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Given a Boolean function f : {−1, 1}n → {−1, 1}, define the Fourier distribution to be the distribution on subsets

of [n], where each S ⊆ [n] is sampled with probability f̂(S)2. The Fourier Entropy-Influence (FEI) conjecture of

Friedgut and Kalai [28] seeks to relate two fundamental measures associated with the Fourier distribution: does there

exist a universal constant C > 0 such that H(f̂2) ≤ C · Inf(f), where H(f̂2) is the Shannon entropy of the Fourier

distribution of f and Inf(f) is the total influence of f?

In this paper we present three new contributions towards the FEI conjecture:

(1) Our first contribution shows that H(f̂2) ≤ 2 · aUC⊕(f), where aUC⊕(f) is the average unambiguous parity-

certificate complexity of f . This improves upon several bounds shown by Chakraborty et al. [20]. We further

improve this bound for unambiguous DNFs. We also discuss how our work makes Mansour’s conjecture for

DNFs a natural next step towards resolution of the FEI conjecture.

(2) We next consider the weaker Fourier Min-entropy-Influence (FMEI) conjecture posed by O’Donnell and

others [50, 53] which asks if H∞(f̂2) ≤ C · Inf(f), where H∞(f̂2) is the min-entropy of the Fourier distribution.

We show H∞(f̂2) ≤ 2 · C⊕
min(f), where C⊕

min(f) is the minimum parity-certificate complexity of f . We also

show that for all ε ≥ 0, we have H∞(f̂2) ≤ 2 log(∥f̂∥1,ε/(1− ε)), where ∥f̂∥1,ε is the approximate spectral

norm of f . As a corollary, we verify the FMEI conjecture for the class of read-k DNFs (for constant k).

(3) Our third contribution is to better understand implications of the FEI conjecture for the structure of

polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture : no flat

polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2ω(d) can

1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI and we prove the

conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss

an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which

has been extensively studied in functional analysis.
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1 INTRODUCTION

Boolean functions f : {−1, 1}n → {−1, 1} naturally arise in many areas of theoretical computer science and

mathematics such as learning theory, complexity theory, quantum computing, inapproximability, graph

theory, extremal combinatorics, etc. Fourier analysis over the Boolean cube {−1, 1}n is a powerful technique

that has been used often to analyze problems in these areas. For a survey on the subject, see [50, 69]. One

of the most important and longstanding open problems in this field is the Fourier Entropy-Influence (FEI)

conjecture, first formulated by Ehud Friedgut and Gil Kalai in 1996 [28]. The FEI conjecture seeks to relate

the following two fundamental properties of a Boolean function f : the Fourier entropy of f and the total

influence of f , which we define now.

For a Boolean function f : {−1, 1}n → {−1, 1}, Parseval’s identity relates the Fourier coefficients
{
f̂(S)

}
S

and the values {f(x)}x by ∑
S⊆[n]

f̂(S)2 = Ex

[
f(x)2

]
= 1,

where the expectation is taken uniformly over the Boolean cube {−1, 1}n. An immediate implication of this

equality is that the squared Fourier coefficients
{
f̂(S)2 : S ⊆ [n]

}
can be viewed as a probability distribution

over subsets S ⊆ [n], which we often refer to as the Fourier distribution. The Fourier entropy of f (denoted

H(f̂2)) is then defined as the Shannon entropy of the Fourier distribution, i.e.,

H(f̂2) :=
∑

S⊆[n]

f̂(S)2 log
1

f̂(S)2
.

The total influence of f (denoted Inf(f)) measures the expected size of a subset S ⊆ [n], where the expectation

is taken according to the Fourier distribution, i.e.,

Inf(f) =
∑

S⊆[n]

|S| f̂(S)2.

Combinatorially Inf(f) is the same as the average sensitivity as(f) of f . In particular, for i ∈ [n], define

Infi(f) to be the probability that on a uniformly random input flipping the i-th bit changes the function

value. Then, Inf(f) is defined to be
∑n

i=1 Infi(f).

Intuitively, the Fourier entropy measures how “spread out” the Fourier distribution is over the 2n subsets

of [n] and the total influence measures the concentration of the Fourier distribution on the “high” level

coefficients. Informally, the FEI conjecture states that Boolean functions whose Fourier distribution is

well “spread out” (i.e., functions with large Fourier entropy) must have significant Fourier weight on the

high-degree monomials (i.e., their total influence is large). Formally, the FEI conjecture can be stated as

follows:

Conjecture 1.1 (FEI Conjecture). There exists a universal constant C > 0 such that for every

Boolean function f : {−1, 1}n → {−1, 1},

H(f̂2) ≤ C · Inf(f). (1)

The original motivation of Friedgut and Kalai for the FEI conjecture came from studying threshold

phenomena of monotone graph properties in random graphs [28]. For example, resolving the FEI conjecture

would imply that every threshold interval of a monotone graph property on n vertices is of length at most
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c(logn)−2 (for some universal constant c > 0). Bourgain and Kalai [13] proved a bound of cε(logn)
−2+ε for

every ε > 0. A very recent work of Kelman et al. [39] improved this bound to O((log logn)2/(logn)2) by

establishing nearly optimal bounds on Fourier Min-entropy. In general, it implies sharper bounds on the

threshold interval of transitively symmetric functions.

Besides this application, the FEI conjecture is known to imply the famous Kahn-Kalai-Linial theorem [36]

(otherwise referred to as the KKL theorem). The KKL theorem was one of the first major applications of

Fourier analysis to understanding properties of Boolean functions and has since found many application in

various areas of theoretical computer science.

Theorem 1.2 (KKL theorem). For every f : {−1, 1}n → {−1, 1}, there exists an i ∈ [n] such that

Infi(f) ≥ Var(f) · Ω
(

logn
n

)
, where Var(f) := 1− Ex[f(x)]

2 = 1− f̂(∅)2.

We discuss the implication of the FEI conjecture to the KKL theorem in more detail in Section 4. Another

motivation to study the FEI conjecture is that a positive answer to this conjecture would resolve the

notoriously hard conjecture of Mansour [47] from 1995.

Conjecture 1.3 (Mansour’s conjecture). Suppose f : {−1, 1}n → {−1, 1} is computed by a t-term

DNF.1 Then for every ε > 0, there exists a family T of subsets of [n] such that |T | ≤ tO(1/ε) (i.e., size of T
is polynomial in t) and

∑
T∈T f̂(T )2 ≥ 1− ε.

A positive answer to Mansour’s conjecture, along with the query algorithm of Gopalan et al. [31], would

resolve a long-standing open question in computational learning theory of agnostically learning DNFs under

the uniform distribution in polynomial time (up to any constant accuracy). We discuss this in more detail in

Section 3.3.

More generally, the FEI conjecture implies that every Boolean function can be approximated (in ℓ2-norm)

by sparse polynomials over {−1, 1}. In particular, for a Boolean function f and ε > 0, the FEI conjecture

implies the existence of a polynomial p with 2O(Inf(f)/ε) monomials such that Ex

[
(f(x)− p(x))2

]
≤ ε. The

current best known bound in this direction is 2O(Inf(f) log(Inf(f))/ε) [39].

Given the inherent difficulty in answering the FEI conjecture for arbitrary Boolean functions, there

have been many recent works studying the conjecture for specific classes of Boolean functions. We give a

brief overview of these results in the next section. Alongside the pursuit of resolving the FEI conjecture,

O’Donnell and others [50, 53] have asked if a weaker question than the FEI conjecture, the Fourier Min-

entropy-Influence (FMEI) conjecture can be resolved. The FMEI conjecture asks if the entropy-influence

inequality in Eq. (1) holds when the entropy of the Fourier distribution is replaced by the min-entropy of

the Fourier distribution (denoted H∞(f̂2)). The min-entropy of
{
f̂(S)2

}
S
is defined as

H∞(f̂2) := min
S⊆[n]:

f̂(S)̸=0

{
log

1

f̂(S)2

}

and thus it is easily seen that H∞(f̂2) ≤ H(f̂2). In fact, H∞(f̂2) could be much smaller compared to H(f̂2).

For instance, consider the function f(x) := x1 ∨ IP(x1, . . . , xn); then H∞(f̂2) = O(1) whereas H(f̂2) = Ω(n).

(IP is the inner-product-mod-2 function.) So the FMEI conjecture could be strictly weaker than the FEI

conjecture, making it a natural candidate to resolve first.

1A t-term DNF is a disjunction of at most t conjunctions of variables and their negations.
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Conjecture 1.4 (FMEI Conjecture). There exists a universal constant C > 0 such that for every

Boolean function f : {−1, 1}n → {−1, 1}, we have

H∞(f̂2) ≤ C · Inf(f).

Another way to formulate the FMEI conjecture is, suppose f : {−1, 1}n → {−1, 1}, then does there exist

a Fourier coefficient f̂(S) such that |f̂(S)| ≥ 2−O(Inf(f))? By the granularity of Fourier coefficients it is

well-known that every Fourier coefficient of a Boolean function f is an integral multiple of 2−deg(f), see [50,

Exercise 1.11] for a proof of this. (Here the deg(f) refers to the degree of the unique multilinear polynomial

that represents f .) The FMEI conjecture asks if we can prove a lower bound of 2−O(Inf(f)) on any one Fourier

coefficient, and even this remains open. Proving the FMEI conjecture seems to require proving interesting

structural properties of Boolean functions. It was observed by [53] that the FMEI conjecture suffices to

imply the KKL theorem for balanced functions (see also Section 4). In fact, it suffices2 for most of the

implications that follows from the FEI conjecture (see [39]).

Understanding the min-entropy of a Fourier distribution is important in its own right too. It was observed

by Akavia et al. [2] that for a circuit class C, tighter relations between min-entropy of f ∈ C and fA defined

as fA(x) := f(Ax), for an arbitrary linear transformation A, could enable us to translate lower bounds

against the class C to the class C ◦MOD2. In particular, they conjectured that min-entropy of fA is only

polynomially larger than f when f ∈ AC0[poly(n), O(1)]. (AC0[s, d] is the class of unbounded fan-in circuits

of size at most s and depth at most d.) It is well-known that when f ∈ AC0[s, d], H∞(f̂2) is at most

O((log s)d−1 · log log s) [12, 42, 65]. Depending on the tightness of the relationship between H∞(f̂2) and

H∞(f̂A
2
), one could obtain near-optimal lower bound on the size of AC0[s, d]◦MOD2 circuits computing

IP (inner-product-mod-2). This problem has garnered a lot of attention in recent times for a variety of

reasons [2, 21, 22, 57, 59]. The current best known lower bound for IP against AC0[s, d]◦MOD2 is quadratic

when d = 4, and only super-linear for all d = O(1) [21].

In the remaining part of this introduction, we first give an overview of prior work on the FEI conjecture

in Section 1.1 and then describe our contributions in the following sections.

1.1 Prior work

After Friedgut and Kalai [28] posed the FEI conjecture in 1996, there was not much work done towards

resolving it, until the work of Klivans et al. [40] in 2010. They showed that the FEI conjecture holds true for

random DNF formulas. Since then, there have been many significant steps taken in the direction of resolving

the FEI conjecture. We review some recent works here, referring the interested reader to the blog post of

Kalai [37] for additional discussions on the FEI conjecture.

The FEI conjecture is known to be true when we replace the universal constant C with logn in Eq. (1).

In fact we know H(f̂2) ≤ O(Inf(f) · logn) for real-valued functions f : {−1, 1}n → R (see [38, 53] for a

proof and [20] for an improvement of this statement).3 If we strictly require C to be a universal constant,

then the FEI conjecture is known to be false for real-valued functions. Instead, for real-valued functions

an analogous statement called the logarithmic Sobolev Inequality [34] is known to be true. The logarithmic

2With a minor strengthening: the large Fourier coefficient is required to be associated with a Fourier character of size
O(Inf(f)).
3For Boolean functions, the logn-factor was improved by [33] to log(s(f)) (where s(f) is the sensitivity of the Boolean
function f).
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Sobolev inequality states that for every f : {−1, 1}n → R, we have Ent(f2) ≤ 2 · Inf(f), where Ent(f) is

defined as Ent(f) = E[f ln(f)]− E[f ] ln(E[f ]), where the expectation is taken over uniform x ∈ {−1, 1}n.
Restricting to Boolean functions, the FEI conjecture is known to be true for the “standard” functions

that arise often in analysis, such as AND, OR, Majority, Parity, Bent functions and Tribes. There have

been many works on proving the FEI conjecture for specific classes of Boolean functions. O’Donnell et

al. [53] showed that the FEI conjecture holds for symmetric Boolean functions and read-once decision trees.

Keller et al. [38] studied a generalization of the FEI conjecture when the Fourier coefficients are defined on

biased product measures on the Boolean cube. Then, Chakraborty et al. [20] and O’Donnell and Tan [51],

independently and simultaneously, proved the FEI conjecture for read-once formulas. In fact, O’Donnell and

Tan proved an interesting composition theorem for the FEI conjecture (we omit the definition of composition

theorem here, see [51] for more). For general Boolean functions, Chakraborty et al. [20] gave several upper

bounds on the Fourier entropy in terms of combinatorial quantities larger than the total influence, e.g.,

average decision tree depth, etc., and sometimes even quantities that could be much smaller than influence,

namely, average parity-decision tree depth.

Later Wan et al. [68] used Shannon’s source coding theorem [60] (which characterizes entropy) to establish

the FEI conjecture for read-k decision trees for constant k. Using their novel interpretation of the FEI

conjecture they also reproved O’Donnell-Tan’s composition theorem in an elegant way. Recently, Shalev [58]

improved the constant in the FEI inequality for read-k decision trees, and further verified the conjecture

when either the influence is too low, or the entropy is too high. The FEI conjecture is also verified for random

Boolean functions by Das et al. [24] and for random linear threshold functions (LTFs) by Chakraborty et

al. [19].

There has also been some work in giving lower bounds on the constant C in the FEI conjecture. Hod [35]

gave a lower bound of C > 6.45 (the lower bound holds even when considering the class of monotone

functions), improving upon the lower bound of O’Donnell and Tan [51].

However, there has not been much work on the FMEI conjecture. It was observed in [19, 53] that the

KKL theorem implies the FMEI conjecture for monotone functions and linear threshold functions. Finally,

the FMEI conjecture for “regular” read-k DNFs was recently established by Shalev [58].

1.2 Our contributions

Our contributions in this paper are threefold, which we summarize in the following sections.

1.3 Better upper bounds for the FEI conjecture

Our first and main contribution of this paper is to give a better upper bound on the Fourier entropy H(f̂2)

in terms of aUC(f), the average unambiguous certificate complexity of f . Informally, the unambiguous

certificate complexity UC(f) of f is similar to the standard certificate complexity measure, except that the

collection of certificates is now required to be unambiguous, i.e., every input should be consistent with a

unique certificate. In other words, an unambiguous certificate is a monochromatic subcube partition of the

Boolean cube. By the average unambiguous certificate complexity, aUC(f), we mean the expected number

of bits set by an unambiguous certificate on a uniformly random input.

There have been many recent works on query complexity, giving upper and lower bounds on UC(f) in terms

of other combinatorial measures such as decision-tree complexity, sensitivity, quantum query complexity,
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etc., see [6, 10, 29] for more. It follows from definitions that UC(f) lower bounds decision tree complexity.

However, it is known that UC(f) can be quadratically smaller than decision tree complexity [6]. Our main

contribution here is an improved upper bound of average unambiguous certificate complexity aUC(f) on

H(f̂2). This improves upon the previously known bound of average decision tree depth on H(f̂2) [20].

Theorem 1.5. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then,

H(f̂2) ≤ 2 · aUC(f).

A new and crucial ingredient employed in the proof of the theorem is an analog of the law of large

numbers in information theory, usually referred to as the Asymptotic Equipartition Property (AEP) theorem

(Theorem 2.4). Employing information-theoretic techniques for the FEI conjecture seems very natural given

that the conjecture seeks to bound the entropy of a distribution. Indeed, Keller et al. [38, Section 3.1]

envisioned a proof of the FEI conjecture itself using large deviation estimates and the tensor structure

(explained below) in a stronger way, and Wan et al. [68] used Shannon’s source coding theorem [60] to verify

the conjecture for bounded-read decision trees.

In order to prove Theorem 1.5, we study the tensorized version of f , fM : {−1, 1}Mn → {−1, 1}, which is

defined as follows,

fM (x1, . . . , xM ) := f(x1
1, . . . , x

1
n) · f(x2

1, . . . , x
2
n) · · · f(xM

1 , . . . , xM
n ).

Similarly we define a tensorized version C M of an unambiguous certificate C of f ,4 i.e., a direct product of

M independent copies of C . It is not hard to see that C M is also an unambiguous certificate of fM . To

understand the properties of C M we study C in a probabilistic manner. We observe that C naturally induces

a distribution C on its certificates when the underlying inputs x ∈ {−1, 1}n are distributed uniformly.

Using the asymptotic equipartition property with respect to C, we infer that for every δ > 0, there exists

M0 > 0 such that for all M ≥ M0, there are at most 2M(aUC(f,C)+δ) certificates in C M that together cover

at least 1 − δ fraction of the inputs in {−1, 1}Mn. Furthermore, each of these certificates fixes at most

M(aUC(f,C ) + δ) bits. Hence, a particular certificate can contribute to at most 2M(aUC(f,C)+δ) Fourier

coefficients of fM . Combining both these bounds, all these certificates can overall contribute to at most

22M(aUC(f,C)+δ) Fourier coefficients of fM . Let’s denote this set of Fourier coefficients by B. We then argue

that the Fourier coefficients of fM that are not in B have Fourier weight at most δ. This now allows us to

bound the Fourier entropy of fM as follows,

H(f̂M
2
) ≤ log |B|+ δnM + H(δ),

where H(δ) is the binary entropy function. Since H(f̂M
2
) = M ·H(f̂2), we have

H(f̂2) ≤ 2(aUC(f,C ) + δ) + δn+
H(δ)

M
.

By the AEP theorem, note that δ → 0 as M → ∞. Thus, taking the limit as M → ∞ we obtain our theorem.

Looking finely into how certificates contribute to Fourier coefficients in the proof above, we further

strengthen Theorem 1.5 by showing that we can replace aUC(f) by the average unambiguous parity-

certificate complexity aUC⊕(f) of f . Here aUC⊕(f) is defined similar to aUC(f) except that instead of

4Recall an unambiguous certificate is a collection of certificates that partitions the Boolean cube {−1, 1}n.
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being defined in terms of monochromatic subcube partitions of f , we now partition the Boolean cube with

monochromatic affine subspaces. (Observe that subcubes are also affine subspaces.) This strengthening also

improves upon the previously known bound of average parity-decision tree depth on H(f̂2) [20]. It is easily

seen that aUC⊕(f) lower bounds the average parity-decision tree depth.

Theorem 1.6. Let f : {−1, 1}n → {−1, 1} be any Boolean function. Then,

H(f̂2) ≤ 2 · aUC⊕(f).

The proof outline remains the same as in Theorem 1.5. However, a particular certificate in C M no

longer fixes just variables. Instead these parity certificates now fix parities over variables, and so potentially

could involve all variables. Hence we cannot directly argue that all the certificates contribute to at most

2M(aUC⊕(f,C)+δ) Fourier coefficients of fM . Nevertheless, by the AEP theorem we still obtain that a typical

parity-certificate fixes at most M(aUC⊕(f,C ) + δ) parities. Looking closely at the Fourier coefficients that a

parity-certificate can contribute to, we now argue that such coefficients must lie in the linear span of the

parities fixed by the parity-certificate. Therefore, a typical parity-certificate can overall contribute to at

most 2M(aUC⊕(f,C)+δ) Fourier coefficients of fM . The rest of the proof now follows analogously.

1.3.1 Further extension to unambiguous DNFs. Consider an unambiguous certificate C = {C1, . . . , Ct} of

f . It covers both 1 and −1 inputs of f . Suppose {C1, . . . , Ct1} for some t1 < t is a partition of f−1(−1)

and {Ct1+1, . . . , Ct} is a partition of f−1(1). To represent f , it suffices to consider
∨t1

i=1 Ci. This is a DNF

representation of f with the additional property that {C1, . . . , Ct1} forms a partition of f−1(−1). We call

such a representation an unambiguous DNF. In general, a DNF representation need not satisfy this additional

property.

Using the equivalence of total influence and average sensitivity, one can easily observe that

Inf(f) ≤ 2 ·min

{
t1∑
i=1

co-dim(Ci) · 2−co-dim(Ci),

t∑
i=t1+1

co-dim(Ci) · 2−co-dim(Ci)

}
≤ aUC(f,C ),

where co-dim(·) denotes the co-dimension of an affine space. Note that the quantity
∑t1

i=1 co-dim(Ci) ·
2−co-dim(Ci), in a certain sense, is “average unambiguous 1-certificate complexity” and, similarly,

∑t
i=t1+1 co-dim(Ci)·

2−co-dim(Ci) captures “average unambiguous 0-certificate complexity”.

Building on our ideas from the main theorem in the previous section and using a stronger version

(Theorem 2.8) of the AEP theorem we nearly (see Remark 3.5) establish the aforementioned improved bound

of the smaller quantity between “average unambiguous 1-certificate complexity” and “average unambiguous

0-certificate complexity” on the Fourier entropy. Formally, we prove the following.

Theorem 1.7. Let f : {−1, 1}n → {−1, 1} be a Boolean function and C = {C1, . . . , Ct} be a monochro-

matic affine subspace partition of {−1, 1}n with respect to f such that {C1, . . . , Ct1} for some t1 < t is an

affine subspace partition of f−1(−1) and {Ct1+1, . . . , Ct} is an affine subspace partition of f−1(1). Further,
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p := Prx[f(x) = 1]. Then,

H(f̂2) ≤


2

(
t1∑
i=1

co-dim(Ci) · 2−co-dim(Ci) + p · max
i∈{1,...,t1}

co-dim(Ci)

)
,

2

(
t∑

i=t1+1

co-dim(Ci) · 2−co-dim(Ci) + (1− p) · max
i∈{t1+1,...,t}

co-dim(Ci)

)
.

The outline for the proof of Theorem 1.7 remains the same as before, but it differs in implementation

details. We sketch them now. Analogous to the proof of the main theorem we consider a partition of inputs

with respect to f and its tensorized version. Motivated by the DNF representation, we study the following

partition {C1, . . . , Ct1 , f
−1(1)} which naturally inherits a distribution C given by the uniform distribution

on the underlying inputs. Again we build a “small” set B of Fourier coefficients of fM based on the Fourier

expansions of strongly typical sequences. However, unlike before, the probability of observing a strongly

typical sequence doesn’t capture the number of coefficients it could contribute to B. Here, we use stronger

properties guaranteed by the strong AEP. In particular, it guarantees that the empirical distribution of a

typical sequence is close to the distribution of C. In contrast, the (weak) AEP only guarantees that the

empirical entropy of a typical sequence is close to the entropy of C. Using the stronger property we can now

lower bound the magnitude of any non-zero Fourier coefficient in the Fourier expansion of the indicator

function of a strongly typical sequence. We then use Parseval’s Identity (Fact 2.1) to deduce an upper bound

on its Fourier sparsity, which in turn is used to bound the size of B. We also need to argue that coefficients

not in B have negligible Fourier weight, which can be done as before. Using the two properties, we can now

complete the proof.

We also note that a similar bound for the general DNF representation, i.e., when {C1, . . . , Ct1} is an

arbitrary DNF representation of f where the Cis need not be disjoint, suffices to establish Mansour’s

conjecture (Conjecture 1.3). In fact, following the analogy, Theorem 1.7 implies a bound of “average

1-certificate complexity” in the general case. In this direction, in Section 3.3 we observe that a weaker

bound of 1-certificate complexity, i.e., showing H(f̂2) ≤ O(C1(f)), would already suffice to answer Mansour’s

conjecture positively. For details, see Section 3.3.

1.4 New upper bounds for the FMEI conjecture

Given the hardness of obtaining better upper bounds on the Fourier entropy of a Boolean function, we make

progress on a weaker conjecture, the FMEI conjecture. The FMEI conjecture is much less studied than the

FEI conjecture. In fact, we are aware of only one very recent paper [58] which studies the FMEI conjecture

for a particular class of functions. Our second contribution is to give upper bounds on the min-entropy of

general Boolean functions in terms of the minimum parity-certificate complexity (denoted C⊕
min(f)) and

the approximate spectral norm of Boolean functions (denoted ∥f̂∥1,ε). The minimum parity-certificate

complexity C⊕
min(f) is also referred to as the parity kill number by O’Donnell et al. [52] and is closely related

to the communication complexity of XOR functions [49, 67, 71]. The approximate spectral norm ∥f̂∥1,ε is

related to the quantum communication complexity of XOR functions [41, 70]. In particular, it characterizes

the bounded-error quantum communication complexity of XOR functions with constant F2-degree [70]. (By

F2-degree, we mean the degree of a function when viewed as a polynomial over F2.)
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Theorem 1.8. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then,

(i) For every ε ≥ 0, H∞(f̂2) ≤ 2 · log
(
∥f̂∥1,ε/(1− ε)

)
.

(ii) H∞(f̂2) ≤ 2 · C⊕
min(f).

(iii) H∞(f̂2) ≤ 2(1 + log2 3) ·R
⊕
2 (f).

5

The proof of Theorem 1.8 (i) expresses the quantity ∥f̂∥1,ε as a (minimization) linear program. We consider

the dual linear program and exhibit a feasible solution that achieves an optimum of (1− ε)/maxS |f̂(S)|.
This proves the desired inequality. In order to prove part (ii) and (iii) of the theorem, the idea is to consider

a “simple” function g that has “good” correlation with f , and then upper bound the correlation between

f and g using Plancherel’s theorem (Fact 2.1) and the fact that g has a “simple” Fourier structure. For

part (ii), g is chosen to be the indicator function of an (affine) subspace where f is constant, whereas for

part (iii) the randomized parity decision tree computing f itself plays the role of g.6

As a corollary (Corollary 4.6) of this theorem we also obtain upper bounds on the Rényi Fourier

entropy H1+δ(f̂
2) of order 1 + δ for all δ > 0. We recall that H1+δ(f̂

2) ≥ H∞(f̂2) for every δ ≥ 0 and as

δ → ∞, H1+δ(f̂
2) converges to H∞(f̂2). Also H1(f̂

2), obtained by taking the limit as δ → 0, is the standard

Shannon entropy.

We believe that these improved bounds on min-entropy of the Fourier distribution give a better under-

standing of Fourier coefficients of Boolean functions, and could be of independent interest. As a somewhat

non-trivial application of Theorem 1.8 (in particular, part (ii)) we verify the FMEI conjecture for read-k

DNFs, for constant k. (A read-k DNF is a formula where each variable appears in at most k terms.)

Theorem 1.9. For every Boolean function f : {−1, 1}n → {−1, 1} that can be expressed as a read-k DNF,

we have

H∞(f̂2) ≤ O(log k) · Inf(f).

This theorem improves upon a recent (and independent) result of Shalev [58] that establishes the FMEI

conjecture for “regular” read-k DNFs (where regular means each term in the DNF has more or less the same

number of variables, see [58] for a precise definition). In order to prove Theorem 1.9, we essentially show

that Inf(f) is at least as large as Cmin(f), for read-k DNFs (Lemma 4.8), where Cmin(f) is the minimum

certificate complexity of f . Now the proof of Theorem 1.9 follows in conjunction with Theorem 1.8 (ii).

New research work since the completion of this work: A very recent work of Kelman et al. [39] shows

that the FMEI conjecture holds up to a logarithmic factor in Inf(f). In general they show that almost all the

Fourier weight lies on Fourier coefficients of size at most O(Ĩnf(f)) and weight at least 2
−O

(
Ĩnf(f) log

(
1+Ĩnf(f)

))
,

where Ĩnf(f) := Inf(f)
Var(f)

. We remark that though these results are very close to the FMEI conjecture, they

are incomparable to our bounds. In particular one could construct examples where that C⊕
min(f) is much

smaller than Ĩnf(f) log
(
1 + Ĩnf(f)

)
(e.g., the inner-product-mod-2 function, AND, etc.) and vice versa (e.g.,

Majority).

However we remark that there is a similarity in the high-level proof idea of their work and ours. In

order to capture a Fourier coefficient of large weight consider the inner product between the function f and

5R⊕
2 (f) is the randomized parity-decision tree complexity of f (we define this formally in Section 2).

6We remark here that there exists simpler proof of part (i), along the lines of parts (ii) and (iii). However, we believe that

the linear-programming formulation of H∞(f̂2) might help obtain better bounds, such as fractional block sensitivity.
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another function g. In our case we choose g to be a subfunction (of f) that has large inner product with f ,

whereas Kelman et al. [39] essentially choose g to be the truncation of the Fourier spectrum of f to the

Fourier coefficients of size at most O(Ĩnf(f)) and weight at most 2
−Ω

(
Ĩnf(f) log

(
1+Ĩnf(f)

))
. They then present

a non-trivial analysis to show that the inner product between f and g is very small. This is sufficient to

reach the conclusion since the total Fourier weight on characters of size at most O(Ĩnf(f)), by Markov’s

inequality, is a large constant (at least 1− Var(f)/100).

1.5 Implications of the FEI conjecture and connections to the Bohnenblust-Hille inequality

Our final contribution is to better understand the structure of polynomials that ε-approximate Boolean

functions on the Boolean cube. To be more specific, for simplicity we fix ε = 1/3 and we consider polynomials

p such that |p(x) − f(x)| ≤ 1/3 for all x ∈ {−1, 1}n, where f is a Boolean function. Such polynomials

have proved to be powerful and found diverse applications in theoretical computer science. The single most

important measure associated with such polynomials is its degree. The least degree of a polynomial that

1/3-approximates f is referred to as the approximate degree of f . Tight bounds on approximate degree have

both algorithmic and complexity-theoretic implications, see for instance Sherstov’s recent paper [61] and

references therein.

In this work we ask, suppose the FEI conjecture were true, what can be said about approximating

polynomials? For instance, are these approximating polynomials p sparse in their Fourier domain, i.e., is

the number of monomials in p, |{S : p̂(S) ̸= 0}|, small? Do approximating polynomials have small spectral

norm (i.e., small
∑

S |p̂(S)|)? In order to understand these questions better, we restrict ourselves to a class

of polynomials called flat polynomials over {−1, 1}n, i.e., polynomials whose non-zero Fourier coefficients

have the same magnitude.

We first observe that if a flat polynomial p 1/3-approximates a Boolean function f , then the entropy of

the Fourier distribution of f must be “large”. In particular, we show that H(f̂2) must be at least as large as

the logarithm of the Fourier sparsity of p (Claim 5.1). It then follows that assuming the FEI conjecture, a

flat polynomial of degree d and sparsity 2ω(d) cannot 1/3-approximate a Boolean function (Lemma 5.2).

However, it is not clear to us how to obtain the same conclusion unconditionally (i.e., without assuming

that the FEI conjecture is true) and, so we pose the following conjecture.

Conjecture 1.10. No flat polynomial of degree d and sparsity 2ω(d) can 1/3-approximate a Boolean

function.

Remark 1.11. We remark that there exist degree-d flat Boolean functions of sparsity 2d. One simple

example on 4 bits is the function x1(x2 + x3)/2 + x4(x2 − x3)/2. By taking a (d/2)-fold product of this

Boolean function on disjoint variables, we obtain our remark.

Since we could not solve the problem as posed above, we make progress in understanding this conjecture

by further restricting ourselves to the class of block-multilinear polynomials. An n-variate polynomial is said

to be block-multilinear if the input variables can be partitioned into disjoint blocks such that every monomial

in the polynomial has at most one variable from each block. Such polynomials have been well-studied in

functional analysis since the work of Bohnenblust and Hille [11], but more recently have found applications

in quantum computing [1, 48], classical and quantum XOR games [15], and polynomial decoupling [54].
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In the functional analysis literature homogeneous block-multilinear polynomials are known as multilinear

forms. In an ingenious work [11], Bohnenblust and Hille showed that for every degree-d multilinear form

p : (Rn)d → R, we have( n∑
i1,...,id=1

|p̂i1,...,id |
2d

d+1

) d+1
2d ≤ Cd · max

x1,...,xd∈[−1,1]n
|p(x1, . . . , xd)|, (2)

where Cd is a constant that depends on d. In [11], they showed that it suffices to pick Cd to be exponential in

d to satisfy the equation above. For d = 2, Eq. (2) generalizes Littlewood’s famous 4/3-inequality [43]. Eq. (2)

is commonly referred to as the Bohnenblust-Hille (BH) inequality and is known to have deep applications in

various fields of analysis such as operator theory, complex analysis, etc. There has been a long line of work

on improving the constant Cd in the BH inequality (to mention a few [3, 8, 25, 26, 56]). The best known

upper bound on Cd (we are aware of) is polynomial in d. It is also conjectured that it suffices to let Cd be a

universal constant (independent of d) in order to satisfy Eq. (2).

In our context, using the best known bound on Cd in the BH-inequality implies that a flat homogeneous

block-multilinear polynomial of degree d and sparsity 2ω(d log d) cannot 1/3-approximate a Boolean function.

However, from the discussion before Conjecture 1.10, we know that the FEI conjecture implies the following

theorem.

Theorem 1.12. If p is a flat block-multilinear polynomial of degree d and sparsity 2ω(d), then p cannot

1/3-approximate a Boolean function.

Moreover, the above theorem, with an added restriction of homogeneity on p, is also implied when the

BH-constant Cd is assumed to be a universal constant. Our main contribution here is to establish the

above theorem unconditionally, i.e., neither assuming Cd is a universal constant nor assuming the FEI

conjecture. In order to show the theorem, we show an inherent weakness of block-multilinear polynomials in

approximating Boolean functions. More formally, we show the following.

Lemma 1.13. Let p be a block-multilinear polynomial of degree-d that 1/3-approximates a Boolean function

f . Then, deg(f) ≤ d.

Organization. In the remainder of the paper, we prove and elaborate on each of these results in more detail.

We start with preliminaries in Section 2. In Section 3, we give improved upper bounds on Fourier entropy

(Theorems 1.5, 1.6 and 1.7), verify the FEI conjecture for functions with bounded average unambiguous

certificate complexity, and elaborate on the connections between Fourier entropy vs. certificate complexity and

Mansour’s conjecture. In Section 4, we establish new upper bounds on Fourier min-entropy (Theorem 1.8),

and verify the FMEI conjecture for read-k DNFs (Theorem 1.9). In Section 5, we pose a conjecture

(Conjecture 1.10) which is a consequence of the FEI conjecture and make partial progress (Theorem 1.12)

towards its resolution. We further discuss an intriguing connection between our conjecture and the constants

in the Bohnenblust-Hille inequality. Finally we conclude with some open problems in Section 6.

2 PRELIMINARIES

Notation. We denote the set {1, 2, . . . , n} by [n]. A partial assignment of [n] is a map τ : [n] → {−1, 1, ∗}.
Define |τ | = |τ−1(1) ∪ τ−1(−1)|. A subcube of the Boolean cube {−1, 1}n is a set of x ∈ {−1, 1}n that

agrees with some partial assignment τ , i.e., {x ∈ {−1, 1}n : xi = τ(i) for every i with τ(i) ̸= ∗}.
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Fourier Analysis. We recall some definitions and basic facts from analysis of Boolean functions, referring

to [50, 69] for more. Consider the space of all functions from {−1, 1}n to R equipped with the inner product

defined as

⟨f, g⟩ := Ex[f(x)g(x)] =
1

2n

∑
x∈{−1,1}n

f(x)g(x).

For S ⊆ [n], the character function χS : {−1, 1}n → {−1, 1} is defined as χS(x) :=
∏

i∈S xi. Then the set

of character functions {χS}S⊆[n] forms an orthonormal basis for the space of all real-valued functions on

{−1, 1}n. Hence, every real-valued function f : {−1, 1}n → R has a unique Fourier expansion

f(x) =
∑

S⊆[n]

f̂(S)χS(x).

The degree of f , denoted deg(f), is defined as max
{
|S| : f̂(S) ̸= 0

}
. The spectral norm of f is defined to

be
∑

S |f̂(S)|. The Fourier weight of a function f on a set S of coefficients is defined as
∑

S∈S f̂(S)2. The

approximate spectral norm of a Boolean function f is defined as

∥f̂∥1,ε = min
{∑

S

|p̂(S)| : |p(x)− f(x)| ≤ ε for every x ∈ {−1, 1}n
}
.

We note a well-known fact that follows from the orthonormality of the character functions.

Fact 2.1 (Plancherel’s Theorem). For any f, g : {−1, 1}n → R,

Ex[f(x)g(x)] =
∑

S⊆[n]

f̂(S)ĝ(S).

In particular, if f : {−1, 1}n → {−1, 1} is Boolean-valued and g = f , we have Parseval’s Identity∑
S f̂(S)2 = E

[
f(x)2

]
, which in turn equals 1. Hence

∑
S f̂(S)2 = 1 and we can view

{
f̂(S)2

}
S

as a

probability distribution, which allows us to discuss the Fourier entropy and min-entropy of the distribution{
f̂(S)2

}
S
, defined as

Definition 2.2. For a Boolean function f : {−1, 1}n → {−1, 1}, its Fourier entropy (denoted H(f̂2)) and

min-entropy (denoted H∞(f̂2)) are

H(f̂2) :=
∑

S⊆[n]

f̂(S)2 log
1

f̂(S)2
, and H∞(f̂2) := min

S⊆[n]:

f̂(S)̸=0

{
log

1

f̂(S)2

}
.

Similarly, we can also define the Rényi Fourier entropy.

Definition 2.3 (Rényi Fourier entropy). For f : {−1, 1}n → {−1, 1}, α ≥ 0 and α ̸= 1, the Rényi Fourier

entropy of f of order α is defined as

Hα(f̂
2) :=

1

1− α
log

∑
S⊆[n]

|f̂(S)|2α
 .

It is known that in the limit as α → 1, Hα(f̂
2) is the (Shannon) Fourier entropy H(f̂2) (see [23, Chapter 17,

Section 8]) and when α → ∞, observe that Hα(f̂
2) converges to H∞(f̂2). It is easily seen that

H∞(f̂2) ≤ H1(f̂
2) ≤ H 1

2
(f̂2) ≤ H0(f̂

2).
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For f : {−1, 1}n → {−1, 1}, the influence of a coordinate i ∈ [n], denoted Infi(f), is defined as

Infi(f) = Pr
x∈{−1,1}n

[
f(x) ̸= f(x(i))

]
= Ex

[(f(x)− f(x(i))

2

)2]
,

where the probability and expectation is taken according to the uniform distribution on {−1, 1}n and x(i) is

x with the i-th bit flipped. The total influence of f , denoted Inf(f), is

Inf(f) =
∑
i∈[n]

Infi(f).

In terms of the Fourier coefficients of f , it can be shown, e.g., [36], that Infi(f) =
∑

S∋i f̂(S)
2, and therefore

Inf(f) =
∑

S⊆[n]

|S|f̂(S)2.

The variance of a real-valued function f is given by Var(f) :=
∑

S ̸=∅ f̂(S)
2 = 1 − f̂(∅)2. It easily follows

that Var(f) ≤ Inf(f). We now introduce some basic complexity measures of Boolean functions which we use

often, referring to [16] for more.

Sensitivity. For x ∈ {−1, 1}n, the sensitivity of f at x, denoted sf (x), is defined to be the number of

neighbors y of x in the Boolean hypercube (i.e., y is obtained by flipping exactly one bit of x) such that

f(y) ̸= f(x). The sensitivity s(f) of f is maxx{sf (x)}. The average sensitivity as(f) of f is defined to be

Ex[sf (x)]. By the linearity of expectation observe that

Ex [sf (x)] =
n∑

i=1

Pr
x

[
f(x) ̸= f(x(i))

]
=

n∑
i=1

Infi(f) = Inf(f),

so the average sensitivity of f equals the total influence of f . As a result, the FEI conjecture asks if

H(f̂2) ≤ C · as(f) for every Boolean function f .

Certificate complexity. For x ∈ {−1, 1}n, the certificate complexity of f at x, denoted C(f, x), is the

minimum number of bits in x that needs to be fixed to ensure that the value of f is constant. The certificate

complexity C(f) of f is maxx{C(f, x)}. The minimum certificate complexity of f is Cmin(f) = minx{C(f, x)}.
The 0-certificate complexity C0(f) of f is maxx:f(x)=1{C(f, x)}. Similarly, the 1-certificate complexity C1(f)

of f is maxx:f(x)=−1{C1(f, x)}. Observe that for every x ∈ {−1, 1}n, s(f, x) ≤ C(f, x). This gives s(f) ≤ C(f)

and as(f) ≤ aC(f) where aC(f) denotes the average certificate complexity of f . As before, the average is

taken with respect to the uniform distribution on {−1, 1}n.

Parity-certificate complexity. Analogously, we define the parity-certificate complexity C⊕(f, x) of f at x as

the minimum number of parities on the input variables one has to fix in order to fix the value of f at x, i.e.,

C⊕(f, x) := min{co-dim(H) | H is an affine subspace on which f is constant and x ∈ H},

where co-dim(H) is the co-dimension of the affine subspace H. It is easily seen that C⊕(f, x) ≤ C(f, x). We

also define C⊕(f) := maxx{C⊕(f, x)}, and C⊕
min(f) := minx{C⊕(f, x)}.
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Unambiguous certificate complexity. We now define the unambiguous certificate complexity of f . Let

τ : [n] → {−1, 1, ∗} be a partial assignment. We refer to

Sτ =
{
x ∈ {−1, 1}n : xi = τ(i) for every i ∈ [n] \ τ−1(∗)

}
as the subcube generated by τ . We call C ⊆ {−1, 1}n a subcube of {−1, 1}n if there exists a partial assignment

τ such that C = Sτ and the co-dimension of C is the number of bits fixed by τ , i.e., co-dim(C) = |{i ∈ [n] :

τ(i) ̸= ∗}|. A set of subcubes C = {C1, . . . , Cm} partitions {−1, 1}n if the subcubes are disjoint and they

cover {−1, 1}n, i.e., Ci ∩ Cj = ∅ for i ̸= j and ∪iCi = {−1, 1}n.
An unambiguous certificate U = {C1, . . . , Cm}, also referred to as a subcube partition, is a set of subcubes

partitioning {−1, 1}n. We say U computes a Boolean function f : {−1, 1}n → {−1, 1} if f is constant

on each Ci (i.e., f(x) is the same for all x ∈ Ci). For an unambiguous certificate U , the unambiguous

certificate complexity UC(U , x) on input x equals co-dim(Ci) for the Ci satisfying x ∈ Ci. Define the average

unambiguous certificate complexity of f with respect to U as

aUC(f,U) := Ex[UC(U , x)].

Then, the average unambiguous certificate complexity of f is defined as

aUC(f) := min
U

aUC(f,U),

where the minimization is over all unambiguous certificates for f . Finally, the unambiguous certificate

complexity of f is

UC(f) := min
U

max
x

UC(U , x).

Note that since unambiguous certificates are more restricted than general certificates, we have C(f) ≤ UC(f).

An unambiguous ⊕-certificate U = {C1, . . . , Cm} for f is defined to be a collection of monochromatic

affine subspaces that together partition the space {−1, 1}n. It is easily seen that a subcube is also an affine

subspace. Analogously, for an unambiguous ⊕-certificate U , on an input x, UC⊕(U , x) := co-dim(Ci) for the

Ci satisfying x ∈ Ci, and aUC⊕(f,U) := Ex[UC
⊕(U , x)]. Similarly, we define aUC⊕(f) and UC⊕(f).

DNFs. A DNF (disjunctive normal form) is a disjunction (OR) of conjunctions (ANDs) of variables and

their negations. An unambiguous DNF is a DNF that satisfies the additional property that : on every

(−1)-input, exactly one of the conjunctions outputs −1.

Approximate degree. The ε-approximate degree of f : {−1, 1}n → R, denoted degε(f), is defined to be the

minimum degree among all multilinear real polynomials p such that |f(x)− p(x)| ≤ ε for all x ∈ {−1, 1}n.
Usually ε is chosen to be 1/3, but it can be chosen to be any constant in (0, 1), without significantly changing

the model.

Deterministic decision trees. A deterministic decision tree for f : {−1, 1}n → {−1, 1} is a rooted binary

tree where each node is labelled by i ∈ [n] and the leaves are labelled with an output bit {−1, 1}. On input

x ∈ {−1, 1}n, the tree proceeds at a node with label i by evaluating the bit xi and continuing with the

subtree corresponding to the value of xi. Once a leaf is reached, the tree outputs a bit. We say that a

deterministic decision tree computes f if for all x ∈ {−1, 1}n its output equals f(x).
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A parity-decision tree for f is similar to a deterministic decision tree, except that each node in the tree is

labelled by a subset S ⊆ [n]. On input x ∈ {−1, 1}n, the tree proceeds at a node with label S by evaluating

the parity of the bits xi for i ∈ S and continues with the subtree corresponding to the value of ⊕i∈Sxi.

Note that if the subsets at each node have size |S| = 1, then we get the standard deterministic decision tree

model.

Randomized decision trees. A randomized decision tree for f is a probability distribution µ over determin-

istic decision trees for f . On input x, a decision tree is chosen according to µ, which is then evaluated on

x. The complexity of the randomized tree is the largest depth among all deterministic trees with non-zero

probability of being sampled according to µ. One can similarly define a randomized parity-decision tree as a

probability distribution over deterministic parity-decision trees for f .

We say that a randomized decision tree computes f with bounded-error if for all x ∈ {−1, 1}n its output

equals f(x) with probability at least 2/3. R2(f) (respectively, R
⊕
2 (f)) denotes the complexity of the optimal

randomized (respectively, parity) decision tree that computes f with bounded-error, i.e., errs with probability

at most 1/3.

Information Theory. We need some preliminaries from Information theory. We start with the following

consequence of the law of large numbers, called the Asymptotic Equipartition Property (AEP) or the

Shannon-McMillan-Breiman theorem. See Chapter 3 in the book [23] for more details.

Theorem 2.4 (Asymptotic Equipartition Property (AEP) Theorem). Let X be a random variable

drawn from a distribution P and suppose X1,X2, . . . ,XM are independently and identically distributed

copies of X, then

− 1

M
logP (X1,X2, . . . ,XM ) −→ H(X)

in probability as M → ∞.

We now recall the notion of typical sequences.

Definition 2.5. Fix ε ≥ 0. The typical set T
(M)
ε (X) with respect to a distribution P is defined to be the

set of sequences (x1, x2, . . . , xM ) ∈ X1 ×X2 × · · · ×XM such that

2−M(H(X)+ε) ≤ P (x1, x2, . . . , xM ) ≤ 2−M(H(X)−ε).

The following properties of the typical set follows from the AEP.

Theorem 2.6 ([23, Theorem 3.1.2]). Let ε ≥ 0 and T
(M)
ε (X) be a typical set with respect to P , then

(i) |T (M)
ε (X)| ≤ 2M(H(X)+ε).

(ii) Suppose x1, . . . , xM are drawn i.i.d. according to X, then

Pr
[
(x1, . . . , xM ) ∈ T (M)

ε (X)
]
≥ 1− ε,

for M sufficiently large.

(iii) |T (M)
ε (X)| ≥ (1− ε)2M(H(X)−ε), for M sufficiently large.

We also require the following stronger version of typical sequences and asymptotic equipartition property.
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Definition 2.7 ([23, Chapter 11, Section 2]). Let X be a random variable drawn according to a distribution

P . Fix ε > 0. The strongly typical set T
∗(M)
ε (X) is defined to be the set of sequences ρ = (x1, x2, . . . , xM ) ∈

X1 ×X2 × · · · ×XM such that for every x, N(x; ρ) = 0 if P (x) = 0, and otherwise∣∣∣∣N(x; ρ)

M
− P (x)

∣∣∣∣ ≤ ε

|X| ,

where N(x; ρ) is defined as the number of occurrences of x in ρ.

The strongly typical set shares similar properties with its (weak) typical counterpart which we state now.

See [23, Chapter 11, Section 2] for a proof of this theorem.

Theorem 2.8 (Strong AEP Theorem). Following the notation in Definition 2.7, let T
∗(M)
ε (X) be a

strongly typical set. Then, there exists δ > 0 such that δ → 0 as ε → 0, and the following hold :

(i) Suppose x1, . . . , xM are drawn i.i.d. according to X, then

Pr
[
(x1, . . . , xM ) ∈ T ∗(M)

ε (X)
]
≥ 1− ε,

for M sufficiently large.

(ii) If (x1, . . . , xM ) ∈ T
∗(M)
ε (X), then

2−M(H(X)+δ) ≤ P (x1, . . . , xM ) ≤ 2−M(H(X)−δ).

(iii) For M sufficiently large,

(1− ε)2M(H(X)−δ) ≤ |T ∗(M)
ε (X)| ≤ 2M(H(X)+δ).

3 BETTER BOUNDS ON FOURIER ENTROPY

In this section we prove the main result of this paper : a new improved upper bound on the Fourier entropy

of Boolean functions. It is well-known that Inf(f) lower bounds many combinatorial measures associated

with Boolean functions such as decision tree depth, certificate complexity, sensitivity, etc. Given the difficulty

in resolving the FEI conjecture, it is natural to wonder if the Fourier entropy can be upper bounded by

these larger measures. Indeed, Chakraborty et al. [20] established many bounds on the Fourier entropy,

including average parity-decision tree complexity. We improve on their bounds by showing an upper bound

of average unambiguous parity-certificate complexity. In order to keep the presentation clear, we first prove

a weaker upper bound of average unambiguous certificate complexity aUC(f) on H(f̂2). We then explain

how to generalize the proof to establish the stronger upper bound of average unambiguous parity-certificate

complexity aUC⊕(f).

3.1 Average unambiguous certificate complexity

We recall an unambiguous certificate C = {C1, . . . , Ct} for f is a collection of monochromatic subcubes

(with respect to f) that together partition the hypercube {−1, 1}n. The average unambiguous certificate

complexity of f with respect to C , denoted by aUC(f,C ), equals Ex∈{−1,1}n [UC(C , x)]. Further, aUC(f) =

minC {aUC(f,C )}. We now prove the main theorem.
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Theorem 3.1 (Restatement of Theorem 1.5). For every Boolean function f : {−1, 1}n → {−1, 1},
we have

H(f̂2) ≤ 2 · aUC(f).

Before we prove this inequality, we first give a sketch of the proof. Given f : {−1, 1}n → {−1, 1} and an

unambiguous certificate C for f , our first step is to consider the function fM : {−1, 1}Mn → {−1, 1} defined

as the M -fold product of f . We then consider a random variable C (supported on C ) and let T
(M)
δ (C) be a

typical set associated with M i.i.d copies of C. Based on the typical set, we define a 22M·(aUC(f)+δ)-sized

set B of Fourier coefficients of fM and show that B has fairly large Fourier weight. We then consider the

re-normalized entropy when restricted to the Fourier coefficients in B. By taking the limit (M → ∞), we

obtain H(f̂2) ≤ O(aUC(f)). We now fill in the details.

Proof. It suffices to show that for every unambiguous certificate C for f , we have

H(f̂2) ≤ 2 · aUC(f,C ).

Let C := {C1, . . . , Ct} be an unambiguous certificate of f . For every Ci, let τ(Ci) be the partial assignment

τ(Ci) : [n] → {−1, 1, ∗}, corresponding to the bits fixed by Ci. Let supp(τ(Ci)) ⊆ [n] be the set of indices

where τ(Ci) ̸= ∗. As a shorthand, we denote |supp(τ(Ci))| by |τ(Ci)|. Consider the Boolean function

fM : {−1, 1}Mn → {−1, 1} given by the M-fold iterated product of f with itself over distinct variables, i.e.,

fM (x1, . . . , xM ) = f(x1
1, . . . , x

1
n) · f(x2

1, . . . , x
2
n) · · · f(xM

1 , . . . , xM
n ),

where xi ∈ {−1, 1}n for every i ∈ [M ]. First, observe that H(f̂M
2
) = M · H(f̂2). Similarly, we also have

aUC(fM ,C M ) = M · aUC(f,C ).

We now bound the Fourier entropy of fM by showing that there is a “small” set of Fourier coefficients of

fM whose total Fourier weight is approximately 1.

Let C be a subcube-valued random variable that equals Ci with probability 2−|τ(Ci)|.7 Further, let

C1,C2, . . . ,CM be i.i.d random copies of C. For a choice of δ > 0, let T
(M)
δ (C) be the typical set with

respect to the distribution
{
2−|τ(Ci)|

}
i∈[t]

. We now define a set B of Fourier coefficients of fM , which we

argue below to have large Fourier weight.

B :=
{
(S1, . . . , SM ) ⊆ [n]M | Si ⊆ supp(τ(Ci)) ⊆ [n] for i ∈ [M ] and (C1, . . . , CM ) ∈ T

(M)
δ (C)

}
. (3)

Using Theorem 2.6 about typical sequences, we are now ready to bound the size of B as follows.

Claim 3.1.

|B| ≤ 22M(aUC(f,C)+δ).

Proof of Claim. We first bound the size of T
(M)
δ (C) and then count contributions of a typical sequence

(C1, . . . , CM ) to B. For the first bound, by the properties of the AEP Theorem 2.6 (i), the total number

|T (M)
δ (C)| of typical sequences is at most 2M(H(C)+δ). For the second bound, observe that (C1, . . . , CM )

contributes a set (S1, . . . , SM ) to B if and only if Si ⊆ supp(τ(Ci)) for all i ∈ [M ]. Therefore, the maximum

7Since {C1, . . . , Ct} are disjoint subcubes partitioning {−1, 1}n, we have that
∑t

i=1 2−|τ(Ci)| = 1.
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possible contribution of a typical sequence is bounded by

2|τ(C1)|+···+|τ(CM )| = (Pr[C1 = C1, . . . ,CM = CM ])−1 ≤ 2M(H(C)+δ),

where the equality is because the random variable C is sampled according to the distribution
{
2−|τ(Ci)|

}
i∈[t]

and the inequality follows from Definition 2.5 of typical sets.

Combining both the upper bounds, we get |B| ≤ 22M(H(C)+δ). Finally, by the definition of entropy, we

have

H(C) =

t∑
i=1

2−|τ(Ci)| · |τ(Ci)| =
1

2n

∑
x∈{−1,1}n

UC(C , x) = aUC(f,C ),

where the second equality used that {C1, . . . , Ct} formed an unambiguous certificate for f . □

We now claim that B is a “small” set of Fourier coefficients of fM that has “large” Fourier weight. In order

to quantitatively prove this, we show that the Fourier coefficients that are not in B have total Fourier weight

at most δ. In what follows, with some abuse of notation, we will denote a set S ⊆ [n] and the corresponding

subset {xi | i ∈ S} of variables by the same set S.

Claim 3.2. ∑
(S1,S2,...,SM )̸∈B

f̂M (S1 ∪ · · · ∪ SM )2 ≤ δ.

Proof of Claim. We saw earlier that C M is an unambiguous certificate of fM . Let ρ ∈ C M be a

certificate of fM , and 1ρ(z) be the {0, 1}-valued function that is 1 if and only if z is consistent with the

certificate ρ. Further we denote the value fM takes on any input consistent with ρ by fM (ρ). We can then

express fM on an input z ∈ {−1, 1}Mn as follows

fM (z) =
∑

ρ∈CM

fM (ρ) · 1ρ(z) =
∑

ρ∈T
(M)
δ

(C)

fM (ρ) · 1ρ(z) +
∑

ρ ̸∈T
(M)
δ

(C)

fM (ρ) · 1ρ(z)

︸ ︷︷ ︸
:=g(z)

. (4)

For (S1, . . . , SM ) ⊆ [n]M , consider the expansion of the Fourier coefficient

f̂M (S1 ∪ · · · ∪ SM ) = Ez

[
fM (z)χS1∪···∪SM (z)

]
= Ez

 ∑
ρ∈T

(M)
δ

(C)

fM (ρ) · 1ρ(z) · χS1∪···∪SM (z) +
∑

ρ ̸∈T
(M)
δ

(C)

fM (ρ) · 1ρ(z) · χS1∪···∪SM (z)


=

∑
ρ∈T

(M)
δ

(C)

fM (ρ) · Ez [1ρ(z) · χS1∪···∪SM (z)] +
∑

ρ̸∈T
(M)
δ

(C)

fM (ρ) · Ez [1ρ(z) · χS1∪···∪SM (z)] .

Now observe that for a fixed certificate ρ, we have Ez [1ρ(z) · χS1∪···∪SM (z)] ≠ 0 if and only if ρ fixes the vari-

ables in S1∪· · ·∪SM . By definition of B it now follows that if (S1, . . . , SM ) /∈ B, then Ez [1ρ(z) · χS1∪···∪SM (z)] =

0 for ρ ∈ T
(M)
δ (C), and thus f̂M (S1 ∪ · · · ∪ SM ) gets contribution only from ρ that are not typical, i.e.,

ρ ̸∈ T
(M)
δ (C).
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In this direction, consider the function g(z) defined in Eq. (4), which is {−1, 1, 0}-valued. Using the

argument above, we have that if (S1, . . . , SM ) ̸∈ B, then f̂M (S1∪ · · ·∪SM ) = ĝ(S1∪ · · ·∪SM ). Then, clearly,∑
(S1,S2,...,SM )̸∈B

f̂M (S1 ∪ · · · ∪ SM )2 ≤
∑
T

ĝ(T )2. (5)

Moreover by Parseval’s Theorem (Fact 2.1),
∑

T ĝ(T )2 = Ez

[
g(z)2

]
. Therefore,∑

(S1,S2,...,SM )̸∈B

f̂M (S1 ∪ · · · ∪ SM )2 ≤ Ez

[
g(z)2

]
= Pr

z

[
z /∈ T

(M)
δ (C)

]
≤ δ,

where the first inequality uses Eq. (5) and Parseval, the second equality is because g(z)2 ∈ {0, 1} and the

last inequality follows from Theorem 2.6 (ii). □

We are now ready to bound the Fourier entropy of f and complete the proof. We need the following

well-known trick to bound entropy when the underlying distribution has large weight on a small support.

Let S be a set of Fourier characters such that
∑

S ̸∈S ĝ(S)2 = δ. In order to upper bound the Fourier entropy,

we first express H(ĝ2) as follows

H(ĝ2) =
∑
S∈S

ĝ(S)2 log
( 1

ĝ(S)2

)
+
∑
S/∈S

ĝ(S)2 log
( 1

ĝ(S)2

)
.

We renormalize the first expression in the sum by (1− δ) and the second expression by δ. By doing so, we get

H(ĝ2) = (1− δ)H
(
ĝ(S)2

1− δ
: S ∈ S

)
+ δH

(
ĝ(S)2

δ
: S ̸∈ S

)
−
∑
S∈S

ĝ(S)2 log(1− δ)−
∑
S/∈S

ĝ(S)2 log(δ),

= (1− δ)H
(
ĝ(S)2

1− δ
: S ∈ S

)
+ δH

(
ĝ(S)2

δ
: S ̸∈ S

)
+ H(δ), (6)

where the equality used
∑

S∈S ĝ(S)2 = 1− δ and we denote H(p) := p log 1
p
+ (1− p) log 1

1−p
.

We now use Eq. (6) when applied to the function fM and set S = B. We then obtain

M ·H(f̂2) = H(f̂M
2
) ≤ log |B|+ δ · log |{S : S /∈ B}|+ H(δ) ≤ 2M(aUC(f,C ) + δ) + δnM + H(δ),

where the second inequality used Claims 3.1 and 3.2. Dividing by M on both sides, we get

H(f̂2) ≤ 2 · (aUC(f,C ) + δ) + δn+
H(δ)

M
.

By the AEP theorem we know that δ → 0 as M → ∞. Therefore, allowing M → ∞ and taking the limit

gives us the theorem. □

3.1.1 Extension to ⊕-certificate complexity. We now discuss a strengthening of Theorem 3.1 where we improve

the upper bound to average unambiguous parity-certificate complexity aUC⊕(f). Recall that an unambiguous

⊕-certificate C = {C1, . . . , Ct} for f is a collection of monochromatic affine subspaces that together partition

the space {−1, 1}n. (Observe that a subcube is a special type of affine subspace.) Analogously, the average

unambiguous ⊕-certificate complexity of f with respect to C , denoted by aUC⊕(f,C ), equals Ex[UC
⊕(C , x)]

and aUC⊕(f) := minC aUC⊕(f,C ). Let Ai be the set of parities fixed by Ci for i ∈ [t]. A parity is defined

over a subset of variables and thus, naturally, can be viewed as a vector in {0, 1}n.
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Like in the proof of Theorem 3.1, we study the M -fold iterated product of C . In order to find a “small”

set of coefficients where the Fourier weight is concentrated, we define B differently. The Fourier expansion of

fM , given by Eq. (4), suggests the following definition.

For a set S ⊆ [n], define 1S ∈ {0, 1}n to be the indicator vector representing S (i.e., 1S(j) = 1 if

and only if j ∈ S). Let (S1, . . . , SM ) be an M -tuple where each Si ⊆ [n]. Then, we define B by letting

(S1, . . . , SM ) ∈ B if and only if there exists a typical sequence (Ci1 , . . . , CiM ) ∈ T
(M)
δ (C) such that for all

j ∈ [M ], 1Sj ∈ span⟨Aij ⟩ (where by span⟨Aij ⟩, we mean the linear F2-span of parities in Aij , when viewed

as vectors). We recall that Aij is the set of parities fixed by Cij . Observe that the earlier definition of B is

now a special case of this. With this definition of B the rest of the proof follows similarly to establish the

following generalization.

Theorem 3.2 (Restatement of Theorem 1.6). Let f : {−1, 1}n → {−1, 1} be any Boolean function.

Then,

H(f̂2) ≤ 2 · aUC⊕(f).

We remark that as a corollary to the theorem it follows that the FEI conjecture holds for the class of

functions f with bounded aUC⊕(f), and Inf(f) ≥ 1. That is, for a Boolean function f with Inf(f) ≥ 1, we

have

H(f̂2) ≤ 2 · aUC⊕(f) · Inf(f).

We note that the reduction in [68, Proposition E.2] shows that removing the requirement Inf(f) ≥ 1 from the

above inequality will prove the FEI conjecture for all Boolean functions with Inf(f) ≥ logn. Furthermore, if

we could show the FEI conjecture for Boolean functions f where aUC⊕(f) = ω(1) is a slow-growing function

of n, again the padding argument in [68] shows that we would be able to establish the FEI conjecture for all

Boolean functions.

3.2 Further improving the bound: unambiguous DNFs

In this section, we further improve the bounds obtained in the previous section by considering the DNF

representation of f . Let C := {C1, . . . , Ct} be an unambiguous certificate of f . It covers both 1 and −1

inputs of f . Suppose {C1, . . . , Ct1} for some t1 < t is a subcube partition of f−1(−1) and {Ct1+1, . . . , Ct} is

a subcube partition of f−1(1). To represent f , it suffices to consider

t1∨
i=1

Ci. This is a DNF representation of f

with an additional property that {C1, . . . , Ct1} forms a partition of f−1(−1). We call such a representation

an unambiguous DNF. In general, a DNF representation need not satisfy this additional property.

As before, for every Ci, let τ(Ci) be the partial assignment τ(Ci) : [n] → {−1, 1, ∗} corresponding to the

bits fixed by Ci, and |τ(Ci)| denotes the size of the set of indices where τ(Ci) ̸= ∗. We know that

Inf(f) ≤ aUC(f,C ) =

t∑
i=1

|τ(Ci)| · 2−|τ(Ci)| =

t1∑
i=1

|τ(Ci)| · 2−|τ(Ci)| +

t∑
i=t1+1

|τ(Ci)| · 2−|τ(Ci)|.

However, the following better bound on the influence is easily seen from the equivalence of influence and

average sensitivity.
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Proposition 3.3. Let f : {−1, 1}n → {−1, 1} be a Boolean function and C = {C1, . . . , Ct} be an

unambiguous certificate of f . Then,

Inf(f) ≤ 2 ·min

{
t1∑
i=1

|τ(Ci)|2−|τ(Ci)|,

t∑
i=t1+1

|τ(Ci)|2−|τ(Ci)|

}
≤ aUC(f,C ).

Therefore, it’s natural to ask whether we can improve the upper bound in Theorem 3.1 to

min

{
t1∑
i=1

|τ(Ci)|2−|τ(Ci)|,

t∑
i=t1+1

|τ(Ci)|2−|τ(Ci)|

}
(up to a constant factor).

We remark that the quantity
∑t1

i=1 |τ(Ci)|2−|τ(Ci)|, in a certain sense, is “average unambiguous 1-certificate

complexity” and, similarly,
∑t

i=t1+1 |τ(Ci)|2−|τ(Ci)| captures “average unambiguous 0-certificate complexity”.

Moreover, answering this question is of significance to tackling Mansour’s conjecture positively. For more

details, see Section 3.3.

Building on our ideas from the main theorem in the previous section and using a stronger version of the

AEP theorem (Theorem 2.8) we nearly establish the aforementioned improved bound of the smaller quantity

between “average unambiguous 1-certificate complexity” and “average unambiguous 0-certificate complexity”

on the Fourier entropy. Formally, we prove the following.

Theorem 3.4. Let f : {−1, 1}n → {−1, 1} be a Boolean function and C = {C1, . . . , Ct} be an unambiguous

certificate of f such that {C1, . . . , Ct1} for some t1 < t is a subcube partition of f−1(−1) and {Ct1+1, . . . , Ct}
is a subcube partition of f−1(1). Further, p := Prx[f(x) = 1]. Then,

H(f̂2) ≤


2

(
t1∑
i=1

|τ(Ci)| · 2−|τ(Ci)| + p · max
i∈{1,...,t1}

|τ(Ci)|

)
,

2

(
t∑

i=t1+1

|τ(Ci)| · 2−|τ(Ci)| + (1− p) · max
i∈{t1+1,...,t}

|τ(Ci)|

)
.

Remark 3.5. An unsatisfactory part of the bound above is the presence of the term p ·max |τ(Ci)|. This
is because when max |τ(Ci)| term is not weighted by p, it becomes a trivial bound on entropy. Ideally, one

would like to get rid of this term altogether, possibly at the expense of increasing the constant factor in the

first summand.

Moreover, a similar bound when {C1, . . . , Ct1} is an arbitrary DNF representation of f (i.e., when the Cis

need not be disjoint) suffices to prove Mansour’s conjecture (Conjecture 3.7). For details, see Section 3.3.

Proof of Theorem 3.4. We only prove the inequality

H(f̂2) ≤ 2 ·

(
t1∑
i=1

|τ(Ci)| · 2−|τ(Ci)| + p · max
i∈[t1]

|τ(Ci)|

)
. (7)

In order to obtain the other inequality in the theorem statement, we can replace f by ¬f and observe that

Fourier entropy of f and ¬f is the same. We recall {C1, . . . , Ct1} is a subcube partition of f−1(−1) and

p = Prx[f(x) = 1].

Like in the proof of Theorem 3.1, we define a random variable over subsets of {−1, 1}n such that the

support of the random variable partitions the space. In particular, define a random variable C that equals

one of the Ci, 1 ≤ i ≤ t1, with probability 2−|τ(Ci)| and equals the set f−1(1) := {x | f(x) = 1} with
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probability p.8 We consider the M -fold iterated product of this partition {C1, . . . , Ct1 , f
−1(1)} of {−1, 1}n,

which gives us a partition P of the space {−1, 1}Mn such that fM is constant on each part. Overall there

are (t1 + 1)M parts in P. For a part ρ ∈ P, let 1ρ(z) be the {0, 1}-valued function that is 1 if and only if

z ∈ {−1, 1}Mn is in ρ. Furthermore, for ρ ∈ P, let fM (ρ) ∈ {−1, 1} be the value of fM on the part ρ. Then,

on an input z ∈ {−1, 1}Mn,

fM (z) =
∑
ρ∈P

fM (ρ) · 1ρ(z) =
∑

ρ∈T
∗(M)
ε (C)

fM (ρ) · 1ρ(z) +
∑

ρ ̸∈T
∗(M)
ε (C)

fM (ρ) · 1ρ(z). (8)

where T
∗(M)
ε (C) is the strongly typical set with respect to the distribution of C and ε > 0. Similar to the

proof of Theorem 3.1, we now define a set B of Fourier coefficients of fM , which we argue below to be of

“small” size and “large” Fourier weight.

B :=
{
(S1, . . . , SM ) ⊆ [n]M | 1̂ρ(S1 ∪ · · · ∪ SM ) ̸= 0 for some ρ ∈ T ∗(M)

ε (C)
}
. (9)

Claim 3.3.

|B| ≤ 22Mδ · 22M
(∑t1

i=1 |τ(Ci)|(2−|τ(Ci)|+ε′) + (p+ε′)max
t1
i=1 |τ(Ci)|

)
,

where ε′ = ε/(t1 + 1) and δ > 0 is such that δ → 0 as ε → 0.

Proof of Claim. Similar to Claim 3.1 we first bound the size of the strongly typical set T
∗(M)
ε (C) and

then count contributions of a strongly typical sequence ρ to B. The contribution of ρ can be upper bounded

by the sparsity of the Fourier expansion of the indicator function 1ρ. Therefore,

|B| ≤ |T ∗(M)
ε (C)| ·max

ρ∈P
{Fourier sparsity of 1ρ}.

By the strong AEP theorem, Theorem 2.8 (iii), we have |T ∗(M)
ε (C)| ≤ 2M(H(C)+δ). We now bound the

Fourier sparsity of 1ρ for a strongly typical ρ. By Parseval’s Theorem (Fact 2.1), we have∑
(S1,...,SM )

1̂ρ(S1 ∪ · · · ∪ SM )2 = Pr
z
[1ρ(z) = 1] .

Therefore,

sparsity(1̂ρ) · min
(S1,...,SM )

1̂ρ(S1 ∪ · · · ∪ SM )2 ≤ Pr
z
[1ρ(z) = 1] ≤ 2−M(H(C)−δ), (10)

where the second inequality follows from the strong AEP theorem, Theorem 2.8 (ii), and sparsity(1̂ρ) denotes

the Fourier sparsity of 1ρ. To obtain an upper bound on the sparsity we now establish a lower bound on the

magnitude of the non-zero Fourier coefficients of 1ρ.

Since ρ ∈ {C1, . . . , Ct1 , f
−1(1)}M , the Fourier expansion of the indicator function 1ρ is a product of

Fourier expansion of indicator functions of C1, . . . , Ct1 and f−1(1). The indicator function of Ci is just an

AND over the appropriate subset of literals, and the indicator function of f−1(1) is 1−
t1∑
i=1

1Ci . Hence, a

8Observe that
∑t1

i=1 2−|τ(Ci)| = 1 − p, hence C is a valid random variable.
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lower bound on the magnitude of a non-zero Fourier coefficient of 1ρ is given by

t1∏
i=1

(
1

2|τ(Ci)|

)N(Ci;ρ)

·
(

1

2maxi∈{1,...,t1}{|τ(Ci)|}

)N(f−1(1);ρ)

,

where N(Ci; ρ) (respectively, N(f−1(1); ρ)) is the number of occurrences of Ci (respectively, f
−1(1)) in ρ.

Therefore, squaring the above lower bound and using it in Eq. (10) we obtain

sparsity(1̂ρ) ≤
1

2M(H(C)−δ)
·

t1∏
i=1

22|τ(Ci)|·N(Ci;ρ) · 22maxi∈[t1]{|τ(Ci)|}·N(f−1(1);ρ),

=
1

2M(H(C)−δ)
· 22·

(∑t1
i=1 |τ(Ci)|·N(Ci;ρ) + maxi∈[t1]{|τ(Ci)|}·N(f−1(1);ρ)

)
,

≤ 1

2M(H(C)−δ)
· 22M·

(∑t1
i=1 |τ(Ci)|·(2−|τ(Ci)|+ε′) + maxi∈[t1]{|τ(Ci)|}·(p+ε′)

)
, (11)

where the last inequality follows from the strong AEP theorem and ε′ = ε/(t1+1). Now using inequality (11)

along with the bound on the size of the strongly typical set T
∗(M)
ε (C) we obtain the claimed bound on the

size of B, thereby completing the proof of the claim. □

The next claim shows that the Fourier coefficients not in B have low total Fourier weight.

Claim 3.4. ∑
(S1,S2,...,SM )̸∈B

f̂M (S1 ∪ · · · ∪ SM )2 ≤ ε.

Proof of Claim. We omit the proof as it is similar to the proof of Claim 3.2. □

Now bounding the Fourier entropy of fM as in the proof of Theorem 3.1 and taking the limit as M → ∞,

we obtain the following bound on the Fourier entropy of f ,

H(f̂2) ≤ 2 ·

(
t1∑
i=1

|τ(Ci)| · 2−|τ(Ci)| + p · max
i∈[t1]

|τ(Ci)|

)
.

□

3.2.1 Extension to affine subspace partition. Since our techniques are oblivious to the change of basis, again

analogous to Theorem 3.2 we obtain the following generalization of Theorem 3.4 to the setting when

{C1, . . . , Ct} forms a monochromatic affine subspace partition. We state the generalization below without

the proof.

Theorem 3.6 (Restatement of Theorem 1.7). Let f : {−1, 1}n → {−1, 1} be a Boolean function

and C = {C1, . . . , Ct} be a monochromatic affine subspace partition of {−1, 1}n with respect to f such that

{C1, . . . , Ct1} for some t1 < t is an affine subspace partition of f−1(−1) and {Ct1+1, . . . , Ct} is an affine

subspace partition of f−1(1). Further, p := Prx[f(x) = 1]. Then,

H(f̂2) ≤


2

(
t1∑
i=1

co-dim(Ci) · 2−co-dim(Ci) + p · max
i∈{1,...,t1}

co-dim(Ci)

)
,

2

(
t∑

i=t1+1

co-dim(Ci) · 2−co-dim(Ci) + (1− p) · max
i∈{t1+1,...,t}

co-dim(Ci)

)
.
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3.3 Discussions on certificate complexity and Mansour’s conjecture

An important consequence of the FEI conjecture, among many, is a positive answer to the long-standing

conjecture of Mansour.

Conjecture 3.7 (Mansour’s Conjecture [46]). Let f : {−1, 1}n → {−1, 1} be a Boolean function

that is representable by a t-term DNF. For every constant ε > 0, there exists a polynomial p over {−1, 1}
with sparsity poly(t) such that Ex

[
(f(x)− p(x))2

]
≤ ε. (The exponent in poly(t) can depend on 1/ε.)

In fact, Mansour’s original conjecture states that sparsity of the polynomial p (in the conjecture above)

can be taken to be tO(log
1
ε ). Mansour’s conjecture has a number of important consequences. For instance,

Gopalan et al. [31] showed that a positive answer to Mansour’s conjecture (Conjecture 3.7) would imply

that DNF formulas can be agnostically learned in polynomial time up to any constant error parameter. This

has been a long-standing open question [30] in computational learning theory.

Earlier we saw that H(f̂2) ≤ O(aUC⊕(f)). In fact we saw a somewhat stronger bound (Theorem 3.6);

informally, capturing “average unambiguous 1-parity-certificate complexity”. An interesting follow-up

question in light of such results, in particular Theorems 3.1 and 3.4, is if one could strengthen these upper

bound to O(min{C0(f),C1(f)}). In this section we observe that this bound on the Fourier-entropy in terms

of C0(f),C1(f) (which is clearly weaker than the FEI conjecture) suffices to establish Mansour’s conjecture.

We remark that it was implicit in previous works [30, 37, 40, 53] that one doesn’t need the full power of

the FEI conjecture to establish Mansour’s conjecture. However, the following question: What is the weakest

form of the FEI conjecture that still implies Mansour’s conjecture?, was left unexplored. Our observation

sharpens this relationship and establishes Mansour’s conjecture as a natural next step towards resolving the

FEI conjecture.

We now formally state the weaker conjecture than the FEI conjecture that suffices to imply Mansour’s

conjecture.

Conjecture 3.8. There exists a universal constant λ > 0 such that for every Boolean function

f : {−1, 1}n → {−1, 1}, we have

H(f̂2) ≤ λ ·min
{
C0(f),C1(f)

}
.

It is weaker than the FEI conjecture because Inf(f) ≤ min
{
C0(f),C1(f)

}
[5, 12, 66]. To establish the

implication we will use the following equivalent form of Conjecture 3.8.

Conjecture 3.9. There exists a universal constant λ > 0 such that for every Boolean function

f : {−1, 1}n → {−1, 1}, we have

H(f̂2) ≤ λ · C1(f).

Before establishing the implication, we quickly argue that Conjectures 3.8 and 3.9 are equivalent. It is

easily seen that Conjecture 3.8 implies Conjecture 3.9. For the reverse direction, note that both f and ¬f
have the same Fourier-entropy, while C0(f) and C1(f) reverse roles.

We also note that Conjecture 3.9 is readily seen to imply the weaker version of “Mansour’s conjecture for

width” posed by [32] which in turn is known to imply Conjecture 3.7. However, for the sake of completeness,

we present here a direct argument to verify this implication. It is also worthwhile to mention the recent
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works on DNF sparsification [44, 45] that can be used to establish the reverse implication too (see [32,

Lemma 6.4]).

Proposition 3.10. Conjecture 3.9 implies Conjecture 3.7.

Proof. Let f be a t-term DNF and suppose δ1, δ2 > 0 are constants which we pick later. Let g be a

Boolean function obtained from f by dropping all terms of length more than log(4t/δ1) in the DNF for f .

Over the uniform distribution, each term of length greater than log(4t/δ1) equals 1 with probability at most

δ1/4t. Then g(x) and f(x) differ only if x is accepted by a term of length greater than log(4t/δ1). Since

there are at most t terms, by a union bound, we get

Ex

[
(f(x)− g(x))2

]
≤ 4 · t · δ1

4t
= δ1. (12)

Using Conjecture 3.9 for the function g, we get H(ĝ2) ≤ λ · C1(g) ≤ λ log(4t/δ1). We now construct a

polynomial p by defining its Fourier coefficients as follows:

p̂(S) =

ĝ(S) if |ĝ(S)| ≥ 2−H(ĝ2)/(2δ2),

0 otherwise.

By Parseval’s identity (Fact 2.1), it follows that the number of non-zero Fourier coefficients in p is at most

2H(ĝ2)/δ2 . Additionally we have that

Ex

[
(g(x)− p(x))2

]
=
∑
S

(ĝ(S)− p̂(S))2 =
∑

S : |ĝ(S)|<2− H(ĝ2)/(2δ2)

ĝ(S)2 ≤ δ2, (13)

where the inequality follows from the Markov inequality.

Using traingle inequality on ℓ2-norm, we can easily bound E[(f − p)2].

E
[
(f − p)2

]
= E

[
(f − g + g − p)2

]
≤ (

√
δ1 +

√
δ2)

2,

where the inequality used substitutions from Eq. (12) and (13). By picking δ1 = δ2 = ε/4 we get E[(f−p)2] ≤ ε,

which ensures that p has the approximation needed for Mansour’s conjecture. Additionally, the Fourier

sparsity of p is at most

2H(ĝ2)/δ2 ≤ 2λ log(4t/δ1)/δ2 =
(16t

ε

) 4λ
ε
.

□

We end this section with another open problem that could form an intermediate step towards resolving

Mansour’s conjecture. The following seemingly weaker conjecture than Conjecture 3.8 is not known to imply

Mansour’s conjecture.

Conjecture 3.11. There exists a universal constant λ > 0 such that for any Boolean function f : {−1, 1}n →
{−1, 1},

H(f̂2) ≤ λ ·max
{
C0(f),C1(f)

}
= λ · C(f).
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4 BETTER BOUNDS ON FOURIER MIN-ENTROPY

The Fourier Min-entropy-Influence conjecture (FMEI) is a natural weakening of the FEI conjecture that has

received much less attention compared to the FEI conjecture. The FMEI conjecture was raised by O’Donnell

and others in [50, 53] as a simpler question to tackle, given the hardness of resolving the FEI conjecture. We

restate the FMEI conjecture below.

Conjecture 4.1 (FMEI conjecture). There exists a universal constant C > 0 such that for every

Boolean function f : {−1, 1}n → {−1, 1}, we have H∞(f̂2) ≤ C · Inf(f).

Although the FMEI conjecture is a natural first step towards proving the FEI conjecture, it is also

interesting in its own right. For example, it is known to imply the famous KKL theorem [36]. In fact, until

very recently9, we did not know of any proof of the KKL theorem that didn’t go through hypercontractivity

or logarithmic Sobolev inequalities, which makes proving the FMEI conjecture even more interesting. The

KKL theorem states that for every Boolean function f : {−1, 1}n → {−1, 1}, there exists an index i ∈ [n]

such that Infi(f) ≥ Var(f) · Ω
(
logn
n

)
. We now present an argument of [53] that shows how a positive

answer to the FMEI conjecture implies the KKL theorem for balanced functions: assume that f is balanced

(i.e., f̂(∅) = Ex[f(x)] = 0). Then the FMEI conjecture implies the existence of ∅ ̸= T ⊆ [n] such that

f̂(T )2 ≥ 2−C·Inf(f). Furthermore, for every i ∈ T , we have

Infi(f) =
∑

S:S∋i

f̂(S)2 ≥ f̂(T )2 ≥ 2−C·Inf(f) ≥ 2−Cn·maxj{Infj(f)}, (14)

where the first inequality follows because T contains i, the second inequality follows from the FMEI conjecture

and the last inequality because Inf(f) ≤ n ·maxj{Infj(f)}. However note that maxj{Infj(f)} clearly upper

bounds the left-hand side of Eq. (14). Thus, we have

max
j∈[n]

{Infj(f)} ≥ 2−Cn·maxj{Infj(f)}.

Rearranging this inequality, we obtain maxj∈[n]{Infj(f)} ≥ Ω
(
logn
n

)
, which is the KKL theorem for balanced

functions. The proof can also be extended to non-balanced functions though using the FEI conjecture (see

[53]).

We now prove Theorem 4.2, which is our main contribution in this section. In the following theorem, we

give upper bounds on H∞(f̂2) in terms of analytic and combinatorial measures of Boolean functions.

Theorem 4.2 (Restatement of Theorem 1.8). Let f : {−1, 1}n → {−1, 1} be a Boolean function.

Then,

(i) For every ε ≥ 0, H∞(f̂2) ≤ 2 · log
(
∥f̂∥1,ε/(1− ε)

)
.

(ii) H∞(f̂2) ≤ 2 · C⊕
min(f).

(iii) H∞(f̂2) ≤ 2(1 + log2 3) ·R
⊕
2 (f).

Before giving a proof, we first make a few remarks about the second statement in the theorem above.

The FMEI conjecture asks if H∞(f̂2) ≤ C · as(f)? Since we also know that for every x ∈ {−1, 1}n, we have

s(f, x) ≤ C(f, x), a weaker question than the FMEI conjecture (with a larger right-hand side) would be, is

9Eldan and Gross [27] developed new techniques using stochastic analysis that give a new way to prove the KKL theorem
among other things.
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H∞(f̂2) ≤ C · aC(f)? In the theorem above, we give a positive answer to this question and in fact show

that H∞(f̂2) ≤ 2 · C⊕
min(f). Observe that C⊕

min(f) is not only a lower bound on aC⊕(f) (and in turn aC(f)),

but it is the parity certificate complexity on the “easiest” input to f , unlike C⊕(f) where the complexity

is measured according to the “hardest” input x to f . In our perspective, this brings us closer to proving

the FMEI conjecture. In fact, we identify a non-trivial class of Boolean functions for which Cmin(f) lower

bounds Inf(f), and hence establish the FMEI conjecture for this class (Theorem 4.9).

Proof of Theorem 4.2. We prove the three parts separately as follows.

Part (i). Fix ε ≥ 0 and d ∈ [n]. Given a Boolean function f , suppose p is a degree-d polynomial that

minimizes

∥f̂∥1,ε,d = min {∥p̂∥1 : deg(p) ≤ d and |p(x)− f(x)| ≤ ε for every x ∈ {−1, 1}n} ,

where the minimization is over all polynomials. Alternatively, ∥f̂∥1,ε,d can also be expressed as the following

linear program and p minimizes this program.

∥f̂∥1,ε,d = min
∑

S |cS |
subject to

∣∣∣f(x)−∑S:|S|≤d cSχS(x)
∣∣∣ ≤ ε for every x ∈ {−1, 1}n

cS ∈ R for every S : |S| ≤ d

Note that for every ε ≥ 0 and d ≥ degε(f) the above linear program is feasible. From standard manipulations,

the dual of the linear program is as follows.

max
∑

x∈{−1,1}n ϕ(x)f(x)− ε
∑

x∈{−1,1}n |ϕ(x)|
subject to |ϕ̂(S)| ≤ 1

2n
for every S : |S| ≤ d

ϕ(x) ∈ R for every x ∈ {−1, 1}n

Observe that both linear programs are feasible for d ≥ degε(f). Therefore, from the duality theorem of linear

programs, the objective value of any dual feasible solution lower bounds the primal optimum and, moreover,

the two programs have the same optimum value. We thus obtain the following characterization of ∥f̂∥1,ε,d.10

Lemma 4.3. Let f : {−1, 1}n → {−1, 1}, ε ≥ 0, and d ∈ [n] such that d ≥ degε(f). Then, ∥f̂∥1,ε,d ≥ T if

and only if there exists a polynomial ϕ : {−1, 1}n → R satisfying |ϕ̂(S)| ≤ 2−n for all |S| ≤ d and∑
x∈{−1,1}n

ϕ(x)f(x)− ε
∑

x∈{−1,1}n
|ϕ(x)| ≥ T.

Let us consider ϕ(x) = f(x)

2n maxS |f̂(S)|
. Clearly the dual constraints are satisfied, and the objective value

for this choice of ϕ is given by∑
x∈{−1,1}n

ϕ(x)f(x)− ε
∑

x∈{−1,1}n
|ϕ(x)| = 1− ε

maxS |f̂(S)|
.

10We remark that similar linear program characterizations of approximate degree of Boolean functions have appeared before
in the works of Sherstov [62] and Bun and Thaler [17].
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The equality holds since ϕ(x)f(x) = |ϕ(x)|. Now, by Lemma 4.3, we have

∥f̂∥1,ε,d ≥ 1− ε

maxS |f̂(S)|
.

Therefore, we obtain,

H∞(f̂2) ≤ 2 · log

(
∥f̂∥1,ε,d
1− ε

)
.

Since d is arbitrary, in order to ensure feasibility of the program we pick d = degε(f). The first part of the

theorem follows since ∥f̂∥1,ε,n = ∥f̂∥1,ε.

Part (ii). Suppose C⊕
min(f) = k. By definition of C⊕

min(f), there exists an affine subspace H ⊆ {−1, 1}n

such that co-dim(H) = k and f is constant on H. Without loss of generality, assume that f(x) = −1 for

every x ∈ H. Since co-dim(H) equals k, H is given by a set of k (linearly independent) parity constraints.

That is, there exist k linearly independent vectors S1, . . . , Sk ∈ {0, 1}n, and b1, . . . , bk ∈ {−1, 1}, such that

H =

{
x ∈ {−1, 1}n : for every j ∈ [k],

∏
i∈supp(Sj)

xi = bj

}
.

Consider the indicator function 1H : {−1, 1}n → {−1, 1}, which evaluates to −1 for every x ∈ H and 1

otherwise. The Fourier expansion of 1H is easy to understand. Observe that H can be viewed as an AND

over parities or negated-parities. For j ∈ [k], let yj =
∏

i∈supp(Sj)
xi. It is now easily seen that

1H(x) = AND(−b1y1,−b2y2, . . . ,−bkyk). (15)

Recall that bj is fixed, thus −bjyj is either yj or −yj . Writing out the Fourier expansion for the AND

function in Eq. (15), it follows that

1H(x) =

(
1− 1

2k−1

)
+

∑
T⊆[k] : T ̸=∅

(−1)|T |+1

2k−1

∏
j∈T

−bjyj

=

(
1− 1

2k−1

)
+

∑
T⊆[k] : T ̸=∅

(
−
∏

j∈T bj

2k−1

)∏
j∈T

 ∏
i∈supp(Sj)

xi

 .

Now using the fact that x2
i = 1, observe that the monomial

∏
j∈T

∏
i∈supp(Sj)

xi simplifies to a multilinear

monomial. We further observe that for each non-empty T , we can simplify
∏

j∈T

∏
i∈supp(Sj)

xi to a distinct

multilinear monomial. This is a consequence of linear independence of S1, S2, . . . , Sk. Let us denote the set

of non-zero Fourier coefficients of 1H by T . By what we argued just now, it follows that |T | = 2k. We are

now ready to conclude the proof.

Lemma 4.4. There exists a set T ⊆ [n] such that |f̂(T )| ≥ 1
2k

.

Proof. Let Prx[f(x) = −1] = p. We consider the correlation between f and 1H .

⟨f, 1H⟩ = Ex [f(x) · 1H(x)] =
1

2k
+ (−1)

(
p− 1

2k

)
+ (1− p) = (1− 2p) +

1

2k−1
= f̂(∅) + 1

2k−1
. (16)
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On the other hand,

⟨f, 1H⟩ =
∑

S⊆[n]

f̂(S) · 1̂H(S) = f̂(∅) ·
(
1− 1

2k−1

)
+

∑
T∈T : T ̸=∅

f̂(T ) ·

(
−
∏

j∈T bj

2k−1

)
. (17)

Putting together Eq. (16) and Eq. (17) we have,

1 = −f̂(∅) +
∑

T∈T : T ̸=∅

f̂(T ) · (−Πj∈T bj) ≤
∑
T∈T

|f̂(T )|. (18)

Since |T | = 2k, we obtain maxT∈T |f̂(T )| ≥ 1
2k

. □

This completes the proof of part (ii).

Remark 4.5. We note that in fact the proof of part (ii), in particular Eq. (18), shows that the following

bounds hold when H is a subcube.

(a) There exists a non-empty set S ⊆ [n] of size at most Cmin(f) such that∣∣∣f̂(S)∣∣∣ ≥ 1− |f̂(∅)|
2Cmin(f) − 1

≥ Var(f)

2Cmin(f)+1
.

(b) There exists a non-empty set S ⊆ [n] of size at most max
{
C0
min(f),C

1
min(f)

}
such that∣∣∣f̂(S)∣∣∣ ≥ 1 + |f̂(∅)|

2max{C0
min(f),C

1
min(f)} − 1

≥
√

Var(f)

2max{C0
min(f),C

1
min(f)}

.

This inequality follows from using either f or −f in Eq. (18), depending on whether f̂(∅) is positive

or not.

The size bound on S follows because when H is a subcube the Fourier expansion of 1H is supported on

monomials of degree at most co-dim(H). We end the remark here and continue with the proof of the theorem.

Part (iii). Consider a randomized parity-decision tree Rµ computing f with probability at least 2/3. Let

T be the set of deterministic parity-decision trees such that Rµ assigns a non-zero probability to every

T ∈ T . By definition, it then follows that Ex ET∼µ[f(x)T (x)] ≥ 1/3. This also shows that

1

3
≤ Ex ET∼µ[f(x)T (x)] = ET∼µ Ex[f(x)T (x)] = ET∼µ

 ∑
S⊆[n]

f̂(S)T̂ (S)

 . (19)

On the other hand, one can upper bound the last expression in Eq. (19) as follows

ET∼µ

 ∑
S⊆[n]

f̂(S)T̂ (S)

 ≤ ET∼µ

 ∑
S⊆[n]

|f̂(S)||T̂ (S)|

 ≤
(
max
S⊆[n]

|f̂(S)|
)
ET∼µ

 ∑
S⊆[n]

|T̂ (S)|

 . (20)

Putting together Eq. (19) and Eq. (20) we have,

1

3
≤
(
max
S⊆[n]

|f̂(S)|
)
ET∼µ

 ∑
S⊆[n]

|T̂ (S)|

 ≤
(
max
S⊆[n]

|f̂(S)|
)
2R

⊕
2 (f).

The second inequality follows from the fact that each T is a deterministic parity-decision tree of depth at most

R⊕
2 (f), hence it easily follows that the spectral norm of the Fourier coefficients of T can be upper bounded
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by 2R
⊕
2 (f) (for a proof of this, see [14]). Rewriting the last inequality, we have maxS⊆[n] |f̂(S)| ≥ 1

2
R

⊕
2 (f)+log 3

,

which gives us the third part of the theorem. □

Using a well-known fact that upper bounds Rényi entropy of order 1 + δ (for every δ > 0) by a constant

times the min-entropy of
{
f̂(S)2

}
, we deduce the following corollary. Since this fact works for all δ > 0, it

is tempting to say that we can improve the bounds in Theorem 4.2 from H∞(f̂2) to H(f̂2), but this relation

between the Rényi entropies breaks down for δ = 0.

Corollary 4.6. Let f : {−1, 1}n → {−1, 1}, and δ > 0. Then,

(i) For every ε ≥ 0, H1+δ(f̂
2) ≤ 2

(
1 + 1

δ

)
· log

(
∥f̂∥1,ε/(1− ε)

)
.

(ii) H1+δ(f̂
2) ≤ 2

(
1 + 1

δ

)
· C⊕

min(f).

(iii) H1+δ(f̂
2) ≤ 2(1 + log 3)

(
1 + 1

δ

)
·R⊕

2 (f).

Proof. Use the fact that for any distribution P , H1+δ(P ) ≤
(
1 + 1

δ

)
H∞(P ). Indeed, it is easily seen

from the definition of Rényi entropy that − 1
δ
log
(∑

j p
1+δ
j

)
≤ − 1+δ

δ
log (maxj{pj}), and thus the fact

follows. We remark that a tighter analysis of the Rényi entropy can be used to improve the constants. □

As a corollary to Theorem 4.2 (ii), we now establish the FMEI conjecture for read-k DNFs, for constant k.

A Boolean function is said to belong to the class of read-k DNF if it can be expressed as a DNF such that

every variable (negated or un-negated) appears in at most k terms. We note that, independently, Shalev [58]

showed, among other things, that FMEI holds for “regular” read-k DNFs. However, we show it for the

general class of read-k DNFs. We remark that this improvement crucially uses our sharper bound of Cmin on

the min-entropy of
{
f̂(S)2

}
S
.

We will need the well-known KKL theorem which we state below.

Theorem 4.7 ([28, 36]). There exists a universal constant c > 0 such that for every f : {−1, 1}n →
{−1, 1}, we have

Inf(f) ≥ c · Var(f) · log 1

maxi Infi(f)
.

The next lemma establishes a lower bound of minimum certificate size on the total influence of constant-

read DNF. A similar argument appears in Shalev [58] too.

Lemma 4.8. There exists a universal constant c > 0 such that for all f : {−1, 1}n → {−1, 1} that can be

expressed as a read-k DNF, we have

Inf(f) ≥ c · Var(f) · (Cmin(f)− 1− log k) .

Proof. Suppose f is a t-term read-k DNF, then f can be written as f(x) =
∨t

j=1 Tj(x), where Tj(x) is

a term. Recall, Infi(f) = Prx[f(x) ̸= f(x(i))]. Using the fact that f is a DNF we upper bound the Infi(f) as

follows,

Infi(f) = Pr
x

[
f(x) ̸= f(x(i))

]
≤

t∑
j=1

Pr
x

[
Tj(x) ̸= Tj(x

(i))
]
.
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Clearly when Tj is not defined over a variable xi, Prx[Tj(x) ̸= Tj(x
(i))] = 0, and otherwise it equals 1

2
|Tj |−1

because all other literals must be set to true in order to satisfy that term. Therefore, we have

Infi(f) ≤
t∑

j=1

Pr
x

[
Tj(x) ̸= Tj(x

(i))
]
=

t∑
j=1

xi appears in Tj

Pr
x

[
Tj(x) ̸= Tj(x

(i))
]
≤ k2−(Cmin(f)−1).

The second inequality follows because a variable appears in at most k terms, and |Tj | ≥ Cmin(f) for all j.

Now using the KKL theorem (Theorem 4.7), we obtain

Inf(f) ≥ c · Var(f) · log 1

maxi Infi(f)
≥ c · Var(f) · (Cmin(f)− 1− log k).

This concludes the proof of the lemma. □

We now use Lemma 4.8 and Theorem 4.2 (ii) to show that FMEI conjecture holds for read-k DNF.

Theorem 4.9 (Restatement of Theorem 1.9). Let f : {−1, 1}n → {−1, 1} be a read-k DNF. Then,

H∞(f̂2) ≤ C · Inf(f), where C = O(log k).

Proof. We consider two cases based on whether Var(f) is “small” (< 1/2) or “large” (≥ 1/2).

Case 1. Var(f) < 1/2. Recall, Var(f) = 1− f̂(∅)2. Therefore, we have

H∞(f̂2) ≤ log
1

f̂(∅)2
= log

1

1− Var(f)
≤ (log e)

Var(f)

1− Var(f)
≤ (2 log e)Var(f) ≤ (2 log e)Inf(f).

The second inequality uses the fact, for x ∈ (0, 1), log 1
1−x

≤ (log e) x
1−x

.

Case 2. Var(f) ≥ 1/2. Using Theorem 4.2 (ii) and Lemma 4.8 we bound the min-entropy as follows,

H∞(f̂2) ≤ 2 · Cmin(f) ≤ (2/c) · Inf(f)

Var(f)
+ 2(1 + log k),

where c is a universal constant. Since Inf(f) ≥ Var(f) ≥ 1/2, we further bound the last term in the above

inequality to obtain

H∞(f̂2) ≤ ((4/c) + 4(1 + log k)) · Inf(f).

This completes the proof of the theorem. □

5 IMPLICATIONS OF THE FEI CONJECTURE

The FEI and FMEI conjecture seem to impose a strong constraint on the Fourier spectrum of a Boolean

function. For example, the FMEI conjecture (if true) would show the existence of a large Fourier coefficient

in the spectrum of every Boolean function that has small average sensitivity. In the introduction we saw

that the FEI conjecture implies the existence of a Fourier-sparse polynomial p that approximates a Boolean

function f in ℓ2-distance, i.e., Ex[(f(x)− p(x))2] is small. (A particular case being Mansour’s conjecture,

which is also a consequence of the FEI conjecture.) In this section we discuss one implication of the FEI

conjecture relating to the structure of polynomials that approximate Boolean functions in the ℓ∞-distance,

i.e, |p(x)− f(x)| is small for every x ∈ {−1, 1}n. In particular, we consider the question “Do polynomials

approximating a Boolean function in ℓ∞-distance satisfy some property?”. In this direction, we make progress
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by showing that if the FEI conjecture is true, then we can rule out polynomials with “large” Fourier sparsity

from representing or approximating Boolean functions. In this section, we also consider a class of polynomials

and show that no polynomial in that class can 1/3-approximate a Boolean function (without assuming that

the FEI conjecture is true).

Definition 5.1. An n-variate multilinear polynomial p is said to be a flat polynomial if all its non-zero

coefficients have the same magnitude.

Lemma 5.2. Let ε ∈ (0, 1/2) be a constant, and suppose the FEI conjecture is true. Let p be a flat

polynomial with degree d and sparsity T = 2ω(d). Then p cannot ε-approximate any Boolean function.

Proof. In order to prove the lemma, we crucially use the following claim.

Claim 5.1. Let p be a flat polynomial with sparsity T and, further, suppose p ε-approximates a Boolean

function f . Then,

H(f̂2) ≥ Ω(log T ), (21)

where the constant in Ω(·) depends on ε.

We assume this claim and conclude the proof of the lemma. By contradiction, let us assume that p

ε-approximates a Boolean function f , so degε(f) ≤ d. Assuming the FEI conjecture is true, we have

H(f̂2) = O(Inf(f)). Furthermore, using a result of Shi [63], we have Inf(f) ≤ O(degε(f)) for every f and

constant ε. So, we have H(f̂2) ≤ O(degε(f)) ≤ O(d). Using Claim 5.1, it follows that

Ω(log T ) ≤ H(f̂2) ≤ O(d).

But this upper bound of T = 2O(d) contradicts the assumption on T in the statement of the lemma. Hence,

we conclude that p cannot ε-approximate any Boolean function. □

We now prove the claim.

Proof of Claim 5.1. Suppose p ε-approximates a Boolean function f and that all non-zero coefficients

of p have magnitude α√
T

for some α ∈ [(1 − ε), (1 + ε)]. Such an α exists because, by Parseval’s identity

(Fact 2.1), we have ∑
S

p̂(S)2 = Ex

[
p(x)2

]
∈
[
(1− ε)2, (1 + ε)2

]
,

where the inclusion assumes p ε-approximates f . Now consider the following set A of “large” Fourier

coefficients,

A :=

{
S : |f̂(S)| ≥ 2α√

T

}
. (22)

For every S ∈ A, we have |f̂(S)− p̂(S)| ≥ |f̂(S)|/2 and hence∑
S∈A

f̂(S)2 ≤ 4
∑
S∈A

(
f̂(S)− p̂(S)

)2
≤ 4

∑
S⊆[n]

(
f̂(S)− p̂(S)

)2
= 4Ex

[
(f(x)− p(x))2

]
≤ 4ε2, (23)

where the equality uses Parseval’s identity (Fact 2.1) and the last inequality uses that p ε-approximates f .

From Eq. (23), we have
∑

S ̸∈A f̂(S)2 ≥ 1−4ε2. This gives us our desired lower bound on the Fourier entropy
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of f ,

H(f̂2) =
∑

S⊆[n]

f̂(S)2 log
1

f̂(S)2

≥
∑
S ̸∈A

f̂(S)2 log
1

f̂(S)2
≥
∑
S ̸∈A

f̂(S)2 · log
( T

4α2

)
≥ (1− 4ε2) log

( T

4α2

)
≥ (1− 4ε2) log

T

4(1 + ε)2
= Ω(log T ).

The second inequality follows by the definition of A (Eq. (22)), the third inequality by negation of the

inequalities in Eq. (23), the last inequality holds because α ≤ (1 + ε) by the definition of α, and the last

equality assumes ε ∈ (0, 1/2). □

Since we are still unable to resolve the FEI conjecture, an interesting intermediate question would be to

unconditionally prove the following conjecture.

Conjecture 5.3. No flat polynomial of degree d and sparsity 2ω(d) can ε-approximate a Boolean function.

Although we have not been able to resolve this conjecture, we now discuss some partial progress towards

resolving it. Additionally, we give an intriguing connection between this conjecture and the Bohnenblust-Hille

inequality.

Partial progress towards resolving Conjecture 5.3. As a first step towards proving the conjecture we observe

that a weaker version of the conjecture holds when further restricting the approximating polynomials to be

homogeneous. A polynomial is said to be homogeneous if every monomial in the polynomial has the same

degree. More formally, we observe the following.

Proposition 5.4. No flat homogeneous polynomial of degree d and sparsity 2ω(d log d) can 1/3-approximate

a Boolean function.

Proof. Let p be a flat homogeneous polynomial of degree d that 1/3-approximates a Boolean function f .

Further, suppose the sparsity of p is T . This implies |p̂(S)| = α√
T

for some α ∈ [2/3, 4/3]. Then, we have

∑
S : |S|=d

|p̂(S)− f̂(S)| ≤

 ∑
S : |S|=d

|p̂(S)− f̂(S)|2
1/2

·
√
T ≤ 1

3

√
T , (24)

where the first inequality is Cauchy-Schwarz and the second uses |p(x)− f(x)| ≤ 1/3 for all x. On the other

hand, ∑
S : |S|=d

|p̂(S)− f̂(S)| ≥
∑

S : |S|=d

(
|p̂(S)| − |f̂(S)|

)
=

∑
S : |S|=d

|p̂(S)| −
∑

S : |S|=d

|f̂(S)|

≥ 2

3

√
T −

∑
S : |S|=d

|f̂(S)|, (25)

where the first inequality uses the reverse-triangle inequality and the last uses the lower bound on |p̂(S)|.
Combining Eq. (24) and (25) we obtain ∑

S : |S|=d

|f̂(S)| ≥ 1

3

√
T . (26)
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However, from results of Tal (see [64, Claim 2.13] and [65, Lemmas 29 and 34]) we know∑
S : |S|=d

|f̂(S)| ≤ O(d)d.

Thus, from Eq. (26) we obtain

T ≤ 2O(d log d).

□

Conjecture 5.3 asks if a similar result also holds when T = 2ω(d). We now consider a restricted class of

polynomials called block-multilinear polynomials. An n-variate polynomial is said to be block-multilinear

if the input variables can be partitioned into disjoint blocks A1, . . . , Ad ⊆ {x1, . . . , xn} such that every

monomial in the polynomial has at most one variable from each block. Without loss of generality, we will

assume that each block is of the same size. In other words, a block-multilinear polynomial p : (Rn)d → R
can be written as

p(x1, . . . , xd) =
∑

S⊆[nd] : ∀j∈[d], |S∩xj |≤1

p̂(S)
∏
l∈S

xl, (27)

where p̂(S) ∈ R for every S ⊆ [nd]. Note that this is the standard Fourier decomposition of p if xi ∈ {−1, 1}n

for every i ∈ [d]. Clearly such a block-multilinear polynomial has degree at most d and sparsity at most

(n+ 1)d. Such polynomials have found applications in quantum computing [1, 48], classical and quantum

XOR games [15], polynomial decoupling [54] and in functional analysis which we discuss later. Our main

contribution in this section is that we show a positive answer to Conjecture 5.3 for the class of flat

block-multilinear polynomials.

Theorem 5.5 (Restatement of Theorem 1.12). If p is an n-variate flat block-multilinear polynomial

with degree d and sparsity 2ω(d), then p cannot 1/3-approximate a Boolean function.

We defer the proof of this theorem to the next subsection. We now continue with the relevance of

block-multilinear polynomials and the theorem above to functional analysis literature.

Relation between Theorem 5.5 and the Bohnenblust-Hille (BH) inequality. Consider a homogeneous block-

multilinear polynomial p : (Rn)d → R. One way to show that p is not 1/3-close to a Boolean function would

be to show that there exists x′ such that |p(x′)| is greater than 4/3. Understanding if such an x′ exists for

such a polynomial p can be cast as the following maximization problem

∥p∥ := max
x1,...,xd∈[−1,1]n

∣∣∣ n∑
i1,...,id=1

p̂i1,...,idx
1
i1 · · ·x

d
id

∣∣∣. (28)

In order to develop an intuition for the maximization problem, consider the case d = 2 and furthermore

suppose p̂i1,i2 ∈ {−1, 1} and xi ∈ {−1, 1}n, then giving a lower bound on ∥p∥ is well-known in computer

science as the so-called unbalancing lights problem (see [4, Section 2.5], where they show the existence of

sign vectors such that ∥p∥ ≥
√
n). For larger d and arbitrary p, showing lower bounds on ∥p∥ in Eq. (28) has

been extensively studied in the functional analysis literature and is sometimes referred to as the “generalized

unbalancing lights problem”.



Improved bounds on Fourier entropy and Min-entropy 35

The first paper giving a lower bound to Eq. (28) was by Bohnenblust and Hille [11] in 1931. They gave a

lower bound on the injective tensor norm of degree-d multilinear forms, which in our context translates to a

lower bound on ∥p∥. To be precise, their result states the following: for every n, d there exists a constant

Cd ≥ 1 such that, for every degree-d homogeneous block-multilinear polynomial p : (Rn)d → R, we have( n∑
i1,...,id=1

|p̂i1,...,id |
2d

d+1

) d+1
2d ≤ Cd · max

x1,...,xd∈[−1,1]n
|p(x1, . . . , xd)|. (29)

The result of [11] showed that it suffices to pick Cd = d
d+1
2d 2

d−1
2 in order to satisfy Eq. (29). In addition, their

bound on Cd recovers the well-known Littlewood’s 4/3 inequality [43] when d = 2. Since their seminal work,

a lot of research in the functional analysis literature (for the last 80 years!) has been in finding the optimal

BH-constants, i.e., the smallest Cd for which Eq. (29) holds. We cite a few results [3, 8, 25, 26, 48, 56],

referring the reader to the references within these papers for more. It is a long-standing open question

whether Cd is a universal constant (there has been recent work [56] giving numerical evidence that this is

the case).

After a series of works, Pellegrino and Seoane-Sepúlveda showed [55] that it suffices to pick Cd = poly(d).

As far as we are aware, the best upper bound on Cd was shown by Bayart et al. [8] as Cd = O(d0.365). We

also point the interested reader to [48, Theorem 17] for a suboptimal, yet elegant proof that shows that it

suffices to pick Cd = O(d1.45) in order to satisfy Eq. (29).

We now discuss the relevance of the BH-inequality to a special case of Theorem 5.5 where the approximating

polynomial is also assumed to be homogeneous. Consider an arbitrary flat homogeneous block-multilinear

polynomial p : ({−1, 1}n)d → R with degree d and sparsity T that 1/3-approximates a Boolean function.

That is, every non-zero Fourier coefficient |p̂i1,...,id | equals α/
√
T for some α ∈ [2/3, 4/3]. Then using

Eq. (29), we get (( 2/3√
T

) 2d
d+1 · T

) d+1
2d ≤ Cd · ∥p∥ ≤ (4/3) · Cd.

With further simplification, we have

T ≤ 22d · C2d
d .

Using the result of Bayart et al. [8], Cd = O(d0.365), we get that the sparsity T ≤ 2O(d log d). However, from

the FEI conjecture (cf. Claim 5.1) it follows that T ≤ 2O(d). Thus, using the current best bound on Cd we

cannot even conclude the special case of Theorem 5.5. However, if the long-standing open question of Cd

being a universal constant were true, then this special case follows. But proving Cd a universal constant

seems to be a very hard problem. Nevertheless, in the next section, we will prove Theorem 5.5, while

circumventing the barrier of improving the upper bound on Cd.

We remark that Theorem 5.5 does not say anything about the BH-inequality, since Theorem 5.5 states

that a flat block-multilinear polynomial either takes a value in the range (−2/3, 2/3) or takes a value of

magnitude more that 4/3, while the BH-inequality states that such a polynomial definitely takes a value of

high magnitude (> 4/3) on at least one input.
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5.1 Proof of Theorem 5.5

We restate the theorem for convenience.

Theorem 5.5 (restated). If p is an n-variate flat block-multilinear polynomial with degree d and sparsity

2ω(d), then p cannot 1/3-approximate a Boolean function.

Without loss of generality, let us assume d divides n. Let {A1, . . . , Ad} be a partition of {x1, . . . , xn}
and for simplicity suppose A1 = {x1, . . . , xk} for k = n/d. Let B = {x1, . . . , xn} \ A1 denote the set of

remaining variables. Then the monomials of p can be divided into those containing variables in A1 and those

independent of variables in A1. So we can write p as follows

p(x) = q0(xB) +

k∑
i=1

xiqi(xB), (30)

where q0, . . . , qk are polynomials of degree at most d− 1. From here on, for notational simplicity we simply

rewrite xB as z.

Lemma 5.6. Let p be a degree-d block-multilinear polynomial that 1/3-approximates a Boolean function

f : {−1, 1}n → {−1, 1}. Further, let q0, . . . , qk be as defined in Eq. (30). Then,

(I) For every z ∈ {−1, 1}n−k, we have qi(z) ∈ [−4/3,−2/3] ∪ [−1/3, 1/3] ∪ [2/3, 4/3], i.e., qi is a
1
3
-approximation to a {−1, 0, 1}-valued function.

(II) For every z ∈ {−1, 1}n−k, there exists a unique j ∈ {0, . . . , k} which satisfies

|qj(z)| ≥ 2/3 and
∑
i ̸=j

|qi(z)| ≤ 1/3.

Proof. The proof of the first part is fairly straightforward, while the second part requires some calcula-

tions.

Proof of (I). We first rewrite q1, . . . , qk as follows:

qi(z) =
p(x1, . . . , xi−1, 1, xi+1, . . . , xk, z)− p(x1, . . . , xi−1,−1, xi+1, . . . , xk, z)

2
,

for i ∈ [k] and similarly we rewrite q0 as

q0(z) =
p(x1, . . . , xk, z) + p(−x1, . . . ,−xk, z)

2
.

Now the first part follows from the fact that p is a 1/3-approximation to the Boolean function f . So the qis

are 1/3-approximation to a {−1, 0, 1}-valued function. □

Proof of (II). Fix z ∈ {−1, 1}n−k. First observe that for every x1, . . . , xk ∈ {−1, 1}, we have

p(x1, . . . , xk, z) ∈

[
q0(z)−

k∑
i=1

|qi(z)|, q0(z) +

k∑
i=1

|qi(z)|

]
︸ ︷︷ ︸

:=I(z)

. (31)

Furthermore, there exists a choice of x1, . . . , xk ∈ {−1, 1} such that p evaluates to either one of the end

points in the interval I(z). Moreover I(z) satisfies exactly one of the following containments:

(a) I(z) ⊆ [2/3, 4/3], or
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(b) I(z) ⊆ [−4/3,−2/3], or

(c) I(z) intersects both the intervals [−4/3,−2/3] and [2/3, 4/3].

We now prove that in all the three cases, there exists j ∈ {0, . . . , k} such that |qj(z)| ≥ 2/3 and
∑

i̸=j |qi(z)| ≤
1/3, hence proving the lemma statement.

Cases (a) and (b). The proofs for Case (a) and (b) are exactly the same, so we prove the lemma assuming

I(z) ⊆ [2/3, 4/3]. In this case, observe that q0(z) −
∑k

i=1 |qi(z)| ≥ 2/3 and q0(z) +
∑k

i=1 |qi(z)| ≤ 4/3.

Clearly this implies q0(z) ≥ 2/3. Furthermore, from both the inequalities it follows that

k∑
i=1

|qi(z)| ≤ min {q0(z)− 2/3, 4/3− q0(z)} .

Using the fact that q0(z) ∈ [2/3, 4/3], it follows that
∑k

i=1 |qi(z)| ≤ 1/3, which concludes the proof for

Case (a).

Case (c). Recall the range of p(x1, . . . , xk, z) from Eq. (31). Let a, b ∈ {−1, 1}k be such that

p(a, z) = q0(z)−
k∑

i=1

|qi(z)| and p(b, z) = q0(z) +

k∑
i=1

|qi(z)|. (32)

It is not hard to see that a = −b. Consider a path from a to b on the Boolean hypercube. Since p(a, z) ∈
[−4/3,−2/3] and p(b, z) ∈ [2/3, 4/3], there exists an edge11 on this path such that the value of p on this

edge jumps from the interval [−4/3,−2/3] to [2/3, 4/3]. For now the existence of such an edge is sufficient,

below we explicitly construct such an edge. Let us denote the direction of this edge by j ∈ [k]. We now claim

that |qj(z)| ≥ 2/3 and
∑

i ̸=j |qi(z)| ≤ 1/3.

The first claim |qj(z)| ≥ 2/3 follows immediately, because the change in p on this edge is 2 · |qj(z)| (by
Eq. (32)), and the change of value of p on this edge is ≥ 2 · (2/3). Thus we have |qj(z)| ≥ 2/3.

We now prove
∑

i ̸=j |qi(z)| ≤ 1/3 by considering two cases based on whether sign(q0(z)) is positive or

negative. Since the proofs for both cases are similar, for simplicity we prove it assuming sign(q0(z)) is

positive. We now define the edge between a, b where the value of p jumps from the interval [−4/3,−2/3] to

[2/3, 4/3]. Consider the edge in the jth direction given by setting all the variables except xj as follows:

xi = sign(qi(z)) for i ∈ [k] \ {j}. Clearly the value of p only depends on xj and equals
∑

i̸=j |qi(z)|+ xjqj(z).

When xj = sign(qj(z)), p takes the value
∑

i ̸=j |qi(z)|+ |qj(z)| which is in the interval [2/3, 4/3] and∑
i̸=j

|qi(z)|+ |qj(z)| ∈ [2/3, 4/3], implies
∑
i̸=j

|qi(z)| ≤ 4/3− |qj(z)|. (33)

Similarly, when xj = −sign(qj(z)) then p takes the value
∑

i ̸=j |qi(z)| − |qj(z)| which is in the interval

[−4/3,−2/3], and∑
i ̸=j

|qi(z)| − |qj(z)| ∈ [−4/3,−2/3], implies
∑
i ̸=j

|qi(z)| ≤ |qj(z)| − 2/3. (34)

From Eq. (33) and (34) we have
∑

i ̸=j |qi(z)| ≤ 1/3. The uniqueness of j in each case follows because∑k
i=0 |qi(z)| ≤ 4/3. □

11An edge in the direction of j ∈ [k] on the Boolean hypercube refers to a tuple (w,w(j)) where w,w(j) ∈ {−1, 1}k and

w(j) is the bit string obtained by flipping the sign of the jth bit of w.
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□

We now show that if p(x) 1
3
-approximates a Boolean function f then deg(f) ≤ d.

Lemma 5.7. Let p be a degree-d block-multilinear polynomial that 1
3
-approximates a Boolean function

f : {−1, 1}n → {−1, 1}. Then, deg(f) ≤ d.

Proof. We will establish the proof by induction on d.

Base case. We have d = 1. Let p(x) = a0 +
∑n

i=1 aixi, where ai ∈ R. Since p approximates f , it follows

that sign(p(x)) = f(x) for every x. We now express sign(p(x)) as a polynomial of degree at most 1. From

Lemma 5.6 (II), it follows that there exists a unique i ∈ {0} ∪ [n] such that

sign(p(x)) =

sign(ai) · xi if i ∈ [n],

sign(a0) otherwise.

Thus the base case follows.

Inductive assumption. Assume the lemma statement for polynomials p of degree at most d− 1.

Inductive step. Consider the decomposition of p(x1, . . . , xn)

p(x) = q0(z) +

k∑
i=1

xiqi(z).

Recall from the proof of Lemma 5.6 (I), that qi(z) can be expressed as a difference between two (d− 1)-

block-multilinear polynomials by fixing x1, . . . , xk. That is,

q0(z) =
p(1, . . . , 1, z) + p(−1, . . . ,−1, z)

2
,

qi(z) =
p(1, . . . , 1, 1, 1, . . . , 1, z)− p(1, . . . , 1,−1, 1, . . . , 1, z)

2
for i ∈ [k],

(35)

where the −1 in the expression p(1, . . . , 1,−1, 1, . . . , 1, z) is at the i-th coordinate. Clearly, it follows that

p(−1, . . . ,−1, z) and p(1, . . . , 1, z) are block-multilinear polynomials with d− 1 parts that 1
3
-approximate

Boolean functions f(−1, . . . ,−1, z) and f(1, . . . , 1, z), respectively. Therefore, by the inductive assumption,

both deg(f(−1, . . . ,−1, z)) and deg(f(1, . . . , 1, z)) are ≤ d− 1. Additionally the function q̃0 defined as

q̃0(z) =
f(1, . . . , 1, z) + f(−1, . . . ,−1, z)

2

is a {−1, 0, 1}-valued function satisfying deg(q̃0) ≤ d − 1. Moreover, q0 (as defined in Eq. (35)) is a 1
3
-

approximation to q̃0. In a similar fashion, one can define q̃i for all i ∈ [k] which is a {−1, 0, 1}-valued function

of degree at most d− 1 that additionally satisfies that qi (as defined in Eq. (35)) is a 1
3
-approximation to q̃i.

Finally consider the polynomial p̃ defined as follows,

p̃(x) = q̃0(z) +

k∑
i=1

xiq̃i(z).

Firstly note that p̃(x) is a polynomial that takes value in {−1,+1} for all x ∈ {−1,+1}n. This is because
for all i, qi(z)

1
3
-approximates q̃i(z) and so from Lemma 5.6, for any given z there exists exactly one i
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such that q̃i(z) takes a non-zero value. So for a given x if j is the unique index from Lemma 5.6 such that

|qj(z)| ≥ 2/3, then for that x we have p̃(x) = xj q̃j(z).

From this observation we also get |f(x)− p̃(x)| ≤ 2/3 for any x ∈ {−1, 1}n. This is because for a given

x if j is the unique index from Lemma 5.6 such that 4/3 ≥ |qj(z)| ≥ 2/3, then f(x) = sign(xjqj(z)) and

|f(x) − xjqj(z)| ≤ 1/3 (because of Lemma 5.6 (II)), |xjqj(z) − xj q̃j(z)| ≤ 1/3 (by definition of q̃j) and

p̃(x) = xj q̃j(z). Since both f and p̃ are {−1,+1}-valued functions and |f(x)− p̃(x)| ≤ 2/3, it follows that

p̃(x) = f(x).

By construction, the degree of p̃ is at most d. The lemma now follows as p̃(x) = f(x). □

Using Claim 5.1 and Lemma 5.7, it now follows that if p is a degree-d flat block-multilinear polynomial

that 1/3-approximates a Boolean function, then the sparsity of p is at most 2O(d). This completes the proof

of Theorem 5.5.

6 CONCLUSION

We gave improved upper bounds on Fourier entropy of Boolean functions in terms of average unambiguous

(parity)-certificate complexity, and as a corollary verified the FEI conjecture for functions with bounded

average unambiguous (parity)-certificate complexity. We established many bounds on Fourier min-entropy

in terms of analytic and combinatorial measures, namely minimum certificate complexity, logarithm of the

approximate spectral norm and randomized (parity)-decision tree complexity. As a corollary to this, we

verified the FMEI conjecture for read-k DNFs. We also studied structural implications of the FEI conjecture

on approximating polynomials. In particular, we proved that flat block-multilinear polynomials of degree d

and sparsity 2ω(d) can not approximate Boolean functions.

We now list a few open problems which we believe are structurally interesting and could lead towards

proving the FEI or FMEI conjecture. Let f : {−1, 1}n → {−1, 1} be a Boolean function.

(1) Does there exist a Fourier coefficient S ⊆ [n] such that |f̂(S)| ≥ 2−O(deg1/3(f))? This would show

H∞(f̂2) ≤ O(deg1/3(f)).

(2) Can we show H(f̂2) ≤ O(Q(f))? Or, H∞(f̂2) ≤ O(Q(f))? (where Q(f) is the 1/3-error quantum

query complexity of f , which Beals et al. [9] showed to be at least deg1/3(f)/2).

(3) Does there exist a universal constant λ > 0 such that H(f̂2) ≤ λ ·min{C1(f),C0(f)}? This would

resolve Mansour’s conjecture.

In an earlier version of this manuscript we suggested that bounding the logarithm of the approximate

spectral norm by O(deg1/3(f)) or O(Q(f)) might be an approach to answer Question (1) or (2) above.

However, in a very recent work [18] it is shown that log(∥f̂∥1,ε) could be as large as Ω(Q(f) · logn), thus
nullifying the suggested approach.
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27871X.

Nitin Saurabh: Part of the work was done when the author was at IUUK Prague supported by the European

Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 616787, and at Max

Planck Institut für Informatik, Saarbrücken, Germany.

Ronald de Wolf: Partially supported by ERC Consolidator Grant 615307 QPROGRESS (ended Feb 2019)

and by NWO under QuantERA project QuantAlgo 680-91-034 and the Quantum Software Consortium.

REFERENCES

[1] S. Aaronson and A. Ambainis. 2018. Forrelation: A Problem That Optimally Separates Quantum from Classical

Computing. SIAM Journal of Computing 47, 3 (2018), 982–1038.

[2] A. Akavia, A. Bogdanov, S. Guo, A.Kamath, and A.Rosen. 2014. Candidate Weak Pseudorandom Functions in

AC0◦MOD2. In Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, ITCS 2014.

ACM, 251–260.

[3] N. Albuquerque, F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda. 2014. Sharp generalizations of the multilinear
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