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Abstract

Let Tε, 0 ≤ ε ≤ 1/2, be the noise operator acting on functions on the boolean cube {0, 1}n.
Let f be a nonnegative function on {0, 1}n and let q ≥ 1. We upper bound the `q norm of Tεf
by the average `q norm of conditional expectations of f , given sets of roughly (1− 2ε)r(q) ·n
variables, where r is an explicitly defined function of q.
We describe some applications for error-correcting codes and for matroids. In particular,
we derive an upper bound on the weight distribution of duals of BEC-capacity achieving
binary linear codes. This improves the known bounds on the linear-weight components of
the weight distribution of constant rate binary Reed-Muller codes for almost all rates.

1 Introduction

This paper considers the well-known problem of quantifying the decrease in the `q norm of a
function on the boolean cube when this function is acted on by the noise operator.

Given a noise parameter 0 ≤ ε ≤ 1/2, the noise operator Tε acts on functions on the boolean
cube as follows: for f : {0, 1}n → R, Tεf at a point x is the expected value of f at y, where
y is ε-correlated with x. That is, y is a random binary vector whose ith coordinate is xi with
probability 1− ε and 1−xi with probability ε, independently for different coordinates. Namely,
(Tεf) (x) =

∑
y∈{0,1}n ε

|y−x|(1 − ε)n−|y−x|f(y), where | · | denotes the Hamming distance. We
will write fε for Tεf , for brevity.

Note that fε is a convex combination of shifted copies of f . Hence, the noise operator decreases
norms. An effective way to quantify this decrease for `q norms is given by the hypercontractive
inequality [3, 7, 2] (see also [10]):

‖fε‖q ≤ ‖f‖1+(q−1)(1−2ε)2 . (1)

Entropy provides another example of a convex homogeneous functional on (nonnegative) func-
tions on the boolean cube. For a nonnegative function f let the entropy of f be given by
Ent(f) = E f log2 f − E f log2 E f (where the expectation is taken w.r.t. the uniform measure
on {0, 1}n). The entropy of f is closely related to Shannon’s entropy of the corresponding dis-
tribution f/Σf on {0, 1}n, and similarly the entropy of fε is related to Shannon’s entropy of the
output of a binary symmetric channel with error probability ε on input distributed according
to f/Σf . The decrease in entropy (or, correspondingly the increase in Shannon’s entropy) after
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noise is quantified in the ”Mrs. Gerber’s Lemma” [15]: Ent (fε) ≤ nE f · φ
(
Ent(f)
nE f , ε

)
, where

φ is an explicitly given function on [0, 1]× [0, 1/2].

There is a well-known connection between the `q norms of a nonnegative function f and its
entropy (see e.g., [6]): Assume, as we may by homogeneity, that E f = 1. Then Ent(f) =
limq→1

1
q−1 log2 ||f ||q. The quantity Entq(f) = 1

q−1 log2 ||f ||q is known as the qth Renyi entropy
of f ([12]).

The starting point for this paper is an alternative way to quantify the decrease in entropy after
noise given in [13]. To state this result, let us introduce some notation. For 0 ≤ λ ≤ 1, let
T ∼ λ denote a random subset T of [n] in which each element is chosen independently with
probability λ. Let E(f |T ) be the conditional expectation of f with respect to T , that is a
function on {0, 1}n defined by E(f |T )(x) = Ey:y|T=x|T f(x). Then ([13]):

Ent (fε) ≤ E
T∼(1−2ε)2

Ent
(
E(f |T )

)
. (2)

In light of the connection between entropy and `q norms, it is natural to ask whether (2) can be
extended to an inequality between `q norms (equivalently, Renyi entropies). The main result
of this paper is a positive answer to this question.

Theorem 1.1: Let f be a nonnegative function on {0, 1}n. Then, for any q > 1 holds

log ||fε||q ≤ E
T∼λ

log ||E(f |T )||q, (3)

with λ = λ(q, ε) = (1− 2ε)r, where the exponent r = r(q) is given by the following expression:

r(q) =

{
1

2 ln 2

23−q(2q−1−1)
q−1 1 < q ≤ 2

1
2 ln 2

q
q−1 q ≥ 2

(4)

Note that (3) is in fact an extension of (2), since assuming E f = 1, dividing both sides by q−1
and taking the limit as q → 1, recovers (2). The only thing to observe is that limq→1 r(q) = 2.

Remark 1.2: Since conditional expectation of a function f is a convex combination of shifted
copies of f , its norm is smaller than that of f , and hence (3) measures the decrease in `q-norm
under noise, similarly to (1). In fact, the proof of (3) follows the approach of [7] to the proof
of (1). In this approach, we view both sides of the corresponding inequality as functions of ε
(for a fixed q) and compare the derivatives. Since noise operators form a semigroup it suffices
to compare the derivatives at zero, and this is done via an appropriate logarithmic Sobolev
inequality (see (7)).

1.1 Applications

Let C ⊆ {0, 1}n be a binary linear code. Let rC(·) denote the rank function of the binary
matroid defined by C. That is, rC(T ) is the rank of the column submatrix of a generating
matrix of C which contains columns indexed by T . Applying (3) to the scaled characteristic
function of C, that is f = 2n

|C| · 1C , gives the following claim, connecting between the linear
structure of C and its behavior under noise.
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Proposition 1.3: For any 0 ≤ λ ≤ 1 holds

λn− E
T∼λ

rC(T ) ≥ max
1<q<∞

1

q − 1
· log2 E f

q
ε(q), for ε(q) =

1− λ1/r(q)

2
. (5)

Let us discuss the bound given by (5). First, it seems useful to extend it to the limit-
ing values of q as well. Let F (λ, q) = 1

q−1 · log2 E f
q
ε(q), for 1 < q < ∞. Set F (λ, 1) =

limq→1 F (λ, q) = Ent

(
f 1−

√
λ

2

)
and F (λ,∞) = limq→∞ F (λ, q) = log2 ‖f 1−λ2 ln 2

2

‖∞. Then we

get λn − ET∼λ rC(T ) ≥ max1≤q≤∞ F (λ, q). For any λ, the three values of F (λ, q) which seem
to be easier to understand are F (λ, 1), F (λ,∞) and F (λ, 2) = log2 E f2

1−λln 2

2

. While simple ex-

amples show that F (λ, 1) can be both smaller and greater than F (λ, 2), intriguingly we always
have F (λ, 2) = F (λ,∞), and moreover this quantity is easily expressible in terms of the weight
distribution of the dual code C⊥.

Lemma 1.4: Let (b0, ..., bn) be the weight distribution of C⊥. That is bi =
∣∣∣ {x ∈ C⊥, |x| = i

} ∣∣∣,
for i = 0, ..., n. Then

F (λ, 2) = F (λ,∞) = log2

n∑
i=0

biλ
2 ln 2·i.

We proceed to discuss some applications of (5).

1.1.1 Codes achieving capacity for the binary erasure channel

This is a family of codes for which we can effectively upper bound the LHS of (5), for λ close to

the rate of the code. Recall that the rate of a linear code R(C) is defined as 1
n log2(|C|) = dim(C)

n .
A code C ⊆ {0, 1}n (more precisely a family of codes indexed by n) achieves capacity for the
BEC (binary erasure channel) if there exist two functions δ1, δ2 which go to zero with n such that
for λ = R(C) + δ1 the probability of decoding error given by pe = PrT∼λ {rC(T ) < R(C) · n} is
upperbounded by δ2. This immediately implies (writing R for R(C)) that

λn− E
T∼λ

rC(T ) ≤ λn− (1− δ2) ·Rn = δ1n+ δ2Rn = o(n).

Hence we have the following corollary of (5).

Corollary 1.5: Let C be a BEC capacity achieving code of rate R. Then there exists λ =
R+ o(1) such that for all 1 ≤ q ≤ ∞ holds F (λ, q) ≤ o(n).

The inequality Ent

(
f 1−

√
λ

2

)
= F (λ, 1) ≤ o(n) has been interpreted ([11], using (2)) as indicat-

ing that C is ’well-dispersed’ in {0, 1}n in the sense that the output of the binary symmetric

channel with error probability ε = 1−
√
λ

2 ≈ 1−
√
R

2 whose input is a random codeword from C
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is very close in the Kullback-Leibler distance to the uniform distribution. We observe that
Corollary 1.5 can be interpreted as providing increasingly stronger measures of proximity of the

channel output to uniform, as noise increases beyond 1−
√
R

2 .

The inequality F (λ, 2) ≤ o(n) together with Lemma 1.4 provide the following bound on the
components of the weight distribution of a code C ′ which is the dual of a code achieving BEC
capacity.

Proposition 1.6: Let C ′ be the dual of a linear code C achieving BEC capacity. Let R = R (C ′)
be the rate of C ′. Let (b0, ..., bn) be the distance distribution of C ′. Then for all 0 ≤ i ≤ n holds

bi ≤ 2o(n) ·
(

1

1−R

)2 ln 2·i

In particular, since the dual of a Reed-Muller code is a Reed-Muller code, and since Reed-Muller
codes achieve BEC capacity [9], the bound in Proposition 1.6 holds for Reed-Muller codes. The
bounds in the literature [1], [8], [14] seem to focus mostly on Reed-Muller codes of rates close
to 0 or 1, or on weights which increase sublinearly in n, but do extend to all weights and to
all rates. Comparing with these bounds, it seems that Proposition 1.6 improves the bounds
on {bi}, for i growing linearly in n, for constant-rate Reed-Muller codes of almost all rates:
0 < R < 1− δ, for δ � 1 (δ < 2−50).

1.1.2 Bounds on weight distribution of linear codes

The following (more general) claim is an immediate corollary of the inequality λn−ET∼λ rC(T ) ≥
F (λ, 2) and of Lemma 1.4.

Corollary 1.7: Let C be a binary linear code and let (b0, ..., bn) be the distance distribution of
the dual code C⊥. Then for any 0 ≤ λ ≤ 1 and for any 0 ≤ i ≤ n holds

bi ≤ λ−2 ln 2·i · 2λn−ET∼λ rC(T ). (6)

This claim gives upper bounds on the components of the weight distribution of C⊥, provided
we can upper bound λn− ET∼λ rC(T ).

1.1.3 Ranks of random subsets in a binary matroid

We give a different way to write the inequality λn − ET∼λ rC(T ) ≥ F (λ, 2), stating it as a
lemma since it requires a (simple) argument.

Lemma 1.8: Let rC(·) be the rank function of the binary matroid on {1, ..., n} defined by a

generating matrix of a linear code C of length n. Let 0 ≤ p ≤ 1 and let t = p
1

2 ln 2 . Then

log2 E
S∼p

(
2|S|−rC(S)

)
≤ E

T∼t

(
|T | − rC(T )

)
.
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Let the dimension of C be k. Recall that the Tutte polynomial [5] of the matroid defined by
C is TC(x, y) =

∑
S⊆{1,...,n}(x − 1)k−rC(S)(y − 1)|S|−rC(S). It is easy to see that an alternative

way to write the inequality of Lemma 1.8 is

pk(1− p)n−kTC
(

1

p
,
1 + p

1− p

)
≤ tk+1(1− t)n−k−1

(
d

dy
TC

)(
1

t
,

1

1− t

)
.

As an immediate implication of Lemma 1.8 we get the following tail bound.

Corollary 1.9: For any ∆ ≥ 0 holds

PrS∼p

{
|S| − rC(S) ≥ E

T∼t

(
|T | − rC(T )

)
+ ∆

}
≤ 2−∆.

Remark 1.10: Consider a different approach to obtain tail bounds for the function |S|−rC(S).
Let f(S) = |S| − rC(S). Then |f(x) − f(y)| ≤ ‖x − y‖, for any x, y ∈ {0, 1}n (here ‖x − y‖
stands for the Hamming distance between x and y) and hence, by the ’bounded differences’
inequality [4], for any t ≥ 0 holds PrS∼p {f(S) ≥ ET∼p f(T ) + t} ≤ e−2t2/n.

Let µ : p 7→ ES∼p f(S). By the Margulis-Russo formula [10], µ′ = 1
p ES∼p

∑
i∈S (f(S)− f (S \ {i})).

Hence, since f is monotone increasing, µ′ ≥ 0 and µ is increasing. Moreover, since f is su-
permodular (by submodularity of rank), it is easy to see that µ is convex. In particular,
since µ(0) = 0, we have µ(t) ≥ t

pµ(p) for t ≥ p. Taking everything into account, we have

PrS∼p {f(S) ≥ ET∼t f(T ) + ∆} ≤ e−
2(µ(t)−µ(p)+∆)2

n ≤ e−
2((t−p)µ(p)+p∆)2

p2n .

Note that this does not seem to recover the bound of Corollary 1.9 when µ(t) is small, as in
the case of BEC capacity achieving codes.

To conclude, we consider the special case of graphic matroids. For a graph G = (V,E) with
n edges, let M be the matroid on {1, ..., n} whose independent sets are forests in G. This is a
binary matroid, and Lemma 1.8 specializes as follows.

Corollary 1.11: Let G = (V,E) be a graph. For a subset of edges S ⊆ E, let c(S) denote the
number of the connected components in the subgraph (V, S). Then

log2 E
S∼p

(
2|S|+c(S)

)
≤ t|E|+ E

T∼t
c(T ).

This paper is organized as follows. We prove Theorem 1.1 in Section 2. All the remaining
proofs are in Section 3.

2 Proof of Theorem 1.1

We start with a log-Sobolev-type inequality. Recall that the Dirichlet form E(f, g) for functions

f and g on the boolean cube is defined by E(f, g) = Ex
∑

y∼x

(
f(x)−f(y)

)(
g(x)−g(y)

)
. Here

y ∼ x means that x and y differ in precisely one coordinate.
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Theorem 2.1: Let f be a nonnegative function on {0, 1}n. Then for any q ≥ 1 holds

E
(
f q−1, f

)
≥ 4r(q)E f q ·

n · ln ||f ||q − ∑
|T |=n−1

ln ||E(f |T )||q

 , (7)

where r(q) is given in (4).

Moreover for 1 < q < 2 equality is attained if and only if g is a constant function, and for q ≥ 2
if and only if there is a collection of subcubes of distance at least 2 from each other such that f
is constant on each such subcube.

Corollary 2.2: Let δ > 0 be arbitrarily small. For any nonnegative non-constant function f
on {0, 1}n and for any q > 1 holds

E
(
f q−1, f

)
> 4 (r(q)− δ)E f q ·

n · ln ||f ||q − ∑
|T |=n−1

ln ||E(f |T )||q

 .

Theorem 2.1 is proved below. For now we assume that it holds and proceed with the proof of
Theorem 1.1. Observe that the claim of the theorem is immediate for constant functions, since
both sides of (3) are log(E f). So we may and will assume that f is not constant (note that
this implies fε is non-constant for all 0 ≤ ε < 1/2).

Fix q > 1. Let δ > 0. We will prove (3) for λ(q, ε) = (1− 2ε)r(q)−δ. Taking δ to zero will then
imply (3) for λ = (1− 2ε)r(q) as well.

The proof proceeds by induction on n. The claim clearly holds for n = 0. Let n > 0. We assume
that the claim holds for all dimensions smaller than n, and show that it holds for n as well.
For fixed q and δ both sides of (3) are functions of f and ε. Let F (f, ε) denote the LHS and
G(f, ε) the RHS. Clearly F (f, 0) = G(f, 0) = log ||f ||q. We will argue that if F (f, ε) = G(f, ε)
for some 0 ≤ ε < 1/2 then necessarily F ′(f, ε) < G′(f, ε) (here and below the derivatives are
taken w.r.t. ε). It is easy to see that this implies F (f, ε) ≤ G(f, ε), for all 0 ≤ ε ≤ 1/2, which
is precisely what we need to show.

Due to the fact that the noise operators form a semigroup under composition: Tρ◦Tε = Tε+ρ−2ερ,
it will suffice to compare the derivatives at zero. This comparison is done in the following lemma.

Lemma 2.3: Let g be a nonnegative non-constant function on {0, 1}n with E g = 1. Then

F ′(g, 0) < G′(g, 0).

Proof: As shown in [7], we have F ′(f, 0) = −E(f
q−1,f)

2E fq . We claim that

G′(f, 0) = −2(r(q)− δ) ·

n log ||f ||q −
∑

|T |=n−1

log ||E(f |T )||q

 ,
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which will conclude the proof of the lemma by Corollary 2.2. In fact, note that λ(0) = 1 and
that λ′(0) = −2(r(q)− δ). Hence we have:

G′(f, 0) =
d

dε |ε=0
E
T∼λ

log ||E(f |T )||q =
d

dε |ε=0

 λn · log ||f ||q + λn−1(1− λ) ·
∑

|T |=n−1

log ||E(f |T )||q

 =

−2(r(q)− δ) ·

n · log ||f ||q −
∑

|T |=n−1

log ||E(f |T )||q

 ,

completing the proof.

We can now conclude the proof of Theorem 1.1. Assume that F (f, ε) = G(f, ε), for some
0 ≤ ε < 1/2. Consider the functions F (fε, ρ) and G (fε, ρ), for 0 ≤ ρ ≤ 1/2. We have

F (fε, ρ) = log || (fε)ρ ||q = log ||fε+(1−2ε)·ρ||q = F
(
f, ε+ (1− 2ε) · ρ

)
,

and

G (fε, ρ) = E
R∼λ(q,ρ)

log ||E(fε|R||q ≤ E
R∼λ(q,ρ)

‘ E
T⊆R,T∼λ(q,ε)

log ||E(f |T ||q =

E
T∼λ(q,ρ)·λ(q,ε)

log ||E(f |T ||q = E
T∼λ(q,ε+(1−2ε)·ρ)

log ||E(f |T ||q = G
(
f, ε+ (1− 2ε) · ρ

)
.

The inequality follows from the induction hypothesis for R ⊂ [n] and from the assumption
F (f, ε) = G(f, ε) for R = [n]. Hence, by Lemma 2.3,

F ′(f, ε) =
1

1− 2ε
· F ′ (fε, 0) <

1

1− 2ε
·G′ (fε, 0) ≤ G′(f, ε),

concluding the proof.

2.1 Proof of Theorem 2.1

We start with the base case n = 1. This case is dealt with in the following claim.

Proposition 2.4: Let g be a nonnegative function on a 2-point space with E g = 1. Then

E
(
gq−1, g

)
≥ 4r(q)E gq log ‖g‖q, (8)

where r(q) is given in (4).

Moreover for 1 < q < 2 equality is attained if and only if g is a constant function, and for q ≥ 2
if and only if g is a constant function, or a mutiple of a characteristic function of a point.
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Proposition 2.4 is proved below. Here we assume its validity and proceed with the proof
of Theorem 2.1. First, we restate the 2-point inequality (8) in an equivalent form, with two
modifications: replacing ‖g‖q with E gq and extending the inequality by homogeneity to general
nonnegative functions.

Let g be a nonnegative function on a 2-point space. Then

E
(
gq−1, g

)
≥ 4r(q)

q
E gq ln

E gq

(E g)q
.

We can now extend this inequality to general n by the following standard argument. Let f be
a nonnegative function on {0, 1}n. Then, denoting by ei the ith unit vector, we have

E
(
f q−1, f

)
=

n∑
i=1

E
x

(
f q−1(x)− f q−1(x+ ei)

)
(f(x)− f(x+ ei)) .

For x and i, let fx,i denote the restriction of f to the 2-point space (x, x+ ei). Then the RHS

is
∑n

i=1
1

2n−1

∑
x:xi=0 E

(
f q−1
x,i , fx,i

)
. By the 2-point inequality, this is at least

4r(q)

q
·
n∑
i=1

1

2n−1

∑
x:xi=0

E f qx.i ln
E f qx.i

(E fx,i)q
=

4r(q)

q
·
n∑
i=1

1

2n−1

∑
x:xi=0

E f qx.i(− ln)
(E fx,i)q

E f qx.i

Let θx,i =
E fqx,i∑

y:yi=0 E fqy,i
. Then

∑
x:xi=0 θx,i = 1. Note also that

∑
y:yi=0 E f

q
y,i = 2n−1 · E f q. By

convexity of (− ln) the RHS above is at least

4r(q)

q
· E
x
f q ·

n∑
i=1

(− ln)

( ∑
x:xi=0

θx,i
(E fx,i)q

E f qx,i

)
=

4r(q)

q
· E
x
f q ·

n∑
i=1

(− ln)

∑
x:xi=0 (E fx,i)q

2n−1 · Ex f q

=
4r(q)

q
·E
x
f q·

n∑
i=1

ln
E f q

E
(
E(f |[n] \ {i})

)q = 4r(q)E f q·

n · ln ||f ||q − ∑
|T |=n−1

ln ||E(f |T )||q

 ,

proving (7).

It remains to consider the cases of equality. Tracking back the conditions for equality in the
proof above, it is easy to see that equality holds for f if and only if it holds for all one-dimensional
restrictions fx,i. For 1 < q < 2 this means that all these restrictions are constant functions,
implying f is constant. For q ≥ 2 this means these restrictions are either constant, or multiples
of a characteristic function of a point. It is easy to see (e.g., by induction on dimension), that
this implies that there is a collection of subcubes of distance at least 2 from each other such
that f is constant on each such subcube.

2.2 Proof of Proposition 2.4

There are two cases to consider, 1 < q < 2 and q ≥ 2. These cases are dealt with in the
following subsections, starting with the somewhat easier case q ≥ 2.
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2.2.1 The case q ≥ 2

We will show that for a nonnegative function g on a 2-point space with E g = 1 holds

E
(
gq−1, g

)
≥ 2

ln 2

1

q − 1
· E gq lnE gq. (9)

Observe that equality holds in two cases: if g is a constant-1 function, a multiple of a charac-
teristic function of a point. We will show that these are the only two cases for which equality
holds.

Assume, w.l.o.g., that f(0) ≤ f(1). Let 0 ≤ x ≤ 1, and let f(0) = x and f(1) = 2 − x. Then
(9) becomes:

(
(2− x)q−1 − xq−1

)
· (2− 2x) ≥ 2

ln 2
· 1

q − 1
· x

q + (2− x)q

2
ln

(
xq + (2− x)q

2

)

Setting y = x(2 − x)q−1 + xq−1(2 − x), z = xq + (2 − x)q, and rearranging, this is the same
as 1 − y

z ≥
1
q−1 · log2

z
2 . Note that since x = 0 is one of the cases for which equality holds, we

may assume that x > 0. Now, let t = 2−x
x . Then t ≥ 1, y = 2q · tq−1+t

(t+1)q , and z = 2q · tq+1
(t+1)q .

Rearranging and simpifying, (9) becomes

log2

((
(t+ 1)q

tq + 1

) 1
q−1

)
≥ tq−1 + t

tq + 1
, for t ≥ 1, q ≥ 2.

By convexity of the function a → aq, we have 1 < r =
(

(t+1)q

tq+1

) 1
q−1 ≤ 2. By concavity of

logarithm log2(r) ≥ r − 1. (We remark that the only case in which equality holds in this
inequality is if r = 2, that is t = 1, and this implies g is constant.) Hence, it suffices to

prove
(

(t+1)q

tq+1

) 1
q−1 ≥ (t+1)(tq−1+1)

tq+1 . Simplifying and rearranging, this is the same as (t + 1) ·

(tq + 1)q−2 ≥
(
tq−1 + 1

)q−1
.

Let h be a function on the two-point space with values t and 1. Then the inequality above is

the same as ‖h‖1 · ‖h‖q(q−2)
q ≥ ‖h‖(q−1)2

q−1 . Recall that the function F : p → ln ‖h‖1/p is convex
(this is a consequence of Hölder’s inequality). Rewriting the last inequality in terms of F , we
get

1

(q − 1)2
· F (1) +

(
1− 1

(q − 1)2

)
· F
(

1

q

)
≥ F

(
1

q − 1

)
,

which is true by the convexity of F .

This completes the proof of (9). Tracing back the conditions for equality in (9), it is easy to
see that it holds only in the two cases mentioned above.
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2.2.2 The case 1 < q < 2

We will show that

E
(
f q−1, f

)
≥ 2

ln 2
· r(q) · E f q lnE f q, r(q) =

23−q (2q−1 − 1
)

q(q − 1)
, (10)

and that equality holds iff g is a constant-1 function.

Let us first deal with the case g(0) = 0. In this case, the inequality reduces to q ≥ 23−q (2q−1 − 1
)

=
4− 23−q, and it is easy to verify that this is a strict inequality for 1 < q < 2.

Proceeding as in the proof of the first case, using the same notation, and writing r for r(q),
the inequality (10) is equivalent to 1− y

z ≥ r · log2
z
2 . Substituting t = 2−x

x (note that we may
assume x = g(0) > 0) and rearranging, this is the same as

r · log2

(
(t+ 1)q

tq + 1

)
≥ t+ tq−1

tq + 1
+ r(q − 1)− 1.

Since 1 < (t+1)q

tq+1 ≤ 2q−1, concavity of the logarithm implies log2

(
(t+1)q

tq+1

)
≥ q−1

2q−1−1
·
(

(t+1)q

tq+1 − 1
)

.

(Equality holds only if (t+1)q

tq+1 = 2q−1, that is t = 1, which means that g is constant.) So, it

would suffice to show that r · q−1
2q−1−1

(
(t+1)q

tq+1 − 1
)
≥ t+tq−1

tq+1 + r(q − 1)− 1, which is the same as

r(q−1)
2q−1−1

(t+1)q

tq+1 ≥
t+tq−1

tq+1 + r(q−1)2q−1−2q−1+1
2q−1−1

.

Multiplying both sides by
(
2q−1 − 1

)
(tq + 1) gives

r(q − 1)(t+ 1)q ≥
(
2q−1 − 1

) (
t+ tq−1

)
+
(
r(q − 1)2q−1 − 2q−1 + 1

)
(tq + 1) .

Writing the above as F (t) ≥ G(t) + H(t), it is easy to see that F (1) = G(1) + H(1) and that
F ′(1) = G′(1) + H ′(1). So it suffices to show F ′′(t) ≥ G′′(t) + H ′′(t), which amounts to (after
some simplification and rearranging):

rq(q − 1)(t+ 1)q−2 + 2q−1tq−3 ·
(

(2− q) +
(
q − rq(q − 1)

)
· t
)
≥ (2− q)tq−3 + qtq−2,

or

rq(q − 1)

(
t+ 1

t

)q−3

(t+ 1) + 2q−1 ·
(

(2− q) +
(
q − rq(q − 1)

)
· t
)
≥ (2− q) + qt.

Substituting y = t+1
t and rearranging, this is the same as proving for 1 < y ≤ 2 that

rq(q − 1)yq−2 + (2− q)
(
2q−1 − 1

)
y ≥

(
rq(q − 1)− (2q − 2)

)
2q−1 + (2q − 2).

Denote the LHS by h(y). Then h′ is proportional to
(
2q−1 − 1

)
− rq(q − 1)yq−3. Substituting

r = r(q) =
23−q(2q−1−1)

q(q−1) , we see that h′ is proportional to 1 −
(

2
y

)3−q
. Hence h′ < 0 for all

y < 2, and it suffices to verify the last inequality for y = 2. Substituting y = 2 we get an
identity in q.

This completes the proof of (10). Tracing back the conditions for equality, it is easy to see that
it holds only if g is a constant function.
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3 Remaining proofs

Proof of Proposition 1.3

We will need some facts from Fourier analysis on the boolean cube [10]. First, recall that for
a function f on {0, 1}n and for a subset T ⊆ [n] holds E (f |T ) =

∑
R⊆T f̂(R)wR, where {WR}

are the Walsh-Fourier characters. Recall also that if f = 2n

|C| ·1C , where C is a linear code, then

f̂ = 1C⊥ .

We also recall a fact from linear algebra. For T ⊆ [n], let C⊥T be the subspace
{
R ⊆ T,R ∈ C⊥

}
.

It is well known (and easy to see) that dim C⊥T = |T | − rC(T ), where rC(·) is the dimension of
the subset of columns indexed by T in a generating matrix of C. Hence, for x ∈ {0, 1}n:

E (f |T ) (x) =
∑
R∈C⊥T

wR(x) =

{
|C⊥T | = 2|T |−rC(T ) if x ∈

(
C⊥T
)⊥

0 otherwise

And hence, ‖E (f |T ) ‖qq = E (E (f |T )q) = 2(q−1)(|T |−rC(T )). Using this in (3) gives, for any q > 1
that

log2 E f qε ≤ (q − 1) E
T∼λ

(|T | − rC(T )) = (q − 1) ·
(
λn− E

T∼λ
rC(T )

)
,

where λ = (1− 2ε)r(q). Rearranging, we get the claim of the proposition.

Proof or Lemma 1.4

Recall that for a function f on {0, 1}n and for 0 ≤ ε ≤ 1/2 holds f̂ε(R) = f̂(R) · (1− 2ε)|R|. Let

(b0, ..., bn) be the distance distribution of C⊥. Then, since ε(2) = 1−λln 2

2 , we have

2F (λ,2) =
∑

R∈{0,1}n
f̂2(R) · (1− 2ε)2|R| =

n∑
i=0

biλ
2 ln 2·i

On the other hand, it is easy to see that for f = 2n

|C| · 1C and for any 0 ≤ ε ≤ 1/2 holds

‖fε‖∞ = ‖
∑

R∈{0,1}n f̂(R)(1 − 2ε)|R|wR‖∞ =
∑

R∈{0,1}n f̂(R)(1 − 2ε)|R| = fε(0) (since f̂ is

nonnegative). Hence, recalling ε(∞) = 1−λ2 ln 2

2 ,

2F (λ,∞) = ‖fε‖∞ = fε(0) =
∑

R∈{0,1}n
f̂(R) · (1− 2ε)|R| =

n∑
i=0

biλ
2 ln 2·i.
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Proof or Lemma 1.8

Let ε =
1−√p

2 . Using (3) with q = 2 we have, for f = 2n

|C| · 1C , that

E f2
ε =

∑
S∈{0,1}n

f̂2(S)(1−2ε)2|S| =
∑

S∈{0,1}n
f̂2(S)p|S| = E

S∼p
E
(
E(f |S)2

)
= E

S∼p
2|S|−rC(S).

Hence the claim of the lemma follows from the inequality λn − ET∼λ rC(T ) ≥ F (λ, 2) with

λ = (1− 2ε)r(2) = (1− 2ε)
1

ln 2 = p
1

2 ln 2 .

Proof or Corollary 1.11

For S ⊆ E, the matroid rank of S is given by r(S) =
∑c(S)

i=1 (|Ci| − 1) = |V | − c(S), where {Ci}
are the connected components of (V, S). Hence, |S|− r(S) = |S|+ c(S)−|V |. Substituting this
into the claim of Lemma 1.8 gives the claim of this corollary.
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