Electronic Colloquium on Computational Complexity, Report No. 174 (2018)

Parity Decision Tree Complexity is Greater Than Granularity

Anastasiya Chistopolskaya* Vladimir V. Podolskii'

Abstract

We prove a new lower bound on the parity decision tree complexity Dg(f) of a Boolean
function f. Namely, granularity of the Boolean function f is the smallest k such that all Fourier
coefficients of f are integer multiples of 1/2%. We show that Dg (f) > k + 1.

This lower bound is an improvement of the known lower bound through the sparsity of
f. Using our lower bound we determine the exact parity decision tree complexity of several
important Boolean functions including majority, recursive majority and MOD? function. For

majority the complexity is n — B(n) + 1, where B(n) is the number of ones in the binary

representation of n. For recursive majority the complexity is ”TH For MOD? the complexity

is n — 1 for n divisible by 3 and is n otherwise. Finally, we provide an example of a function for
which our lower bound is not tight.

1 Introduction

Parity decision trees is a computational model in which we compute a known Boolean func-
tion f: {0,1}" — {—1,1} on an unknown input = € {0,1}" and in one query we can check
the parity of arbitrary subset of inputs. The computational cost in this model is the number
of queries we have made. The model is a natural generalization of a well-known decision
trees model (in which only the value of a variable can be asked in one query) [1}, [5].

Apart from being natural and interesting on its own parity decision trees model was
studied mainly in connection with Communication Complexity and more specifically, with
Log-rank Conjecture. In Communication Complexity most standard model there are two
players Alice and Bob. Alice is given z € {0,1}" and Bob is given y € {0,1}" and they
are trying to compute some fixed function F': {0,1}" x {0,1}" — {—1,1} on input (z,y).
The question is how many communication is needed to compute F'(x,y) in the worst case.
It is known that the deterministic communication complexity D(F’) of the function F' is
lower bounded by logrank(Mp), where Mp is a communication matrix of F' [6]. It is a
long standing conjecture and one of the key open problems in Communication Complexity;,
called Log-rank Conjecture [7], to prove that D(F’) is upper bounded by a polynomial of
log rank(MFp).

An important special case of Log-rank Conjecture addresses the case of XOR~functions
F(z,y) = f(zx @ y) for some f, where z @ y is a bit-wise XOR of Boolean vectors x and
y. On one hand, this class of functions is wide and captures many important functions

*National Research University Higher School of Economics
Steklov Mathematical Institute, Russian Academy of Sciences and National Research University Higher School
of Economics

ISSN 1433-8092

(including equality, inner product, Hamming distance), and on the other hand the structure
of XOR-functions allows to use analytic tools. For such functions rank(Mp) is equal to the
Fourier sparsity sparf, the number of non-zero Fourier coefficients of f. Thus, the Log-
rank Conjecture for XOR-functions can be restated: is it true that D*(F’) is bounded by a
polynomial of logsparf?

Given a XOR-function f(z @ y) a natural way for Alice and Bob to compute the value of
the function is to use a parity decision tree for f. They can simulate each query in the tree
by computing parity of bits in their parts of the input separately and sending the results
to each other. One query requires two bits of communication and thus D(F) < 2Dg(f).
This leads to an approach to establish Log-rank Conjecture for XOR~function [16]: show
that Dg/(f) is bounded by a polynomial of log sparf.

This approach received a lot of attention in recent years and drew attention to parity
decision trees themselves [16] 13, 12, 15, 14, 4]. In a recent paper [4] it was shown that
actually D(F') and Dg(f) are polynomially related. This means that the simple protocol
described above is not far from being optimal and that the parity decision tree version of
Log-rank Conjecture stated above is actually equivalent to the original Log-rank Conjecture
for XOR-functions.

All this motivates further research on parity decision trees. As for the lower bounds for
parity decision tree complexity, one technique follows from the discussion above: Dg(f) >
D(F)/2 > (logsparf)/2. Although, if Log-rank conjecture for XOR-functions is true,
this approach gives optimal bounds up to a polynomial, in many cases it does not help to
determine precise parity decision tree complexity of Boolean functions. For example, this
approach always gives bounds of at most n/2 for functions of n variables.

Another known approach is of a more combinatorial flavor. For standard decision trees
there are several combinatorial measures known that lower bound decision tree complexity.
Among them the most common are certificate complexity and block sensitivity. In [16] these
measures were generalized to the setting of parity decision tree complexity. Parity decision
tree complexity versions of these measures are actually known to be polynomially related to
parity decision tree complexity [16]. However, they also do not give tight lower bounds for
many interesting functions.

Examples of well-known functions for which the precise parity decision trees complexity
is unknown include the majority function (playing a crucial role in many areas of Theoretical
Computer Science, including Fourier analysis of Boolean functions), recursive majority (in-
teresting, in particular, from decision tree complexity point of view as it provides a gap for
deterministic and randomized decision tree complexity [IT],8]), MOD? function (that usually
turns out to be hard for models limited to computation of parities).

Our Results In this paper we address the problem of improving known lower bounds for
parity decision tree complexity. Our main result is a new lower bound in terms of the
granularity of a Boolean function.

Granularity gran(f) of f: {0,1}" — {—1,1} is the smallest k& such that all Fourier coef-
ficients of f are integer multiples of 1/2%. We show that

Da(f) = gran(f) + 1.

It is a simple corollary of Parseval’s Identity that gran(f) > (logspar(f))/2. Thus our
lower bound is an improvement over the bound through sparsity. On the other hand, it was
shown in [2] that gran(f) < spar(f). Thus, this is an improvement by at most a factor of 2.

Despite for our lower bound being close to the lower bound through sparsity, it allows
to prove tight lower bounds for several important functions. Also unlike the lower bound
through sparsity, new approach allows to prove lower bounds up to n (the largest possible
parity decision tree complexity of a function).

We hope that the connection between parity decision tree complexity and granularity
will help to shed more light on the parity decision tree complexity.

We apply our lower bound to study the parity decision tree complexity of several well-
known Boolean functions. We start with the majority function MAJ. We show that
Do(MAJ) = n — B(n) + 1, where n is the number of variables and B(n) is the number
of ones in the binary representation of n. The upper bound in this result is a simple adap-
tation of a folklore algorithm for the following problem (see, e.g. [10]). Suppose that for odd
n we are given n balls of red and blue colors and we do not see the colors of the balls. In
one query for any pair of balls we can check whether their colors are the same. Our goal is
to find a ball of the same color as the majority of balls. We want to minimize the number of
queries asked in the worst case. There is a folklore algorithm to solve this task in n — B(n)
queries. It was shown in [10] that this is in fact optimal. On the idea level our lower bound
for parity decision tree complexity is inspired by the proof of [10)].

Next we proceed to recursive majority that computes an iteration of majority of three
variables. We show that the parity decision tree complexity of this function is (n + 1)/2.
We also consider MOD? function that checks whether the number of ones in the input is
divisible by 3. We show that the parity decision tree complexity of this function is n — 1 for
n divisible by 3 and is n for other values of n.

Finally, we show a series of examples of functions, for which our lower bound is not
optimal. Namely, we consider threshold functions THRL that check whether there are at
least [ones in the input. We show that for n = 8k 4 2 for £ > 0 and [= 3 our lower bound
implies that at least n — 2 queries are needed to compute the function, whereas the actual
parity decision tree complexity is n — 1. To prove this gap we combine our lower bound with
an additional inductive argument allowing for a weak form of hardness amplification for the
parity decision tree complexity of THRZ functions.

The rest of the paper is organized as follows. In Section [2| we provide necessary definition
and preliminary information. In Section [3| we prove the lower bound on parity decision tree
complexity. In Sections [4] [5] and [6] we study the parity decision tree complexity of majority,
recursive majority and MOD? function respectively. Finally, in Section [7| we provide an
example of a function for which our lower bound is not tight. Some of the technical proofs
are moved to Appendix.

2 Preliminaries

2.1 Fourier Analysis

Throughout the paper we assume that Boolean functions are functions of the form f: {0,1}" —
{—1,1}. That is, input bits are treated as 0 and 1 and to them we will usually apply op-
erations over Fy. Output bits are treated as —1 and 1 and the arithmetic will be over
R.

We denote the variables of functions by = = (x1,...,z,). We use the notation [n] =
{1,...,n}.

We briefly review the notation and needed facts from Boolean Fourier analysis. For
extensive introduction see [9].

For functions f,g: {0,1}" — R consider an inner product

(f,9) = E f(z)g(),

where the expectation is taken over uniform distribution of x on {0, 1}".
For a subset S C [n] we denote by xs(x) = [[,c5(—1)" the Fourier character correspond-

ing to S. We denote by f(S) = (f, xs) the corresponding Fourier coefficient of f.

~

It is well-known that for any = € {0,1}" we have f(z) = > gc(, f(S)xs(@).
If f:{0,1}" — {—1,1} (that is, if f is Boolean) then the well-known Parseval’s Identity

holds:
> S =1

SCln]

By the support of the Boolean function f we denote

~

Supp(f) = {S C [n] | f(S) # 0}.

The sparsity of f is spar(f) = |Supp(f)|. Basically, the sparsity of f is the lp-norm of the
vector of its Fourier coefficients.

Consider a binary fraction «, that is « is a rational number that can be written in a form
that its denominator is a power of 2. By the granularity gran(«) of a we denote the minimal
integer k£ > 0 such that a - 2* is an integer.

We will also frequently use the following closely related notation. For an integer L denote
by P(L) the maximal power of 2 that divides L. It is convenient to set P(0) = oo.

Note that for Boolean f the Fourier coefficients of f are binary fractions. By the granu-
larity of f we call the following value

~

gran(f) = maxgran(f(9)).

SC[n]
It is easy to see that for any f: {0,1}" — {—1,1} it is true that
0<gran(f)<n-—1

and both of these bounds are achievable (for example, for f(z) = @, x; and f(z) = A, 2
respectively).

It is known that gran(f) is always not far from the logarithm of spar(f):

log spar(f)

2
The first inequality can be easily obtained from Parseval’s identity. The second is a non-
trivial result |2, Theorem 3.3 for © = 0]. Again, both inequalities are tight (the first one is

tight for inner product IP(z,y) = @,(x; A y;) or any other bent function [9]; the second one
is tight for example for f(z) = P, z;).

< gran(f) < logspar(f).

2.2 Parity Decision Trees

A parity decision tree 1" is a rooted directed binary tree. Each of its leaves is labeled by
—1 or 1, each internal vertex v is labeled by a parity function P, g =; for some subset
S, C [n]. Each internal node has two outgoing edges, one labeled by —1 and another by
1. A computation of T on input x € {0,1}" is the path from the root to one of the leaves
that in each of the internal vertices v follows the edge, that has label equal to the value of
@D.cs, vi- Label of the leaf that is reached by the path is the output of the computation.
The tree T' computes the function f: {0,1}" — {—1,1} iff on each input = € {0,1}" the
output of T is equal to f(x). Parity decision tree complexity of f is the minimal depth of a
tree computing f. We denote this value by Dg(f).

One known way to lower bound parity decision tree complexity goes through commu-
nication complexity of XOR functions. We state the bound in the following lemma (see,

e.g. []).
Lemma 1. For any function f: {0,1}" — {—1,1} we have

Do(f) > logsp2ar(f).

This lower bound turns out to be useful in many cases, especially when we are interested
in the complexity up to a multiplicative constant or up to a polynomial factor. However, it
does not always help to find an exact value of the complexity of the function and in principle
cannot give lower bounds greater than n/2.

Another more combinatorial approach goes through analogs of certificate complexity and
block sensitivity for parity decision trees [16]. Since parity block sensitivity is always less
or equal then parity certificate complexity and we are interested in lower bounds, we will
introduce only certificate complexity here.

For a function f: {0,1}" — {—1,1} and = € {0,1}" denote by Cg(f,x) the minimal
co-dimension of an affine subspace in {0,1}" that contains x and on which f is constant.
The parity certificate complezity of f is Cg(f) = max, Cy(f,).

Lemma 2 ([I6]). For any function f: {0,1}" — {—1,1} we have
Do (f) = Ca (/).

This approach allows to show strong lower bounds for some functions. For example, it
can be used to show that Dg(AND,,) = n. However, for more complicated functions like
majority or recursive majority this lemma does not give tight lower bounds.

3 Lower Bound on Parity Decision Trees

Through the connection to communication complexity it is known that Dg(f) > M

for any f. In our main result we improve this bound.

Theorem 3. For any non-constant f: {0,1}" — {—1,1} we have

Di(f) = gran(f) + 1.

Proof. We prove the theorem by an adversary argument. That is, we will describe the
strategy for the adversary to answer queries of a parity decision tree in order to make the
tree to make many queries to compute the output.

Denote k = gran(f) and denote by S C [n] the subset on which the granularity is achieved,

that is & = gran(f(5)). We have that

=0 3 S =g X xs@- ¥)

ze{0,1}" zef~1(1) zef~1(-1)
1
A e ¥ e
ze{0,1}" z€f~1(-1)

Note that the first sum in the last expression is equal to 2" if S =) and is equal to 0
otherwise. Thus for the granularity of f(S) to be equal to k the sum - .. xs(x)

should be divisible by 2"7*~! and should not be divisible by 2"7*. In other words (recall
that P(L) is the maximal power of 2 that divides L),

Pl > xsl)]|=n—k-1 (1)

zef~1(-1)

After each step of the computation the query fixes some parity of inputs to be equal to
some fixed value. Denote by C; C [n] the set of inputs that are still consistent with the
current node of a tree after step ¢, and on which the function is equal to —1. We have that

Cy= fﬁl(—l).

We will show that we can answer the queries in such a way that

Pl Y xs(@)] <P (Z Xs(@) : (2)

z€Cit1 zecC;

To see this observe that the (i 4 1)-st query splits the current set C; into two disjoint subsets
A and B. In particular,

> xs(@) =) xs(x)+ > xs(x).

zeC} zeA zeB

If both sums in the right-hand side are divisible by some power of 2, then the left-hand side

also is. Thus,
min (P (Z Xs(x)) P (Z Xs(@)) <P (Z Xs(@) :
TEA zeB zeC}

Pick for Cj,4 the set, on which the minimum in the left-hand side is achieved.

Suppose the protocol makes t queries. The set of inputs that reach the leaf forms an
affine subspace of Boolean cube of dimension at least n — ¢, on which the function f must
be constant. Thus the sum

Z xs(@)

zeCy

is the sum of a character over an affine subspace, and thus is equal to either 0, or 2", In

both cases
P (Z m(az)) >n—t. (3)

T€EA

Combining (1))- () we get
n—k—1>n-—t

and the theorem follows. O]

4 Majority Function

In this section we analyze parity decision tree complexity of the majority function MAJ, : {0,1}" —
{—1,1}. The function is defined as follows:

MAJ,(z)=-1< Zz, > g
i=1

To state our results we will need the following notation: let B(k) be the number of ones
in a binary representation of k.

We start with an upper bound. The following lemma is a simple adaptation of the folklore
algorithm (see, e.g. [10]).

Lemma 4.
De(MAJ,) <n—B(n)+ 1.

Proof. Our parity decision tree will mostly make queries of the form y @ z for a pair of
variables. Note that such a query basically checks whether y and z are equal.

Our algorithm will maintain splitting of input variables into blocks of two types. We will
maintain the following properties:

e the size of each block is a power of 2;

e all variables in each block of type 1 are equal,

7

e blocks of type 2 are balanced, that is they have equal number of ones and zeros.

In the beginning of the computation each variable forms a separate block of size one. During
each step the algorithm will merge two blocks into a new one. Thus, after k steps the number
of blocks is n — k.

The algorithms works as follows. On each step we pick two blocks of type 1 of equal size.
We pick one variable from each block and query the parity of these two variables. If the
variables are equal, we merge the blocks into a new block of type 1. If the variables are not
equal, the new block is of type 2. The process stops when there are no blocks of type 1 of
equal size.

It is easy to see that all of the properties listed above are maintained. In the end of the
process we have some blocks of the second type (possibly none of them) and some blocks
of the first type (possibly none of them) of pairwise non-equal size. Note that the value of
the majority function is determined by the value of variables in the largest block of type 1.
Indeed, all blocks of type 2 are balanced and the largest block of type 1 has more variables
then all other blocks of type 1 in total. Thus, to find the value of MAJ, it remains to query
one variable from the largest block of type 1. Note, that the case when there are no blocks
of type 1 in the end of the process correspond to balanced input (and even n). In this case
we can tell that the output is —1 without any additional queries.

Note that the sum of sizes of all blocks is equal to n. Since the size of each block is a
power of 2, there are at least B(n) blocks in the end of the computation (one cannot break
n in the sum of less then B(n) powers of 2). Thus, overall we make at most n — B(n) + 1
queries and the lemma follows. n

Before proceeding with the lower bound we briefly discuss lower bounds that can be
obtained by other approaches. It is known that spar(MAJ,) = 2"~ [9]. Thus from the
sparsity lower bound we can only get Dg(MAJ,) > logspar(MAJ,)/2 = 251

Note also that each input x € {0,1}" to MAJ,, lies in the subcube of dimension at least
[251]. Indeed, if MAJ,(x) = 1 just pick a subcube on some subset of variables of size ["51]
containing all ones of the input. The case MAJ,(z) = —1 is symmetrical. Thus, in the
approach through certificate complexity we get Dg(MAJ,,) > ["7_11

We next show that Theorem [3| gives a tight lower bound for parity decision tree of MAJ,,.

Lemma 5. gran(MAJ,) =n — B(n).

Proof. We will show that gran(MAlJ,) > n — B(n). The inequality in the other direction
follows from Lemma [l -

We consider the Fourier coefficient MAJ, ([n]) and show that its granularity is at least
n—B(n). Let k = |(n+1)/2]. Note that k is the smallest number such that MAJ, is —1
on inputs with k ones.

Then we have

o (550

_ 2in (izn;(—ni(?z) —2 ;(—1)2'(?)) = zin (0 - 2;;(—1)1'(7;)) .

From this we can see that

gran(NAT,([n]) = n — P (2 é(—w(’;)) .

We proceed to simplify the sum of binomials (a very similar analysis is presented in [10]):

S () e () (1)~ (i)

Thus it remains to compute P(2(Z:i)) For even n = 2h we have k = h and 2(2:1) =

2(2:__11) = (2}?) For odd n = 2h + 1 we have k = h + 1 and 2(2:}) = 2(2}7).

By [10, Proposition 3.4] we have P((th)) = B(h) (alternatively this can be seen from

Kummer’s theorem). Finally, notice that B(2h) = B(h) and B(2h+1) = B(h) + 1. Tt follows

that .
P (2 Z;(—w(z‘)) — B(n)

gran(l\mn([n])) =n—B(n).

and

Overall, we have the following theorem.

Theorem 6.
De(MAJ,) =n—B(n) + 1.

5 Recursive Majority

Next we study the parity decision tree complexity of recursive majority MAJ%M . This is
a function on n = 3* variables and it can be defined recursively. For £k = 1 we just let
MAJ$' = MAJ;. For k > 1 we let

MAJ$* = MAJ; (MAJS 1 MAJS* MAJS* 1) |

where each 1\/[AJ§?]€_1 is applied to a separate block of variables.
We start with an upper bound.

Lemma 7. Dg,(MAJ$*) < (n+1)/2.

Proof. Basically, recursive majority MAJ?k is a function computed by a Boolean circuit
which graph is a complete ternary tree of depth k, each internal vertex is labeled by the
function MAJ3 and each leaf is labeled by a (fresh) variable.

To construct an algorithm we first generalize the problem. We consider functions com-
puted by Boolean circuits which graphs are ternary tree, where each non-leaf has fan-in 3

9

and is labeled by MAJ3, and each leaf is labeled by a fresh variable. We will show that if
the number of non-leaf variables in the circuit is /, then the function can be computed by a
parity decision tree of size [+ 1.

The proof is by induction on [. If [= 1, then the function in question is just MAJ3 and
by the results of Section {4 it can be computed by a parity decision tree of size 2.

For the step of induction consider a tree with [non-leaf vertices. Consider a non-leaf
vertex of the largest depth. All of its three inputs must be variables, lets denote them by vy,
z and t, and in this vertex the function MAJ;(y, z,t) is computed. Our first query will be
y @ z. It will tell us whether y and z are equal. If y = z are equal, then MAJ3(y, z,t) = y,
and if y # z, then MAJ3(y, z,t) = t. Thus, we can substitute the gate in our vertex by the
corresponding variable and reduce the problem to the circuit with [— 1 non-leaf vertices.
By induction hypothesis, the function computed by this circuit can be computed by at most
(I — 1) + 1 = [queries. Thus, our original function is computable by [4+ 1 queries.

It is left to observe that a complete ternary tree of depth k has 3* ' + ... +1 = 3k2’ 1

non-leaf vertices and for this tree our algorithm makes 32—+1 = ”TH

queries.]

Before proceeding to the lower bound we again discuss lower bounds that can be obtained
by other techniques.

First note that each input z € {0, 1}" lies in the subspace of co-dimension at most 2¥ on
which the function is constant. For this it is enough to show that in each x we can flip 3% —2*
variables without changing the value of the function. This is easy to check by induction on
k. For k = 1 there are two variables that are equal to each other and we can flip the third
variable without changing the value of the function. For k£ > 1 consider inputs to the MAJ3
at the top of the circuit. Two of them are equal and by induction hypothesis we can flip
3F=1 — 21 variables in each of them without changing the value of the function. The last
input to the top gate does not affect the value of the function and we can flip all 3*~! variables
in it. Overall this gives us 3* — 2¥ variables. This gives us Cq(MAJS®) < 2F = n'°832 which
does not give a matching lower bound.

For Fourier analytic considerations it is convenient to switch to {—1,1} Boolean inputs.
For a variable y € {0, 1} let us denote by ¢y € {—1,1} the variable ¢y’ = 1 — 2y. For now we
will use new variables as inputs to Boolean functions.

The Fourier decomposition of MAJ; is

1
MAJs(y', 2, t') = 5 (v + 2"+t =2t (4)

From this the Fourier decomposition of MAJ$* can be obtain by recursion:

1
MAJG (2!, 2%, %) =5 (MAJF* ! (21) + MAJF* ™ (2?) + MAJF ™ (2)
— MAJS* () - MAJSF (22) - MAJSF1(2?)),

(5)

where !, 22, 23 are blocks of 3*~! variables.

Lemma can give lower bounds up to n/2 and thus in principle might give at least almost
matching lower bound. However, this is not the case as we discuss below.

10

Note that since there is no free coefficient in the polynomial , Fourier coefficients
arising from all three summands in the right-hand side of will not cancel out with each
other: none two of them have equal set of variables. Thus, if we denote S(k) = spar(MAJ$*)
we have that S(1) =4 and

S(k)=3S(k—1)+S(k—1)?* (6)

for k> 1. On one hand, this means that S(k) > S(k — 1)3. This gives S(k) > 22" Thus
log spar(MAJS*) > 2-38=1 = 2n/3 and Dg(MAJS*®) > n/3.
On the other hand if we let S'(k) = S(k) 4+ 1/2, it is easy to check that (6)) implies

S'(k) < S'(k — 1),

3k—1

Since S'(1) = 9/2 this gives §'(k) < 20082 53"~ Thuyg,

log spar(MAJ$*) < (log2 g) : g < 0.723 - n.

Thus Lemma [If can give us a lower bound of at most 0.362 - n. We note that this upper
bound on the sparsity can be further improved by letting S’(k) = S(k) 4+ « for smaller «.

——— Rk
Now we proceed to the tight lower bound. Again we will estimate gran(MAJ; [n]).
Observe that this Fourier coefficient can be easily computed from and (5)). Indeed,

———®1
from ({)) we have that ‘MAJ3 [n]| = 3. From (f]) we have that

‘MAJg m))? .

’ ‘1 /\®k1

The numerator of this Fourier coefficient equals to 1 for any k. Thus, denoting G(n) =
— k
gran(MAJ? [n]) for n = 3 we have G(3) = 1 and

G(n) = 3G (g) +1.

It is straightforward to check that G(n) = ”T’l From this, Theorem |3| and Lemma [7| the
following theorem follows.

Theorem 8. Dg(MAJSY) = 2l where n = 3% is the number of variables.

6 MOD? Function

In this section we provide one more example of the well-known function for which our lower
bounds allows to determine parity decision tree complexity.

We let
MOD? (z) = —1 < le =0 (mod 3),

11

where z € {0,1}".

For this function lower bounds through certificate complexity and sparsity are again not
very strong.

For certificate complexity note that any x € {0,1}" lies in the subspace of dimension
approximately n/3 on which MOD? is constant. Indeed, we can split into n/3 + o(n)
blocks of size 3 in such a way that in each block all bits of x are equal. Flipping all variables
in a block does not affect the value of the function. Thus, through certificate complexity we
cannot obtain a lower bound better than 2n/3 + o(n).

For sparsity, again, Lemma [I| cannot give a lower bound better than n/2.

From Theorem [3, however, a much better lower bound follows easily.

Lemma 9. For n = 0 (mod 3) we have Dg,(MOD?) > n — 1 and for n # 0 (mod 3) we
have Dg,(MOD?) > n.

The proof of this lemma goes by analysis of ﬁO\Di((Z)) and is technical. It can be found
in Appendix [8.1}

We next show that this lower bound is tight. For this it is enough to show that
De(MOD?) <n —1 for n =0 (mod 3). We prove this by induction on n.

For n = 3 we just need to check whether all inputs x1, z9, x3 are equal. It is enough to
query x1 @ x5 and xo @ x3. The output is —1 iff the output to both queries is 1.

For the step of induction consider the function MOD? ;(z1,...,2,). As in the proof of
the upper bound for MAJ, it is convenient to think of input variables as of trivial blocks
of variables of size 1. By the first three queries we consecutively check whether x, = x,1,
Tpto = Tpys and x, = X, thus forming blocks of variables {z,, zni1}, {ZTnio, Tnis} and
{Zn, Tpi1, Tns2, Tnys}. If the answer to one of the queries is ‘no’, we know that the corre-
sponding block is balanced. In this case we stop the process immediately (for example, we
do not ask the second and the third queries above if the first block is balanced) and just
query one variable from each of the remaining blocks. From this we know the number of
ones in the input and can output MOD? (). It is easy to see that we make at most n + 2
queries (we save one query by not querying variables from the balanced block). If on the
other hand, the answer to all of the three first queries is ‘yes’, we know that the last four
inputs are equal. Thus

MOD?H—S(xlv s >xn+3) = MODi(l’l, R ,l‘n)

and it remains to compute the latter function. By induction hypothesis this can be done in
at most n — 1 query and in total we again have at most n + 2 queries.
Overall we get the following theorem.

Theorem 10. For n =0 (mod 3) we have Dg(MOD?) =n — 1 and for n £ 0 (mod 3) we
have Dg(MOD?) = n.

Remark 11. We note that the functions MOD® for larger k are trickier to analyze. For
example, for MODg both Fourier coefficients corresponding to () and [n] has granularity 1
giving lower bound Dg,(MODE) > 2. We need to consider a Fourier coefficient corresponding
to a set of size 1 to show lower bound Dg(MODg) > 4. This lower bound is tight: we can
first by three queries form blocks of size 2, then pick one variable from each unbalanced block
and compute the parity of them.

12

7 A Function f with Dg(f) > gran(f) +1

In this section we provide an example of a function for which our lower bound is not tight.
For this we study the family of threshold functions.
For arbitrary n and k we let

THRY(x) = —1& > x>k,
i=1

where x € {0,1}". Note that MAJ,, = THR/"/?].

Our examples will form a subfamily of this family of functions.

To show that our lower bound is not tight we need an approach to prove even better
lower bounds. We will do it via the following theorem.

Theorem 12. For any s,k,n if Dg(THRL) > s, then Dg(THRETY) > s+ 1.

Proof. We will argue by a contradiction. Assume that Dg(THRETY) < 5. We will construct
a parity decision tree for THRF making no more than s — 1 queries.

Denote the input variables to THRY by x = (x,...,2,). We introduce one more vari-
able y (which we will fix later) and consider the sequence z1, ..., x,,y, 7y as inputs to the
algorithm for THRE). Note that THR. () = THREL) (2, y, —y). Our plan is to simulate
the algorithm for T HRfLié on (x,y,—y) and save one query on our way.

Consider the first query that the algorithm makes to (x1,...,x,,y, y). Suppose first
that the query does not ask the parity of all variables (D;_, z;) &y ® -y (we will deal with
this case later). Since the function THRQ@ is symmetric we can rename the input bits in
such a way that the query contains input y and does not contain —y, that is the query asks
the parity (,.5 i) @y for some S C [n]. Now it is time for us to fix the value of y. We
let y = @,cq 7. Then the answer to the first query is 0, we can skip it and proceed to
the second query. For each next query of the algorithm for THRﬁi§ if it contains y or —y
(or both) we substitute them by @, ¢ x; and (,.qxi) ® 1 respectively. The result is the

parity of some variables among z1, ..., x, and we make this query to our original input .
Clearly the answer to the query to x is the same as the answer to the original query to
k41

(x,y,~y). Thus, making at most s — 1 queries we reach the leaf of the tree for THR;}; and
thus compute THR) (7, y, ~y) = THRE (2).

It remains to consider the case when the first query to THRE) is (DI, z:) ® y & —y.
This parity is equal to @), z; and we make this query to . Now we proceed to the second
query in the computation of THRE'} and this query is not equal to (B!, z;) © y ® —y. We
perform the same analysis as above for this query: rename the inputs, fix y to the parity
of subset of x to make the answer to the query to be equal to 0, simulate further queries
to (z,,—y). Again we save one query in this case and compute THRF (x) in at most s — 1
queries.]

Next we analyze the decision tree complexity of THREL functions. For them our lower
bound is tight, but we need this analysis to use in combination with Theorem (12| to provide
our example.

13

Lemma 13. For even n we have Dg(THR2) = n and for odd n we have Dg(THRZ) =n—1.

Proof sketch. The proof of the lower bound is technical and is omitted. The complete proof
of the lemma can be found in Appendix

Here we only prove that the lower bound is tight for odd n. To provide an algorithm
making at most n — 1 queries we again will split variables into blocks and again will assume
that in the beginning all blocks are of size 1. We split all variables but one into pairs and
check whether variables in each pair are equal. After this we have (n — 1)/2 blocks of size 2
and one block of size 1. If there is a balanced block of size 2, again we can just query one
variable from each of the remaining blocks thus learning the number of ones in the input.
This allows us to compute the function in at most n — 1 queries. If all blocks of size 2 contain
equal variables, then note that the value of the function does not depend on the variable in
the block of size 1. Indeed, THRZ(z) = 1iff 3", z; > 2 iff there is a block of size 2 containing
variables equal to 1. Thus it remains to query one varaible from each block of size 2, which
again alows us to compute the function with at most n — 1 queries. O

We are now ready to proceed to the example of the functions for which the lower bound
in Theorem [3]is tight.

Lemma 14. For n = 8k + 2 for integer k we have gran(THR?) = n — 3.

The proof of this lemma is technical and can be found in Appendix [8.3]
We now show that for functions in Lemma [14] their decision tree complexity is greater
than their granularity plus one.

Theorem 15. For n = 8k + 2 for integer k > 0 we have Dgy(THR?) = n — 1.

Proof. For the lower bound we note that n — 3 is odd and thus by Lemma we have
De(THR?2 ,) > n — 2. Then by Theorem [12| we have Dg(THR?) > n — 1.

For the upper bound we again view the inputs as blocks of size 1 and by checking equality
of variables combine all variables but two into blocks of size 4. If we encounter a balanced
block we just query one variable from all remaining block thus learning the number of ones
in the input in at most n — 1 queries. If all blocks contain equal variables, then as in the
proof of Lemma [13| we observe that two variables outside of blocks of size 4 does not affect
the value of the function. Indeed, THR?(z) = 1 iff Y, x; > 3 iff there is a block of size 4
containing variables equal to 1. O]

Thus, we have shown that the lower bound in Theorem [3[is not tight for THRE, ,.
However, the gap between the lower bound and the actual complexity is 1.

Remark 16. We note that from our analysis it is straightforward to determine the complexity
of THR? for all n. If n = 4k or 4k + 3 for some k, then Dg(THR?) = n and if n = 4k + 1
orn =4k + 2, then Dg(THR3) = n — 1. The lower bounds (apart from the case covered by

—3 _———3
Theorem follows from the consideration of THR, (D) and THR, ([n]) as in the proof of
Lemma|[14. The upper bound follows the same analysis as in the proof of Theorem 15

14

References

1]

2]

3]

[4]

H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21-43, 2002.

P. Gopalan, R. O’Donnell, R. A. Servedio, A. Shpilka, and K. Wimmer. Testing fourier
dimensionality and sparsity. SIAM J. Comput., 40(4):1075-1100, 2011.

H. Gould. Combinatorial identities: a standardized set of tables listing 500 binomial
coefficient summations. Morgantown, W Va, 1972.

H. Hatami, K. Hosseini, and S. Lovett. Structure of protocols for XOR functions. In
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 282-288, 2016.

S. Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algo-
rithms and combinatorics. Springer, 2012.

E. Kushilevitz and N. Nisan. Communication complezxity. Cambridge University Press,
1997.

L. Lovasz and M. E. Saks. Lattices, Mobius functions and communication complexity.
In 29th Annual Symposium on Foundations of Computer Science, White Plains, New
York, USA, 24-26 October 1988, pages 81-90, 1988.

F. Magniez, A. Nayak, M. Santha, J. Sherman, G. Tardos, and D. Xiao. Improved
bounds for the randomized decision tree complexity of recursive majority. Random
Struct. Algorithms, 48(3):612-638, 2016.

R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

M. E. Saks and M. Werman. On computing majority by comparisons. Combinatorica,
11(4):383-387, 1991.

M. E. Saks and A. Wigderson. Probabilistic boolean decision trees and the complexity
of evaluating game trees. In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 October 1986, pages 29-38. IEEE Computer Society,
1986.

A. Shpilka, A. Tal, and B. lee Volk. On the structure of boolean functions with small
spectral norm. In Innovations in Theoretical Computer Science, ITCS’1}, Princeton,
NJ, USA, January 12-14, 201/, pages 37-48, 2014.

H. Y. Tsang, C. H. Wong, N. Xie, and S. Zhang. Fourier sparsity, spectral norm, and
the log-rank conjecture. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 658667, 2013.

H.Y. Tsang, N. Xie, and S. Zhang. Fourier sparsity of GF(2) polynomials. In Computer
Science - Theory and Applications - 11th International Computer Science Symposium in

15

Russia, CSR 2016, St. Petersburg, Russia, June 9-13, 2016, Proceedings, pages 409-424,
2016.

[15] P. Yao. Parity decision tree complexity and 4-party communication complexity of xor-
functions are polynomially equivalent. Chicago J. Theor. Comput. Sci., 2016, 2016.

[16] Z. Zhang and Y. Shi. On the parity complexity measures of boolean functions. Theor.
Comput. Sci., 411(26-28):2612-2618, 2010.

8 Appendix: Omitted Proofs

8.1 Proof of Lemma

—3
We consider the Fourier coefficient MOD,, () and compute its granularity.

We have
n
1

Mo -5 | X (1)~ >
i=0 (mod 3

120 (mod 3))
_ 1 En my 2 E n _ ! 2" —2 E "
Coon | 4 i , i oo , i
1=0 =0 (mod 3) =0 (mod 3)

—3
From this we can see that gran(MOD,,(0)) =n — P (ZEO (mod 3) (”)) — 1 and thus

De(MOD3) >n—P | (") . (7)
=0 (mod 3) !
It is well known (see, e.g. [3| equation 1.56]) that

n 2"+ m
> (-5

=0 (mod 3

where m is equal to 1 or —1 for n # 0 (mod 3) and m is equal to 2 or —2 for n = 0 (mod 3).
It is easy to see that in the former case P (ZEO (mod 3) (”)) = 0 and in the latter case

%

P (ZEO (mod 3) (?)) = 1. From this and the lemma follows.

8.2 Complete Proof of Lemma

We start with a lower bound.))
Here we will need to consider two Fourier coefficients, THR, () and THR,,([n]). We start
with the latter one.

16

We have

- 5 (350() - S ()
“5 (22 () -z ()) = (e () o)

K3 K2

From this we can see that gran(THRn([n])) =n—P (ZLO(—l)”(’;)) — 1 and thus

Do (THR2) > n — P <21:(—1)n (Z‘)) .

1=0

2
By the same analysis for THR,, () we can show that

Do(THR2) > n — P <21: <7Z)> .

=0

Note that 23:0(—1)”(?) =1l-nand ¥/, (") = 1+n. From this for even n we clearly obtain
a lower bound of Dg(THR2) > n. For odd n it is easy to see that one of the numbers 1 —n
and 1 + n is not divisible by 4. Thus for odd n we obtain lower bound Dg(THRZ) > n — 1.

It remains to prove that the lower bound is tight for odd n. To provide an algorithm
making at most n — 1 queries we again will split variables into blocks and again will assume
that in the beginning all blocks are of size 1. We split all variables but one into pairs and
check whether variables in each pair are equal. After this we have (n — 1)/2 blocks of size 2
and one block of size 1. If there is a balanced block of size 2, again we can just query one
variable from each of the remaining blocks thus learning the number of ones in the input.
This allows us to compute the function in at most n— 1 queries. If all blocks of size 2 contain
equal variables, then note that the value of the function does not depend on the variable in
the block of size 1. Indeed, THRZ(z) = 1iff >, z; > 2 iff there is a block of size 2 containing
variables equal to 1. Thus it remains to query one varaible from each block of size 2, which
again alows us to compute the function with at most n — 1 queries.

8.3 Proof of Lemma [14]

_——3
For the upper bound we need to consider an arbitrary Fourier coefficient THR,,(S). We have

THR(S) =5 [2 vt — 3 x| =5 [2 2)= 3 o]

o, |z|<2 x,|z[>3 z,|z|<2 ze{0,1}n

where by |z| we denote Y, x;. The second sum in the last expression is equal to either 2"
or 0 depending on S. Thus we have

gran(ﬁi(S)) =n—P Z xs(x) | —1. (8)

z,|z|<2

17

Denote the size of S by [. Then we have

11— 1) (n—0)(n—1-1)

2 Y

Z xs(@)=1—=1+(n—-1)+

a,|z|<2

—Il(n—1)+

where the first summand corresponds to « with || = 0, the next two summands correspond
to |z| = 1 and the last three correspond to |z| = 2.
Rearranging this expression we obtain

AP+ 24 (n+1)(n —41)
D xsle) = 5 .

z,|z|<2

We need to show that for n = 2 (mod 8) this number is divisible by 4, that is its numerator
is divisible by 8. Since divisibility by 8 depends only on the remainder of n when divided by
8, it is enough to check divisibility of the numerator by 8 for n = 2. We have

AP 42+ (n+1)(n—4l) =42+ 2+ 3(2 — 41) = 4(* — 31 + 2),
which is clearly divisible by 8 for all /. Thus P (ZLIJ»‘\Q XS(ZL")> > 2 for n =8k + 2 and

gran(THR?) < n — 3.

For the lower bound on the granularity it is enough to consider Fourier coefficients
THR,,(0) and THR,,([n]). For them we have

nn—1) 2+4+n(n+1)
2 2

Z xo(z) =1+n+

z,|z|<2

wnd 3 (n—1) 2+n(n-3)
n(n — + n(n —

z,|z|<2

To show the lower bound it is enough to show that for any n = 8k + 2 at least one of
these expressions is not divisible by 8, that is their numerators are not divisible by 16. It is
straightforward to check that for n = 2 (mod 16) we have 2 +n(n + 1) = 8 (mod 16) and
for n = 10 (mod 16) we have 2 + n(n — 3) = 8 (mod 16). In both cases by we found a
Fourier coefficients with granularity at least n — 3.

18

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

