn logn—% logn—g—l-%

1= > >
logn = logn —1 logn —r+1

The result now follows when we recall that the probability of surviving is maximised when the proba-
bility of not surviving is minimised. O

In the sequel we will use the fact that, while r < % -logn,

() 1
(log n) 27 227
r

ogn—f—&-f

> logn — r+1 >

N[ —

since, for such r

12



4 The weak Pigeonhole Principle

For n < m, let Bin-PHP." be the binary encoding of the (weak) Pigeonhole Principle as showed in The
Introduction in Subsection 1.1.2. First notice that an analogous of Lemma 2 holds for the pigeonhole
principle too.

Lemma 8. Suppose there are Resolution refutations of PHP]" of size S. Then there are Res(logn)
refutations of Bin-PHP)"* of size S.

Let p be a partial assignment (a restriction) to the variables of Bin-PHP]*. We call p a t-bit restriction
if p assigns ¢ bits of each pigeon b € [m], i.e. t variables w,; for each pigeon b. Let v = (4,a) be an
assignment meaning that pigeon i is assigned to hole a and let a; . . . ajog, be the binary representation
of a. We say that a restriction p is consistent with v if for all j € [logn], o(w; ;) is either a; or not
assigned. We denote by Bin-PHP]l ,, Bin-PHP]" restricted by p. We will also consider the situation in
which an s-bit restriction is applied to some Bin-PHP} ,, creating Bin-PHP} -, where 7 is an s + ¢-bit
restriction.

Throughout this section, let u = u(n,t) := (log n) —t. We do not use this shorthand universally, but
sometimes where otherwise the notation would look cluttered. We also occasionally write (logn) — ¢ as
logn — t (note the extra space).

Lemma 9. Let p be a t-bit restriction for Bin-PHP}". Any decision DAG for Bin-PHP]'l , must contain
a record which mentions gz pigeons.

Proof. Let Adversary play in the following fashion. While some pigeon is not mentioned at all, let him
give Prover a free choice to answer any one of its bits as true or false. Once a pigeon is mentioned once,
then let Adversary choose a hole for that pigeon by choosing some assignment for the remaining unset
bits (we will later need to prove this is always possible). Whenever another bit of an already mentioned
pigeon is queried, then Adversary will answer consistently with the hole he has chosen for it. Only
once all of a pigeon’s bits are forgotten (not including those set by p), will Adversary forget the hole he
assigned it.

It remains to argue that Adversary must force Prover to produce a record of width > 57 and for
this it suffices to argue that Adversary can remain consistent with Bin-PHP}'[, up until the point that
such a record exists. For that it is enough to show that there is always a hole available for a pigeon for
which Adversary gave its only currently questioned bit as a free choice (but for which p has already
assigned some bits).

The current record is assumed to have fewer than J; literals and therefore must mention fewer than
3¢ pigeons, each of which Adversary already assigned a hole. Each hitherto unmentioned pigeon that
has just been given a free choice has logn — t bits which corresponds to 7z holes. Since we have
assigned fewer than 5; pigeons to holes, one of these must be available, and the result follows. O

Let &(s) satsify £(1) = 1 and £(s) = £(s — 1) + 1 + s. Note that £(s) = O(s?).
Definition 3 (Property PHP(s,t)). Let s,t > 1. For any t-bit restriction p to Bin-PHP)", there are no

Res(s) refutations of Bin-PHP] , of size smaller than e 45+ a12tué()

Theorem 2. Let p be a t-bit restriction for Bin-PHP}'. Any decision DAG for Bin-PHP'[, is of size
9% (ieem) (indeed, asymptotically of size > e, ).

Proof. Call a bottleneck a record in the decision DAG that mentions 5747 pigeons. Now consider a
random restriction that picks for each pigeon one bit uniformly at random and sets this to 0 or 1 with
equal probability. The probability that a bottleneck survives (is not falsified by) the random restriction

is no more than . .
u—1 1\ 28T 1\ Yattia 1
+ — = 1—— é n )
U 2u 2u e2t+2y
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since e™* = limy,—y00(1 — z/m)"™ and indeed e~* > (1 — z/m)"™ when x,m > 1.

Now suppose for contradiction that we have fewer than 27 bottlenecks in a decision DAG for
Bin-PHP'T,. By the union bound there is a random restriction that kills all bottlenecks and this leaves a
decision DAG for some Bin-PHP!",, where o is a (¢ + 1)-bit restriction for Bin-PHP". However, we
know from Lemma 9 that such a refutation must involve a record mentioning 5747 pigeons. This is now
the desired contradiction. O

Note that the previous theorem could have been proved, like Lemma 4, by the size-width trade-off.
However, the method of random restrictions used here could not be easily applied there, due to the
randomness of G.

Corollary 2. Property PHP(1,t) holds, for each t < logn.

Note that, PHP(1, ¢) yields only trivial bounds as ¢ approaches log n.
Let (4;, i, - - -4, j,) be an s-tuple made of disjoint literals of Bin-PHP]" [,. We say that a tuple is
anti-perfect if all literals come from different pigeons.

Lemma 10. Let s be an integer, s > 1 and o an s-bit restriction over Bin-PHP'l , where p is itself some
t-bit restriction over Bin-PHP'. Let T be an anti-perfect s-tuple of Bin-PHP "l ,. Then for all s-tuples
S:

Pr[T survives o] > Pr[S survives o|.

and so Pr[S survives o] <1 — W =1- -

Proof. A pigeon with r distinct bits contributes a factor of

T r—1 1 1
logn —t logn —t—1 logn—t—r+1 27

Noting that
7! 1

> ;
logn —t-logn —t—1---logn —t—r+1" (logn —t)"

the result now follows when we recall that the probability of surviving is maximised when the probability
of not surviving is minimised. U

Theorem 3. Let s > 1 and s +t < logn. Then, PHP(s — 1, s + t) implies PHP (s, t).

Proof. We proceed by contraposition. Assume there is some ¢-bit restriction p so that there exists a
Res(s) refutation 7 of Bin-PHP] , with size less than e a8+ 1120680

Call a bottleneck a record that has covering number > o

48(5) . (s—1)12tué(s—1) *
by dividing by s and w, it is always possible to find r m s-tuples of literals
(0, .. €5), ..., (£L ... £%) so that each s-tuple is a clause in the record and no pigeon appearing
in the ith s-tuple also appears in the jth s-tuple (when ¢ = 7). This important independence condition
plays a key role. Now consider a random restriction that, for each pigeon, picks uniformly at random s
bit positions and sets these to 0 or 1 with equal probability. The probability that the :th of the r s-tuples
survives the restriction is maximised when each variable among the s describes a different pigeon (by

Lemma 10) and is therefore bound above by
s _
(-5
25us

25 _ 1\ 180 stu€-DFT 95 _ 1\ €@ snta€G-DT17s)
1= 25us =\1- 25us

In such a record,

whereupon
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25 _1)n n
which is < 1/ e45<3>(s!<232tu5<5) < 1/ea8G)+1a2tu€) . Supposing therefore that there are fewer than
¢ O 20 E @ bottlenecks, one can deduce a random restriction that kills all bottlenecks. What re-
mains after doing this is a Res(s) refutation of some Bin-PHP'[,, where o is a s + t-bit restriction,
which moreover has covering number < =1y Butif the remaining Res(s) refutation is of

n
480) . (s—1)12tus
size < e48()+1s120u€() then, from Lemma 1, it would give a Res(s — 1) refutation of size

n 9 n 1
< 24‘5(3)4(3—1)!2tu£(3_1) . €4£(S)+1;<2tu§(5> — 64‘5(3)4(3—1)!2tu§(s_1) (ln2+4su5+1)

2n

s s—1 s s—1 s)—s s s—1
< e480) (s—n)12tul(5=1) o 0 af(8) (s—1)12tH1uE(5 =) o a8(5) =5 (s—1)r2s Tt us( )’

since 4° > 25!, which equals e+~ F (-1t in contradiction to the inductive hypothesis.
O

Theorem 4. Fix A\, n > 0. Any refutation of Bin-PHP}" in Res(\/ilogﬁ%A n) is of size 20(n' ™4,

Proof. First, let us claim that PHP (/2 log%%A n, 0) holds (and this would hold also at A = 0). Applying

Theorem 3 gives £ such that @ < logn. Noting % < f(f; D ,

Now let us look at the bound we obtain by plugging in to e TEOFLTE®) gt 5 = \/ﬁlogﬁ%A n and
t = 0. We recall £(s) = ©(s2). It follows, since A > 0, that each of 46()+1 ! and log®(®) n is o(n#).
The result follows. 0

the claim follows.

4.1 The treelike case

Concerning the Pigeonhole Principle, we can prove that the relationship between PHP and Bin-PHP
is different for treelike Resolution from general Resolution. In particular, for very weak Pigeonhole
Principles, we know the binary encoding is harder to refute in general Resolution; whereas for treelike
Resolution it is the unary encoding which is the harder.

Theorem 5. The treelike Resolution complexity of Bin-PHP}" is 20(n).

Proof. For the lower bound, one can follow the proof of Lemma 9 with ¢ = 0 and finds n free choices
on each branch of the tree. Following the method of Riis [30], we uncover a subtree of the decision tree
of size 2™.

For an upper bound of 22" we pursue the following strategy. First we choose some n + 1 pigeons
to question. We then question all of them on their first bit and separate these into two sets 77 and F}
according to whether this was answered true or false. If n is a power of 2, choose the larger of these
two sets (if they are the same size then choose either). If n is not a power of two, the matter is mildly
complicated, and one must look at how many holes are available with the first bit set to 1, say hl: versus
0, say h{. At least one of |T}| > hi or |F}| > hY must hold and one can choose between 7} and I}
correspondingly. Now question the second bit, producing two sets 75 and F5, and iterate this argument.
We will reach a contradiction in log n iteration sinxe we always choose a set of masimal size. The depth
of our tree is bound above by n + § + % + - - < 2n and the result follows. O

S Contrasting unary and binary encodings

5.1 Binary encodings of principles involving total comparison

We will now argue that the proof complexity in Resolution of principles involving total comparison will
not increase significantly (by more than a polynomial factor) when shifting from the unary encoding to
the binary encoding. Total comparison is here indicated by the axioms v; ; @ v;;, where @ indicates
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XOR, for each i # j. It follows that it does not make sense to consider the binary encoding of such
principles in the search for strong lower bounds. Examples of natural principles involving total compar-
ison include the totally ordered variant of the Ordering Principle (known to be polynomially refutable
in Resolution [14]) as well as all of its unary relativisations (which can be exponentially hard for any
Res(s) [17]).

Let TC-Prin be some Il first-order principle involving relations of arity no more than 2. Let n €
N and discover TC-Prin(n) with variables v; j, for i, j € [n], of arity 2, including axioms of total
comparison: v; j @ vj;, for each ¢ # j. There may additionally be unary variables, of the form u;, for
i € [n], but no further variables of other arity. Let Un-TC-Prin(n) have axioms v; 1 V ... V v; 5, for
each i € [n] (for the Ordering Principle this would most naturally correspond to the variant stating a
finite total order has a maximal element). To make our translation to the binary encoding, we tacitly
assume n is a power or 2. When this is not the case, we need clauses forbidding certain evaluations,
and we defer this treatment to Section 6. Let Bin-TC-Prin(n) have corresponding variables w; ¢ for
i € [n],£ € [logn|, where v; ; from the unary encoding semantically corresponds to the conjunction

a1 Qlog n
(Wit A Aw;oe, ), where

ap | wip ifap,=1
“p Wip if ap = 0
with ay - - ajog, being the binary representation of j. The unary variables stay as they are. From
this, the axioms of Bin-TC-Prin(n), including total comparison, can be canonically calculated from the
corresponding axioms of Un-TC-Prin(n) as explained in Section 6 in Defintion 4. Note that the large

disjunctive clauses of Un-TC-Prin(n), that encode the existence of the witness, disappear completely in
Bin-TC-Prin(n).

w,

Lemma 11. Suppose there is a Resolution refutation of Un-TC-Prin(n) of size S(n). Then there is a
Resolution refutation of Bin-TC-Prin(n) of size at most n? - S(n).

Proof. Take a decision DAG 7 for Un-TC-Prin(n) and consider the point at which some variable v; ;
is questioned. Each node in 7 will be expanded to a small tree in 7/, which will be a decision DAG
for Bin-TC-Prin(n). The question “v; ;7 in 7 will become a sequence of 2 logn questions on variables
Wi s+« Wilogn, Wj,1s -+ - s Wjlogn» lVing rise to a small tree of size 92logn — 2 questions in 7’. Owing
to total comparison, many of the branches of this mini-tree must end in contradiction. Indeed, many of
their leaves would imply the impossible —v; ; A —v; ;, while precisely one would imply the impossible
v; ; A\ vj; (see Figure 5.1 for an example). Those that don’t will always have a sub-branch labelled by

al QAlogn
(Wit A Aw;ee,), where

wap . { wm, if ap =1

Lp Wip if ap = 0
. . . . . blog n

with a - - - ajg , being the binary representation of j; or (w?}1 Ao Aw j,ll j’gn), where
N R ifb, =1
) wy,  ifby =0

with by - - - biog,, being the binary representation of ¢. By forgetting information along these branches
and unifying branches with the same labels of their sub-branches, we are left with precisely these two
outcomes, corresponding to “v; ;” and “~w; ;” (which is “v;;”). Thus, 7 gives rise to 7’ of size n?- S(n)
and the result follows. 0
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/wz_g\ /wlz\
w31 w31 w31 w31
w3 \wv 2 w3 -7/ \m 2 w3 )/ \w> ) w3 7/ \ww 9
#/ \# B/ \# #/ \# B/ \# #/ \# B/ \# A/ \A #/ \A

Figure 1: Example converting the question v 3? from a Resolution refutation of Un-TC-Prin(n) to a
small tree in a refutation of Bin-TC-Prin(n). The variables wy 1, w2 2, w31, w3 2 are questioned in order.
The left-hand and right-hand branches correspond to false and true, respectively. Note that 2 and 3 are
10 and 11 in binary, respectively. Thus, vo 3 is equivalent to w1 A wa 2 (labelled A at the leaves) and
v3,2 18 equivalent to w31 A w32 (labelled B at the leaves). The remaining leaves contradict the total
comparison clauses (including one that would be labelled both A and B).

5.2 Binary encodings of principles versus their Unary functional encodings

Recall the unary functional encoding of a combinatorial principle C, denoted Un-Fun-C(n), replaces the
big clauses from Un-C(n), of the form v; 1 V... Vv; p, With v; 1 +. ..+ v; ,, = 1, where addition is made
on the natural numbers. This is equivalent to augmenting the axioms —w; j V —; i, for j # k € [n].

Lemma 12. Suppose there is a Resolution refutation of Bin-C(n) of size S(n). Then there is a Resolution
refutation of Un-Fun-C(n) of size at most n* - S(n).

Proof. Take a decision DAG 7’ for Bin-C(n), where w.l.o.g. n is even, and consider the point at which
some variable v; ; is questioned. Each node in 7’ will be expanded to a small tree in 7, which will
be a decision DAG for Un-Fun-C(n). The question “v/ .?” in 7 will become a sequence of questions

7’7] .
Vi1,...,V;n Where we stop the small tree when one of these is answered true, which must eventually
happen. Suppose v; j; is true. If the jth bit of k is 1 we ask now all v;p,,...,v;4,, where by, ..., b%
2

are precisely the numbers in [n] whose jth bit is 0. All of these must be false. Likewise, if the jth bit of
kis O we ask all v;p,,...,V;p,, Where by, ..., b% are precisely the numbers whose jth bit is 1. All of
2

these must be false. We now unify the branches on these two possibilities, forgetting any intermediate
information. (To give an example, suppose j = 2. Then the two outcomes are —v; 1 A=v; 3A. . A= 1
and —v; 2 A =v;4 A ... A =; 4.) Thus, 7’ gives rise to 7 of size n? - S(n) and the result follows. ]
5.3 The Ordering Principle in binary
Recall the Ordering Principle specified in 115 first-order logic

Va,y, 23w ~R(z,z) A (R(x,y) A R(y, 2) = R(x,2)) A R(z,w)
with propositional translation to the binary encoding of witnesses, Bin-OP,,, as follows.

U z € [n]
VUpyVUy. Vs, x,y,z € [n]
\/ie[logn] wi,_iai VVga T,0€ [TL]
where
R B
1, j =

and aj . .. ajog p, is the binary representation of a.

Lemma 13. Bin-OP,, has refutations in Resolution of polynomial size.

17



Proof. We follow the well-known proof for the unary version of the Ordering Principle, from [32].
Consider the domain to be [n] = {1,...,n}. At the ith stage of the decision DAG we will find a
maximal element, ordered by R, among [i] = {1,...,4}. That is, we will have a record of the special
form
Vit N oAV i1 ANVj01 N ANV

for some j € [i]. The base case ¢ = 1 is trivial. Let us explain the inductive step. From the dis-
played record above we ask the question v;; 17 If v;;,1 is true, then ask the sequence of questions
Vit1,1, - - - Vi+1,, all of which must be false by transitivity. Now, by forgetting information, we uncover
anew record of the special form. Suppose now v; ;1 is false. Then we equally have a new record again
in the special form. Let us consider the size of our decision tree so far. There are n? nodes corresponding
to special records and navigating between special records involves a path of length n, so we have a DAG
of size n>. Finally, at ¢ = n, we have a record of the form

Vit N ANV i1 ANVjja N . AVUjn.

Now we expand a tree questioning the sequence wj 1, . .., W; log n, and discover each leaf labels a con-
tradiction of the clauses of the final type. We have now added n - 2!°™ nodes, so our final DAG is of
size at most n3 + n2. O

Theorem 6. Bin-OP,, has poly size resolution refutations in Res(1).

Bin-rLOP,, is a family of contradictions based on a variant of the Ordering Principle, which is
important as it exponentially separates read-once Resolution from Resolution (see [2]).

Corollary 3. Bin-rLOP,, has poly size resolution refutations in Res(% loglogn).

6 Binary versus unary encodings in general

Let C, be some combinatorial principle expressible as a first-order Ils-formula F' of the form
ViTwo(Z, W) where (Z, ) is a quantifier-free formula built on a family of relations . Following
Riis [30] we restrict to the class of such formulas having no finite model.

Let Un-C,, be the standard unary (see Riis in [30]) CNF propositional encoding of F'. For each set of
first-order variables @ := {x1, ...,z } of (first order) variables, we consider the propositional variables
Vayy i oot (which we abbreviate as vz) whose semantics are to capture at once the value of variables
in @ if they appear in some relation in . For easiness of description we restrict to the case where F
is of the form VZ3wp (¥, w), i.e. W is a single variable w. Hence the propositional variables of Un-C,
are of the type vz for @ C Z (type 1 variables) and/or of the type vz, for w € W (type 2 variables)
and which we denote by simply v,,, since each existential variable in ' depends always on all universal
variables.Notice that we consider the case of F' = VZ3wp(Z, w), since the generalisation to higher arity
is clear as each witness w € w may be treated individually.

Definition 4. (Canonical form of Bin-C,,) Let C, be a combinatorial principle expressible as a first-
order formula YZ3we(Z, w) with no finite models. Let Un-C, be its unary propositional encoding. Let
2=t < n < 2" € N(r = [logn]). The binary encoding Bin-C,, of C is defined as follows:

The variables of Bin-C,, are defined from variables of Un-C,, as follows:

1. For each variable of type 1 vg, for @ C T, we use a variable vz, for a C Z, and

2. For each variable of type 2 v, we have r variables w1, . . . w,, where we use the convention that
if 21 ...z, is the binary representation of w, then

Zj:{wj zj=1



so that vy, can be represented using binary variables by the clause (w%_zl V.. VwlT)

The clauses of Bin-C,, are defined form the clauses of Un-C,, as follows:

1. If C € Un-C,, contains only variables of type 1, Vg oo Vg, hence C'is mapped as follows
k ko — k ko —
C:= \/j1:1 Y, v \/j2:1 vg \/j1:1 Y5, v \/j2:1 Ve
2. If C € Un-C, contains type 1 and type 2 variables, it is mapped as follows:

k ko — 1—2z; k ko —
Ci=vyVViLivg VV2 T = (Viep @ ) VVIL v vV T
_ k ko — i k ko -

C =TV VL 0 VR T o (Viee! ) v VL vs V Vi 7

where ¢, d; C T and where z1, . . ., 2, is the binary representation of w.

3. Ifn # 27, then, for eachn < a < 2" we need clauses

l—a1 l1—a
w1 V... Vw, ™

where ay, . .., a, is the binary representation of a.

Getting short proofs for the binary version Bin-C,, in Res(logn) form short Res(1) proofs of the
unary version Un-C,, is possible also in the general case.

Lemma 14. Let C,, be a combinatorial principle expressible as a first-order formula VT30 (&, W) with
no finite models. Let Un-C,, and Bin-C,, be respectively the unary and binary propositional encoding.
Letn € N. If there is a size S refutation for Un-C,, in Res(1), then there is a size S refutation for Bin-C,
in Res(logn)

Proof. (Sketch) Where the decision DAG for Un-C, questions some variable vg 5, the decision branching
L _ 1— :

log n-program questions instead (w%lz V.oV Wa ) ozgl‘;f ") where the out-edge marked true in the former

becomes false in the latter, and vice versa. What results is indeed a decision branching log n-program

for Bin-C,,, and the result follows. ]

As one can easily notice reading Subsection 1.1.2, the binary version Bin-PHP of the Pigeonhole
principle we displayed there, is different from the one we would get applying the canonical transforma-
tion of Definition 6. But we can easily and efficiently move between these versions in Resolution. We
leave the proof to the reader.

Lemma 15. The two versions of the binary Pigeonhole Principle (Bin-PHP and the one arising from
Definition 6 to PHP) are linearly equivalent in Resolution.
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