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Abstract11

The Minimum Circuit Size Problem (MCSP) has been the focus of intense study recently; MCSP12

is hard for SZK under rather powerful reductions [4], and is provably not hard under “local”13

reductions computable in TIME(n0.49) [22]. The question of whether MCSP is NP-hard (or indeed,14

hard even for small subclasses of P) under some of the more familiar notions of reducibility (such15

as many-one or Turing reductions computable in polynomial time or in AC0) is closely related to16

many of the longstanding open questions in complexity theory [7, 8, 17, 18, 19, 20, 22].17

All known hardness results for MCSP hold also for computing somewhat weak approximations18

to the circuit complexity of a function [3, 4, 9, 17, 21, 25]. Some of these results were proved19

by exploiting a connection to a notion of time-bounded Kolmogorov complexity (KT) and the20

corresponding decision problem (MKTP). More recently, a new approach for proving improved21

hardness results for MKTP was developed [5, 7], but this approach establishes only hardness of22

extremely good approximations of the form 1+o(1), and these improved hardness results are not23

yet known to hold for MCSP. In particular, it is known that MKTP is hard for the complexity24

class DET under nonuniform ≤AC0

m reductions, implying MKTP is not in AC0[p] for any prime25

p [7]. It is still open if similar circuit lower bounds hold for MCSP. One possible avenue for26

proving a similar hardness result for MCSP would be to improve the hardness of approximation27

for MKTP beyond 1 + o(1) to ω(1). In this paper, we show that this is impossible.28

More specifically, we prove that PARITY does not reduce to the problem of computing super-29

linear approximations to KT-complexity or circuit size via AC0-Turing reductions that make O(1)30

queries. This is significant, since it is known that just one query to a much worse approximation31

of circuit size or KT-complexity suffices, for an AC0 reduction to compute an approximation32

to any set in P/poly [23]. For weaker approximations, we also prove non-hardness under more33

powerful reductions. Our non-hardness results are unconditional, in contrast to conditional res-34

ults presented in [7] (for more powerful reductions, but for much worse approximations). This35

highlights obstacles that would have to be overcome by any proof that MKTP or MCSP is hard36

for NP under AC0 reductions. It may also be a step toward confirming a conjecture of Murray37

and Williams, that MCSP is not NP-complete under logtime-uniform ≤AC0

m reductions [22].38
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1 Introduction46

The Minimum Circuit Size Problem (MCSP) is the problem of determining whether a (given)47

Boolean function f (represented as a bitstring of length 2k for some k) has a circuit of size48

at most a (given) threshold θ. Although the complexity of MCSP has been studied for more49

than half a century (see [26, 21] for more on the history of the problem), recent interest in50

MCSP traces back to the work of Kabanets and Cai [21], who connected the problem to51

questions involving the natural proofs framework of Razborov and Rudich [24].52

Since then, there has been a flurry of research on MCSP [3, 6, 4, 8, 19, 22, 18, 23, 17, 7,53

20, 5, 16], but still the exact complexity of MCSP remains unknown. MCSP is in NP, but it54

remains an important open question whether MCSP is NP-complete.55

MCSP is likely not in P. There is good evidence for believing MCSP 6∈ P. If MCSP is in P,56

then there are no cryptographically-secure one-way functions [21]. Furthermore, [4] shows57

MCSP is hard for SZK under BPP-Turing reductions, so if MCSP ∈ P then SZK ⊆ BPP,58

which seems unlikely.59

Showing MCSP is NP-hard would be difficult. Murray and Williams [22] have shown that60

if MCSP is NP-hard under polynomial-time many-one reductions, then EXP 6= ZPP, which61

is a likely separation but one that escapes current techniques. Results from [4, 19, 22] also62

give various likely (but difficult to show) consequences for MCSP being hard under more63

restrictive forms of reduction. We note that it has been suggested that MCSP might well64

be complete for NP [20]. In this regard, it may also be relevant to note that MCSPQBF is65

complete for PSPACE under ZPP-Turing reductions [3].66

MCSP is not hard for NP in limited settings. Murray and Williams [22] show MCSP is67

not NP-hard under a certain type of “local” reductions computable in TIME(n0.49). This is68

significant, since many well-known NP-complete problems are complete under local reductions69

computable in even logarithmic time. (A list of such problems is given in [22].)70

Many hardness results for MCSP also hold for approximate versions of MCSP. In various71

settings, the power of MCSP to distinguish between circuits of size θ and θ + 1 is not fully72

used. Rather, in [3, 9, 4, 25, 23, 20], the reduction succeeds assuming only that reliable73

answers are given to queries on instances of the form (T, θ), where either the truth table74

T requires circuits of size ≥ θ = |T |/2 or T can be computed by circuits of size ≤ |T |δ, for75

some δ > 0.76

This is an appropriate time to call attention to one such reduction to approximations to77

MCSP. Corollary 6 of [23] shows that, for every δ > 0, for every solution S to MCSP[nδ, n/2],78

for every set A ∈ P/poly, there is a c > 1 and a set A′ that differs from A on at most79
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(1/2 − 1/nc)2n of the strings of each length n, such that A′ ≤AC0

tt S via a reduction4 that80

makes only one query. (That is, A′ ≤AC0

1−tt S.) Stated another way, any set in P/poly can81

be “approximated” with just one query to a weak approximation of MCSP. (Changing the82

solution S will yield a different set A′.)83

There is no known many-one hardness result for MCSP, but one is known for a related84

problem. MKTP, the minimum time-bounded Kolmogorov complexity problem, is loosely85

the “program version” of MCSP. It is known [7] that MKTP is hard for DET under (non-86

uniform) NC0 many-one reductions; it is conjectured that the same is true for MCSP.87

Time-bounded Kolmogorov complexity is polynomially related to circuit complexity [3], so88

one natural way to extend the hardness result of [7] from MKTP to MCSP would be to stretch89

the very small gap given in the reduction of DET to MKTP.90

1.1 Our Contributions, and Related Prior Work91

We address the following questions raised by prior work:92

Can the non-hardness result of [22] be extended to more powerful reductions? Note that93

it has been conjectured that MCSP is not NP-complete under uniform AC0 reductions94

[22, 8].95

Can the conditional theorem of [7], establishing non-NP-hardness-of-approximation for96

MCSP under cryptographic assumptions (for very weak approximations), be improved, to97

show non-NP-hardness of MCSP with a smaller gap?98

Finally, can the result of [7], showing that MKTP is hard for DET under ≤AC0

m reductions,99

be extended, to hold for MCSP as well, by increasing the gap?100

We make progress on all of these questions by proving an impossibility result in the setting of101

ε(θ)-GapMCSP, which is the promise version of MCSP with a multiplicative ε(θ) gap where θ102

is the threshold.103

I Theorem 1. PARITY 6≤AC0

m ε(θ)-GapMCSP where ε(θ) = o(θ).104

This is not the first work to describe non-hardness of approximation under AC0 reductions.105

Arora [11] is credited by [1], with showing that no AC0 reduction f can have the property106

that x ∈ PARITY implies f(x) has a very large clique, and x 6∈ PARITY implies f(x) has107

only very small cliques. (In Section 3, we present a similar result for Max-3-SAT, so that the108

reader can compare the techniques.) Our work differs from that of [11] in several respects.109

Arora shows that AC0 reductions cannot prove very strong hardness of approximations for110

a problem where strong inapproximability results are already known. We show that AC0
111

reductions cannot establish even very weak inapproximability results for MCSP. Also, our112

techniques allow us to move beyond ≤AC0

m reductions, to consider AC0-Turing reducibility.113

To our knowledge, this is the first known non-hardness result for any variant of MCSP114

under non-uniform AC0 reductions. While AC0 reductions are provably less powerful than115

polynomial time reductions, most natural examples of NP-complete problem are easily seen116

to be complete under AC0 (and even NC0!) reductions [10].117

It is shown in [7] that, if cryptographically-secure one-way functions exist, then ε(n)-GapMCSP118

is not hard for NP under P/poly-Turing reductions5 for some ε(n) = no(1). Our result gives119

4 Although Corollary 6 of [23] does not mention the number of queries, inspection of the proof shows that
only one query is performed.

5 The problem ε-GapMCSP is defined somewhat differently in [7] than here. See Section 2. Thus the form
of ε(n) looks different here than in [7].



23:4 The Non-Hardness of Approximating Circuit Size

a trade-off, where we reduce the gap dramatically but also weaken the type of reduction.120

In particular, our results imply that if one-way functions exist, then ε(n)-GapMCSP is121

NP-intermediate under ≤AC0

m and ≤AC0

k−tt reductions, where ε(n) = o(n).122

Finally, our work rules out one natural way to extend the MKTP hardness results to123

MCSP. One might have hoped that the reduction given by [7] could be extended to a124

larger gap and hence apply to MCSP (since MKTP and MCSP are polynomially related [3]).125

However, we show that this is impossible.126

All of the theorems that we state in terms of MCSP hold also for MKTP, with identical127

proofs. For the sake of readability, we present the theorems and proofs only in terms of128

MCSP.129

2 Preliminaries130

We use \ to denote set difference. For a natural number n, we let [n] denote the set {1, . . . , n}.131

2.1 Defining MCSP132

For any binary string T of length 2k, we define CC(T ) to be the size of the smallest circuit133

(using only NOT gates and AND and OR gates of fan-in 2) that computes the function given134

by truth table T written in lexicographic order, where, for concreteness, circuit size is defined135

to be the number of AND and OR gates, although our arguments work for other reasonable136

notions of circuit size.137

Throughout the paper, we use various approximate notions of the minimum circuit size138

problem, given as follows:139

I Definition 2 (Gap MCSP). For any function ε : N→ N, We define ε(n)-GapMCSP to be140

the promise problem (Y,N) where141

Y := {(T, θ) | CC(T ) < ε(θ)}, and142

N := {(T, θ) | CC(T ) > θ},143
144

where θ is written in binary.145

Note that this definition differs in minor ways from the way that ε-GapMCSP was defined in146

[7]. The definition presented here allows for finer distinctions than the definition that was147

used in [7].148

Our results for non-hardness under ≤AC0

T reductions are best stated in terms of a restricted149

version of ε-GapMCSP, where the thresholds are fixed, for inputs of a given size: This variant150

of MCSP has been studied previously in [22, 17]; the analogous problem defined in terms of151

KT-complexity is denoted RKT in [3].152

I Definition 3 (Parameterized Gap MCSP). For any functions `, g : N → N such that153

`(n) ≤ g(n), We define the language MCSP[`, g] to be the promise problem (Y,N) where154

Y := {T | CC(T ) < `(|T |)}, and155

N := {T | CC(T ) > g(|T |)}.156
157

2.2 Complexity classes and Reductions158

We assume the reader is familiar with basic complexity classes such as P and NP. As we159

work extensively with non-uniform NC0 and AC0, we refer to the text by Vollmer [27] for160
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background on these circuit classes. Throughout this paper, unless otherwise explicitly161

mentioned, we refer to the non-uniform versions of these circuit classes.162

Let C be a class of circuits. For any languages A and B, we write A ≤Cm B if there is a163

function f computed by a circuit family {Cn} ∈ C such that f(x) ∈ B ⇐⇒ x ∈ A. We164

write A ≤CT B if there is a circuit family in C computing A with B-oracle gates. In particular,165

since we are primarily concerned with C = AC0, we denote this as A ≤AC0

T B. We write166

A ≤AC0

tt B if there is an AC0 circuit family computing A with B-oracle gates, where there is167

no directed path from any oracle gate to another, i.e. if the reduction is non-adaptive. If,168

furthermore, the non-adaptive reduction has the property that each of the oracle circuits169

contains at most k oracle gates, then we write A ≤AC0

k−tt B.170

Let Y ⊆ {0, 1}? and N ⊆ {0, 1}? be disjoint. Then Π = (Y,N) is a promise problem. A171

language L is a solution to a promise problem Π = (Y,N) if Y ⊆ L and N ∩ L = ∅. For two172

promise problems Π1 and Π2, some type of reducibility r (many-one, truth table, or Turing),173

and a circuit class C, we say Π1 ≤Cr Π2 if there is a single family of oracle circuits {Cn} in C174

such that for every solution S2 of Π2, there is a solution S1 of Π1 such that Cn computes an175

r-reduction from S1 to S2.176

2.3 Boolean Strings and Functions177

For an x ∈ {0, 1}n and a set of indices B ⊆ [n], we let xB denote the Boolean string obtained178

by flipping the ith bit of x for each i ∈ B.179

A partial string (or restriction) is an element of {0, 1, ?}?. Define the size of a partial string180

p to be the number of bits in which it is {0, 1}-valued. We say a partial string p ∈ {0, 1, ?}n181

agrees with a binary string x ∈ {0, 1}n if they agree on all {0, 1}-valued bits. If x ∈ {0, 1}n182

is a binary string and B ⊆ [n], then x|B denotes the partial string given by replacing the jth183

bit of x with ? for each j ∈ [n] \B. We say a partial string p1 extends a partial string p2 if184

p1 is equal to p2 on all bits where p2 is {0, 1}-valued.185

A partial Boolean function on n variables is a function f : I → {0, 1} where I ⊆ {0, 1}n.186

For a promise problem Π = (Y,N) and n ∈ N, we let Π|n be the partial Boolean function that187

decides membership in Y on instances of length n which satisfy the promise. (In particular,188

Π|n : I := (Y ∪N) ∩ {0, 1}n → {0, 1}.)189

We will make use of two well-studied complexity measures on Boolean functions: block190

sensitivity and certificate complexity. We refer the reader to a detailed survey by Hatami,191

Kulkarni, and Pankratov [15] for background on these notions. For completeness, we provide192

the definitions of the two measures that we need. In our context, we will use these measures193

on partial Boolean functions. Let I ⊆ {0, 1}n and let f : I → {0, 1} be a partial Boolean194

function. For an input x ∈ I, define the block sensitivity of f at x, denoted bs(f, x), to195

be the maximum number of non-empty, disjoint sets B1, . . . , Bk such that xBi ∈ I and196

f(x) 6= f(xBi) for all i. (Here, by “f(y) 6= f(z)” we require that f is defined at both y and197

z.) Define the 0-block sensitivity of f be bs0(f) := maxx:f(x)=0 bs(f, x). For an input x ∈ I,198

define the certificate complexity of f at x, denoted c(f, x), to be the size of the smallest set199

B ⊆ [n] such that f(y) = f(x) for all y ∈ I that agree with x|B. Define the 0-certificate200

complexity of f to be c0(f) := maxx:f(x)=0 c(f, x).201

3 Prior Work202

In this section, we present a result that is similar in spirit to a result reported by Arora in an203

unpublished manuscript [11]. There, it was shown that there is no AC0-computable function204

f with the property that x ∈ PARITY implies f(x) has a very large clique, and x 6∈ PARITY205
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implies f(x) has only very small cliques. Here, in order to illustrate the techniques that were206

employed in [11], we observe that no AC0 reduction can establish the known inapproximability207

of Max-3-SAT [14].208

I Proposition 4. Let 0 < ε < 1. No AC0 reduction f can have the property that x ∈ PARITY209

implies f(x) ∈ 3-SAT, and x 6∈ PARITY implies f(x) has at most an ε fraction of the clauses210

satisfied.211

Proof. By appealing to Lemma 9, we may assume that the function f is an NC0 reduction, as212

in the proof of Theorem 10. Let d be the constant, such that each output bit of f(x) depends213

on at most d bits of x, and let x ∈ PARITY have length n. Let f(x) consist of m clauses,214

each encoded using c logm bits for some constant c (which we can assume since the number215

of clauses is polynomially-related to the number of variables). Then since |f(x)| = cm logm,216

and each output bit depends on at most d input bits, there is some i ≤ n such that the i-th217

bit of x affects at most (dc logm)/n output bits. Flipping the i-th bit of x, to obtain a new218

string x′ 6∈ PARITY can affect at most (dcm logm)/n clauses. Since f(x) ∈ 3-SAT, there is219

an assignment that satisfies at least m − (dcm logm)/n clauses of f(x′). The theorem is220

proved, by observing that m− (dcm logm)/n > εm for all large m. J221

4 Non-Hardness Under NC0 Reductions222

In this section, we prove our main lemmas, showing that problems that are NC0-reducible to223

ε-GapMCSP have bounded 0-block sensitivity and also have sublinear 0-certificate complexity.224

Whenever we will have occasion to use these lemmas, it will be in situations when we are225

able to assume that the NC0 reduction is computing a function f satisfying the condition226

that there is a bound γ(n) > 0 such that, for all n, there is a θ ≥ γ(n) such that, for all x227

of length n, f(x) is of the form (T (x), θ). (In particular, the threshold θ is the same for all228

inputs of length n.) We will call such an NC0 reduction a γ-honest reduction.229

I Lemma 5. Let ε(θ) = o(θ), and let Π = (Y,N) be a promise problem, where Π ≤NC0

m230

ε-GapMCSP via a γ-honest reduction f computed by an NC0 circuit family Cn of depth ≤ d,231

where γ(n) ≥ log logn. Then there is an n0 (that depends only on ε and d) such that for all232

n ≥ n0, if N |n 6= ∅, then bs0(Π|n) < s, where s is a constant that depends only on d.233

Proof. Let s = 2d+1 + 1. Since ε(n) = o(n), we can pick a constant r0 > 4s such that234

ε(r) < r/(2s) for all r ≥ r0.235

Pick n0 ≥ 22r0 , and let n ≥ n0.236

For the sake of contradiction, suppose bs0(Π|n) ≥ s, and let x ∈ N ∩{0, 1}n be a 0-valued237

instance with bs(Π|n, x) ≥ s. Then we can find disjoint sets B1, . . . Bs ⊆ [n] such that238

Π|n(xBj ) = 1 for all j ∈ [s]. (That is, each xBj is in Y .)239

Let f(x) = (T, θ), and note that CC(T ) > θ ≥ γ(n) (since f is γ-honest). Since x ∈ N240

and Cn is a reduction to ε-GapMCSP, we know that any circuit that computes the function241

with truth table T has size at least θ. For each j ∈ [s], let Tj be the truth table produced by242

Cn on input xBj . Since xBj ∈ Y , we know that each Tj has a circuit Dj computing Tj of243

size at most ε(θ). (Here, it is important that the same threshold θ is used for all inputs of244

length n, by γ-honesty.)245

We aim to build a “small” circuit computing T , which would contradict T having high246

complexity. Our circuit C for computing T works as follows: on input i, output the majority247

of D1(i), . . . , Ds(i). The size of C is at most s · ε(θ) + 2s (each Dj has size at most ε(θ), and248

computing the majority of s bits can be done with a circuit of size 2s).249
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Now, we argue that this circuit correctly computes the ith bit of T for all i. Let i be250

arbitrary. Recall the ith bit of T is defined to be the ith output of Cn(x). Since Cn is a251

depth d circuit of fan-in 2, the ith output of Cn depends on at most 2d input wires W ⊆ [m].252

Hence, on any input y such that y|W = x|W , we have that the ith output of Cn(y) equals253

the ith output of Cn(x). In particular, if B is disjoint from W , then the ith output of254

Cn(xB) equals the ith output of Cn(x). Since B1, . . . Bs are disjoint and |W | ≤ 2d, it follows255

that at most 2d of the sets B1, . . . , Bs have a non-empty intersection with W . Hence, since256

s = 2d+1 + 1, the majority of the sets B1, . . . , Bs are disjoint with W , so the majority of the257

circuits D1, . . . , Ds when run on input i output the ith output of Cn(x).258

We thus have that CC(T ) ≤ s · ε(θ) + 2s. But θ > γ(n) ≥ log logn (since the reduction259

f is γ-honest). By the choice of n0 we have ε(θ) < θ/2s (since θ > log logn ≥ r0). Thus260

CC(T ) ≤ s · θ/2s+ 2s = θ/2 + 2s < θ (since θ > log logn > 4s). This contradicts CC(T ) > θ.261

J262

I Lemma 6. Let ε(θ) = o(θ), and let Π = (Y,N) be a promise problem, where Π ≤NC0

m263

ε-GapMCSP via a γ-honest reduction f computed by an NC0 circuit family Cn of depth ≤ d,264

where γ(n) ≥ log logn. Let k ≥ 1. Then there is an n0 (that depends only on ε, k and d)265

such that for all n ≥ n0, if N |n 6= ∅, then c0(Π|n) ≤ n/k.266

Proof. Let p = 2d, let p′ =
(2pk+1

p

)
, and let K be a constant that is specified later (and267

which depends only on k and d). Since ε(θ) = o(θ), we can pick a constant s0 such that268 (
p′

2
)
ε(s) +K < s for all s ≥ s0.269

Pick n0 ≥ 22s0 , and let n ≥ n0.270

For contradiction, suppose c0(Π|n) > n/k. Let x ∈ N ∩ {0, 1}n be a 0-valued instance271

with c0(Π|n, x) > n/k. Then, for all S ⊆ [n] with |S| ≤ n/k, there is an xS such that xS272

agrees with x|S and such that Π|n(xS) = 1. (That is, xS ∈ Y.)273

Let (T, θ) be the truth table produced by Cn on input x. Since x ∈ N and Cn is a274

reduction, we know that any circuit computing T has size at least θ.275

For each S ⊆ [n] with size at most n/k, let TS be the truth table produced by Cn on276

input xS . Since xS ∈ Y , we know that TS has a circuit DS of size at most ε(θ).277

We aim to build a “small” circuit computing T , which would contradict that T has high278

complexity. Recall that p = 2d, and that p′ =
(2pk+1

p

)
.279

I Claim 6.1. There exists sets S1, . . . Sp′ ⊆ [n] such that280

|Si| ≤ n
2k for all i, and281

for any set P ⊆ [n] with |P | ≤ p, we have that P ⊆ Si for some i.282

Proof. (Proof of Claim) Pick sets V1, . . . , V2pk+1 ⊆ [n] of size at most n
2pk whose union is283

[n]. Let V = {V1, . . . , V2pk+1}. Now let each of S1, . . . , S(2pk+1
p ) be the union of some p sets284

chosen from V. Each Si has size at most p n
2pk = n

2k . Let P ⊆ [n] be an arbitrary set of size285

p. Since
⋃
V ∈V V = [n], every element e of P lies within some V ∈ V. Then P is contained286

in the union of some p sets from V, so P ⊆ Si for some i. J287

For each i 6= j ∈ [p′], let Si,j = Sj,i = Si ∪ Sj . Note that |Si,j | ≤ n/k.288

Our circuit C for computing T works as follows. On input r, for each i ∈ [p′], see if289

DSi,1(r) = · · · = DSi,p′ (r). If so, then output DSi,1(r). The size of this circuit is at most290 (
p′

2
)
ε(θ) +K (for some fixed constant K) since each of the

(
p′

2
)
DSi,j circuits has size at most291

ε(θ) and the other “unanimity” condition is a Boolean function on
(
p′

2
)
variables (of in fact292

linear size) and so can be computed with circuit of some size K = O(p′)2 (that depends only293

on k and d).294
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Now, we argue that C on input r correctly computes the rth bit of T . Let r ∈ [m] be295

arbitrary. For convenience, on an input y ∈ {0, 1}n let Crn(y) denote the rth output of Cn(x).296

Recall the rth bit of T is defined to be Crn(x). We must show two things. First, that there297

exists an i such that DSi,1(r) = · · · = DSi,p′ (r) and second, that if for some i we have that298

DSi,1(r) = · · · = DSi,p′ (r), then DSi,1(r) = Crn(x).299

Since Cn has depth d, the rth output of Cn can depend on at most 2d input wires300

W ⊆ [m]. Hence, on any input y such that y|W = x|W , we have that Crn(y) = Crn(x). Since301

p = 2d, by the claim, there exists some Si? such that W ⊆ Si? . Therefore, for all j we have302

that xSi?,j |W = x|W , so DSi?,j (r)
def= Crn(xSi?,j ) = Crn(x).303

This implies both things we must show. First, we know that DSi?,1(r) = · · · = DSi?,p′ (r)304

since they each equal Crn(x). Second, if for some i, we have that DSi,1(r) = · · · = DSi,p′ (r),305

then we also have that DSi,1(r) = DSi,i? (r) = Crn(x).306

Thus we have that T can be computed by a circuit of size at most
(
p′

2
)
ε(θ) +K, which is307

less than θ, since θ ≥ log logn ≥ s0. This contradicts that CC(T ) > θ. J308

Next, we present a variant of Lemma 6 stated in terms of a larger gap.309

I Lemma 7. Let ε(θ) < θα, and let Π = (Y,N) be a promise problem, where Π ≤NC0

m310

ε-GapMCSP via a γ-honest reduction f computed by an NC0 circuit family Cn of depth ≤ d,311

where γ(n) ≥ nβ. Then for all δ such that δ0 = β(1− α)/2d+1 > δ > 0 there is an n0 such312

that for all n ≥ n0, if N |n 6= ∅, then c0(Π|n) ≤ n1−δ.313

Proof. Let p = 2d. Suppose for contradiction that for some δ > 0 with δ < δ0 = β(1−α)/2p314

we have c0(Π|n) > n1−δ infinitely often. We can follow the same argument (and notation)315

as above, except we have to be more careful since n/c0(Π|n) is no longer a constant, and316

hence p′ =
(2pn/c0(Π|n)+1

p

)
≤
(2pnδ+1

p

)
= O(npδ) is no longer constant. Since the unanimity317

condition can be implemented by a circuit of size linear in
(
p′

2
)
, we can construct a circuit318

computing truth table T of size319

ε(θ) · c1p′2 = ε(θ) · c1
(

2pnδ + 1
p

)2

≤ c2ε(θ)n2pδ
320

infinitely often for some positive constants c1, c2. By γ-honesty, we have θ ≥ γ(n) ≥ nβ .321

This implies that we can construct a circuit computing T of size322

c2ε(θ)n2pδ ≤ c2ε(θ)(θ1/β)2pδ < c2θ
αθ2pδ/β < θ323

infinitely often. This is a contradiction since T is a truth table with circuit complexity324

≥ θ. J325

Next, we present a variant of Lemma 7, but restricted to the parameterized version of326

MCSP. This variant is useful in extending our non-hardness results to ≤AC0

T reductions that327

make no(1) queries.328

I Lemma 8. Let Π = (Y,N) be a promise problem. If Π ≤NC0

m MCSP[`, g] with `(m) =329

o(g(m)/mδ) for some δ > 0, then c0(Π|n) ≤ nε for some ε < 1 for all but finitely many n330

where N |n 6= ∅, where ε depends only on the depth of the NC0 circuit family and δ.331

Proof. Suppose for contradiction that for all ε < 1 we have c0(Π|n) > nε infinitely often.332

Once again, we follow the same argument (and notation) as above. We can construct a333

circuit computing truth table T of size334

`(m) · c1p′2 ≤ `(m) · c1
(

2pn/c0(Π|n) + 1
p

)2
≤ `(m)c1

(
2pn1−ε + 1

p

)2

≤ c2`(m)n2p(1−ε),335
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infinitely often for some positive constants c1, c2. (Here, m denotes the length of the truth336

table T .) Note that since c0(Π|n) > nε, we know Π|n depends on ≥ nε input bits. Since the337

circuit has depth at most d and gates of fan-in 2, we must have m ≥ nε/2d. This implies338

that we can construct a circuit computing T of size339

c2`(m)(nε)
2p(1−ε)

ε ≤ c3`(m)m
2p(1−ε)

ε ,340

infinitely often for some positive constant c3. Setting ε = 2p
2p+δ , we have that T can be341

computed by a circuit of size ≤ c3`(m) ·mδ infinitely often, which is a contradiction since T342

is a truth table with circuit complexity ≥ g(m) = ω(`(m) ·mδ). J343

5 Non-Hardness Under Many-One AC0 Reductions344

To extend our non-hardness results to AC0 we make use of a version of a theorem given in345

[1] that was first proved by [2, 12] that says randomly restricting a family of AC0 circuits346

yields a family of NC0 circuits with high probability.347

I Lemma 9 (Lemma 7 in [1]). Let Cn be a family of n-input (multi-output) AC0 circuits.348

Then there exists an a > 0 such that for all n ∈ N there exists a restriction of Cn to Ω(n1/a)349

input variables that transforms Cn into a (multi-output) NC0 circuit.350

I Theorem 10. PARITY 6≤AC0

m ε-GapMCSP where ε(n) = o(n).351

Proof. Suppose not. Then there is a family of AC0 circuits Cn that many-one reduces352

PARITY to ε-GapMCSP. By Lemma 9, there is an a such that we can transform each Cn into353

an NC0 circuit Dm on m = Ω(n1/a) variables, computing a reduction f from either PARITY354

or ¬PARITY (depending on the parity of the restriction) to ε-GapMCSP. For each input x355

of length n, f(x) is of the form (T (x), θ(x)). Since there are only O(logn) output gates in356

the θ(x) field, and each output gate depends on only O(1) input variables, all of the output357

gates for θ(x) can be fixed by setting only O(logn) input variables. Furthermore, we claim358

that there is some setting of these O(logn) input variables, such that the resulting value of359

θ is greater than logn. If this were not the case, then the ≤AC0

m reduction of PARITY (or360

¬PARITY) on m = Ω(n1/a) variables to ε-GapMCSP has the property that θ(x) is always361

less than logn. But, as in the proof of Theorem 1.3 of [22], instances of MCSP where θ is362

O(logn) can be solved with a CNF circuit of polynomial size. Thus this would give rise to363

AC0 circuits for PARITY, contradicting the well-known circuit lower bounds of [2, 12].364

Thus we can set O(logn) additional variables, and obtain circuits that reduce PARITY (or365

¬PARITY) on m′ = m−O(logn) = Ω(n1/(a+1)) variables to ε-GapMCSP, where furthermore366

this reduction satisfies the hypotheses of Lemmas 5 and 6. But this contradicts the fact367

that both PARITY and ¬PARITY on m′ variables have 0-certificate complexity and 0-block-368

sensitivity m′. J369

6 Non-Hardness Under Limited Turing AC0 Reductions370

With some work, we can extend our non-hardness results beyond many-one reductions to371

some limited Turing reductions.372

In our proofs that deal with AC0-Turing reductions, we will need to replace some oracle373

gates with “equivalent” hardware – where this hardware will provide answers that are374

consistent with some solution to the promise problem ε-GapMCSP, but might not be consistent375

with the particular solution that is provided as an oracle. In order to ensure that this doesn’t376

cause any problems, we introduce the notion of a “sturdy” AC0-Turing reduction:377
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I Definition 11. Let Π1 = (Y1, N1) and Π2 = (Y2, N2) be promise problems. A family {Cn}378

of AC0-oracle circuits is a sturdy ≤AC0

T reduction from Π1 to Π2 if, for every pair of solutions379

S, S′ to Π2, every oracle gate G in Cn, and every x ∈ Y1 ∪N1, there is a solution S′′ such380

that CSn (x) = CS
′′

n (x) = CSn [G→ S′](x), where the notation CSn [g → S′] refers to the circuit381

Cn with oracle S, but where the oracle gate G answers queries according to the solution S′382

instead of S.383

I Lemma 12. Let Π be any promise problem. If Π ≤AC0

T ε(n)-GapMCSP via a reduction of384

depth d, then Π ≤AC0

T ε(n)-GapMCSP via a sturdy reduction of depth 5d.385

Proof. Briefly: We modify Cn, so that each oracle query is checked against queries that were386

asked “earlier” in the computation, and the computation uses only the oracle answer from387

the first time a query was asked. Since each query is given an answer that is consistent with388

some solution, the new circuit gives the same answers as a new solution (which we denote as389

S′′). Since Cn is a reduction, we get the same answer when using S or S′′.390

Label the oracle gates G1, . . . , Gk of Cn in topological order so that there is no directed391

path from Gi to Gj for all i < j. Let qi denote the query asked by Gi. Let C ′n be the circuit392

where we replace any wire that leaves Gi by a wire connected to the following subfunction:393

Gi(x) ∧ ∀j < i(qi 6= qj)394

or395

∃j < i(qi = qj ∧ ∀k < j(qk 6= qj) ∧Gj(qj))396

The reader can verify that this additional circuitry can be implemented in depth five, and397

thus C ′n has depth at most 5d.398

Now let S and S′ be any two solutions to ε(n)-GapMCSP. Consider any input x of length399

n that satisfies the promise of Π = (Y,N). (That is, x ∈ Y ∪N .) Thus CSn (x) = CS
′

n (x). Now400

consider the the operation of C ′n(x) where some oracle gate Gi answers queries according to401

S′, rather than S. By construction, the behavior of this computation C ′Sn[Gi → S′] is the402

same as that of CS′′n (x), where403

S′′(q(x)) :=
{
S(q(x)) if q(x) 6= qi(x), or if qi(x) = qj(x) for some j < i,
S′(q(x)) otherwise.

404

S′′ is also a solution to ε-GapMCSP, since it agrees with either S or S′ on each query,405

and both S and S′ agree on all queries that satisfy the promise. Thus C ′Sn [Gi → S′](x) =406

CS
′′

n (x) = CS
′

n (x) = CSn (x), since Cn is a reduction. Also, C ′S
′′

n (x) = CS
′′

n (x) and C ′Sn(x) =407

CSn (x), since each oracle gate of C ′n answers each query the same way that Cn does, if the408

same oracle is provided to each gate. Thus C ′Sn(x) = C ′
S′′

n (x) = C ′
S
n [g → S′](x). This409

establishes that C ′n is computing a sturdy reduction.410

J411

I Theorem 13. Let k ≥ 1, and let ε(n) = o(n). Then PARITY 6≤AC0

k−tt ε-GapMCSP.412

Proof. We show that, for all k ≥ 1, if PARITY ≤AC0

k−tt ε-GapMCSP, then PARITY ≤AC0

(k−1)−tt413

ε-GapMCSP. This suffices, since a 0-truth-table reduction is simply an AC0 circuit computing414

PARITY, which cannot exist.415

Given the oracle circuit family Cn, (where by Lemma 12 we may assume that the ≤AC0

k−tt416

reduction is sturdy), let Dn be the subcircuit consisting of those gates that are on a path417

from an input variable to any oracle gate. Dn is simply an AC0 circuit on n variables, and418

thus by Lemma 9, there is an a such that we can transform each Dn into an NC0 circuit419
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Em on m = Ω(n1/a) variables. Replacing Dn by Em in Cn yields a k-tt reduction Fm from420

PARITY or ¬PARITY on m variables to ε-GapMCSP. For any input length r, computing421

PARITY on r bits can be accomplished by computing either PARITY or ¬PARITY on m bits,422

where m is only polynomially-larger than r. Thus, without any loss of generality, we may423

assume that our circuit family Cn has the property that the subcircuit Dn consisting of the424

gates on a path from an input gate to an oracle gate consists of NC0 circuitry.425

For each n, select the first oracle gate G1 (in some order). Consider the circuit family Bn426

consisting of all of the gates that are on a path from any input to G1. Note that Bn is an427

NC0 circuit family computing some function f , where f(x) is of the form (T (x), θ(x)). If it428

is possible to set some of the input variables of Bn so that the output gates for θ(x) take429

on a value θ ≥ logn, do so. Note that this leaves m = n−O(logn) variables unset. (If it is430

not possible to do so, then (as in the proof of Theorem 10), G1 can be replaced in Cn by a431

polynomial-sized CNF circuit, thereby yielding a (sturdy) (k − 1)-tt reduction, as desired.)432

Call C ′m and B′m the circuits that result by restricting the O(logn) input variables of Cn433

and Bn, respectively.434

We now aim to find a restriction of the inputs and a solution to ε-GapMCSP such that435

the output of G1 is constant. Define Π = (Y,N) to be the promise problem where for all x436

we put x ∈ Y if and only if CC(T (x)) ≤ ε(θ) and x ∈ N if and only if CC(T (x)) > θ where437

B′m(x) = (T (x), θ). Observe that B′m is a logn-honest NC0 reduction of Π to ε-GapMCSP.438

There are two cases, depending on whether N = ∅ or not. If N = ∅, then S′ =439

{(T, θ) : CC(T ) < ε(θ)} is a solution to ε-GapMCSP such that every query to G1 is answered440

affirmatively. By the sturdiness of the reduction, G1 can be replaced by a constant 1,441

transforming C ′m into a (k − 1)-tt reduction.442

If N 6= ∅, then by Lemma 6, for all large m c0(Π|m) ≤ m/(k + 1). That is, there is a443

way to set some r ≤ m/(k + 1) input variables, obtaining restriction ρ, and thereby obtain444

a circuit B′′m−r = B′m|ρ on m − r variables, such that for any string z of length m − r,445

CC(Tm−r(z)) > ε(θ) where B′′m−r(z) = (Tm−r(z), θ). That is, every query to G1 is answered446

negatively in C ′m|ρ, and hence G1 can be replaced by a constant 0, transforming C ′m|ρ into a447

(k − 1)-tt reduction from PARITY to ε-GapMCSP on m− r = Ω(n) variables in this case.448

In both cases, we obtain a (k−1)-tt reduction from PARITY to ε-GapMCSP, as desired. J449

With a larger gap, we can rule out nonadaptive reductions that use no(1) queries.450

I Theorem 14. Let ε(n) < nα for some 1 > α > 0. Then for any circuit family {Cn}451

computing an ≤AC0

tt reduction of PARITY to ε-GapMCSP, there is a δ > 0 such that, for all452

large n, {Cn} makes at least nδ queries.453

Proof. Let {Cn} be a circuit family computing an ≤AC0

tt reduction of PARITY to ε-GapMCSP.454

By Lemma 12 we may assume that each Cn is sturdy. As in the proof of the preceding455

theorem, we assume without loss of generality that Cn has the property that the subcircuit456

Dn consisting of those gates that lie on paths from input gates to oracle gates consists of457

NC0 circuitry of depth d. (We will assume without loss of generality that, if the gates in Dn458

are removed from Cn, the depth of the circuit that remains is also at most d. Otherwise, let459

d be the maximum of these two constants.)460

We will show that, for all large n, Cn contains at least nδ oracle gates G1, G2, . . . , Gt,461

where δ is chosen to be less than (1− α)/9d2d+1. For the sake of a contradiction, assume462

that t < nδ.463

As in the proof of the preceding theorem, we construct a sequence of restrictions (one464

for each oracle gate), so that when the input bits of Cn are set according to the restrictions,465

each oracle gate either has a very small threshold θ, or else it can be replaced by a constant.466
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In this way, we transform Cn into a circuit on m ≥ n/2 input bits where each oracle gate467

Gi has a threshold θi < n1/3d. Replacing each such oracle gate by a CNF of size 2O(n1/3d)
468

(as in the proof of the preceding theorem) results in an AC0 circuit of depth at most d+ 1469

computing PARITY, in contradiction to the lower bound of [13]. Details follow.470

Our argument proceeds in t stages, where oracle gate Gi is considered in stage i. At the471

start of stage i we have a partial restriction ρi−1 that has at most (i− 1)n1−2δ bits set. Here472

is a detailed description of stage i:473

Consider the circuit family Bn consisting of all of the gates that are on a path from any474

input to Gi. Note that Bn is an NC0 circuit family computing some function fi, where fi(x)475

is of the form (Ti(x), θi(x)). If for all x that agree with ρi−1, θi(x) < n1/(3d), then stage476

i is done; set ρi = ρi−1 and go on to the next stage. Otherwise, there is a way to set an477

additional O(logn) additional variables, thereby extending ρi−1 to obtain a new restriction478

ρ′i, so that for all x which agree with ρ′i, θi(x) takes on a constant value θi ≥ n1/(3d).479

We now aim to find a restriction of the inputs and a solution to ε-GapMCSP such that480

the output of Gi is constant. Define Πi = (Yi, Ni) to be the promise problem where for481

all x that agree with ρ′i we put x ∈ Yi if and only if CC(Ti(x)) ≤ ε(θi) and x ∈ Ni if and482

only if CC(Ti(x)) > θi where Bn(x) = (Ti(x), θi). Observe that Bn is a n1/(3d)-honest NC0
483

reduction of Πi to ε-GapMCSP.484

There are two cases, depending on whether Ni = ∅ or not. If Ni = ∅, then S = {(T, θ) :485

CC(T ) ≤ θ} is a solution to ε-GapMCSP such that every query to Gi is answered affirmatively.486

By the sturdiness of the reduction, the output of Gi can be replaced by the constant 1, and487

let ρi = ρ′i.488

If Ni 6= ∅, then by Lemma 7, for all large n, c0(Πi|ρ′
i
) ≤ n1−3δ. (The conditions of489

Lemma 7 are satisfied, since (1/3d)(1 − α)/2d+1 > 3δ.) That is, there is a way to set490

at most n1−3δ additional variables, thereby extending ρ′i to obtain a new restriction ρi,491

such that for any string x of length n that agrees with ρi, CC(Ti(x)) > ε(θi). Therefore,492

S = {(T, θ) : CC(T ) ≤ ε(θ)} is a solution to ε-GapMCSP such that every query to Gi is493

answered negative. Hence, by the sturdiness of the reduction, gate Gi can be replaced by a494

constant 0.495

This completes stage i. Note that, in obtaining ρi from ρi−1 we set an additional496

O(logn) + n1−3δ < n1−2δ variables.497

Since t < nδ, we have that ρt has m ≥ n− tn1−2δ > n−nδn1−2δ = n−n1−δ > n/2 unset498

variables. Let C ′′m be the circuit Cn|ρt . Each oracle gate in C ′′m has the property that the499

threshold that is computed is always no more than n1/3d. Since the reduction is sturdy, the500

circuit still behaves correctly if each oracle gate is replaced by a circuit that computes MCSP501

exactly, and (as in the proof of Theorem 1.3 of [22]), instances of MCSP where θ is bounded502

by n1/3d can be computed by a CNF of size 2O(n1/3d). Replacing each oracle gate by such a503

CNF yields a circuit of depth at most d+ 1, of size 2O(n1/3d), computing PARITY, thereby504

violating the lower bound established in [13]. J505

If we consider the parameterized version of MCSP, rather than ε-GapMCSP, we obtain506

non-hardness even under ≤AC0

T reductions.507

I Theorem 15. Let `(m) = o(g(m)/mδ) for some 1 > δ > 0. Then for any circuit family508

{Cn} computing an ≤AC0

T reduction of PARITY to MCSP[`, g], there is an ε > 0 such that,509

for all large n, {Cn} makes at least nε queries.510

Proof. Define the oracle depth of a gate G to be the largest number of oracle gates on any511

directed path ending with G.512
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Let {Cn} be a circuit family computing an ≤AC0

T reduction of PARITY to MCSP[`, g]. As513

above, we may assume that each Cn is sturdy, and that the subcircuit Dn consisting of those514

gates at oracle depth 1 consists of NC0 circuitry of depth at most d. Let k be the maximum515

oracle depth of any gate in {Cn}.516

Similar to the proof of the preceding theorem, we construct a sequence of t restrictions517

ρ1, . . . , ρt, so that in Cn|ρi the first i gates G1, . . . , Gi can be replaced a constant. In this518

way, we transform Cn into a circuit on n′ ≥ n/2 input bits of oracle depth k − 1.519

We will first show that there is a value ε > 0 (specified later) such that if Cn does not520

have at least nε gates at oracle depth 1, then Cn can be replaced by an ≤AC0

T reduction of521

oracle depth k − 1, by eliminating all of the oracle gates G1, . . . , Gt at oracle depth 1.522

Our argument proceeds in t stages, where oracle gate Gi is considered in stage i. At the523

start of stage i we have a partial restriction ρi−1 that has at most (i− 1)n1−2ε bits set. Here524

is a detailed description of stage i:525

Consider the circuit family Bn consisting of all of the gates that are on a path from any526

input to Gi. Note that Bn is an NC0 circuit family computing some function fi(x) = Ti(x).527

Let m = |Ti(x)|.528

We now aim to find a restriction of the inputs and a solution to MCSP[`, g] for which the529

output of Gi is constant. Define Πi = (Yi, Ni) to be the promise problem where for all x530

that agree with ρi−1 we put x ∈ Yi if and only if CC(Ti(x)) ≤ `(m) and x ∈ Ni if and only531

if CC(Ti(x)) > g(m). Observe that Bn is an NC0 reduction of Πi to ε-GapMCSP.532

There are two cases, depending on whether N = ∅ or not. If N = ∅, then S = {T :533

CC(T ) ≤ g(|T |)} is a solution to MCSP[`, g] such that every query to Gi is answered534

affirmatively. By the sturdiness of the reduction, the output of Gi can be replaced by the535

constant 1, and we let ρi = ρi−1.536

If N 6= ∅, then, by Lemma 8, for all large n, c0(Πi|ρi−1) ≤ nε
′ for some ε′ < 1 that537

depends only on d and δ. That is, there is a way to set at most nε′ additional variables,538

thereby extending ρi−1 to obtain a new restriction ρi, such that for any string x of length539

n that agrees with ρi, CC(Ti(x)) > `(m). Thus, S = {T : CC(T ) ≤ `(m)} is a solution to540

MCSP[`, g] such that every query to Gi is answered negatively. Therefore, by the sturdiness541

of the reduction, gate Gi can be replaced by a constant 1.542

This completes stage i. Note that, in obtaining ρi from ρi−1 we set an additional nε′543

variables.544

It is now time to set the constant ε to be 1− (ε′/2).545

Since t < nε, we have that ρt has r ≥ n− tnε
′ = n− n1−(ε′/2)nε

′ = n− n1−(ε′/2) > n/2546

unset variables.547

A minor complication arises, when we want to repeat this argument, to reduce the oracle548

depth to k − 2, etc. Namely, the constant ε′ depends on the depth d of the NC0 circuitry549

that feeds into the oracle gates at the bottom level of Cn. Cn|ρt has oracle depth k − 1, as550

desired, but it now has AC0 circuitry feeding into the lowest level of oracle gates, and when551

we appeal to Lemma 9 to apply a random restriction to convert that AC0 circuitry to NC0
552

circuitry, the depth of the NC0 circuitry increases to a depth that we can denote d2. This553

problem is resolved by observing that the choice of ε′ in Lemma 8 is monotone in the depth554

d. Thus, if we carry out the argument above, but pick ε′ using the parameter d2 instead of555

d when we appeal to Lemma 8, and then repeat the argument to reduce the oracle depth556

to k − 2, the parameters still work out. If we let d3 be the depth of the NC0 circuitry that557

results by starting with Cn with depth-d NC0 circuitry at the bottom, eliminating lowest558

level of oracle gates and applying a random restriction to obtain a circuit family of oracle559

depth k − 1 with NC0 circuitry of depth d2 at the bottom, and then repeating the process to560
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obtain a circuit family of oracle depth k − 2 with NC0 circuitry of depth d3 at the bottom,561

then the argument above is sufficient to obtain a circuit family of depth k − 3, etc. Thus,562

there is a choice of ε′ that suffices to convert an arbitrary ≤AC0

T reduction of oracle depth563

k (with fewer than nε oracle gates) to an AC0 circuit computing parity on nΩ(1) input bits,564

thereby obtaining the desired contradiction. J565

7 Open Questions566

There remain several open questions. The true complexity of MCSP remains a mystery.567

We have made progress in understanding the hardness of an approximation to MCSP, but568

how far can Theorem 10 be extended? Can we prove the result for general truth-table569

and Turing reductions? Can we reduce the gap in the theorem to some constant factor570

approximations? Does the impossibility result hold when AC0 is replaced with, say, AC0[2]571

many-one reductions? Does the DET-hardness of MKTP [7] also hold for MCSP, given that572

we have ruled out any large gap reduction?573
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