
Cops-Robber games and the resolution of Tseitin formulas

Nicola Galesi1, Navid Talebanfard2, and Jacobo Torán3

1Sapienza Università di Roma
2Czech Academy of Sciences

3Universität Ulm

October 4, 2018

Abstract

We characterize several complexity measures for the resolution of Tseitin formulas in terms of a two
person cop-robber game. Our game is a slight variation of the one Seymour and Thomas used in order to
characterize the tree-width parameter. For any undirected graph, by counting the number of cops needed
in our game in order to catch a robber in it, we are able to exactly characterize the width, variable space
and depth measures for the resolution of the Tseitin formula corresponding to that graph. We also give an
exact game characterization of resolution variable space for any formula.

We show that our game can be played in a monotone way. This implies that the associated resolution
measures on Tseitin formulas correspond exactly to those under the restriction of Davis-Putnam resolution,
implying that this kind of resolution is optimal on Tseitin formulas for all the considered measures.

Using our characterizations we improve the existing complexity bounds for Tseitin formulas showing
that resolution width, depth and variable space coincide up to a logarithmic factor, and that variable space
is bounded by the clause space times a logarithmic factor.

1 Introduction

Tseitin propositional formulas for a graph G = (V,E) encode the combinatorial statement that the sum of
the degrees of the vertices of G is even. Such formulas provide a great tool for transforming in a uniform
way a graph into a propositional formula that inherits some of the properties of the graph. Tseitin formulas
have been extensively used to provide hard examples for resolution or as benchmarks for testing SAT-solvers.
To name just a few examples, they were used for proving exponential lower bounds on the minimal size
required in tree-like and regular resolution [17], in general resolution [18] and for proving lower bounds
on resolution proof measures as the width [7] and the space [9], or more recently for proving time-space
trade-offs in resolution [5, 6]. Due to the importance of these formulas, it is of great interest to find ways to
understand how different parameters on the underlying graphs are translated as some complexity measures of
the corresponding Tseitin formula. This was the key of the mentioned resolution results. For example the
expansion of the graph translated into resolution lower bounds for the corresponding formula in all mentioned
lower bounds, while the carving-width or the cut-width of the graph were used to provide upper bounds for
the resolution width and size in [2, 5].

In this paper we obtain an exact characterization of the complexity measures of resolution width, variable
space and depth for any Tseitin formula in terms of a cops-robber game played on its underlying graph.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 170 (2018)

There exists a vast literature on such graph searching games (see eg. [10]). Probably the best known game of
this kind is the one used by Seymour and Thomas [15] in order to characterize exactly the graph tree-width
parameter. In the original game, a team of cops has to catch a robber that moves arbitrarily fast in a graph.
Cops and robber are placed on vertices, and have perfect information of the positions of the other player.
The robber can move any time from one vertex to any other reachable one but cannot go through vertices
occupied by a cop. Cops are placed or removed from vertices and do not move. The robber is caught when
a cop is placed on the vertex where she is standing. The value of the game for a graph G is the minimum
number of cops needed to catch the robber on G. In [15] Seymour and Thomas also showed that this game is
monotone in the sense that there is always an optimal strategy for the cops in which they never occupy the
same vertex again after a cop has been removed from it. In a previous version of the game [13] the robber is
invisible and the cops have to search the whole graph to be sure to catch her. The minimum number of cops
needed to catch the robber in this game on G, characterizes exactly the path-width of G [8]. The invisible
cop game is also monotone [13].

Our game is just a slight variation from the original game from [15]. The only differences are that the
cops are placed on the graph edges instead of on vertices, and that the robber is caught when she is completely
surrounded by cops. We show that the minimum number of cops needed to catch a robber on a graph G in
this game, exactly characterizes the resolution width of the corresponding Tseitin formula. We also show that
the number of times some cop is placed on some edge of G exactly coincides with the resolution depth of
the Tseitin formula on G. Also, if we consider the version of the game with an invisible robber instead, we
exactly obtain the resolution variable space of the Tseitin formula on G.

We also show that the ideas behind the characterization of variable space in terms of a game with an
invisible robber, can in fact be extended to define a new combinatorial game to exactly characterize the
resolution variable space of any formula (not necessarily a Tseitin formula). Our game is a non-interactive
version of the Atserias and Dalmau game for characterizing resolution width [4].

An interesting consequence of the cops-robber game characterizations is that the property of the games
being monotone can be used to show that for the corresponding complexity measures, the resolution proof
can have the Davis-Putnam property (DP for short) without changing the bounds. This means that the relative
order in which the variables are resolved is the same in every resolution path. As mentioned, the vertex-cops
games are known to be monotone. This did not need to be true for our game. In fact, the robber-marshals
game [11], another version of the game in which the cops are placed on the (hyper)edges, is know to be
non-monotone [1]. We are able to show that the edge-cops game (for both cases of visible and invisible
robber) is also monotone. This is done by reducing our edge game to the Seymour and Thomas vertex game.
Using this fact and new game characterizations of the complexity measures for Davis-Putnam resolution we
show that in the context of Tseitin formulas, the width, variable space and depth measures in Davis-Putnam
resolution proofs are as good as in general resolution. A long standing open question from Urquhart [18] asks
whether regular resolution can simulate general resolution on Tseitin formulas (in size). Since DP resolution
is a restricted version of regular resolution, our results show that this is true for the measures of width and
variable space1.

Finally we use the game characterization to improve the known relationships between different complexity
measures on Tseitin formulas. In particular we show that for any graph G with n vertices, the resolution
depth of the corresponding formula is at most its resolution width times log n. From this follows that all
the three measures width, depth and variable space are within a logarithmic factor in Tseitin formulas. Our
results provide a uniform class of propositional formulas where clause space is polynomially bounded in the
variable space. No such result was known before as recently pointed to by Razborov in [14].

1The resolution depth is well known to coincide with the regular resolution depth for any formula.

2

The paper is organized as follows. In Section 2, we have all the necessary preliminaries on resolution and
its complexity measures. We also provide in this section new versions of the Spoiler-Duplicator game from
[4] for the cases of regular and DP-resolution width. In Section 3 we present the new game characterization
of variable space in resolution. In Section 4 we introduce our variants of the Cops-Robber games on graphs
and we show the characterizations of width, variable space and depth of the Tseitin formula on G in terms
of Cops-Robber games played on G. In Section 5 we focus on the monotone version of the games and we
prove that all our characterizations can be made monotone. In the last Section 6 we use our previous results
to prove the new relationships between width, depth, variable space and clause space for Tseitin formulas.
The last section contains some conclusions and open questions.

Finally in the Appendix, as a reading map of the paper, we include a series of Tables describing and
referencing all the measures we consider and all the results we obtain in the paper.

2 Preliminaries

Let [n] = {1, 2, ..., n}. A literal is either a Boolean variable x or its negation x̄. A clause is a disjunction
(possibly empty) of literals. The empty clause will be denoted by �. The set of variables occurring in a
clause C, will be denoted by Vars(C). The width of a clause C is defined as W(C) := |Vars(C)|.

A CNF Fn over n variables x1, . . . , xn is a conjunction of clauses defined over x1, . . . , xn. We often
consider a CNF as a set of clauses and to simplify the notation in this Section we omit the index n expressing
the dependencies of Fn from the n variables. The width of a CNF F is W(F) := maxC∈F W(C). A CNF is
a k-CNF if all clauses in it have width at most k.

An assignment for a set of variables X , specifies a truth-value ({0, 1} value) for all variables in X .
Variables, literals, clauses and CNFs are simplified under partial assignments (i.e. assignment to a subset of
their defining variables) in the standard way.

The resolution proof system is a refutational propositional system for CNF formulas handling with
clauses, and consisting of the only resolution rule:

C ∨ x D ∨ x̄
C ∨D

A proof π of a clause C from a CNF F (denoted by F `π C) is a sequence of clauses π := C1, . . . , Cm,
m ≥ 1 such that Cm = C and each Ci in π is either a clause of F or is obtained by the resolution rule applied
to two previous clauses (called premises) in the sequence. When C is the empty clause �, π is said to be a
refutation of F . Resolution is a sound a complete system for unsatisfiable formulas in CNF.

Let π := C1, . . . , Cm be a resolution proof from a CNF F . The width of π is defined as W(π) :=
maxi∈[m]W(Ci). The width needed to refute an unsatisfiable CNF F in resolution is W(F `) :=
minF`π�W(π). The size of π is defined as S(π) := m. The size needed to refute an unsatisfiable CNF F in
resolution is S(F `) := minF`π� S(π).

Resolution proofs F `π C, can be represented also in two other notations: as directed acyclic graphs
(DAG) or as sequences of set of clauses M, called (memory) configurations. As a DAG, π is represented
as follows: source nodes are labeled by clauses of F , the (unique) target node is labeled by C and each
non-source node, labeled by a clause D, has two incoming edges from the (unique) nodes labeled by the
premises of D in π. Using this notation the size of a proof π, is the number of nodes in the DAG representing
π. The DAG notation allow to define other proof measures for resolution proofs. The depth of a proof π,
D(π) is the length of the longest path in the DAG representing π. The depth for refuting an unsatisfiable CNF
F is D(F `) := minF`π�D(π).

3

The representation of resolution proofs as configurations was introduced in [9, 3] in order to define
space complexity measures for resolution proofs. A proof π, F `π C, is a sequence M1, . . . ,Ms such that:
M1 = ∅, C ∈Ms and for each t ∈ [s− 1], Mt+1 is obtained from Mt, by one of the following rules:

[Axiom Download]: Mt+1 = Mt ∪ {D}, for D a clause in F ;

[Erasure]: Mt+1 ⊂Mt ;

[Inference]: Mt+1 = Mt ∪ {D}, if A,B ∈Mt and A B
D is a valid resolution rule.

π is a refutation if C is �.
The clause space of a configuration M is Cs(M) := |M|. The clause space of a refutation π :=

M1, . . . ,Ms is Cs(π) := maxi∈[s] Cs(Mi). Finally the clause space to refute an unsatisfiable F is Cs(F `
) := minF`π� Cs(π). Analogously, we define the variable space and the total space of a configuration M as
Vs(M) := |

⋃
C∈M Vars(C)| and Ts(M) :=

∑
C∈MW(C). Variable space and total space needed to refute

an unsatisfiable F , are respectively Vs(F `) := minF`π� Vs(π) and Ts(F `) := minF`π� Ts(π).

2.1 Regular and Davis-Putnam resolution

We will consider two restrictions of general resolution. We say that a resolution refutation π of F is regular
if in its graph representation, each variable is resolved at most once in each path from an initial clause of F to
the empty clause. Analogously a resolution derivation π of a clause C is called regular if each variable is
resolved at most once in each path in the derivation and no variable in C is resolved in π.

A regular resolution refutation is called Davis-Putnam if there is a total ordering of the variables so that
in each path in the graph representation of the refutation, the variables are resolved relative to this order.

The complexity measures mentioned above, can be considered in the context of regular or Davis-Putnam
resolution. In some cases it is easier to use the graph model for this. For example the regular (Davis-Putnam)
resolution size of F is the minimum number of clauses in a regular (Davis-Putnam) resolution refutation
graph of F , and similarly for the width measure. For measures defined in terms of configuration sequences,
like variable space, some additional definition is needed.

Definition 1. A regular configuration refutation for F is a configuration sequence M1, ...Ms refuting F with
the following additional conditions: Each clause C in each configuration carries as additional information
the set SC of variables that have been resolved in the proof in order to derive C. For a clause C in F ,
SC = ∅. If C is the result of resolving variable x from clauses D and E, then SC = SD ∪ SE ∪ {x}. The
refutation is regular if no clause C in the refutation contains a variable x ∈ SC .

Definition 2. The variable space of a regular configuration refutation π is the maximum number of variables
being present in any configuration of π. The regular variable space of an unsatisfiable formula F , regVs(F `),
is the minimum variable space in any regular configuration refutation of F .

Definition 3. We can define a Davis-Putnam configuration refutation of a formula F in the same way as with
the regular configuration refutation, but with the additional requirement that there is an ordering σ of the
variables and these are resolved in the relative order of σ. This means that for any clause C in the refutation,
if C is the result of resolving a variable x, then x comes later than the rest of the variables in SC in the order
defined by σ. Analogously the variable space of a Davis-Putnam configuration refutation π is the maximum
number of variables being present in any configuration of π and the DP variable space of an unsatisfiable
formula F , dpVs(F `), is the minimum variable space in any DP configuration refutation of F .

4

2.2 Tseitin formulas

Let G = (V,E) be a connected undirected graph with n vertices, and let ϕ : V → {0, 1} be an odd marking
of the vertices of G, i.e. satisfying the property∑

x∈V
ϕ(x) = 1(mod 2).

For such a graph we can define an unsatisfiable formula in conjunctive normal form T(G,ϕ) in the following
way: The formula has E as set of variables, and it is a conjunction of the CNF translation of the formulas Fx
for x ∈ V , where Fx expresses that e1(x)⊕ · · ·⊕ ed(x) = ϕ(x) and e1(x) . . . ed(x) are the edges (variables)
incident with vertex x.

T(G,ϕ) encodes the combinatorial principle that for all graphs the sum of the degrees of the vertices is
even. T(G,ϕ) is unsatisfiable if and only if the marking ϕ is odd. For an undirected graph G = (V,E), let
∆(G) denote its maximal degree. It is easy to see that W(T(G,ϕ)) = ∆(G).

The following fact was proved several times (see for instance [9, 18]).

Fact 1. For an odd marking ϕ, for every x ∈ V there exists an assignment αϕ such that αϕ(Fx) = 0, and
αϕ(Fy) = 1 for all y 6= x. Moreover if ϕ is an even marking, then T(G,ϕ) is satisfiable.

Consider a partial truth assignment α of some of the variables of T(G,ϕ). We refer to the following
process as applying α to (G,ϕ): Setting a variable e = (x, y) in α to 0 corresponds to deleting the edge e in
the graph G, and setting it to 1 corresponds to deleting the edge from the graph and toggling the values of
ϕ(x) and ϕ(y) in G. Observe that T(G,ϕ) is satisfiable if and only if the formula T(G′, ϕ′) resulting after
applying α to (G,m) is still unsatisfiable.

2.3 Spoiler Duplicator Games

In order to characterize the width of refuting Tseitin formulas in Resolution through the Cops-Robber game,
we use another game introduced by Atserias and Dalmau in [4]. We consider the simplified explanation of
the game from [16]. The Spoiler-Duplicator (SD-Game) is a two player game played on an CNF F . The
players are given the set of clauses in F , with variables V . The players together construct a set of partial
assignments to the variables in V , according to the following rules: At the begging the first assignment
is λ, the empty assignment. At each round, on a given current partial assignment α, Spoiler can select an
unassigned variable x or forget (unassigning) a variable from α. In the first case the Duplicator assigns a
value to x, in the second case she does not do anything. The value of a game is the maximum number of
variables that are assigned in α at some point during the game. Spoiler wins if the current assignment falsifies
a clause in F , which will be always possible on an unsatisfiable CNF. The value of a given game on F , is the
maximal number of variables simultaneously assigned at any point during the game. We define sd(F) as
the minimum possible value of a terminating game on F . Using this game in [4] the authors provided the
following characterization of with:

Theorem 1. ([4]) Let F be an unsatisfiable CNF. Then W(F `) = max{W(F), sd(F)− 1}2

Following Urquhart [19] we define a Spoiler-Duplicator game tailored to capture the width in regular
resolution. Since in this kind of resolution variables can be resolved in the proof only once in any path to

2In the original paper [4] it is stated that W(F `) = sd(F) − 1, by inspecting the proof it can be seen that the formulation
W(F `) = max{W(F), sd(F)− 1} is the correct one.

5

the empty clause, we have to identify variables that were forgotten. Therefore variables can be in 3 states:
(1) assigned; (2) unassigned and (3) queried. The Regular-SD game is played on CNF F exactly as the
SD-game: at each round the Spoiler selects an unassigned variable and Duplicator gives it a value changing
its state to assigned. If a variable is forgotten then its state become queried. A queried variable cannot be
queried again. The Spoiler wins if the current assignment falsifies a clause in F. The value of a given regular
SD-game on F , is the maximal number of variables queried and assigned at round in the game. We define
rsd(F) as the minimum possible value of a terminating regular-SD-game on F .

Urquhart observed that the Regular-SD game characterizes exactly the width in regular resolution.
However this proof is incorrect.3 We consider here a different proof of this result.

Theorem 2. Let F be an unsatisfiable CNF. Then regW(F `) = max{W(F), rsd(F)− 1}

Proof. We show first that for an unsatisfiable CNF, rsd(F) ≤ regW(F `) + 1. Consider a regular resolution
refutation of width k of F . A strategy for Spoiler is to start at the empty clause in the refutation and move
towards a clause in F . In each step, he queries the variable being resolved, and depending on Spoiler’s answer
moves to the parent clause that is negated by the partial assignment constructed so far. He then deletes from
the partial assignment all the variables that are not in the actual clause. Proceeding this way, a clause in F is
negated and Spoiler needs at most k + 1 variables in memory. Also since the refutation is regular, Spoiler
does not need to ask any variable more than once.

For the other direction, let 0 < k = regW(F `) and suppose k > W(F), we give a strategy for
Duplicator under which rsd(F) ≥ k + 1.

A Spoiler-Duplicator game proceeds in rounds. In each round r Spoiler chooses a variable and Duplicator
assigns a value to it or Spoiler forgets a variable. Let V (r) be the set of variables that have been chosen by
Prover until the end of round r (some of this variables might have been forgotten). Initially V (0) = ∅. Let
αr be the partial assignment of the variables at the end of round r, and let |αr| be the size of domain of this
partial assignment. We show that if for every round r, |αr| ≤ k then there is a strategy for Duplicator that
never falsifies a clause in F . This implies rsd(F) ≥ k+ 1. We need one more definition. For a round r let Cr
be the set of all clauses C satisfying:

i) W(C) ≤ k − 1,

ii) C can be derived from F using regular resolution of clause width at most k − 1 and

iii) in the regular resolution proof of C no variable in V (r) is resolved.

Observe that for all r, F ⊆ Cr since W(F) ≤ k − 1. The strategy for Duplicator is to assign a value for
the variable chosen by Spoiler at round r, that does not falsify a clause in Cr. We claim that this is always
possible. Observe that if the claim is true then this is clearly a winning strategy for Duplicator since the
clauses in F are contained in Cr. To prove the claim, assume by contradiction that r is the first round in which
Duplicator has to falsify a clause in Cr. r > 0 because initially V (0) = ∅ and � 6∈ C0 since regW(F `) = k.
Also r has to be a round in which Spoiler selects a new variable because in the variable forgeting rounds
Cr = Cr−1. Let x be the variable chosen by Spoiler at round r (for the first time). There must be two clauses
A ∨ x and B ∨ x in Cr and αr−1(A) = αr−1(B) = 0. But this implies that A ∨B ∈ Cr−1 because

i) W(A ∨B) ≤ k − 1 since both A and B are falsified by αr−1,
3In the proof of the implication 1⇒ 2 in Theorem 3.2 in [19] it is assumed that putting together a regular resolution proof of

D ∨ x and one of E ∨ x one obtains a regular resolution proof of D ∨ E. This is incorrect since for example, some variable in D
could have been resolved in the proof of E ∨ x

6

ii) there are regular resolution proofs of A ∨ x and B ∨ x of clause width at most k − 1 and

iii) these proofs do not resolve x since A ∨ x, B ∨ x ∈ Cr.

Putting together the regular resolution proofs of A ∨ x and B ∨ x we would get a regular resolution proof of
A ∨B. Observe that no variable in A ∨B has been resolved in this proof because αr−1(A) = αr−1(B) = 0
which shows that all variables inA∨B have been selected by Spoiler by round r−1. Also x 6∈ V (r−1) since
we are dealing with a regular game. But this would imply that Duplicator would have falsified A ∨B ∈ Cr−1
at the previous round, contradicting the hypothesis stating that r is the first round in which Duplicator falsifies
something.

For our results we need a further version of the SD-game characterizing the width in Davis-Putnam
resolution: The Davis-Putnam SD-game is played on CNF F in a very similar way as the original SD-game,
except for the fact that before the game starts the Spoiler has to give the order σ in which the variables are
going to be queried. At each round the Spoiler queries the next unassigned variable in σ and Duplicator gives
it a value changing its state to assigned, or he decides to forget some assigned variable (and its state becomes
queried). The rest of the game is exactly as in the previous versions. We define dpsd(F) as the minimum
possible value of a terminating Davis-Putnam-SD-game on F .

Theorem 3. Let F be an unsatisfiable CNF. Then dpW(F `) = max{W(F), dpsd(F)− 1}

Proof. The proof is very similar to that of 2 and we omit some details. To show that for an unsatisfiable
CNF, dpsd(F) ≤ dpW(F `) + 1, consider a Davis-Putnam resolution refutation of width k of F . A strategy
for Spoiler is to follow the order of variables of this refutation starting at the empty clause in the refutation
and move towards a clause in F . In each step, he queries the next variable in σ. If this is the variable being
resolved, then depending on Spoiler’s answer he moves to the parent clause that is negated by the partial
assignment constructed so far. He then deletes from the partial assignment all the variables that are not in
the actual clause. If the next variable in the order σ is not the variable being resolved, then independently of
Spoiler’s assignment he forgets it in the next round. Proceeding this way, a clause in F is negated and Spoiler
needs at most k + 1 variables in memory.

For the other direction, let 0 < k = dpW(F `) and suppose k >W(F), we give a strategy for Duplicator
under which dpsd(F) ≥ k + 1. Let σ be the ordering of the variables selected by the Spoiler. We use the
notation of the previous Theorem. For a round r, let Cr be the set of all clauses C satisfying:

i) W(C) ≤ k − 1,

ii) C can be derived from F using Davis-Putnam resolution of clause width at most k − 1 and

iii) in the DP resolution proof of C no variable in V (r) is resolved.

The strategy for Duplicator is to assign a value for the variable chosen by Spoiler at round r, that does
not falsify a clause in Cr. Again this is always possible and the proof for this follows step by step the proof of
the same claim in Theorem 2.

3 A game characterization of resolution variable space

We give a new characterization of resolution variable space in terms of a two player game. This result holds
for any CNF formula and it is therefore quite independent of the rest of the paper. We include it here since

7

it will be used to show that the invisible robber game characterizes variable space in Tseitin formulas. The
game is a non-interactive version of the Spoiler-Duplicator game defined by Atserias and Dalmau [4] in order
to characterize resolution width, considered in the previous section.

Given an unsatisfiable formula F in CNF with variable set V , in our two player game, Player 1 constructs
step by step a finite list L = L0, L1, . . . , Lk of sets of variables, Li ⊆ V. Starting by the empty set, L0 = ∅,
in each step he can either add variables to the previous set, or delete variables from it. The cost of the game is
the size of the largest set in the list.

Once Player 1 finishes his list, Player 2 has to construct dynamically a partial assignment for the set of
variables in the list. In each step i, the domain of the assignment is the set of variables Li in the list at this
step. She starts giving some value to the first set of variables in the list, L1, in a way that no clause of F is
falsified. If variables are added to the set at any step, she has to extend the previous partial assignment to the
new domain in any way, but again, no initial clause can be falsified. If a variable is kept from one set to the
next one in the list, its value in the assignment remains. If variables are removed from the set at any step, the
new partial assignment is the restriction of the previous one to the new domain.

If Player 2 manages to come to the end of the list without having falsified any clause of F at any point,
she wins. Otherwise Player 1 wins.

Define nisd(F) to be the minimum cost of a winning game for Player 1 on F . We prove that for any
unsatisfiable formula F the variable space of F coincides exactly with nisd(F).

Theorem 4. Let F be an unsatisfiable formula, then nisd(F) ≤ Vs(F `).

Proof. Consider a resolution proof π of F as a list of configurations. The strategy of Player 1 consists
in constructing a list L of sets of variables, that in each step i contains the variables present in the i-th
configuration. The cost for this list is exactly Vs(π).

We call a list of partial assignments correct if it is constructed following the rules of the game and does
not falsify any clause in F .

We claim that any correct list of partial assignments of Player 2 that does not falsify any clause in F has
to satisfy simultaneously all the clauses at the configurations in each step. If this would not be true, let us
consider the first step i in which the constructed partial assignment falsifies some clause in the configuration.
At step i− 1 the assignment αi constructed by Player 2 does not falsify any initial clauses nor any clauses
in the configuration. At step i, αi falsifies some clause in the configuration, but this has to be a new added
clause and it can only be a clause of F , contradicting the fact that Player 2 is constructing a correct list of
partial assignments.

The argument is completed by observing that there must be a step in π in which the clauses in the
configuration are not simultaneously satisfiable.

Theorem 5. Let F be an unsatisfiable formula, then Vs(F `) ≤ nisd(F).

Proof. Let L be the list of sets of variables constructed by Player 1, containing at each step i a set Li of at
most nisd(F) variables. We consider for each step i a set of clauses Ci containing only the variables in Li.
Initially L1 is some set of variables and C1 is the set of all clauses that can be derived by resolution (in any
number of steps) from the clauses in F containing only variables in L1. At any step i, if Li is constructed by
adding some new variables to Li−1, Ci is defined to be the set of clauses that can be derived from the clauses
in Ci−1 and the clauses in F containing only variables in Li. If Li is constructed by deleting some variables
from Li−1, Ci is defined to be the set of clauses in Ci−1 that only have variables in the set Li. By definition Ci
can be always be constructed from Ci−1 by using only resolution steps, deletion or inclusion of clauses in F.

8

Therefore this list of sets of clauses can be written as a resolution proof. At every step in this proof at most
nisd(F) variables are present.

We claim that if L is a winning strategy for Player 1, then at some point i, Ci must contain the empty
clause. This implies the result because it shows that there is a resolution proof of F using at most variable
space nisd(F).

Let us define at each step i the set Ai of partial assignments for the variables in Li that satisfy all the
clauses in Ci, and the set Bi to be the set of partial assignments for the variables in Li that do not falsify any
initial clause and can be constructed by Player 2 following the rules of the game.

We show by induction on i that at each step, Ai = Bi. Since at some point i, Player 2 does not have any
correct assignment that does not falsify a clause in F , it follows that Ai = Bi = ∅, which means that Ci in
unsatisfiable and must contain the empty clause by the definition of Ci and the completeness of resolution.

Initially, A1 is the set of partial assignments that satisfy C1 and these assignments satisfy all clauses in F
containing only variables of L1 and are therefore contained in B1. Conversely, any assignment in B1 satisfies
any clause in C1 because these assignments satisfy every clause in F with variables in L1 and any assignment
satisfying two parent clauses satisfies also its resolvent.

If Li is obtained by deleting some variables in Li−1, the partial assignments in the set Ai satisfying Ci are
exactly the restrictions to a smaller set of variables of the set Ai−1 of assignments satisfying Ci−1. Clearly
any restriction to Li of an assignment in Ai−1 satisfies Ci. In the other direction this is also true, because
if an assignment α ∈ Ai could not be extended to an assignment satisfying Ci−1 then applying the partial
assignment α to Ci−1 we would have an unsatisfiable set of clauses, from which the empty clause could be
derived by resolution. But this means that from Ci−1 a clause with variables in Li falsified by α would be
derivable by resolution, contradicting the fact that α satisfies all clauses in Ci. By induction Ai−1 = Bi−1,
but Bi is by definition the set of partial assignments in Bi−1 restricted to Li and coincides with Ai.

If Li is obtained by adding some variables in Li−1, by the same argument as above, the set Ai of partial
assignments satisfying Ci are the extensions to a larger set of variables of the set of assignments Ai−1, that
satisfy Ci. By hypothesis, Ai−1 = Bi−1 The partial assignments that Player 2 can produce are the extension
of the ones in Bi−1 that do not falsify a clause in F , and therefore satisfy the clauses in Ci. Again we have
Ai = Bi.

For our results we need to define a restricted version of the non-interactive Spoiler-Duplicator game, in
which in the list L of sets of variables produced by Player 1, once a variable is deleted from the list it cannot
be included later in the list. For an unsatisfiable formula F let g(F) be the value of this game played on F .
We show that

Lemma 6. dpVs(F `) ≤ g(F).

Proof. The proof follows the same ideas as Theorem 5. Let L be the list of sets of variables constructed
by Player 1, containing at each step i a set Li of at most g(F) variables. By simulating a variable deletion
step from Li to Li−1 by several steps deleting just one variable we can suppose w.l.o.g. that in a deletion
step, exactly one variable is deleted. We consider for each step i a set of clauses Ci containing only the
variables in Li. Initially L1 is some set of variables and C1 is the set of clauses in F containing only variables
in L1. At any step i, if Li is constructed by adding some new variables to Li−1, Ci is defined to be the set
of clauses in Ci−1 and the clauses in F containing only variables in Li. If Li is constructed by deleting a
variable x from Li−1, Ci is defined to be the set of clauses in Ci−1 that do not contain x plus all the clauses
than can be resolved from the clauses in Ci−1 by resolving over variable x. By definition Ci can always be
constructed from Ci−1 by using only resolution steps, deletion or inclusion of clauses in F. Moreover, this is
a Davis-Putnam resolution following the order in which the variables are being removed from the sets in the

9

list. Therefore this list of sets of clauses can be written as a DP resolution proof. At every step in this proof at
most g(F) variables are present.

We claim that if L is a winning strategy for Player 1, then at some point i, Ci must contain the empty
clause. This implies the result because it shows that there is a DP resolution proof of F using at most variable
space g(F).

As in Theorem 5, let us define at each step i the set Ai of partial assignments for the variables in Li that
satisfy all the clauses in Ci, and the set Bi to be the set of partial assignments for the variables in Li that do
not falsify any initial clause and can be constructed by Player 2 following the rules of the game. Exactly as
in Theorem 5 it can be seen by induction on i that at each step, Ai = Bi. Since at some point i, Player 2
does not have any correct assignment that does not falsify a clause in F , it follows that Ai = Bi = ∅, which
means that Ci in unsatisfiable. By the completeness of Davis-Putnam resolution, there is a refutation of the
empty clause from the clauses Ci using only variable space |Li| ≤ g(F).

4 Cops and Robber Games

We consider a slight variation of the Cops and Robber game from Seymour and Thomas [15] which they used
to characterize exactly the tree-width of a graph. We call our version the Edge (Cops and Robber) Game.

Initially a robber is placed on a vertex of a connected graph G. She can move arbitrarily fast to any other
vertex along the edges. The team of cops, directed by one person, wants to capture her, and can always see
where she is. They are placed on edges and do not move.

Definition 4. (Edge Cops-Robber Game) Player 1 takes the role of the cops. At any stage he can place a cop
on any unoccupied edge or remove a cop from an edge. The robber (Player 2) can then move to any vertex
that is reachable from her actual position over a path without cops. Both teams have at any moment perfect
information of the position of the other team. Initially no cop is on the graph. The game finishes when the
robber is captured. This happens when the vertex she occupies is completely surrounded by cops.

The value of the game is the maximum number of edge-cops present on the edges at any point in the game.
We define ec(G) as the minimum game value in a finishing Edge Game on G.

The only differences between our Edge Cops-Robber Game and the Cops-Robber game from Seymour
and Thomas are that here the cops are placed on the edges, while in [15] they were placed on the vertices and
that our game ends with the robber surrounded while in the Seymour-Thomas game a cop must occupy the
same vertex as the robber.

4.1 The cops-robber game characterizes width on Tseitin formulas

The edge-cops game played on a connected graph G characterizes exactly the minimum width of a resolution
refutation of T(G,ϕ) for any odd marking ϕ. In order to show this, we use the Spoiler and Duplicator game
from Atserias-Dalmau [4] introduced to characterize resolution width. We prove that ec(G) = sd(T(G,ϕ))
where sd(T(G,ϕ)) denotes the value of the Atserias-Dalmau game played on T(G,ϕ).

Let us observe how the Spoiler-Duplicator game goes when played on the Tseitin formula T(G,ϕ). In a
finishing game on T(G,ϕ) Spoiler and Duplicator construct a partial assignment α of the edges. Applying α
to the variables of T(G,ϕ) a new graph G′ and marking ϕ′ are produced. Consider a partial truth assignment
α of some of the variables. Assigning a variable e = {x, y} in α to 0 corresponds to deleting the edge e in
the graph, and setting the edge variable to 1 corresponds to deleting the edge from the graph and toggling
the values of ϕ(x) and ϕ(y). The formula T(G′, ϕ′) resulting after applying α to (G,ϕ) is still unsatisfiable.

10

We will call a connected component of G′ for which the sum of the markings of its vertices is odd, an odd
component. Initially G is an odd component under ϕ. By assigning an edge, an odd component can be
divided in at most two smaller components, an odd one and an even one. The only way for Spoiler to end the
game is to construct an assignment α that assigns values to all the edges of a vertex, contradicting its marking
under α. This falsifies one of the clauses corresponding to the vertex.

Theorem 7. For any connected graph G and any odd marking ϕ, ec(G) = sd(T(G,ϕ)).

Proof. In order to compare both games, the team of cops will be identified with the Spoiler and the robber
will be identified with the Duplicator. Since the variables in T(G,ϕ) are the edges of G, the action of Spoiler
selecting (forgetting) a variable in the Atserias-Dalmau game will be identified with placing (removing) a cop
on that edge.

We show first that ec(G) ≤ sd(T(G,ϕ)).No matter what the answers of Duplicator are, Spoiler has a way
to play in which he spends at most sd(T(G,ϕ)) points at the Spoiler-Duplicator game on T(G,ϕ). In order
to obtain a value smaller or equal than sd(T(G,ϕ)) in the Edge Game, the cops just have to imitate Spoiler’s
strategy on T(G,ϕ). At the same time, any decision of the robber can be identified with an assignment of
Duplicator that captures the position of the robber. This is done by considering a Duplicator assigning values
in such a way that there is always a unique odd component which corresponds to the subgraph of G isolated
by cops where the robber is. At any step in the Edge Game, the following invariant is kept:

The partial assignment produced in the Spoiler-Duplicator game on T(G,ϕ) defines a unique odd
component corresponding to the component of the robber.

Initially the robber is in some vertex of the graph, which is the unique odd component. If in a step of
the Spoiler-Duplicator game the edge selected by Spoiler does not cut the component where the robber is,
Player 1 can simulate Duplicator’s assignment for this variable in any way and the unique odd component of
the robber is kept. He can continue with the next decision of Spoiler. At a step right after the component of
the robber is cut by the cops, Player 1 can compute an assignment of Duplicator for the last occupied edge,
which would create a labeling that identifies the component with the robber as the unique odd component of
the graph. This is always possible. Then Player 1 just needs to continue the imitation of Spoiler’s strategy for
the assignment produced by Duplicator.

At the end of the game Spoiler falsifies an initial clause, and the vertex corresponding to this clause is the
unique odd component under the partial assignment. Therefore the cops will be on the edges of a falsified
clause, thus catching the robber on the corresponding vertex.

The proof of ec(G) ≥ sd(T(G,ϕ)) is very similar. Now we consider that there is a strategy for Player 1
in the Edge Game using at most ec(G) cops, and we want to extract from it a strategy for the Spoiler. He just
needs to select (remove) variables is the same way as the cops are being placed (removed). This time, all
through the game we have the following invariant:

The component isolated by cops in which the robber is, is an odd component in the Spoiler-Duplicator
game.

When the variable (edge) selected does not cut the component where the robber is, Spoiler does not need
to do anything. When the last selected variable cuts the component of the robber, by choosing a value for
this variable Duplicator decides which one of the two new components is the odd one. Spoiler figures that
the robber has gone to the new odd component and asks the cops what to do next in this situation. When
the robber is caught, this will be in an odd component of size 1 which all its edges assigned. This partial
assignment falsifies the corresponding clause in T(G,ϕ).

Using this result, the width characterization from [4] and the fact that W(T(G,ϕ)) corresponds to the
maximum degree of the graph, ∆(G), we obtain:

11

Corollary 8. For any connected graph G and any odd marking ϕ,

W(T(G,ϕ) `) = max{∆(G), ec(G)− 1}.

4.2 An invisible robber characterizes variable space on Tseitin formulas

We consider now the version of the edge-cops game in which the robber is invisible. That means that the
cops strategy cannot depend on the robber and the cops have to explore the whole graph to catch her. As in
the visible version of the game, the robber is caught if all the edges around the vertex in which she is, are
occupied by cops. For a graphG let iec(G) be the minimum number of edge-cops needed to catch an invisible
robber in G. Let T(G,ϕ) be the Tseitin formula corresponding to G. We show that iec(G) corresponds
exactly to Vs(T(G,ϕ)).

Theorem 9. Vs(T(G,ϕ)) = iec(G).

Proof. (i) Vs(T(G,ϕ) `) ≤ iec(G). We use the game characterization of variable space from Section 3.
Consider the strategy of the cops. At each step the set of variables constructed by Spoiler corresponds to the
set of edges (variables) where the cops are. Now consider any list of partial assignments that Player 2 might
construct. Any such assignment can be interpreted as deleting some edges and moving the robber to an odd
component in the graph. But the invisible robber is caught at some point no matter what she does, and this
corresponds to a falsified initial clause.

(ii) iec(G) ≤ Vs(T(G,ϕ) `). Now we have a strategy for Spoiler, and the cops just need to be placed on
the edges corresponding to the variables selected by Player 1. If the robber could escape, by constructing
a list of partial assignments mimicking the robber moves (that is, each time the cops produce a new cut in
the component where the robber is, she sets the value of the last assigned variable to make odd the new
component where the robber has moved to), Player 2 never falsifies a clause in T(G,ϕ).

4.3 A game characterization of depth on Tseitin formulas

We consider now a version of the game in which the cops have to remain on their edges until the end of the
game and cannot be reused.

Definition 5. For a graph G let lec(G) be the minimum number of edge-cops needed in order to catch a
visible robber on G, in the cops-robber game, with the additional condition that the cops once placed, cannot
be removed from the edges until the end of the game (lazy cops).

Theorem 10. For any connected graph G and any odd marking ϕ of G, D(T(G,ϕ) `) = lec(G).

Proof. (i) D(T(G,ϕ) `) ≤ lec(G). Based on the strategy of the cops, we construct a Davis-Putnam
resolution proof tree of T(G,ϕ) in which the variables are resolved in the order (from the empty clause) as
the cops are being placed on the edges. Starting at the node in the tree corresponding to the empty clause, in
each step when a cop is placed on edge e we consider two parent edges, one labeled by e and the other one by
e. A node in the tree is identified by the partial assignment defined by the path going from the empty clause to
this node and falsifying all the literals in the path. Each time the cops produce a cut in G, such an assignment
defines two different connected components in G, one with odd marking and one with even marking. At this
point we keep the construction of the resolution proof leading to this node by considering the resolution of
the component with the odd marking, following the cop strategy for the case in which the robber did go to

12

this component. The resolution is Davis-Putnam since each time a cut is produced the variables (edges) on
each side of the cut are disjoint.

(ii) lec(G) ≤ D(T(G,ϕ) `). Consider a resolution proof π of T(G,ϕ). Starting by the empty clause,
the cops are placed on the edges corresponding to the variables being resolved. At the same time a partial
assignment is being constructed (by the robber) that defines a path in the resolution graph starting at the
empty clause and going through the clauses that are negated by the partial assignment. If removing the edges
where the cops are produces a cut in G, the cops continue from a node in the resolution proof corresponding
to an assignment for the last chosen variable that gives odd value to the component where the robber has
moved. At the end a clause in T(G,ϕ) is falsified, which corresponds to the cops being placed in the edges
around the robber. The number of cops needed is at most the resolution depth.

From the the proof of this result follows that in fact for Tseitin formulas the depth of a DP resolution is
minimal.

Corollary 11. Let G = (V,E) be a simple connected graph and let ϕ be any odd marking of G. Assume that
there exist a resolution refutation of T(G,ϕ) of depth at most k. Then there exists a Davis-Putnam resolution
refutation of T(G,ϕ) of width at most k.

5 Davis-Putnam resolution and monotone games

We show in this section that the fact that the games can be played in a monotone way, implies that width
and variable space in Davis-Putnam resolution are as good as in general resolution in the context for Tseitin
formulas.

We need some further notation. For a set S and k > 0, we denote the set of subsets of S of size at most k
by Sk.

5.1 The visible robber

We recall the vertex-cops game of [15]. Let G = (V,E) be a simple graph and let Y ⊆ V . A Y -flap is the
vertex set of a connected component in G \ Y . A position in this game is a pair (Y,Q) where Y ⊆ V and Q
is an Y -flap. A game can be considered as a sequence of positions, Y represents the set of vertices with cops
on them and Q represents the Y -flap where the robber is. The game starts in position (∅, V). Assume that
position (Yi, Qi) is reached. The cops choose Yi+1 such that either Yi ⊆ Yi+1 or Yi+1 ⊆ Yi. Then the robber
chooses a Yi+1-flap Qi+1 such that Qi ⊆ Qi+1 or Qi+1 ⊆ Qi. The cops win when Qi ⊆ Yi+1. We say that a
sequence of positions (Y0, Q0), . . . , (Yt, Qt) is monotone if for all 0 ≤ i ≤ j ≤ k ≤ t, Yi ∩ Yk ⊆ Yj . The
main result of Seymour and Thomas states that if k cops can win the game, they can also win monotonically.
We will use this result to prove an analogous statement about our edge-games.

We extend the framework of Seymour and Thomas to talk about edges. Now we have X ⊆ E. An X-flap
is the edge set of a connected component in G \X . A position is a pair (X,R) with X ⊆ E and R an X-flap.
Assume that a position (Xi, Ri) is reached. The cops chooseXi+1 such that eitherXi ⊆ Xi+1 orXi+1 ⊆ Xi.
Then the robber chooses an Xi+1-flap Ri+1 such that either Ri ⊆ Ri+1 or Ri+1 ⊆ Ri. The cops win when
Ri ⊆ Xi+1, that is, when all the edges adjacent to Ri are in Xi+1. Note that under this definition if some X
isolates more than one vertex, then we will have multiple empty sets as X-flaps. However if the robber moves
to such an X-flap she will immediately lose as in the next round the cops remain where they are and ∅ ⊆ X .

Similarly a sequence of positions (X0, R0), . . . , (Xt, Rt) is monotone if for all 0 ≤ i ≤ j ≤ k ≤ t,
Xi ∩Xk ⊆ Xj .

13

Definition 6. Given a graph G = (V,E) the line graph of G is L(G) = (V ′, E′) defined as follows: for
every edge e ∈ E we put a vertex we ∈ V ′. We then set

E′ = {{we1 , we2} : e1, e2 ∈ E, e1 ∩ e2 6= ∅}.

For X ⊆ E define L(X) := {we : e ∈ X} and for Y ⊆ V ′ define L−1(Y) = {e : we ∈ Y }.

Proposition 12. Let G = (V,E) be a graph and let X ⊆ E. It follows that R ⊆ E is an X-flap if and only
L(R) is an L(X)-flap.

Proof. It is enough to show that any e1, e2 ∈ E \X are reachable from each other in G \X if and only if
we1 and we2 are reachable from each other in L(G) \ L(X). Let P = e1, f1, . . . , ft, e2 be a path in G \X
connecting e1 and e2. By construction we have a path we1 , wf1 , . . . , wft , we2 in L(G) \ L(X).

Conversely letwe1 , wf1 , . . . , wft , we2 be a path of minimum length betweenwe1 andwe2 in L(G)\L(X).
It is easy to see that e1, f1, . . . , ft, e2 is a path between e1 and e2 in G \X .

Theorem 13. Assume that there is a strategy for the edge-cops game on G with k cops. Then there exists a
strategy for the vertex-cops game in L(G) with k cops.

Proof. Fix a strategy σ for the edge-cops on G, i.e., for every X ∈ Ek and every X-flap R, σ(X,R) ∈ Ek
which guarantees that the robber will eventually be captured. We will inductively construct a sequence
{(Yi, Qi)} of positions in the vertex game on L(G), where Qis are the responses of the robber, while
keeping a corresponding sequence {(Xi, Ri)} for the edge game on G. The vertex game starts in position
(Y0, Q0) = (∅, V ′) and the edge game starts in (X0, R0) = (∅, E). We have X1 = σ(X0, R0). In general
we set Yi = L(Xi) and after the robber has responded with Qi we define Ri = L−1(Qi), from which we
construct Xi+1 = σ(Xi, Ri) and so on. That Ri is an Xi-flap follows immediately from Proposition 12. To
see that this is indeed a winning strategy, note that at some point we reach a position with Ri ⊆ Xi+1. This
happens only when Qi ⊆ Yi+1.

Theorem 14. Assume that there is a monotone strategy for the vertex-cops game in L(G) with k cops. Then
there exists a monotone strategy with k cops for the edge-cops game in G.

Proof. We will construct a sequence {(Xi, Ri)} of positions in the edge game on G while keeping a
corresponding sequence {(Yi, Qi)} of positions in the vertex game on L(G). Note that Ri will be the
response of the robber on G. Let σ be a monotone strategy with k vertex-cops on L(G). We will inductively
constructXi = {e : we ∈ Yi} and after the robber has responded withRi we defineQi = L(Ri). Proposition
12 implies thatQi is a Yi-flap. Since σ is a winning strategy at some point we reach a position withQi ⊆ Yi+1.
This happens only when Ri ⊆ Xi+1. The monotonicity of the strategy follows.

Corollary 15. Let G = (V,E) be a simple connected graph and let ϕ be any odd marking of G. Assume that
there exist a resolution refutation of T(G,ϕ) of width at most k. Then there exists a Davis-Putnam resolution
refutation of T(G,ϕ) of width at most k.

Proof. We have seen in Theorem 3 that the Davis-Putnam version of the Spoiler-Duplicator game in [4],
in which Spoiler queries the variables following an order σ set before the game starts, characterizes Davis-
Putnam resolution width.

Let W(T(G,ϕ)) = k = sd(G)− 14. There is a winning a strategy for the edge-game on G with at most
k edge-cops which by the above results and the monotonicity of the vertex-game can be translated into a

4The case W(T(G,ϕ)) = ∆(G) is similar.

14

monotone strategy with at most k vertex-cops for L(G). This can be translated back into a monotone strategy
for the edge-game on G with at most k cops. By Theorem 7 this implies that the Spoiler-Duplicator game on
T(G,ϕ) brings at most k points. Moreover since the edge-game is monotone, cops cannot be replaced on the
same edge twice. When the cops create a cut in the graph, the sets of edges on both sides of the cut at disjoint.
This implies that it is possible to define a total order of all the edges in the graph so that for any strategy of
the Robber, the cops can be placed following that order and will always catch the Robber. The order in which
the Cops are removed from edges, as well as the step in which the Robber is caught depends on the strategy
of the Robber, but not the order in which the edges are being occupied. Because of this, Theorem 7 shows
that in fact the Davis-Putnam version of the Spoiler-Duplicator game on T(G,ϕ) brings at most k points. By
Theorem 3 this shows that the DP resolution width of T(G,ϕ) is at most k.

Theorem 14 implies that Theorem 13 states in fact an if and only if condition. From this and the tree-width
characterization in terms of the vertex-cops games from [15] it follows that the number of edge-cops needed
to win a game on a graph G characterizes the tree-width of the corresponding line graph.

Corollary 16. Let G = (V,E) be a simple connected graph, then

ec(G) = vc(L(G)) = tree− width(L(G)) + 1.

5.2 The invisible robber

A strategy for the cops is formalized by a sequence (A0, Z0), (A1, Z1), . . . , (At, Zt) satisfying the following
properties:

1. For 0 ≤ i ≤ t, Ai ⊆ V (the set of cleared vertices at the ith step) and Zi ⊆ E (the set of cops at the
ith step).

2. A0 = ∅ and At = V .

3. Either Zi ⊆ Zi+1 and Ai+1 is the union of Ai and the set of vertices whose incident edges are all
contained in Zi+1, or Zi ⊇ Zi+1 and Ai+1 is the subset of Ai of those vertices which are not connected
to any vertex in V \Ai with any paths involving no cops in Zi+1.

In a similar way as we did with the visible robber game, we can reduce the edge-game with an invisible
robber to the invisible robber vertex-game of Kirousis and Papadimitriou [12] (we will call this game KP). In
their game cops are placed on vertices. An edge is cleared if both its endpoints have cops. An edge can be
recontaminated if it is connected to an uncleared edge passing through no cops. It is shown in [12] that the
cops can optimally clear all the edges without occupying any vertex twice.

Theorem 17. Assume that k cops can win the edge-game capturing an invisible robber on G = (V,E). Then
k cops can capture the robber in KP game on L(G).

Proof. Let (A0, Z0), (A1, Z1), . . . , (At, Zt) be a strategy of the cops on G. At every step we put a cop on
we in L(G) if there is a cop in G on e. We observe that at every step i, every edge (we, wf) ∈ E(L(G)) is
cleared for any two edges e and f which are incident to a common cleared vertex in Ai. This clearly holds
whenever a vertex in G is cleared for the first time (after possible recontamination), since all its incident
edges must have a cop. In general note that there is a cop on every edge in E(Ai, V \Ai). This implies that
there is no path free of cops from some edge (we, wf) to (we′ , wf ′) where e and f meet in Ai and e′ and f ′

meet in V \ Ai. Therefore if v remains in Zi and e and f are incident with v, then (we, wf) remains clear.
Since at the end we have At = V , all vertices of L(G) will be cleared eventually.

15

Theorem 18. Assume that k cops can monotonically capture the robber in KP game on L(G). Then k cops
can monotonically capture the invisible robber in the edge-game on G.

Proof. At every step we put a cop on e in G if there is a cop on we in L(G). This would clearly satisfy
monotonicity. However we need to argue that every vertex is cleared eventually. We claim that at every step,
the set of cleared vertices in G are those v for which all (we, we′) are cleared in L(G) where e and e′ are
incident with v. Fix v and let Cv be the clique in L(G) on all vertices we where e is incident with v. Observe
that the first time all (we, we′) are cleared in Cv, we necessarily have a cop on all we where e in incident with
e. In general in the KP game the first time all edges of a clique in a graph are cleared, we necessarily have
cops on all the vertices of the clique. By construction at this point v is surrounded. We need to argue that
every time v is surrounded it remains cleared as long as all edges in Cv remain cleared. But by construction
all paths without cops from v contain only cleared vertices, and thus the result holds.

Corollary 19. Let G = (V,E) be a simple connected graph and let ϕ be any odd marking of G. Assume that
there exist a resolution refutation of T(G,ϕ) of variable space at most k. Then there exists a Davis-Putnam
resolution refutation of T(G,ϕ) of variable space at most k.

Proof. As noted in Lemma 6, the restricted version of the non-interactive Spoiler-Duplicator game is an
upper bound for the Davis-Putnam resolution variable space.

Let Vs(T(G,ϕ)) = k. There is a winning a strategy for the invisible edge-game on G with at most k
edge-cops which by the above results and the monotonicity of the invisible vertex-game can be translated
into a monotone strategy with at most k vertex-cops for L(G). This can be translated back into a monotone
strategy for the invisible edge-game on G with at most k cops. This implies that the restricted version of the
non-interactive Spoiler Duplicator game on T(G,ϕ) (no variable is used more than once) brings at most k
points. By Lemma 6 the Davis-Putnam resolution variable space of T(G,ϕ) is at most k.

Using now the path-width characterization in terms of the vertex-cops invisible robber games from [8]
we obtain that the number of edge-cops needed to win a game on a graph G against an invisible robber
characterizes the path-width of the corresponding line graph.

Corollary 20. Let G = (V,E) be a simple connected graph, then

iec(G) = ivc(L(G)) = path− width(L(G)) + 1.

6 New relations between complexity measures for Tseitin formulas

For any unsatisfiable formula F the following inequalities hold:

W(F `) ≤ Vs(F `) (1)

Vs(F `) ≤ D(F `) (2)

Cs(F `) ≤ D(F `) + 1 (3)

Cs(F `) ≥W(F `)−W(F) + 1 (4)

Here equation 1 follows by definition, equation 2 is proved in [19], equation 4 is the Atserias-Dalmau [4]
width-space inequality and equation 3 follows from the following two observations:

1. Any resolution refutation π can be transformed, doubling subproofs, in a tree-like refutation with the
same depth of the original proof π.

16

2. The clause space of a treelike refutation is at most as large as its depth+1 [9].

In general the relationship between variable space and clause space is not clear. It is also an open problem
to know whether variable space and depth are polynomially related (see [14, 19]) and if clause space is
polynomially bounded in variable space (see Razborov in [14], Open problems). In this Section we answer
this questions in the context of Tseitin formulas. We show in Corollary 23 below that for any Tseitin formula
T(G,ϕ) corresponding to a graph G with n vertices,

D(T(G,ϕ) `) ≤W(T(G,ϕ) `) log n (5)

From this and the inequalities above we obtain the following new relations:

D(T(G,ϕ) `) ≤ Vs(T(G,ϕ) `) log n (6)

Cs(T(G,ϕ) `) ≤ Vs(T(G,ϕ) `) log n+ 1 (7)

Vs(T(G,ϕ) `) ≤ (Cs(T(G,ϕ) `) + ∆(G)− 1) log n. (8)

Where the last equation follows since W(T(G,ϕ)) = ∆(G).
That is, in the context of Tseitin formulas T(G,ϕ):

1. If G is a graph of bounded degree, the width, depth, variable space and clause space for refuting
T(G,ϕ) differ by at most a log n factor.

2. For any graph G the clause space of refuting T(G,ϕ) is bounded above by the a log n factor of the
variable space of refuting T(G,ϕ).

To prove our results, we need two preliminary lemmas.

Lemma 21. Let T(G,ϕ) be a Tseitin formula and π be a width k resolution refutation of T(G,ϕ). From π
it is possible to find in linear time in |π| a set W of at most k + 1 variables such that any assignment of these
variables when applied to G in the usual way, defines a graph G′ and a labeling ϕ′ in which there is some
odd connected component with at most d |V |2 e vertices.

Proof. We use again the Spoiler and Duplicator game from [4]. A way for Spoiler to pay at most k+ 1 points
on the game on T(G,ϕ) is to use the structure of π starting at the empty clause and query each time the
variable that is being resolved at the parent clauses. When Duplicator assigns a value to this variable, Spoiler
moves to the parent clause falsified by the partial assignment and deletes from this assignment any variables
that do not appear in the parent clause. In this way he always reaches at some point an initial clause, falsifying
it and thus winning the game. At any point at most k + 1 variables have to be assigned. To this strategy of
Spoiler, Duplicator can oppose the following strategy: She applies the partial assignment being constructed to
the initial graph G producing a subgraph G′ and a new labeling ϕ′. Every time a variable e has to be assigned,
if e does not produce a new cut in G′ she gives to e an arbitrary value. If e cuts an odd component in G′ she
assigns e with the value that makes the largest of the two new components an odd component. In case e cuts
an even component in two, Duplicator gives to e the value which keeps both components even. Observe that
with this strategy there is always a unique odd component. Even when Spoiler releases the value of some
assigned variable he cannot create more components, he either keeps the same number of components or
connects two of them.

While playing the game on T(G,ϕ) with these two strategies, both players define a path from the empty
clause to an initial one. There must be a first clause K along this path in which the partial assignment

17

constructed in the game at the point t in which K is reached, when applied to G, defines a unique odd
component of size at most d |V |2 e. This is so because the unique odd component initially has size |V | while
at the end has size 1. This partial assignment has size at most k + 1. Not only the odd component, but any
component produced by the partial assignment has size at most d |V |2 e. This is because at the point before
t the odd component was larger than d |V |2 e and therefore any other component had to be smaller than this.
At time t Spoiler chooses a variable that when assigned cuts the odd component in two pieces. Duplicator
assigns it in such a way that the largest of these two components is odd and has size at most d |V |2 e. Therefore
the other new component must have at most this size.

Any other assignment of these variables also produces an odd component of size at most d |V |2 e. They
correspond to other strategies and they all produce the same cuts and components in the graph, just different
labeling of the components. Since the initial formula was unsatisfiable there must always be at least one odd
component. In order to find the set W of variables, one just has to move on refutation π simulating Spoiler
and Duplicator strategies. This can be done in linear time in the size of π.

Theorem 22. There is an algorithm that on input a connected graph G = (V,E) with an odd labeling ϕ and
a resolution refutation π of T(G,ϕ) with width k, produces a tree-like resolution refutation π′ of T(G,ϕ) of
depth k log(|V |).

Proof. Let W = {e1, . . . e|W |} be a set of variables producing an odd connected component of size at most

d |V |2 e, as guaranteed by Lemma 21. We can construct a tree-like resolution of depth |W | of the complete
formula FW with 2|W | clauses, each containing all variables in W but with a different sign combination.

By the Lemma, each assignment of the variables, when applied to G produces a subgraph Gi and a
labeling ϕi with an odd component with at most d |V |2 e vertices. The problem of finding a tree-like refutation
for T(G,ϕ) has been reduced to finding a tree-like resolution refutation for each of the formulas T(Gi, ϕi).
But each of the graphs Gi have an odd component with at most d |V |2 e vertices and the problem is to refute
the Tseitin formulas corresponding to these components. After at most log(|V |) iterations we reach Tseitin
formulas with just two vertices that can be refuted by trees of depth one. Since W has width at most k + 1
literals, in each iteration the refutation trees have depth at most k. Putting everything together we get a
tree-like refutation of depth at most k log(|V |).

Corollary 23. For any graph G = (V,E) and any odd labeling ϕ,

D(T(G,ϕ) `) ≤W(T(G,ϕ) `) log(|V |).

Corollary 24. For any graph G = (V,E) and any odd labeling ϕ

Cs(T(G,ϕ) `) ≤ Vs(T(G,ϕ) `) log(|V |) + 1.

7 Conclusions and Open Problems

We have shown that the measures of width, depth and variable space in the resolution of Tseitin formulas can
be exactly characterized in terms of a graph searching game played on the underlying graph. Our game is a
slight modification of the well known cops-robber game from Seymour and Thomas. The main motivation
for this characterization is the fact that some results in graph searching can be used to solve questions in
proof complexity. Using the monotonicity properties of the Seymour and Thomas game, we have proven that

18

the measures of width and variable space in Davis-Putnam resolution coincide exactly with those of general
resolution in the context of Tseitin formulas. Previously it was only known that for Tseitin formulas, regular
width was within a constant factor of the width in general resolution [2]. The game characterization also
inspired new relations between the three resolution measures on Tseitin formulas and we proved that they are
all within a logarithmic factor.

We have also obtained a game characterization of variable space for the resolution of general CNF
formulas, as a non-interactive version of the Atserias and Dalmau game [4] for resolution width, as well as
versions of the Spoiler-Duplicator game that characterize the measure of Davis-Putnam resolution width.

Still open is whether for Tseitin formulas, regular resolution can also simulate general resolution in
terms of size, as asked by Urquhart [18]. Also a game characterization of regular or Davis-Putnam variable
space remains open. This might be connected with the question of whether the measures of regular and DP
variable space coincide for every unsatisfiable formula (we have shown that this is true for the case of Tseitin
formulas). Game characterizations for other resolution measures like size or clause space, either for Tseitin
or general formulas, would be a very useful tool in proof complexity.

Acknowledgments

The authors would like to thank Osamu Watanabe and the ELC project were this research was started. We
are also grateful to Dimitrios Thilikos and to the anonymous referees for helpful comments. Talebanfard’s
research was supported by ERC grant FEALORA 339691.

References

[1] I. Adler. Marshals, monotone marshals, and hypertree width. Journal of Graph Theory 47, 275–296,
2004. 2

[2] M. Alekhnovich and A. A. Razborov. Satisfiability, branch-width and Tseitin tautologies. Computational
Complexity 20(4), 649–678, 2011. 1, 19

[3] M. Alekhnovich and E. Ben-Sasson and A. A. Razborov and A. Wigderson. Space Complexity in
Propositional Calculus SIAM J. Comput. 31(4), 1184–1211, 2002. 4

[4] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. 18th IEEE Conference
on Computational Complexity 239–247, 2003. 2, 3, 5, 8, 10, 11, 14, 16, 17, 19, 21

[5] P. Beame, C. Beck and R. Impagliazzo. Time-space trade-offs in resolution: Superpolynomial lower
bounds for superlinear space. SIAM J.Comput. 49, 4, 1612–1645, 2016. 1

[6] C. Beck, J. Nordström and B. Tang. Some trade-off results for polynomial calculus: extended abstract.
Proc. of the 45th ACM Symposium on the Theory of Computing, 813–822 (2013). 1

[7] E. Ben-Sasson and A. Wigderson. Short Proofs are Narrow - Resolution made Simple. Journal of the
ACM 48(2): 149–169, 2001. 1

[8] J.A. Ellis, I.H. Sudborough and J.S. Turner. The vertex separation and search number of a graph.
Information and Computation 113(1) 50–79, 1994. 2, 16

19

[9] J.L. Esteban and J., Torán. Space bounds for resolution. Information and Computation 171(1): 84–97,
2001. 1, 4, 5, 17

[10] F.V. Fomin and D. Thilikos. An annotated bibliography on guaranteed graph searching. Theoretical
Computer Science 399 236–245, 2008. 2

[11] G. Gottlob, N. Leone, F. Scarello. Robbers, marshals and guards: game theoretic and logical characteri-
zations of hypertree width. Journal of Comput. System Sci. 66, 775–808, 2003. 2

[12] L. M. Kirousis and C. H. Papadimitriou. Searching and Pebbling. Theoretical Computer Science
47(3):205–218, 1986. 15, 22

[13] A.S. LaPaugh. Recontamination does not help to search a graph. Tech. report Electrical Engineering
and Comp. Science Dept. Princeton University, 1883. 2, 22

[14] A. Razborov. On space and depth in resolution. Computational Complexity 27(3), 511-559, 2018. 2, 17

[15] P.D. Seymour and R. Thomas. Graph searching and a Min-Max theorem of tree-width. Journal of
combinatorial theory Series B 58, 22-35, 1993. 2, 10, 13, 15, 22

[16] J. Torán, Space and Width in Propositional Resolution. Computational Complexity Column, Bulletin of
EATCS 83: 86–104, 2004. 5

[17] G.S. Tseitin. On the complexity of derivation in propositional calculus. In Studies in Constructive
Mathematics and Mathematical Logic, Part 2., pages 115–125. Consultants Bureau, 1968. 1

[18] A. Urquhart. Hard examples for resolution. Journal of the ACM 34, 209–219, 1987 1, 2, 5, 19

[19] A. Urquhart. The depth of resolution proofs. Studia Logica 99, 349–364, 2011 5, 6, 16, 17, 21

20

8 Appendix: Resuming Tables for Measures and Results

8.1 Characterizations of Resolution Proof Measures

On Resolution proofs of unsatisfiable CNF formulas F , we consider the following measures:

Resolution Proofs Measures
Measure Acronym Reference
Width W(F `) Sec. 2
Regular Width regW(F `) Subsec 2.1
Davis-Putnam Width dpW(F `) Subsec. 2.1
Depth D(F `) Sec 2
Variable Space Vs(F `) Sec. 2
Regular Variable Space regVs(F `) Def. 2
Davis-Putnam Variable Space dpVs(F `) Def. 2

Furthermore we consider the following Spoiler-Duplicator games, played on CNFs formula F :

Spoiler Duplicator Games
Name Cost Acronym Reference
Standard sd(F) [4], Subsec. 2.3
Regular rsd(F) [19], Subsec. 2.3
Davis-Putnam dpsd(F) Subsec. 2.3
non-interactive nisd(F) Sec. 3
non-interactive DP g(F) Before Lem. 6

And we prove the following characterizations:

Characterizations
Result Reference
W(F `) = max{W(F), sd(F)− 1} [4], Thm. 1
regW(F `) = max{W(F), rsd(F)− 1} [19], Thm. 2
dpW(F `) = max{W(F), dpsd(F)− 1} Thm. 3
nisd(F) = Vs(F `) Thm. 4, 5
dpVs(F `) ≤ g(F) Lem. 6

21

8.2 Resolution Proof Complexity for Tseitin Formulas in terms of Cops-Robber games

We consider the following Cops-Robber games played on undirected graphs G:

Cops-Robber Games
Players Definition Cost Acronym Reference
Cops on Nodes, Visible Robber vc(G) [15]
Cops on Nodes, Invisible Robber ivc(G) [12, 13]
Cops on Edges, Visible Robber ec(G) Def. 4
Cops on Edges, Invisible Robber iec(G) Subsec. 4.2
Cops Stuck on Edges, Visible Robber lec(G) Subsec. 4.3

We prove the following results on the Resolution complexity of refuting T(G,ϕ):

Results on T(G,ϕ)

Result Reference
ec(G)) = sd(T(G,ϕ)) Thm. 7
W(T(G,ϕ) `) = max{∆(G), ec(G)− 1}. Cor. 8
iec(G) = Vs(T(G,ϕ) `) Thm. 9
lec(G) = D(T(G,ϕ) `) Thm 10
dpW(T(G,ϕ) `) optimal Cor. 15
dpVs(T(G,ϕ) `) optimal Cor. 19

And finally we obtain the following result relating edge Cops-Robber games played on undirected graphs
G with the Vertex-Cops games played on the Line Graph L(G) of G.

Results on Cops-Robber Games
Result Reference
ec(G) = vc(L(G)) (=tree-width(L(G))) Cor. 16
iec(G) = ivc(L(G)) (=path-width(L(G))) Cor. 20

22

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

