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Abstract11

The Minimum Circuit Size Problem (MCSP) has been the focus of intense study recently; MCSP12

is hard for SZK under rather powerful reductions [4], and is provably not hard under “local”13

reductions computable in TIME(n0.49) [24]. The question of whether MCSP is NP-hard (or indeed,14

hard even for small subclasses of P) under some of the more familiar notions of reducibility (such15

as many-one or Turing reductions computable in polynomial time or in AC0) is closely related to16

many of the longstanding open questions in complexity theory [7, 8, 18, 19, 20, 22, 24].17

All prior hardness results for MCSP hold also for computing somewhat weak approximations18

to the circuit complexity of a function [3, 4, 9, 18, 23, 29].4 Some of these results were proved19

by exploiting a connection to a notion of time-bounded Kolmogorov complexity (KT) and the20

corresponding decision problem (MKTP). More recently, a new approach for proving improved21

hardness results for MKTP was developed [5, 7], but this approach establishes only hardness of22

extremely good approximations of the form 1+o(1), and these improved hardness results are not23

yet known to hold for MCSP. In particular, it is known that MKTP is hard for the complexity24

class DET under nonuniform ≤AC0

m reductions, implying MKTP is not in AC0[p] for any prime25

p [7]. It was still open if similar circuit lower bounds hold for MCSP. (But see [13, 21].) One26

possible avenue for proving a similar hardness result for MCSP would be to improve the hardness27

of approximation for MKTP beyond 1 + o(1) to ω(1), as KT-complexity and circuit size are28

polynomially-related. In this paper, we show that this approach cannot succeed.29

More specifically, we prove that PARITY does not reduce to the problem of computing super-30

linear approximations to KT-complexity or circuit size via AC0-Turing reductions that make O(1)31

queries. This is significant, since approximating any set in P/poly AC0-reduces to just one query32

of a much worse approximation of circuit size or KT-complexity [26]. For weaker approximations,33

we also prove non-hardness under more powerful reductions. Our non-hardness results are un-34

conditional, in contrast to conditional results presented in [7] (for more powerful reductions, but35

for much worse approximations). This highlights obstacles that would have to be overcome by36

any proof that MKTP or MCSP is hard for NP under AC0 reductions. It may also be a step37

toward confirming a conjecture of Murray and Williams, that MCSP is not NP-complete under38

logtime-uniform ≤AC0

m reductions.39
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1 Introduction48

The Minimum Circuit Size Problem (MCSP) is the problem of determining whether a (given)49

Boolean function f (represented as a bitstring of length 2k for some k) has a circuit of size50

at most a (given) threshold θ. Although the complexity of MCSP has been studied for more51

than half a century (see [30, 23] for more on the history of the problem), recent interest in52

MCSP traces back to the work of Kabanets and Cai [23], who connected the problem to53

questions involving the natural proofs framework of Razborov and Rudich [28].54

Since then, there has been a flurry of research on MCSP [3, 6, 4, 8, 20, 24, 19, 26, 18, 7,55

22, 5, 17], but still the exact complexity of MCSP remains unknown. MCSP is in NP, but it56

remains an important open question whether MCSP is NP-complete.57

MCSP is likely not in P. There is good evidence for believing MCSP 6∈ P. If MCSP is in P,58

then there are no cryptographically-secure one-way functions [23]. Furthermore, [4] shows59

MCSP is hard for SZK under BPP-Turing reductions, so if MCSP ∈ P then SZK ⊆ BPP,60

which seems unlikely.61

Showing MCSP is NP-hard would be difficult. Murray and Williams [24] have shown that62

if MCSP is NP-hard under polynomial-time many-one reductions, then EXP 6= ZPP, which63

is a likely separation but one that escapes current techniques. Results from [4, 20, 24] also64

give various likely (but difficult to show) consequences for MCSP being hard under more65

restrictive forms of reduction. We note that it has been suggested that MCSP might well66

be complete for NP [22]. In this regard, it may also be relevant to note that MCSPQBF is67

complete for PSPACE under ZPP-Turing reductions [3].68

The hardness of both MCSP and approximating MCSP have important consequences for69

complexity theory. We have already mentioned that if MCSP is NP-hard under polynomial-70

time reductions, then EXP 6= ZPP [24]. In a recent development, Hirahara [17] shows that if71

a certain approximation to MCSP is NP-hard, then NP 6= BPP implies that NP is difficult72

to compute even on average. In another recent development, [27] and [25] show that even73

seemingly meager n1+ε circuit lower bounds on certain approximations to MCSP imply results74

such as NP 6⊆ P/poly.75

MCSP is not hard for NP in limited settings. Murray and Williams [24] show MCSP is76

not NP-hard under a certain type of “local” reductions computable in TIME(n0.49). This is77

significant, since many well-known NP-complete problems are complete under local reductions78

computable in even logarithmic time. (A list of such problems is given in [24].)79

Many hardness results for MCSP also hold for approximate versions of MCSP. In various80

settings, the power of MCSP to distinguish between circuits of size θ and θ + 1 is not fully81
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used. Rather, in [3, 9, 4, 29, 26, 22], the reduction succeeds assuming only that reliable82

answers are given to queries on instances of the form (T, θ), where either the truth table83

T requires circuits of size ≥ θ = |T |/2 or T can be computed by circuits of size ≤ |T |δ, for84

some δ > 0.85

This is an appropriate time to call attention to one such reduction to approximations to86

MCSP. Corollary 6 of [26] shows that, for every δ > 0, for every solution S to MCSP[nδ, n/2],87

for every set A ∈ P/poly, there is a c > 1 and a set A′ that differs from A on at most88

(1/2 − 1/nc)2n of the strings of each length n, such that A′ ≤AC0

tt S via a reduction5 that89

makes only one query. (That is, A′ ≤AC0

1−tt S.) Stated another way, any set in P/poly can90

be “approximated” with just one query to a weak approximation of MCSP. (Changing the91

solution S will yield a different set A′.)92

There is no known many-one hardness result for MCSP, but one is known for a related93

problem. MKTP, the minimum time-bounded Kolmogorov complexity problem, is loosely94

the “program version” of MCSP. It is known [7] that MKTP is hard for DET under (non-95

uniform) NC0 many-one reductions; it is conjectured that the same is true for MCSP.96

Time-bounded Kolmogorov complexity is polynomially-related to circuit complexity [3], so97

one natural way to extend the hardness result of [7] from MKTP to MCSP would be to stretch98

the very small gap given in the reduction of DET to MKTP.99

1.1 Our Contributions, and Related Prior Work100

We address the following questions based on prior work:101

1. Can the non-hardness result of Murray and Williams [24] be extended to more powerful102

reductions? Both [24] and [8] conjecture that MCSP is not NP-complete under uniform103

AC0 reductions.104

2. Can the conditional theorem of [7], establishing the non-NP-hardness of very weak105

approximations to MCSP under cryptographic assumptions, be improved, to show non-106

NP-hardness of MCSP for stronger approximations?107

3. The worst-case to average case reduction given by [17] is conditional on the NP-hardness108

of a certain approximation to MCSP. Can we say anything about the NP-hardness of this109

problem in, say, the context of limited reductions?110

4. Finally, can the result of [7], showing that MKTP is hard for DET under ≤AC0

m reductions,111

be extended, to hold for MCSP as well, by increasing the gap?112

Our results give the following replies to these questions:113

1. For superlinear approximations to MCSP, one can, in fact, give much stronger non-114

hardness results than [24], showing non-hardness even under non-uniform AC0 many-one115

reductions and even limited types of AC0 Turing reductions. To our knowledge, this is116

the first known non-hardness result for any variant of MCSP under non-uniform AC0
117

reductions. While AC0 reductions are provably less powerful than polynomial time118

reductions, most natural examples of NP-complete problem are easily seen to be complete119

under AC0 (and even NC0!) reductions [10].120

2. [7] shows that, if cryptographically-secure one-way functions exist, then ε(n)-GapMCSP is121

not hard for NP under P/poly-Turing reductions6 for some ε(n) = no(1). Our result gives122

5 Although Corollary 6 of [26] does not mention the number of queries, inspection of the proof shows that
only one query is performed.

6 The problem ε-GapMCSP is defined somewhat differently in [7] than here. See Section 2. Thus the form
of ε(n) looks different here than in [7].
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a trade-off, where we reduce the gap dramatically but also weaken the type of reduction.123

In particular, our results imply that if one-way functions exist, then ε(n)-GapMCSP is124

NP-intermediate under ≤AC0

m and ≤AC0

k−tt reductions, where ε(n) = o(n).125

3. We show that the approximation to MCSP considered by [17] is actually not NP-hard126

under AC0 reductions.127

4. Our work rules out one natural way to extend the MKTP hardness results to MCSP. One128

might have hoped that the reduction given by [7] could be extended to a larger gap and129

hence apply to MCSP (since MKTP and MCSP are polynomially related [3]). However,130

we show that this is impossible.131

Our main theorem is an impossibility result in the setting of ε(θ)-GapMCSP, which is the132

promise version of MCSP with a multiplicative ε(θ) gap where θ is the threshold.133

I Theorem 1. PARITY 6≤AC0

m ε(θ)-GapMCSP where ε(θ) = o(θ).134

We note that this is not the first work to describe non-hardness of approximation under135

AC0 reductions. Arora [11] is credited by [1], with showing that no AC0 reduction f can136

have the property that x ∈ PARITY implies f(x) has a very large clique, and x 6∈ PARITY137

implies f(x) has only very small cliques. (In Section 3, we present a similar result for138

Max-3-SAT, so that the reader can compare the techniques.) Our work differs from that of139

[11] in several respects. Arora shows that AC0 reductions cannot prove very strong hardness140

of approximations for a problem where strong inapproximability results are already known.141

We show that AC0 reductions cannot establish even very weak inapproximability results142

for MCSP. Also, our techniques allow us to move beyond ≤AC0

m reductions, to consider143

AC0-Turing reducibility.144

All of the theorems that we state in terms of MCSP hold also for MKTP, with identical145

proofs. For the sake of readability, we present the theorems and proofs only in terms of146

MCSP.147

2 Preliminaries148

We use \ to denote set difference. For a natural number n, we let [n] denote the set {1, . . . , n}.149

2.1 Defining MCSP150

For any binary string T of length 2k, we define CC(T ) to be the size of the smallest circuit151

(using only NOT gates and AND and OR gates of fan-in 2) that computes the function given152

by truth table T written in lexicographic order, where, for concreteness, circuit size is defined153

to be the number of AND and OR gates, although our arguments work for other reasonable154

notions of circuit size.155

Throughout the paper, we use various approximate notions of the minimum circuit size156

problem, given as follows:157

I Definition 2 (Gap MCSP). For any function ε : N → N, we define ε(n)-GapMCSP to be158

the promise problem (Y,N) where159

Y := {(T, θ) | CC(T ) < ε(θ)}, and160

N := {(T, θ) | CC(T ) > θ},161
162

where θ is written in binary.163
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Note that this definition differs in minor ways from the way that ε-GapMCSP was defined in164

[7]. The definition presented here allows for finer distinctions than the definition that was165

used in [7].166

Our results for non-hardness under ≤AC0

T reductions are best stated in terms of a restricted167

version of ε-GapMCSP, where the thresholds are fixed, for inputs of a given size: This variant168

of MCSP has been studied previously in [24, 18]; the analogous problem defined in terms of169

KT-complexity is denoted RKT in [3].170

I Definition 3 (Parameterized Gap MCSP). For any functions `, g : N → N such that171

`(n) ≤ g(n), We define the language MCSP[`, g] to be the promise problem (Y,N) where172

Y := {T | CC(T ) < `(|T |)}, and173

N := {T | CC(T ) > g(|T |)}.174
175

2.2 Complexity classes and Reductions176

We assume the reader is familiar with basic complexity classes such as P and NP. As we177

work extensively with non-uniform NC0 and AC0, we refer to the text by Vollmer [31] for178

background on these circuit classes. Throughout this paper, unless otherwise explicitly179

mentioned, we refer to the non-uniform versions of these circuit classes.180

Let C be a class of circuits. For any languages A and B, we write A ≤Cm B if there is a181

function f computed by a circuit family {Cn} ∈ C such that f(x) ∈ B ⇐⇒ x ∈ A. We182

write A ≤CT B if there is a circuit family in C computing A with B-oracle gates. In particular,183

since we are primarily concerned with C = AC0, we denote this as A ≤AC0

T B. We write184

A ≤AC0

tt B if there is an AC0 circuit family computing A with B-oracle gates, where there is185

no directed path from any oracle gate to another, i.e. if the reduction is non-adaptive. If,186

furthermore, the non-adaptive reduction has the property that each of the oracle circuits187

contains at most k oracle gates, then we write A ≤AC0

k−tt B.188

Let Y ⊆ {0, 1}? and N ⊆ {0, 1}? be disjoint. Then Π = (Y,N) is a promise problem. A189

language L is a solution to a promise problem Π = (Y,N) if Y ⊆ L and N ∩ L = ∅. For two190

promise problems Π1 and Π2, some type of reducibility r (many-one, truth table, or Turing),191

and a circuit class C, we say Π1 ≤Cr Π2 if there is a single family of oracle circuits {Cn} in C192

such that for every solution S2 of Π2, there is a solution S1 of Π1 such that Cn computes an193

r-reduction from S1 to S2.194

2.3 Boolean Strings and Functions195

For an x ∈ {0, 1}n and a set of indices B ⊆ [n], we let xB denote the Boolean string obtained196

by flipping the ith bit of x for each i ∈ B.197

A partial string (or restriction) is an element of {0, 1, ?}?. Define the size of a partial string198

p to be the number of bits in which it is {0, 1}-valued. We say a partial string p ∈ {0, 1, ?}n199

agrees with a binary string x ∈ {0, 1}n if they agree on all {0, 1}-valued bits. If x ∈ {0, 1}n200

is a binary string and B ⊆ [n], then x|B denotes the partial string given by replacing the jth201

bit of x with ? for each j ∈ [n] \B. We say a partial string p1 extends a partial string p2 if202

p1 is equal to p2 on all bits where p2 is {0, 1}-valued.203

A partial Boolean function on n variables is a function f : I → {0, 1} where I ⊆ {0, 1}n.204

For a promise problem Π = (Y,N) and n ∈ N, we let Π|n be the partial Boolean function that205

decides membership in Y on instances of length n which satisfy the promise. (In particular,206

Π|n : I := (Y ∪N) ∩ {0, 1}n → {0, 1}.)207
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We will make use of two well-studied complexity measures on Boolean functions: block208

sensitivity and certificate complexity. We refer the reader to a detailed survey by Hatami,209

Kulkarni, and Pankratov [16] for background on these notions. For completeness, we provide210

the definitions of the two measures that we need. In our context, we will use these measures211

on partial Boolean functions. Let I ⊆ {0, 1}n and let f : I → {0, 1} be a partial Boolean212

function. For an input x ∈ I, define the block sensitivity of f at x, denoted bs(f, x), to213

be the maximum number of non-empty, disjoint sets B1, . . . , Bk such that xBi ∈ I and214

f(x) 6= f(xBi) for all i. (Here, by “f(y) 6= f(z)” we require that f is defined at both y and215

z.) Define the 0-block sensitivity of f be bs0(f) := maxx:f(x)=0 bs(f, x). For an input x ∈ I,216

define the certificate complexity of f at x, denoted c(f, x), to be the size of the smallest set217

B ⊆ [n] such that f(y) = f(x) for all y ∈ I that agree with x|B. Define the 0-certificate218

complexity of f to be c0(f) := maxx:f(x)=0 c(f, x).219

3 Prior Work220

In this section, we present a result that is similar in spirit to a result reported by Arora in an221

unpublished manuscript [11]. There, it was shown that there is no AC0-computable function222

f with the property that x ∈ PARITY implies f(x) has a very large clique, and x 6∈ PARITY223

implies f(x) has only very small cliques. Here, in order to illustrate the techniques that were224

employed in [11], we observe that no AC0 reduction can establish the known inapproximability225

of Max-3-SAT [15].226

I Proposition 4. Let 0 < ε < 1. No AC0 reduction f can have the property that x ∈ PARITY227

implies f(x) ∈ 3-SAT, and x 6∈ PARITY implies f(x) has at most an ε fraction of the clauses228

satisfied.229

Proof. By appealing to Lemma 9, we may assume that the function f is an NC0 reduction, as230

in the proof of Theorem 10. Let d be the constant, such that each output bit of f(x) depends231

on at most d bits of x, and let x ∈ PARITY have length n. Let f(x) consist of m clauses,232

each encoded using c logm bits for some constant c (which we can assume since the number233

of clauses is polynomially-related to the number of variables). Then since |f(x)| = cm logm,234

and each output bit depends on at most d input bits, there is some i ≤ n such that the i-th235

bit of x affects at most (dc logm)/n output bits. Flipping the i-th bit of x, to obtain a new236

string x′ 6∈ PARITY can affect at most (dcm logm)/n clauses. Since f(x) ∈ 3-SAT, there is237

an assignment that satisfies at least m − (dcm logm)/n clauses of f(x′). The theorem is238

proved, by observing that m− (dcm logm)/n > εm for all large m. J239

4 Non-Hardness Under NC0 Reductions240

In this section, we prove our main lemmas, showing that problems that are NC0-reducible to241

ε-GapMCSP have bounded 0-block sensitivity and also have sublinear 0-certificate complexity.242

Whenever we will have occasion to use these lemmas, it will be in situations when we are243

able to assume that the NC0 reduction is computing a function f satisfying the condition244

that there is a bound γ(n) > 0 such that, for all n, there is a θ ≥ γ(n) such that, for all x245

of length n, f(x) is of the form (T (x), θ). (In particular, the threshold θ is the same for all246

inputs of length n.) We will call such an NC0 reduction a γ-honest reduction.247

I Lemma 5. Let ε(θ) = o(θ), and let Π = (Y,N) be a promise problem, where Π ≤NC0

m248

ε-GapMCSP via a γ-honest reduction f computed by an NC0 circuit family Cn of depth ≤ d,249
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where γ(n) ≥ log logn. Then there is an n0 (that depends only on ε and d) such that for all250

n ≥ n0, if N |n 6= ∅, then bs0(Π|n) < s, where s is a constant that depends only on d.251

Proof. Let s = 2d+1 + 1. Since ε(n) = o(n), we can pick a constant r0 > 4s such that252

ε(r) < r/(2s) for all r ≥ r0.253

Pick n0 ≥ 22r0 , and let n ≥ n0.254

For the sake of contradiction, suppose bs0(Π|n) ≥ s, and let x ∈ N ∩{0, 1}n be a 0-valued255

instance with bs(Π|n, x) ≥ s. Then we can find disjoint sets B1, . . . Bs ⊆ [n] such that256

Π|n(xBj ) = 1 for all j ∈ [s]. (That is, each xBj is in Y .)257

Let f(x) = (T, θ), and note that CC(T ) > θ ≥ γ(n) (since f is γ-honest). Since x ∈ N258

and Cn is a reduction to ε-GapMCSP, we know that any circuit that computes the function259

with truth table T has size at least θ. For each j ∈ [s], let Tj be the truth table produced by260

Cn on input xBj . Since xBj ∈ Y , we know that each Tj has a circuit Dj computing Tj of261

size at most ε(θ). (Here, it is important that the same threshold θ is used for all inputs of262

length n, by γ-honesty.)263

We aim to build a “small” circuit computing T , which would contradict T having high264

complexity. Our circuit C for computing T works as follows: on input i, output the majority265

of D1(i), . . . , Ds(i). The size of C is at most s · ε(θ) + 2s (each Dj has size at most ε(θ), and266

computing the majority of s bits can be done with a circuit of size 2s).267

Now, we argue that this circuit correctly computes the ith bit of T for all i. Let i be268

arbitrary. Recall the ith bit of T is defined to be the ith output of Cn(x). Since Cn is a269

depth d circuit of fan-in 2, the ith output of Cn depends on at most 2d input wires W ⊆ [m].270

Hence, on any input y such that y|W = x|W , we have that the ith output of Cn(y) equals271

the ith output of Cn(x). In particular, if B is disjoint from W , then the ith output of272

Cn(xB) equals the ith output of Cn(x). Since B1, . . . Bs are disjoint and |W | ≤ 2d, it follows273

that at most 2d of the sets B1, . . . , Bs have a non-empty intersection with W . Hence, since274

s = 2d+1 + 1, the majority of the sets B1, . . . , Bs are disjoint with W , so the majority of the275

circuits D1, . . . , Ds when run on input i output the ith output of Cn(x).276

We thus have that CC(T ) ≤ s · ε(θ) + 2s. But θ > γ(n) ≥ log logn (since the reduction277

f is γ-honest). By the choice of n0 we have ε(θ) < θ/2s (since θ > log logn ≥ r0). Thus278

CC(T ) ≤ s · θ/2s+ 2s = θ/2 + 2s < θ (since θ > log logn > 4s). This contradicts CC(T ) > θ.279

J280

I Lemma 6. Let ε(θ) = o(θ), and let Π = (Y,N) be a promise problem, where Π ≤NC0

m281

ε-GapMCSP via a γ-honest reduction f computed by an NC0 circuit family Cn of depth ≤ d,282

where γ(n) ≥ log logn. Let k ≥ 1. Then there is an n0 (that depends only on ε, k and d)283

such that for all n ≥ n0, if N |n 6= ∅, then c0(Π|n) ≤ n/k.284

Proof. Let p = 2d, let p′ =
(2pk+1

p

)
, and let K be a constant that is specified later (and285

which depends only on k and d). Since ε(θ) = o(θ), we can pick a constant s0 such that286 (
p′

2
)
ε(s) +K < s for all s ≥ s0.287

Pick n0 ≥ 22s0 , and let n ≥ n0.288

For contradiction, suppose c0(Π|n) > n/k. Let x ∈ N ∩ {0, 1}n be a 0-valued instance289

with c0(Π|n, x) > n/k. Then, for all S ⊆ [n] with |S| ≤ n/k, there is an xS such that xS290

agrees with x|S and such that Π|n(xS) = 1. (That is, xS ∈ Y.)291

Let (T, θ) be the truth table produced by Cn on input x. Since x ∈ N and Cn is a292

reduction, we know that any circuit computing T has size at least θ.293

For each S ⊆ [n] with size at most n/k, let TS be the truth table produced by Cn on294

input xS . Since xS ∈ Y , we know that TS has a circuit DS of size at most ε(θ).295
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We aim to build a “small” circuit computing T , which would contradict that T has high296

complexity. Recall that p = 2d, and that p′ =
(2pk+1

p

)
.297

I Claim 6.1. There exists sets S1, . . . Sp′ ⊆ [n] such that298

|Si| ≤ n
2k for all i, and299

for any set P ⊆ [n] with |P | ≤ p, we have that P ⊆ Si for some i.300

Proof. (Proof of Claim) Pick sets V1, . . . , V2pk+1 ⊆ [n] of size at most n
2pk whose union is301

[n]. Let V = {V1, . . . , V2pk+1}. Now let each of S1, . . . , S(2pk+1
p ) be the union of some p sets302

chosen from V. Each Si has size at most p n
2pk = n

2k . Let P ⊆ [n] be an arbitrary set of size303

p. Since
⋃
V ∈V V = [n], every element e of P lies within some V ∈ V. Then P is contained304

in the union of some p sets from V, so P ⊆ Si for some i. J305

For each i 6= j ∈ [p′], let Si,j = Sj,i = Si ∪ Sj . Note that |Si,j | ≤ n/k.306

Our circuit C for computing T works as follows. On input r, for each i ∈ [p′], see if307

DSi,1(r) = · · · = DSi,p′ (r). If so, then output DSi,1(r). The size of this circuit is at most308 (
p′

2
)
ε(θ) +K (for some fixed constant K) since each of the

(
p′

2
)
DSi,j circuits has size at most309

ε(θ) and the other “unanimity” condition is a Boolean function on
(
p′

2
)
variables (of in fact310

linear size) and so can be computed with circuit of some size K = O(p′)2 (that depends only311

on k and d).312

Now, we argue that C on input r correctly computes the rth bit of T . Let r ∈ [m] be313

arbitrary. For convenience, on an input y ∈ {0, 1}n let Crn(y) denote the rth output of Cn(x).314

Recall the rth bit of T is defined to be Crn(x). We must show two things. First, that there315

exists an i such that DSi,1(r) = · · · = DSi,p′ (r) and second, that if for some i we have that316

DSi,1(r) = · · · = DSi,p′ (r), then DSi,1(r) = Crn(x).317

Since Cn has depth d, the rth output of Cn can depend on at most 2d input wires318

W ⊆ [m]. Hence, on any input y such that y|W = x|W , we have that Crn(y) = Crn(x). Since319

p = 2d, by the claim, there exists some Si? such that W ⊆ Si? . Therefore, for all j we have320

that xSi?,j |W = x|W , so DSi?,j (r)
def= Crn(xSi?,j ) = Crn(x).321

This implies both things we must show. First, we know that DSi?,1(r) = · · · = DSi?,p′ (r)322

since they each equal Crn(x). Second, if for some i, we have that DSi,1(r) = · · · = DSi,p′ (r),323

then we also have that DSi,1(r) = DSi,i? (r) = Crn(x).324

Thus we have that T can be computed by a circuit of size at most
(
p′

2
)
ε(θ) +K, which is325

less than θ, since θ ≥ log logn ≥ s0. This contradicts that CC(T ) > θ. J326

Next, we note that one can improve the bounds given by Lemma 6 assuming a larger gap.327

I Lemma 7. Let ε(θ) < θα, and let Π = (Y,N) be a promise problem, where Π ≤NC0

m328

ε-GapMCSP via a γ-honest reduction f computed by an NC0 circuit family Cn of depth ≤ d,329

where γ(n) ≥ nβ. Then for all δ such that δ0 = β(1− α)/2d+1 > δ > 0 there is an n0 such330

that for all n ≥ n0, if N |n 6= ∅, then c0(Π|n) ≤ n1−δ.331

Proof. Let p = 2d. Suppose for contradiction that for some δ > 0 with δ < δ0 = β(1−α)/2p332

we have c0(Π|n) > n1−δ infinitely often. We can follow the same argument (and notation)333

as above, except we have to be more careful since n/c0(Π|n) is no longer a constant, and334

hence p′ =
(2pn/c0(Π|n)+1

p

)
≤
(2pnδ+1

p

)
= O(npδ) is no longer constant. Since the unanimity335

condition can be implemented by a circuit of size linear in
(
p′

2
)
, we can construct a circuit336

computing truth table T of size337

ε(θ) · c1p′2 = ε(θ) · c1
(

2pnδ + 1
p

)2

≤ c2ε(θ)n2pδ
338
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infinitely often for some positive constants c1, c2. By γ-honesty, we have θ ≥ γ(n) ≥ nβ .339

This implies that we can construct a circuit computing T of size340

c2ε(θ)n2pδ ≤ c2ε(θ)(θ1/β)2pδ < c2θ
αθ2pδ/β < θ341

infinitely often. This is a contradiction since T is a truth table with circuit complexity342

≥ θ. J343

Next, we present a variant of Lemma 7, but restricted to the parameterized version of344

MCSP. This variant is useful in extending our non-hardness results to ≤AC0

T reductions that345

make no(1) queries.346

I Lemma 8. Let Π = (Y,N) be a promise problem. If Π ≤NC0

m MCSP[`, g] with `(m) =347

o(g(m)/mδ) for some δ > 0, then c0(Π|n) ≤ nε for some ε < 1 for all but finitely many n348

where N |n 6= ∅, where ε depends only on the depth of the NC0 circuit family and δ.349

Proof. Suppose for contradiction that for all ε < 1 we have c0(Π|n) > nε infinitely often.350

Once again, we follow the same argument (and notation) as above. We can construct a351

circuit computing truth table T of size352

`(m) · c1p′2 ≤ `(m) · c1
(

2pn/c0(Π|n) + 1
p

)2
≤ `(m)c1

(
2pn1−ε + 1

p

)2

≤ c2`(m)n2p(1−ε),353

infinitely often for some positive constants c1, c2. (Here, m denotes the length of the truth354

table T .) Note that since c0(Π|n) > nε, we know Π|n depends on ≥ nε input bits. Since the355

circuit has depth at most d and gates of fan-in 2, we must have m ≥ nε/2d. This implies356

that we can construct a circuit computing T of size357

c2`(m)(nε)
2p(1−ε)

ε ≤ c3`(m)m
2p(1−ε)

ε ,358

infinitely often for some positive constant c3. Setting ε = 2p
2p+δ , we have that T can be359

computed by a circuit of size ≤ c3`(m) ·mδ infinitely often, which is a contradiction since T360

is a truth table with circuit complexity ≥ g(m) = ω(`(m) ·mδ). J361

5 Non-Hardness Under Many-One AC0 Reductions362

To extend our non-hardness results to AC0 we make use of a version of a theorem given in363

[1] that was first proved by [2, 12] that says randomly restricting a family of AC0 circuits364

yields a family of NC0 circuits with high probability.365

I Lemma 9 (Lemma 7 in [1]). Let Cn be a family of n-input (multi-output) AC0 circuits.366

Then there exists an a > 0 such that for all n ∈ N there exists a restriction of Cn to Ω(n1/a)367

input variables that transforms Cn into a (multi-output) NC0 circuit.368

I Theorem 10. PARITY 6≤AC0

m ε-GapMCSP where ε(n) = o(n).369

Proof. Suppose not. Then there is a family of AC0 circuits Cn that many-one reduces370

PARITY to ε-GapMCSP. By Lemma 9, there is an a such that we can transform each Cn into371

an NC0 circuit Dm on m = Ω(n1/a) variables, computing a reduction f from either PARITY372

or ¬PARITY (depending on the parity of the restriction) to ε-GapMCSP. For each input x373

of length n, f(x) is of the form (T (x), θ(x)). Since there are only O(logn) output gates in374

the θ(x) field, and each output gate depends on only O(1) input variables, all of the output375

gates for θ(x) can be fixed by setting only O(logn) input variables. Furthermore, we claim376
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that there is some setting of these O(logn) input variables, such that the resulting value377

of θ is greater than logn/ log logn. If this were not the case, then the ≤AC0

m reduction of378

PARITY (or ¬PARITY) on m = Ω(n1/a) variables to ε-GapMCSP has the property that θ(x)379

is always less than logn/ log logn. But, as in the proof of Theorem 1.3 of [24], instances of380

MCSP where θ is O(logn/ log logn) can be solved with a DNF circuit of polynomial size.381

Thus this would give rise to AC0 circuits for PARITY, contradicting the well-known circuit382

lower bounds of [2, 12].383

Thus we can set O(logn) additional variables, and obtain circuits that reduce PARITY (or384

¬PARITY) on m′ = m−O(logn) = Ω(n1/(a+1)) variables to ε-GapMCSP, where furthermore385

this reduction satisfies the hypotheses of Lemmas 5 and 6. But this contradicts the fact386

that both PARITY and ¬PARITY on m′ variables have 0-certificate complexity and 0-block-387

sensitivity m′. J388

6 Non-Hardness Under Limited Turing AC0 Reductions389

With some work, we can extend our non-hardness results beyond many-one reductions to390

some limited Turing reductions.391

In our proofs that deal with AC0-Turing reductions, we will need to replace some oracle392

gates with “equivalent” hardware – where this hardware will provide answers that are393

consistent with some solution to the promise problem ε-GapMCSP, but might not be consistent394

with the particular solution that is provided as an oracle. In order to ensure that this doesn’t395

cause any problems, we introduce the notion of a “sturdy” AC0-Turing reduction:396

I Definition 11. Let Π1 = (Y1, N1) and Π2 = (Y2, N2) be promise problems. A family {Cn}397

of AC0-oracle circuits is a sturdy ≤AC0

T reduction from Π1 to Π2 if, for every pair of solutions398

S, S′ to Π2, every oracle gate G in Cn, and every x ∈ Y1 ∪N1, there is a solution S′′ such399

that CSn (x) = CS
′′

n (x) = CSn [G→ S′](x), where the notation CSn [G→ S′] refers to the circuit400

Cn with oracle S, but where the oracle gate G answers queries according to the solution S′401

instead of S.402

I Lemma 12. Let Π be any promise problem. If Π ≤AC0

tt ε(n)-GapMCSP via a reduction403

of depth d, then Π ≤AC0

tt ε(n)-GapMCSP via a sturdy reduction of depth 5d with the same404

number of oracle gates. If Π ≤AC0

T ε(n)-GapMCSP via a reduction of depth d, then Π ≤AC0

T405

ε(n)-GapMCSP via a sturdy reduction of depth 5d with the same number of oracle gates.406

Proof. Briefly: We modify Cn, so that each oracle query is checked against queries that were407

asked “earlier” in the computation, and the computation uses only the oracle answer from408

the first time a query was asked. Since each query is given an answer that is consistent with409

some solution, the new circuit gives the same answers as a new solution (which we denote as410

S′′). Since Cn is a reduction, we get the same answer when using S or S′′.411

In more detail: Label the oracle gates G1, . . . , Gk of Cn in topological order so that there412

is no directed path from Gi to Gj for all i > j (and for a truth-table reduction, any ordering413

suffices). Let qi denote the query asked by Gi. Let C ′n be the circuit where we replace any414

wire that leaves Gi by a wire connected to the following subfunction:415

Gi(x) ∧ ∀j < i(qi 6= qj)416

or417

∃j < i(qi = qj ∧ ∀k < j(qk 6= qj) ∧Gj(qj))418

The reader can verify that this additional circuitry can be implemented in depth five, and419

thus C ′n has depth at most 5d. Furthermore, this hardware does not add any oracle gates or420
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directed paths between oracle gates, so the number of oracle gates used is unchanged and421

truth-table reductions remain truth-table reductions.422

Now let S and S′ be any two solutions to ε(n)-GapMCSP. Consider any input x of length423

n that satisfies the promise of Π = (Y,N). (That is, x ∈ Y ∪N .) Thus CSn (x) = CS
′

n (x). Now424

consider the the operation of C ′n(x) where some oracle gate Gi answers queries according to425

S′, rather than S. By construction, the behavior of this computation C ′Sn [Gi → S′] is the426

same as that of CS′′n (x), where427

S′′(q(x)) :=
{
S(q(x)) if q(x) 6= qi(x), or if qi(x) = qj(x) for some j < i,
S′(q(x)) otherwise.

428

S′′ is also a solution to ε-GapMCSP, since it agrees with either S or S′ on each query,429

and both S and S′ agree on all queries that satisfy the promise. Thus C ′Sn [Gi → S′](x) =430

CS
′′

n (x) = CS
′

n (x) = CSn (x), since Cn is a reduction. Also, C ′S
′′

n (x) = CS
′′

n (x) and C ′Sn(x) =431

CSn (x), since each oracle gate of C ′n answers each query the same way that Cn does, if the same432

oracle is provided to each gate. Thus, we have that C ′Sn(x) = C ′
S′′

n (x) = C ′
S
n[Gi → S′](x).433

This establishes that C ′n is computing a sturdy reduction. J434

I Theorem 13. Let k ≥ 1, and let ε(n) = o(n). Then PARITY 6≤AC0

k−tt ε-GapMCSP.435

Proof. We show that, for all k ≥ 1, if PARITY ≤AC0

k−tt ε-GapMCSP, then PARITY ≤AC0

(k−1)−tt436

ε-GapMCSP. This suffices, since a 0-truth-table reduction is simply an AC0 circuit computing437

PARITY, which cannot exist.438

Given the oracle circuit family Cn, (where by Lemma 12 we may assume that the ≤AC0

k−tt439

reduction is sturdy), let Dn be the subcircuit consisting of those gates that are on a path440

from an input variable to any oracle gate. Dn is simply an AC0 circuit on n variables, and441

thus by Lemma 9, there is an a such that we can transform each Dn into an NC0 circuit442

Em on m = Ω(n1/a) variables. Replacing Dn by Em in Cn yields a k-tt reduction Fm from443

PARITY or ¬PARITY on m variables to ε-GapMCSP. For any input length r, computing444

PARITY on r bits can be accomplished by computing either PARITY or ¬PARITY on m bits,445

where m is only polynomially-larger than r. Thus, without any loss of generality, we may446

assume that our circuit family Cn has the property that the subcircuit Dn consisting of the447

gates on a path from an input gate to an oracle gate consists of NC0 circuitry.448

For each n, select the first oracle gate G1 (in some order). Consider the circuit family Bn449

consisting of all of the gates that are on a path from any input to G1. Note that Bn is an450

NC0 circuit family computing some function f , where f(x) is of the form (T (x), θ(x)). If it451

is possible to set some of the input variables of Bn so that the output gates for θ(x) take on452

a value θ ≥ logn/ log logn, do so. Note that this leaves m = n− O(logn) variables unset.453

(If it is not possible to do so, then (as in the proof of Theorem 10), G1 can be replaced in454

Cn by a polynomial-sized DNF circuit, thereby yielding a (sturdy) (k − 1)-tt reduction, as455

desired.) Call C ′m and B′m the circuits that result by restricting the O(logn) input variables456

of Cn and Bn, respectively.457

We now aim to find a restriction of the inputs and a solution to ε-GapMCSP such that458

the output of G1 is constant. Define Π = (Y,N) to be the promise problem where for all x459

we put x ∈ Y if and only if CC(T (x)) ≤ ε(θ) and x ∈ N if and only if CC(T (x)) > θ where460

B′m(x) = (T (x), θ). Observe that B′m is a logn-honest NC0 reduction of Π to ε-GapMCSP.461

There are two cases, depending on whether N = ∅ or not. If N = ∅, then S′ =462

{(T, θ) : CC(T ) < ε(θ)} is a solution to ε-GapMCSP such that every query to G1 is answered463

affirmatively. By the sturdiness of the reduction, G1 can be replaced by a constant 1,464

transforming C ′m into a (k − 1)-tt reduction.465
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If N 6= ∅, then by Lemma 6, for all large m c0(Π|m) ≤ m/(k + 1). That is, there is a466

way to set some r ≤ m/(k + 1) input variables, obtaining restriction ρ, and thereby obtain467

a circuit B′′m−r = B′m|ρ on m − r variables, such that for any string z of length m − r,468

CC(Tm−r(z)) > ε(θ) where B′′m−r(z) = (Tm−r(z), θ). That is, every query to G1 is answered469

negatively in C ′m|ρ, and hence G1 can be replaced by a constant 0, transforming C ′m|ρ into a470

(k − 1)-tt reduction from PARITY to ε-GapMCSP on m− r = Ω(n) variables in this case.471

In both cases, we obtain a (k−1)-tt reduction from PARITY to ε-GapMCSP, as desired. J472

With a larger gap, we can rule out nonadaptive reductions that use no(1) queries.473

I Theorem 14. Let ε(n) < nα for some 1 > α > 0. Then for any circuit family {Cn}474

computing an ≤AC0

tt reduction of PARITY to ε-GapMCSP, there is a δ > 0 such that, for all475

large n, {Cn} makes at least nδ queries.476

Proof. Let {Cn} be a circuit family computing an ≤AC0

tt reduction of PARITY to ε-GapMCSP.477

By Lemma 12 we may assume that each Cn is sturdy. As in the proof of the preceding478

theorem, we assume without loss of generality that Cn has the property that the subcircuit479

Dn consisting of those gates that lie on paths from input gates to oracle gates consists of480

NC0 circuitry of depth d. (We will assume without loss of generality that, if the gates in Dn481

are removed from Cn, the depth of the circuit that remains is also at most d. Otherwise, let482

d be the maximum of these two constants.)483

We will show that, for all large n, Cn contains at least nδ oracle gates G1, G2, . . . , Gt,484

where δ is chosen to be less than (1− α)/12d2d+1. For the sake of a contradiction, assume485

that t < nδ.486

As in the proof of the preceding theorem, we construct a sequence of restrictions (one487

for each oracle gate), so that when the input bits of Cn are set according to the restrictions,488

each oracle gate either has a very small threshold θ, or else it can be replaced by a constant.489

In this way, we transform Cn into a circuit on m ≥ n/2 input bits where each oracle gate Gi490

has a threshold θi < n1/3d/ logn. Replacing each such oracle gate by a DNF of size 2O(n1/3d)
491

(as in the proof of the preceding theorem) results in an AC0 circuit of depth at most d+ 1492

computing PARITY, in contradiction to the lower bound of [14]. Details follow.493

Our argument proceeds in t stages, where oracle gate Gi is considered in stage i. At the494

start of stage i we have a partial restriction ρi−1 that has at most (i− 1)n1−2δ bits set. Here495

is a detailed description of stage i:496

Consider the circuit family Bn consisting of all of the gates that are on a path from497

any input to Gi. Note that Bn is an NC0 circuit family computing some function fi, where498

fi(x) is of the form (Ti(x), θi(x)). If for all x that agree with ρi−1, θi(x) < n1/(3d)/ log(n),499

then stage i is done; set ρi = ρi−1 and go on to the next stage. Otherwise, there is a500

way to set an additional O(logn) additional variables, thereby extending ρi−1 to obtain a501

new restriction ρ′i, so that for all x which agree with ρ′i, θi(x) takes on a constant value502

θi ≥ n1/(3d)/ logn ≥ n1/(4d).503

We now aim to find a restriction of the inputs and a solution to ε-GapMCSP such that504

the output of Gi is constant. Define Πi = (Yi, Ni) to be the promise problem where for505

all x that agree with ρ′i we put x ∈ Yi if and only if CC(Ti(x)) ≤ ε(θi) and x ∈ Ni if and506

only if CC(Ti(x)) > θi where Bn(x) = (Ti(x), θi). Observe that Bn is a n1/(4d)-honest NC0
507

reduction of Πi to ε-GapMCSP.508

There are two cases, depending on whether Ni = ∅ or not. If Ni = ∅, then S = {(T, θ) :509

CC(T ) ≤ θ} is a solution to ε-GapMCSP such that every query to Gi is answered affirmatively.510

By the sturdiness of the reduction, the output of Gi can be replaced by the constant 1, and511

let ρi = ρ′i.512
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If Ni 6= ∅, then by Lemma 7, for all large n, c0(Πi|ρ′
i
) ≤ n1−3δ. (The conditions of513

Lemma 7 are satisfied, since (1/4d)(1 − α)/2d+1 > 3δ.) That is, there is a way to set514

at most n1−3δ additional variables, thereby extending ρ′i to obtain a new restriction ρi,515

such that for any string x of length n that agrees with ρi, CC(Ti(x)) > ε(θi). Therefore,516

S = {(T, θ) : CC(T ) ≤ ε(θ)} is a solution to ε-GapMCSP such that every query to Gi is517

answered negative. Hence, by the sturdiness of the reduction, gate Gi can be replaced by a518

constant 0.519

This completes stage i. Note that, in obtaining ρi from ρi−1 we set an additional520

O(logn) + n1−3δ < n1−2δ variables.521

Since t < nδ, we have that ρt has m ≥ n− tn1−2δ > n−nδn1−2δ = n−n1−δ > n/2 unset522

variables. Let C ′′m be the circuit Cn|ρt . Each oracle gate in C ′′m has the property that the523

threshold that is computed is always no more than n1/3d. Since the reduction is sturdy, the524

circuit still behaves correctly if each oracle gate is replaced by a circuit that computes MCSP525

exactly, and (as in the proof of Theorem 1.3 of [24]), instances of MCSP where θ is bounded526

by n1/3d/ logn can be computed by a DNF of size 2O(n1/3d). Replacing each oracle gate by527

such a DNF yields a circuit of depth at most d + 1, of size 2O(n1/3d), computing PARITY,528

thereby violating the lower bound established in [14]. J529

If we consider the parameterized version of MCSP, rather than ε-GapMCSP, we obtain530

non-hardness even under ≤AC0

T reductions.531

I Theorem 15. Let `(m) = o(g(m)/mδ) for some 1 > δ > 0. Then for any circuit family532

{Cn} computing an ≤AC0

T reduction of PARITY to MCSP[`, g], there is an ε > 0 such that,533

for all large n, {Cn} makes at least nε queries.534

Proof. Define the oracle depth of a gate G to be the largest number of oracle gates on any535

directed path ending with G.536

Let {Cn} be a circuit family computing an ≤AC0

T reduction of PARITY to MCSP[`, g]. As537

above, we may assume that each Cn is sturdy, and that the subcircuit Dn consisting of those538

gates at oracle depth 1 consists of NC0 circuitry of depth at most d. Let k be the maximum539

oracle depth of any gate in {Cn}.540

Similar to the proof of the preceding theorem, we construct a sequence of t restrictions541

ρ1, . . . , ρt, so that in Cn|ρi the first i gates G1, . . . , Gi can be replaced a constant. In this542

way, we transform Cn into a circuit on n′ ≥ n/2 input bits of oracle depth k − 1.543

We will first show that there is a value ε > 0 (specified later) such that if Cn does not544

have at least nε gates at oracle depth 1, then Cn can be replaced by an ≤AC0

T reduction of545

oracle depth k − 1, by eliminating all of the oracle gates G1, . . . , Gt at oracle depth 1.546

Our argument proceeds in t stages, where oracle gate Gi is considered in stage i. At the547

start of stage i we have a partial restriction ρi−1 that has at most (i− 1)n1−2ε bits set. Here548

is a detailed description of stage i:549

Consider the circuit family Bn consisting of all of the gates that are on a path from any550

input to Gi. Note that Bn is an NC0 circuit family computing some function fi(x) = Ti(x).551

Let m = |Ti(x)|.552

We now aim to find a restriction of the inputs and a solution to MCSP[`, g] for which the553

output of Gi is constant. Define Πi = (Yi, Ni) to be the promise problem where for all x554

that agree with ρi−1 we put x ∈ Yi if and only if CC(Ti(x)) ≤ `(m) and x ∈ Ni if and only555

if CC(Ti(x)) > g(m). Observe that Bn is an NC0 reduction of Πi to ε-GapMCSP.556

There are two cases, depending on whether N = ∅ or not. If N = ∅, then S = {T :557

CC(T ) ≤ g(|T |)} is a solution to MCSP[`, g] such that every query to Gi is answered558
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affirmatively. By the sturdiness of the reduction, the output of Gi can be replaced by the559

constant 1, and we let ρi = ρi−1.560

If N 6= ∅, then, by Lemma 8, for all large n, c0(Πi|ρi−1) ≤ nε
′ for some ε′ < 1 that561

depends only on d and δ. That is, there is a way to set at most nε′ additional variables,562

thereby extending ρi−1 to obtain a new restriction ρi, such that for any string x of length563

n that agrees with ρi, CC(Ti(x)) > `(m). Thus, S = {T : CC(T ) ≤ `(m)} is a solution to564

MCSP[`, g] such that every query to Gi is answered negatively. Therefore, by the sturdiness565

of the reduction, gate Gi can be replaced by a constant 1.566

This completes stage i. Note that, in obtaining ρi from ρi−1 we set an additional nε′567

variables.568

It is now time to set the constant ε to be 1− (ε′/2).569

Since t < nε, we have that ρt has r ≥ n− tnε
′ = n− n1−(ε′/2)nε

′ = n− n1−(ε′/2) > n/2570

unset variables.571

A minor complication arises, when we want to repeat this argument, to reduce the oracle572

depth to k − 2, etc. Namely, the constant ε′ depends on the depth d of the NC0 circuitry573

that feeds into the oracle gates at the bottom level of Cn. Cn|ρt has oracle depth k − 1, as574

desired, but it now has AC0 circuitry feeding into the lowest level of oracle gates, and when575

we appeal to Lemma 9 to apply a random restriction to convert that AC0 circuitry to NC0
576

circuitry, the depth of the NC0 circuitry increases to a depth that we can denote d2. This577

problem is resolved by observing that the choice of ε′ in Lemma 8 is monotone in the depth578

d. Thus, if we carry out the argument above, but pick ε′ using the parameter d2 instead of579

d when we appeal to Lemma 8, and then repeat the argument to reduce the oracle depth580

to k − 2, the parameters still work out. If we let d3 be the depth of the NC0 circuitry that581

results by starting with Cn with depth-d NC0 circuitry at the bottom, eliminating lowest582

level of oracle gates and applying a random restriction to obtain a circuit family of oracle583

depth k − 1 with NC0 circuitry of depth d2 at the bottom, and then repeating the process to584

obtain a circuit family of oracle depth k − 2 with NC0 circuitry of depth d3 at the bottom,585

then the argument above is sufficient to obtain a circuit family of depth k − 3, etc. Thus,586

there is a choice of ε′ that suffices to convert an arbitrary ≤AC0

T reduction of oracle depth587

k (with fewer than nε oracle gates) to an AC0 circuit computing parity on nΩ(1) input bits,588

thereby obtaining the desired contradiction. J589

7 Open Questions590

There remain several open questions. The true complexity of MCSP remains a mystery.591

We have made progress in understanding the hardness of an approximation to MCSP, but592

how far can Theorem 10 be extended? Can we prove the result for general truth-table593

and Turing reductions? Can we reduce the gap in the theorem to some constant factor594

approximations? Does the impossibility result hold when AC0 is replaced with, say, AC0[2]595

many-one reductions? Does the DET-hardness of MKTP [7] also hold for MCSP, given that596

we have ruled out any large gap reduction?597
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