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Abstract. We review some semantic and syntactic complexity classes
that were introduced to better understand the relationship between com-
plexity classes P and NP. We also define several new complexity classes,
some of which are associated with Mersenne numbers, and show their lo-
cation in the complexity hierarchy.

1 Introduction

The study of non-deterministic polynomial-time Turing machines (NPTM) was
initiated in [1] with the first NP-Complete problem. This problem asks if a
Boolean expression in conjunctive normal form (CNF) has a satisfying truth
assignment; and it is referred to as CNF-SAT. It was also shown that CNF-SAT
is polynomial time Turing reducible to the problem of finding a tautology for
a Boolean expression in disjunctive normal form (DNF), where this problem is
CoNP-Complete. Then a whole array of other problems were shown to be NP-
Complete in [4] via polynomial time many-one reductions to CNF satisfiability.
The polynomial-time hierarchy, PH, was introduced in [8] as a hierarchy of
complexity classes that are derived from complexity classes NP and CoNP
when used as oracles. A more elaborate list of NP-Complete problems were
presented in [32].

Researchers also examined versions of these NP-Complete problems with dif-
ferent constraints. For example, probabilistic polynomial time Turing machines
and the corresponding PP-Complete problem Majority-SAT, which asks if a
Boolean expression in CNF with n variables have more than 2n−1 many satisfy-
ing truth assignments, was independently introduced in [6] and [10]. Complexity
class C=P was also introduced in [6], where the canonical C=P-Complete prob-
lem asks if a Boolean expression in CNF with n variables have exactly 2n−1
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many satisfying truth assignments, and showed that C=P ⊆ PP. The complex-
ity class #P was introduced in [11], where it’s complete problem #SAT asks to
find the total number of satisfying truth assignments for a Boolean expression in
CNF. It was also proven in [11] that calculating the permanent of a 0-1 matrix
is polynomial time Turing reducible to calculating the total number of accepting
paths of a NPTM. It was shown in [29] that complexity classes #P and PP
are equivalent under polynomial time Turing reductions, that is PPP = P#P[1].
Later on, the problems that ask if a Boolean expression in CNF has a unique sat-
isfying truth assignment, and odd number of satisfying truth assignments were
examined in [12] and [13], respectively. The complexity classes derived from these
studies in [12] and [13] are US and ⊕P, respectively. It was proven in [18] that
PH ⊆ BPP⊕P ⊆ PPP, where BPP is the bounded-error probabilistic poly-
nomial time as defined in [10]. Some other intriguing complexity classes can be
found in [21] and [25].

The study of categorical NPTM was initiated in [9] with the complexity class
UP. Other widely used terms instead of categorical are bounded, restricted
and semantic. These complexity classes are not believed to possess complete
problems, but they rather have promise problems. The promise problem for UP
is called Unambiguous-SAT and it asks the question that when promised to
have a unique satisfying truth assignment or none, does the Boolean expression
in CNF have a unique satisfying truth assignment? It was shown in [16] that
NP ⊆ RPUnambiguous−SAT , where RP is the randomized polynomial time as
defined in [10]. The semantic version of C=P was defined in [26] as Half P.
Another notable semantic complexity class is EP, which was defined in [27]. An
EP machine has an acceptance criterion of power of two and a rejection criterion
of zero. It was shown in [27] that the syntactic version of EP, called ES, equals
C=P. Various other interesting semantic complexity classes were introduced in
[20] and [25].

In the next section, we review several reducibilities and establish what it
means to be a semantic and syntactic complexity class. We also provide var-
ious examples of these complexity classes along with the proven relationships
among them. In the section that follows, we define three new complexity classes,
namely the semantic complexity classes MNP and F=P and the syntactic com-
plexity class MNS. The complexity classes MNP and MNS are associated with
Mersenne numbers whereas the complexity class F=P is closely related to the
complexity class C=P. Then in the subsequent sections, we examine the rela-
tionship between these new complexity classes and already known ones. More
precisely, we prove the following:

· FewP ⊆ MNP

· US ⊆ MNS

· PP ⊆ NPMNS

· ⊕P ⊆ NPMNS

· MNP ⊆ ⊕P

· C=P ⊆ MNS and MNS ⊆ C=P which implies that MNS = C=P

· MNP ∩ EP = UP



An overview of some semantic and syntactic complexity classes 3

2 Definitions and Preliminaries

We are interested in polynomial time Turing reducibility (also called Cook re-
ducibility), polynomial time Post reducibility (also called truth table reducibil-
ity), polynomial time conjunctive and disjunctive truth table reducibilities and
polynomial time many-one reducibility (also called Karp reducibility) as defined
below.

Definition 1. Let A and B be classes of languages.

1. A is Turing reducible to B in polynomial time, (A≤TurB), such that
A ∈ PB .

2. A is Post reducible toB in polynomial time, (A≤PostB), such that (∃f ∈ FP)
(∃C ∈ P) (∀x) [(∃c)(∃y1, y2, . . . , yc) [f(x) = y1#y2# . . .#yc#] ∧ (x ∈ A↔
x#XB(y1)XB(y2) . . . XB(yc) ∈ C)].

3. A is conjunctive truth table reducible to B in polynomial time, (A≤dttB),
such that (∃f ∈ FP) (∀x) [(∃c)(∃y1, y2, . . . , yC) [f(x) = y1#y2# . . .#yC#]
∧ (x ∈ A↔ y1 ∈ B ∧ y2 ∈ B ∧ · · · ∧ yc ∈ B)].

4. A is disjunctive truth table reducible to B in polynomial time, (A≤dttB),
such that (∃f ∈ FP) (∀x) [(∃c)(∃y1, y2, . . . , yC) [f(x) = y1#y2# . . .#yC#]
∧ (x ∈ A↔ y1 ∈ B ∨ y2 ∈ B ∨ · · · ∨ yc ∈ B)].

5. A is many-one reducible to B in polynomial time, (A≤mB), such that
(∃f ∈ FP) (∀x)[x ∈ A↔ f(x) ∈ B].

The following implications hold for all class of languages A and B:

(A≤mB) ↗↘
(A≤cttB)
(A≤dttB)

↘
↗ (A≤PostB) → (A≤TurB)

Another important reduction is the parsimonious reduction between func-
tions that preserve the number of solutions.

Definition 2. Let F and G be any functions.

1. F is parsimonious reducible to G in polynomial time, (F≤parG), such that
(∃h ∈ FP) (∀x)[F (x) = G(h(x))], where h is a total function.

More detailed explanations about different types of reductions can be found
in [7] and more peculiar ones are discussed in [28]. It is well known that if a
complexity class is closed under some reduction then a class reduced to it under
that reduction is a subset of it.

One way to generalize complexity classes is through leaf languages, where
language L ⊆ {0, 1}∗. Then assume that leaf languages LA and LR have the
property that LA ∩ LR = ∅, where LA is the acceptance criterion and LR is the
rejectance criterion of a leaf language class. [23]

Definition 3. A given complexity class is classified as a syntactic complexity
class if and only if it has the property that LA ∪ LR = {0, 1}∗.
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Definition 4. A given complexity class is classified as a semantic complexity
class if and only if it has the property that LA ∪ LR 6= {0, 1}∗.

Definition 5. A language L is in semantic complexity class UP, as defined in
[9], if there exist a polynomial p and a polynomial-time predicate R such that,
for each x,

x ∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 1
x 6∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 0

Definition 6. A language L is in semantic complexity class UPO(k)
, as defined

in [5], if there exist a constant k > 1, a polynomial p and a polynomial-time
predicate R such that, for each x,

x ∈ L⇒ 1 ≤ ||{y| |y| = p(|x|) ∧R(x, y)}|| ≤ k
x 6∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 0

Definition 7. A language L is in semantic complexity class FewP, as defined
in [14], if there exist polynomials p and q and a polynomial-time predicate R
such that, for each x,

x ∈ L⇒ 1 ≤ ||{y| |y| = p(|x|) ∧R(x, y)}|| ≤ q(x)
x 6∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 0

Definition 8. A language L is in semantic complexity class EP, as defined in
[27], if there exist a polynomial p and a polynomial-time predicate R such that,
for each x,

x ∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 2t, where t ∈ N0 = {0, 1, 2, ...}
x 6∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 0

Definition 9. A language L is in semantic complexity class Half P , as defined
in [26], if there exist a polynomial p and a polynomial-time predicate R such that,
for each x,

x ∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 2p(|x|)−1

x 6∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 0

It has been shown that P ⊆ UP ⊆ UPO(k)
⊆ FewP ⊆ EP ⊆ NP and that

P ⊆ Half P ⊆ EP ⊆ NP.

Definition 10. A language L is in syntactic complexity class C=P, as defined
in [6], if there exist a polynomial p and a polynomial-time predicate R such that,
for each x,

x ∈ L⇔ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 2p(|x|)−1

An alternate definition of C=P was provided in [17], such that a language
L is in C=P if there exist a f ∈ FP such that x ∈ L if and only if the total
number of accepting paths equals f(x), for every x ∈ Σ∗.

Definition 11. A language L is in syntactic complexity class ES, as defined in
[27], if there exist a polynomial p and a polynomial-time predicate R such that,
for each x,

x ∈ L⇔ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 2t, where t ∈ N0 = {0, 1, 2, ...}
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Definition 12. A language L is in syntactic complexity class PP, as defined in
[6], if there exist a polynomial p and a polynomial-time predicate R such that,
for each x,

x ∈ L⇔ ||{y| |y| = p(|x|) ∧R(x, y)}|| > 2p(|x|)−1

Definition 13. Functional complexity class #P, as defined in [11], counts the
total number of accepting paths of a NPTM.

#P = {f |(∃ a NPTM M)(∀x) [f(x) = #acceptM (x)]}.

It was proven in [27, 6] that ES = C=P ⊆ PP and in [15] that
PPP = P#P[1].

Definition 14. A language L is in syntactic complexity class US, as defined in
[12], if there exist a polynomial p and a polynomial-time predicate R such that,
for each x,

x ∈ L⇔ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 1

Definition 15. A language L is in syntactic complexity class ⊕P, as defined in
[13], if there exist a polynomial p and a polynomial-time predicate R such that,
for each x,

x ∈ L⇔ ||{y| |y| = p(|x|) ∧R(x, y)}|| 6≡ 0 (Mod 2)

Definition 16. A language L is in semantic complexity class RP, as defined in
[10], if there exist a polynomial p and a polynomial-time predicate R such that,
for each x,

x ∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| ≥ 2p(|x|)−1 + ε where 0 < ε < 2p(|x|)−1

x 6∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 0

Definition 17. A language L is in semantic complexity class BPP, as defined
in [10], if there exist a polynomial p and a polynomial-time predicate R such
that, for each x,

x ∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| ≥ 2p(|x|)−1 + ε where 0 < ε < 2p(|x|)−1

x 6∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| ≤ 2p(|x|)−1 + ε where 0 < ε < 2p(|x|)−1

It was shown that CoNP ⊆ US ⊆ C=P and that Half P ⊆ RP ⊆ BPP
⊆ PP. It has been proven in [16] that NP ⊆ RP⊕P.

Definition 18. Polynomial Hierarchy, as defined in [2], for i ≥ 0 is
PH =

⋃
iΣ

p
i ,

Σp
i+1 = NPΣp

i ,

Πp
i+1 = CoNPΣp

i ,

∆p
i+1 = PΣp

i ,
where Σp

0 = Πp
0 = ∆p

0 = ∆p
1 = P, Σp

1 = NP, Πp
1 = CoNP, and

∆p
2 = PNP = PCoNP.

It has been proven in [18] that PH ⊆ BPP⊕P ⊆ P#P.
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Definition 19. Functional complexity class GapP, as defined in [25], is the
difference between total number of accepting and rejecting paths of a NPTM.

GapP = {f |(∃ a NPTM M)(∀x) [f(x) = #acceptM (x)−#rejectM (x)]}.

It can be easily seen that #P ⊆ GapP. Some complexity classes can also
be defined using GapP functions. For example, language L is in C=P if there
exist a f ∈ GapP such that x ∈ L if and only if f(x) = 0 for every x ∈ Σ∗.

Definition 20. A language L is in semantic complexity class SPP, as defined
in [25], if there exist a GapP function f such that, for each x

x ∈ L⇒ f(x) = 2
x 6∈ L⇒ f(x) = 0

The acceptance criterion is 2 instead of 1 because if the total number of
computation paths are even then the difference between the total number of
accepting and rejecting paths cannot be an odd number. SPP is the smallest
complexity class that can be defined using GapP functions. It was shown in [25]
that UP ⊆ SPP, SPP ⊆ ⊕P. It was also proven in [25] that SPPSPP = SPP,
C=PSPP = SPP and PPSPP = PP.

Definition 21. A language L is in semantic complexity class WPP, as defined
in [25], if there exist a GapP function f and a FP function g such that, for each
x

x ∈ L⇒ f(x) = g(x)
x 6∈ L⇒ f(x) = 0

It was shown in [25] that SPP ⊆WPP ⊆ C=P.

3 Even more complexity classes

3.1 Mersenne Number Satisfiability

Mersenne numbers are named after Marin Mersenne whom began the study of
these numbers in the 17th century. A Mersenne number is a positive integer that
is one less than a power of two, Mn = 2n − 1 and consists of all 1 bits in its
binary representation. It is well known that if Mn is a prime number then n is a
prime number as well. The study of Mersenne primes has been an alluring field
with the emergence of powerful computers, which can do calculations that would
be very-hard for humans to do by hand. There have been 50 Mersenne primes
discovered to date and the largest known Mersenne prime is 277,232,917 − 1.

Definition 22. A language L is in syntactic complexity class MNS if there
exist polynomial p and a polynomial-time predicate R such that, for each x,

x ∈ L⇔ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 2t − 1, where t ∈ N>0 = {1, 2, 3, ...}

Definition 23. Mersenne-Number-SAT
Given a Boolean expression in CNF, is it true that it has Mersenne number

of satisfying truth assignments?
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Theorem 1. Mersenne-Number-SAT is MNS-complete

Proof. Mersenne-Number-SAT is clearly in MNS given the above definition.
Completeness follows from the parsimonious reductions in [11] of any problem
in #P to #SAT.ut

Definition 24. A language L is in semantic complexity class MNP if there
exist polynomial p and a polynomial-time predicate R such that, for each x,

x ∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 2t − 1, where t ∈ N>0 = {1, 2, 3, ...}
x 6∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 0

Definition 25. Promise-Mersenne-Number-SAT
Given a Boolean expression in CNF that is promised to have Mersenne num-

ber of satisfying truth assignments or none, does it have Mersenne number of
satisfying truth assignments?

We obtain the following inclusions just from the above definitions:
· MNP ⊆ MNS
· MNP ⊆ NP
· MNS ⊆ PPP = P#P[1]

3.2 A long lost semantic relative of C=P

A perceptive reader would have noted that two out of the three alternate def-
initions of C=P that employ #P functions have their own semantic versions,
namely Half P and EP. And by definition Half P ⊆ EP. It is not known
whether they are equal, although their syntactic versions have been proven to
be equal in [27]. We next define the semantic version of the third alternate defi-
nition of C=P that also employ #P functions.

Definition 26. A language L is in semantic complexity class F=P if there ex-
ist a polynomial p, a polynomial-time predicate R and a polynomial time com-
putable function f , such that, for each x,

x ∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = f(x)
x 6∈ L⇒ ||{y| |y| = p(|x|) ∧R(x, y)}|| = 0

It is not hard to see that we would have still obtained the same complexity
class if we had changed the GapP function in the definition of WPP to a # P
function.

Definition 27. Promise-Exact-Number-SAT
Given a Boolean expression in CNF that is promised to have f(x) many

satisfying truth assignments or none, does it have f(x) many satisfying truth
assignments?

We obtain the following inclusions just from the above definitions:
· FewP ⊆ F=P
· F=P ⊆ C=P
· F=P ⊆ WPP
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4 Relationship with complexity class FewP

Definition 28. Non-gappy [27]
Let S be any set of positive integers. Then S is non-gappy if S 6= 0 and

(∃k > 0)(∀n ∈ S)(∃m ∈ S)[m > n ∧m/n ≤ k].

Definition 29. P-printable [31]
Let L be any subset of Σ∗. Then L is P-printable if there is a deterministic

Turing machine M that runs in polynomial-time such that, for every nonnegative
integer n, M(0n) prints out the set {x|x ∈ L ∧ |x| ≤ n}.

Furthermore, Theorem 3.4 in [27] states that, “Let T be any set of positive
integers such that T has a non-gappy, P-printable subset. Then FewP is con-
tained in any complexity class with the acceptance criterion of T and rejectance
criterion of zero.”

Theorem 2. FewP ⊆ MNP

Proof. The acceptance criterion of MNP is clearly Non-gappy and P-printable
according to the above definitions. Then given Theorem 3.4 in [27], FewP is
contained in MNP.

Therefore, FewP ⊆ MNP.ut

5 Relationship with complexity class US

Theorem 3. US ⊆ MNS

Proof. Suppose we have a US machine M . We construct machine M ′, that
originally has 2n many paths. Then on each one of it’s accepting paths, machine
M ′ non-deterministically decides to accept on 2n−1 many paths. Then we claim
that machine M ′ will have a Mersenne number of accepting paths if and only if
machine M has a single accepting path. To observe that this is true, note that
if the number of accepting paths of the original machine M is k, then k must

satisfy k(2n − 1) = 2m − 1, where m is a positive integer. Thus k =
2m − 1

2n − 1
.

The general solution of this equation for k ∈ N>0 is m =
2iπk

ln 2
, where i is an

imaginary number. The first two values of k that make m an integer (and in fact
a real number) are 1 and 2n + 1. Since k ∈ {1, ..., 2n}, this means that M ′ will
have a Mersenne number of accepting paths if and only if k = 1. As a result,
machine M ′ is a MNS machine.

Therefore, US ⊆ MNS.ut

We should note that there are two well known CoNP-complete problems,
namely the CNF contradiction and the DNF tautology, where the former asks
if no truth assignment satisfies a Boolean expression in CNF and the latter asks
if all possible truth assignments satisfies a Boolean expression in DNF. When
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one was shown to be CoNP-complete, the other was easily shown to be CoNP-
complete by simply reversing the accepting and rejecting states of a NPTM.
Then by employing the same methodology, we can easily show that Maximum-
Mersenne-Number SAT, which asks if a Boolean expression in DNF with n vari-
ables has 2n − 1 many satisfying truth assignments, is US-complete. Note that
finding a unique satisfying truth assignment for a Boolean expression in DNF
and finding a maximum Mersenne number of satisfying truth assignments for a
Boolean expression in CNF are both computable in polynomial time.

6 Relationship with complexity class PP

In order to prove the following result using a NPTM equipped with a MNS
oracle to recognize Majority-SAT, we must overcome a technical difficulty that
occurs if the input formula is unsatisfiable. We finesse this problem by initially
running a standard NPTM for SAT. And we only begin a new simulation regime
and make queries on accepting paths. In this way, we will never make queries if
the input is unsatisfiable and we will reject outright.

Theorem 4. PP ⊆ NPMNS

Proof. We show that a NP machine with access to a MNS oracle solves the
PP-complete problem Majority-SAT.

Assume that we have an NP machine M so that the number of satisfying
truth assignments to Boolean expression x is equal to the number of accepting
paths of M on input x. Also, assume that x has n variables and thus M(x) has 2n

many paths. Then we construct an NP machine M ′ with access to oracle MNS.
Initially, machine M ′ simulates machine M on input x. If x is unsatisfiable then
all paths of M ′ will reject. On the other hand, if x has at least one satisfying
truth assignment then M ′ will reach a state where M would have accepted. At
this point, M ′ enters a query state to determine if M would have accepted on
more than half of the paths. Then M ′ non-deterministically selects a number
k from 0 to 2n−1 − 1. After that, for each choice of k, we construct another
machine M ′′ that does the following. It non-deterministically chooses to accept
on 2n − 1 + k many paths and simulates M on the other paths. Then we query
the MNS oracle with the Boolean expression f(M ′′, x) and M ′ accepts if the
query answers Y ES.

Observation 1: The fact that we entered the query states implies that the
Boolean expression x has at least one satisfying truth assignment.

Observation 2: Let M have p many accepting paths on input x. Then M ′′

has at most 2n − 1 + k + p many accepting paths by construction. Since p > 0
by construction as well, then M ′′ has at least 2n many accepting paths.

Observation 3: M ′′ has less than 2n+2 − 1 many accepting paths for any
choice of k. The maximum number of accepting paths that M ′′ can have is
when k = 2n−1− 1 and the original input formula is a tautology. This results in
(2n−1) + (2n−1−1) + (2n) many accepting paths, which equals 2n+1 + 2n−1−2
and is clearly less than 2n+2 − 1.
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Observation 4: If p ≤ 2n−1 then M ′′ accepts on at most 2n+1 − 2 paths. If
p > 2n−1 then for some choice of k, M ′′ will accept on exactly 2n+1 − 1 many
paths.

From the observations above, the number of accepting paths of M ′′ lies be-
tween 2n − 1 and 2n+2 − 1. The only Mersenne number of accepting paths that
M ′′ can have is 2n+1− 1, which is achieved when p > 2n−1. Thus if one of these
queries gives the answer Y ES then x is in Majority-SAT.

Therefore, PP ⊆ NPMNS.ut

Lemma 1. PPP ⊆ PNPMNS

It follows from Theorem 4.

Lemma 2. PH ⊆ PNPMNS

It follows from Theorem 4 and Toda’s Theorem [18], PH ⊆ PPP.

7 Relationship with complexity class ⊕P

Theorem 5. ⊕P ⊆ NPMNS

Proof. We show that a NP machine with access to a MNS oracle solves the
⊕P-complete problem Parity-SAT.

Assume that we have an NP machine M so that the number of satisfying
truth assignments to the Boolean expression x is equal to the number of accepting
paths of M on input x. Also, assume that x has n variables and thus M(x) has 2n

many paths. Then we construct an NP machine M ′ with access to oracle MNS
that on input x behaves as follows: It first non-deterministically selects an even
number k, where 0 ≤ k < 2n. Then we construct a machine M ′′ that does the
following. It non-deterministically chooses to accept on k paths and simulates M
on the other path. Then we query the MNS oracle with the Boolean expression
f(M ′′, x) and M ′ accepts if the query answers Y ES.

If M accepts on an even number of paths, then clearly all queries answer no
and M ′ rejects. If M accepts on some odd number of paths, say j, then there
exists an even k, where 0 ≤ k < 2n, such that k + j = (2i − 1) for some i, and
thus M ′′ accepts on Mersenne number of paths. As a result, machine M ′ will
accept on this query.

Therefore, ⊕P ⊆ NPMNS.ut

Lemma 3. BPP⊕P ⊆ BPPNPMNS

It follows from Theorem 5.

Lemma 4. PH ⊆ BPPNPMNS

It follows from Theorem 5 and Toda’s Theorem [18], which states that
PH ⊆ BPP⊕P.

However, clearly Lemma 2 is a stronger result than Lemma 4 since

PNPMNS ⊆ BPPNPMNS
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Theorem 6. MNP ⊆ ⊕P

Proof. We are given a machine M that decides some MNP promise problem pp.
If input x should be accepted, then machine M accepts on a Mersenne number
of paths. If input x should be rejected, then machine M has no accepting paths.
Clearly, machine M satisfies the criterion for a ⊕P machine, since all Mersenne
numbers are odd. Therefore, promise problem pp is in ⊕P.ut

8 Relationship with complexity class C=P

It is easy to see that we can revise Theorem 4 and achieve C=P ⊆ NPMNS.
However, we can actually do much better.

Theorem 7. C=P ⊆ MNS

Proof. Suppose we have a C=P machine M . We design a MNS machine M ′

that accepts the same language as M . Assume for ease of presentation that on
input x our machine M has 2n+1 many total paths and thus accepts x if and
only if it accepts on exactly 2n many paths. We also assume without loss of
generality that n is sufficiently large. Then machine M ′ on input x immediately
accepts on 22n − 1 many paths and simulates M the following way: 1) For each
of M ’s rejecting states, it accepts and 2) For each of M ’s accepting states, it
accepts on 2n−1 many paths. We claim that M ′ accepts if and only if M accepts
on 2n many paths. We show this with the following three lemmas.

Lemma 5. If M accepts on 2n many paths, then M ′ accepts on Mersenne
number of paths.

If M accepts on 2n many paths then M ′ accepts on (22n − 1) + (2n ∗ (2n −
1))+(2n) many paths. This expression evaluates to 22n−1+22n−2n+2n, which
simplifies to 22n+1 − 1. Therefore, M ′ will accept since 22n+1 − 1 is a Mersenne
number.

Lemma 6. If M accepts on less than 2n many paths, then M ′ does not accept
on Mersenne number of paths.

Machine M ′ will accept on greater than 22n−1 many paths by construction,
since it also accepts on rejecting paths. Furthermore, M ′ will accept on less than
22n+1−1 many paths once again by construction. Thus the number of accepting
paths of M ′ will fall in between two consecutive Mersenne numbers. Therefore,
M ′ will reject.

Lemma 7. If M accepts on more than 2n many paths then M ′ does not accept
on Mersenne number of paths.

MachineM ′ will accept on greater than 22n+1−1 many paths by construction.
Then the maximum number of accepting paths is achieved for M ′ when M
accepts on 2n+1 many paths. In this case, M ′ will accept on (22n−1)+((2n+1)∗
(2n−1)) many paths once again by construction. This expression equals 22n+1+
22n− 2n+1− 1 which is less than 22n+2− 1. Thus the number of accepting paths
of M ′ will fall in between two consecutive Mersenne numbers. Therefore, M ′ will
reject.
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As shown by the previous three lemmas that the MNS machine M ′ accepts if
and only if the C=P machine M accepts.

Therefore, C=P ⊆ MNS.ut

Theorem 8. MNS ⊆ C=P

Proof. We provide a polynomial time disjunctive truth-table reduction from
Mersenne-number-SAT to a language in C=P. It is well-known that C=P is
closed under polynomial-time disjunctive truth table reductions, which was proven
in [30]. Assume that we have a MNS machine M that recognizes Mersenne-
number-SAT. Let x be an input with n variables. We next show the disjunctive
truth-table reduction to the canonical C=P-complete problem Equal-SAT. As-
sume that we have a polynomial time machine M ′ that carries out the reduction.
For each i ∈ {0, ..., n}, machine M ′ constructs a machine Mi that does the fol-
lowing. It immediately accepts on 2n − 2i many paths and rejects on 2i many
paths, and also simulates machine M . Then for each i, we query the Equal-
SAT oracle with the Boolean expression f(Mi, x) and M ′ accepts if any of these
queries answer Y ES.

Therefore, MNS ⊆ C=P .ut

Corollary 1. MNS = C=P
Immediate consequence of Theorems 7 and 8.

9 Conclusion

We introduced two new semantic complexity classes and one new syntactic com-
plexity class; and showed their location in the complexity hierarchy. It ended up
being the case that MNS actually equals C=P. However, a simple padding ar-
gument would have not yielded the result in Theorem 7, that is C=P ⊆MNS.
What our proof of Theorem 7 actually demonstrates is that given a Boolean
expression F in CNF with n variables, one can in polynomial time construct
F ′ with m variables so that the number of satisfying truth assignments to F ′

is guaranteed to lie between 2m−2 − 1 and 2m − 1. In fact, F ′ will have exactly
2m−1 − 1 satisfying truth assignments if and only if F was satisfied by exactly
half of its assignments.

On the other hand, the relationship between EP and MNP is not so clear
other than the fact that their intersection equals UP, that is EP ∩ MNP =
UP. Although, we can change the acceptance criterion of a MNS machine to
be some specific power of two using the methodology in Theorem 7, we cannot
necessarily do the same thing with the acceptance criterion of a MNP machine.
This is because we would also need to consider the rejection criterion of a MNP
machine and the result in Theorem 7 does not yield zero accepting paths when
the original machine has zero accepting paths. However, MNP can be viewed
as the analog of EP that is contained in ⊕P, which EP is not known to be. In
fact, a relativized world was shown in [27] such that ∃A,EPA 6⊆ ⊕PA.

Another interesting question arises with respect to the relationship between
F=P, and EP and MNP. There does not seem to be a straightforward proof



An overview of some semantic and syntactic complexity classes 13

to show any type of inclusion among them. However, it seems more likely that
both EP and MNP are contained in F=P. Also, is F=P contained in ⊕P just
like MNP; or does there exists a relativized world where F=P is not contained
in ⊕P, just like EP.

Finally, we would like to mention that we attempted to change the base
machine in Theorem 5 from NP to RP with no success. We also tried to derive
a result just like Theorem 7 between ⊕P and MNS, but once again we were
not able to do better than NPMNS. However, we do think strongly about the
possibility of ⊕P ⊆ RPMNS or even ⊕P ⊆ MNS.
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