
Parity Decision Tree Complexity is Greater Than Granularity

Anastasiya Chistopolskaya∗ Vladimir V. Podolskii†

Abstract

We prove a new lower bound on the parity decision tree complexity D⊕(f) of a Boolean
function f . Namely, granularity of the Boolean function f is the smallest k such that all Fourier
coefficients of f are integer multiples of 1/2k. We show that D⊕(f) ≥ k + 1.

This lower bound is an improvement of lower bounds through the sparsity of f and through
the degree of f over F2. Using our lower bound we determine the exact parity decision tree
complexity of several important Boolean functions including majority and recursive majority.
For majority the complexity is n − B(n) + 1, where B(n) is the number of ones in the binary
representation of n. For recursive majority the complexity is n+1

2 . Finally, we provide an
example of a function for which our lower bound is not tight.

Our results imply new lower bound of n−B(n) on the multiplicative complexity of majority.

1 Introduction

Parity decision trees is a computational model in which we compute a known Boolean func-
tion f : {0, 1}n → {−1, 1} on an unknown input x ∈ {0, 1}n and in one query we can check
the parity of arbitrary subset of inputs. The computational cost in this model is the number
of queries we have made. The model is a natural generalization of a well-known decision
trees model (in which only the value of a variable can be asked in one query) [4, 7].

Apart from being natural and interesting on its own parity decision trees model was
studied mainly in connection with Communication Complexity and more specifically, with
Log-rank Conjecture. In Communication Complexity most standard model there are two
players Alice and Bob. Alice is given x ∈ {0, 1}n and Bob is given y ∈ {0, 1}n and they
are trying to compute some fixed function F : {0, 1}n × {0, 1}n → {−1, 1} on input (x, y).
The question is how many communication is needed to compute F (x, y) in the worst case.
It is known that the deterministic communication complexity Dcc(F) of the function F is
lower bounded by log rank(MF), where MF is a communication matrix of F [11]. It is a
long standing conjecture and one of the key open problems in Communication Complexity,
called Log-rank Conjecture [12], to prove that Dcc(F) is upper bounded by a polynomial of
log rank(MF).

An important special case of Log-rank Conjecture addresses the case of XOR-functions
F (x, y) = f(x ⊕ y) for some f , where x ⊕ y is a bit-wise XOR of Boolean vectors x and
y. On one hand, this class of functions is wide and captures many important functions

∗National Research University Higher School of Economics
†Steklov Mathematical Institute, Russian Academy of Sciences and National Research University Higher School

of Economics

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 174 (2018)

(including equality, inner product, Hamming distance), and on the other hand the structure
of XOR-functions allows to use analytic tools. For such functions rank(MF) is equal to the
Fourier sparsity sparf , the number of non-zero Fourier coefficients of f . Thus, the Log-
rank Conjecture for XOR-functions can be restated: is it true that Dcc(F) is bounded by a
polynomial of log sparf?

Given a XOR-function f(x⊕ y) a natural way for Alice and Bob to compute the value of
the function is to use a parity decision tree for f . They can simulate each query in the tree
by computing parity of bits in their parts of the input separately and sending the results
to each other. One query requires two bits of communication and thus Dcc(F) ≤ 2D⊕(f).
This leads to an approach to establish Log-rank Conjecture for XOR-function [22]: show
that D⊕(f) is bounded by a polynomial of log sparf .

This approach received a lot of attention in recent years and drew attention to parity
decision trees themselves [22, 18, 17, 21, 19, 6]. In a recent paper [6] it was shown that
actually Dcc(F) and D⊕(f) are polynomially related. This means that the simple protocol
described above is not far from being optimal and that the parity decision tree version of
Log-rank Conjecture stated above is actually equivalent to the original Log-rank Conjecture
for XOR-functions.

All this motivates further research on parity decision trees. As for the lower bounds for
parity decision tree complexity, one technique follows from the discussion above: D⊕(f) ≥
Dcc(F)/2 ≥ (log sparf)/2. Although, if Log-rank conjecture for XOR-functions is true,
this approach gives optimal bounds up to a polynomial, in many cases it does not help to
determine the precise parity decision tree complexity of Boolean functions. For example,
this approach always gives bounds of at most n/2 for functions of n variables.

Another known approach is of a more combinatorial flavor. For standard decision trees
there are several combinatorial measures known that lower bound decision tree complexity.
Among them the most common are certificate complexity and block sensitivity. In [22] these
measures were generalized to the setting of parity decision tree complexity. Parity decision
tree complexity versions of these measures are actually known to be polynomially related to
parity decision tree complexity [22]. However, they also do not give tight lower bounds for
some interesting functions.

Yet another standard approach is through the degree of polynomials. It is well known
that the complexity of a function in standard decision trees model is lower bounded by the
degree of the function over R (see, e.g. [4]). Completely analogously it can be shown that the
parity decision tree complexity of a function is lower bounded by the degree of the function
over F2 (although, the adaptation to parity decision trees is straightforward we have not seen
it mentioned in the literature; we provide a proof in Section 2 for the sake of completeness).
This approach also does not give tight lower bounds for some interesting functions.

Examples of well-known functions for which the precise parity decision trees complexity
is unknown include the majority function (playing a crucial role in many areas of Theoretical
Computer Science, including Fourier analysis of Boolean functions) and recursive majority
(interesting, in particular, from decision tree complexity point of view as it provides a gap
for deterministic and randomized decision tree complexity [16, 13]).

2

Our Results In this paper we address the problem of improving known lower bounds for
parity decision tree complexity. Our main result is a new lower bound in terms of the
granularity of a Boolean function.

Granularity gran(f) of f : {0, 1}n → {−1, 1} is the smallest k such that all Fourier coef-
ficients of f are integer multiples of 1/2k. We show that

D⊕(f) ≥ gran(f) + 1.

It is a simple corollary of Parseval’s Identity that gran(f) ≥ (log spar(f))/2. Thus our
lower bound is an improvement over the bound through sparsity. On the other hand, it was
shown in [5] (see also [19]) that gran(f) ≤ log spar(f)− 1. Thus, this is an improvement by
at most a factor of 2.

We also observe that gran(f) + 1 ≥ deg2(f), where by deg2(f) we denote the degree of f
over F2. Thus, our lower bound is also not weaker than the lower bound through the degree
of the function.

Despite for our lower bound being close to the lower bound through sparsity, it allows
to prove tight lower bounds for several important functions. Also unlike the lower bound
through sparsity, new approach allows to prove lower bounds up to n (the largest possible
parity decision tree complexity of a function).

We hope that the connection between parity decision tree complexity and granularity
will help to shed more light on the parity decision tree complexity.

We apply our lower bound to study the parity decision tree complexity of several well-
known Boolean functions. We start with the majority function MAJ. We show that
D⊕(MAJ) = n − B(n) + 1, where n is the number of variables and B(n) is the number
of ones in the binary representation of n. The upper bound in this result is a simple adap-
tation of a folklore algorithm for the following problem (see, e.g. [15]). Suppose that for odd
n we are given n balls of red and blue colors and we do not see the colors of the balls. In
one query for any pair of balls we can check whether their colors are the same. Our goal is
to find a ball of the same color as the majority of balls. We want to minimize the number of
queries asked in the worst case. There is a folklore algorithm to solve this task in n− B(n)
queries. It was shown in [15] that this is in fact optimal. On the idea level our lower bound
for parity decision tree complexity is inspired by the proof of [15].

Due to the connection between parity decision tree complexity and multiplicative com-
plexity communicated to us by Alexander Kulikov [10] from our results it follows that multi-
plicative complexity of MAJ is at least n−B(n). This is an improvement of the lower bound
of [3]. Previously our lower bound was known only in the case when n is the power of 2 [3].

Next we proceed to recursive majority that computes an iteration of majority of three
variables. We show that the parity decision tree complexity of this function is (n+ 1)/2.

Finally, we show a series of examples of functions, for which our lower bound is not
optimal. Namely, we consider threshold functions THRl

n that check whether there are at
least l ones in the input. We show that for n = 8k + 2 for k > 0 and l = 3 our lower bound
implies that at least n − 2 queries are needed to compute the function, whereas the actual
parity decision tree complexity is n−1. To prove this gap we combine our lower bound with
an additional inductive argument allowing for a weak form of hardness amplification for the
parity decision tree complexity of THRk

n functions.

3

The rest of the paper is organized as follows. In Section 2 we provide necessary definition
and preliminary information. In Section 3 we prove the lower bound on parity decision tree
complexity. In Sections 4 and 5 we study the parity decision tree complexity of majority and
recursive majority respectively. Finally, in Section 6 we provide an example of a function for
which our lower bound is not tight. Some of the technical proofs are moved to Appendix.

2 Preliminaries

2.1 Fourier Analysis

Throughout the paper we assume that Boolean functions are functions of the form f : {0, 1}n →
{−1, 1}. That is, input bits are treated as 0 and 1 and to them we will usually apply oper-
ations over F2. Output bits are treated as −1 and 1 and the arithmetic will be over R. The
value −1 correspond to ‘true’ and 1 corresponds to ‘false’.

We denote the variables of functions by x = (x1, . . . , xn). We use the notation [n] =
{1, . . . , n}.

We briefly review the notation and needed facts from Boolean Fourier analysis. For
extensive introduction see [14].

For functions f, g : {0, 1}n → R consider an inner product

〈f, g〉 = E
x
f(x)g(x),

where the expectation is taken over uniform distribution of x on {0, 1}n.
For a subset S ⊆ [n] we denote by χS(x) =

∏
i∈S(−1)xi the Fourier character correspond-

ing to S. We denote by f̂(S) = 〈f, χS〉 the corresponding Fourier coefficient of f .

It is well-known that for any x ∈ {0, 1}n we have f(x) =
∑

S⊆[n] f̂(S)χS(x).

If f : {0, 1}n → {−1, 1} (that is, if f is Boolean) then the well-known Parseval’s Identity
holds: ∑

S⊂[n]

f̂ 2(S) = 1.

By the support of the Boolean function f we denote

Supp(f) = {S ⊆ [n] | f̂(S) 6= 0}.

The sparsity of f is spar(f) = |Supp(f)|. Basically, the sparsity of f is the l0-norm of the
vector of its Fourier coefficients.

Consider a binary fraction α, that is α is a rational number that can be written in a form
that its denominator is a power of 2. By the granularity gran(α) of α we denote the minimal
integer k ≥ 0 such that α · 2k is an integer.

We will also frequently use the following closely related notation. For an integer L denote
by P(L) the maximal power of 2 that divides L. It is convenient to set P(0) =∞.

Note that for Boolean f the Fourier coefficients of f are binary fractions. By the granu-
larity of f we call the following value

gran(f) = max
S⊆[n]

gran(f̂(S)).

4

It is easy to see that for any f : {0, 1}n → {−1, 1} it is true that

0 ≤ gran(f) ≤ n− 1

and both of these bounds are achievable (for example, for f(x) =
⊕

i xi and f(x) =
∧

i xi
respectively).

It is known that gran(f) is always not far from the logarithm of spar(f):

log spar(f)

2
≤ gran(f) ≤ log spar(f)− 1.

The first inequality can be easily obtained from Parseval’s identity. The second is a non-
trivial result implicit in [5, Theorem 3.3 for µ = 0] (see also [19]). Again, both inequalities
are tight (the first one is tight for inner product IP(x, y) =

⊕
i(xi ∧ yi) or any other bent

function [14]; the second one is tight for example for f(x) =
⊕

i xi).
For a Boolean function f{0, 1}n → {−1, 1} denote by deg2(f) the degree of the multilinear

polynomial p ∈ F2[x1, . . . , xn] computing f as a Boolean function, that is for all x ∈ Fn
2 we

have p(x) = 1 if f(x) = −1 and p(x) = 0 otherwise. It is well known that such multilinear
polynomial p is unique for any f and thus deg2(f) is well defined.

It is known that deg2(f) ≤ log spar(f) for any f [1]. We observe that the granularity is
also lower bounded by the degree of the function.

Lemma 1. For any f : {0, 1}n → {−1, 1} we have deg2(f) ≤ gran(f) + 1.

Proof. The proof strategy is similar to the one of [1].
For a function f : {0, 1}n → {−1, 1} consider two subfunctions f0 and f1 on n−1 varaibles

obtained from f by setting variable xn to 0 and to 1 respectively. Note that for any S ⊆ [n−1]
we have

f̂(S) = E
x∈{0,1}n

f(x)χS(x)

=
1

2
E

x∈{0,1}n−1
f0(x)χS(x) +

1

2
E

x∈{0,1}n−1
f1(x)χS(x) =

1

2
f̂0(S) +

1

2
f̂1(S)

and

f̂(S ∪ {n}) = E
x∈{0,1}n

f(x)χS(x)

=
1

2
E

x∈{0,1}n−1
f0(x)χS(x)− 1

2
E

x∈{0,1}n−1
f1(x)χS(x) =

1

2
f̂0(S)− 1

2
f̂1(S).

Thus,

f̂0(S) = f̂(S) + f̂(S ∪ {n})
and

f̂1(S) = f̂(S)− f̂(S ∪ {n}).
In particular, the granularity of both f0 and f1 is not larger than the granularity of f . From
this we conclude that the granularity of a subfunction of f is at most the granularity of f .

5

Denote d = deg2(f) and consider a monomial of degree d in the polynomial p for f . For
simplicity of notation assume that this is the monomial x1 . . . xd. Fix all variables xi for
i > d to 0. We get a subfunction g of f of d variables and degree d. As discussed above
gran(g) ≤ gran(f), so it is enough to show that d ≤ gran(g) + 1. For this note that since
the function g is of maximal degree we have that |g−1(−1)| is odd (see, e.g. [7, Section 2.1]).
Thus,

ĝ(∅) = E
x∈{0,1}d

g(x) =
1

2d

(
|g−1(1)| − |g−1(−1)|

)
=

1

2d

(
2n − 2|g−1(−1)|

)
and the granularity of ĝ(∅) is d− 1.

2.2 Parity Decision Trees

A parity decision tree T is a rooted directed binary tree. Each of its leaves is labeled by −1
or 1, each internal vertex v is labeled by a parity function Lv(x) =

⊕
i∈Sv

xi for some subset
Sv ⊆ [n]. Each internal node has two outgoing edges, one labeled by −1 and another by
1. A computation of T on input x ∈ {0, 1}n is the path from the root to one of the leaves
that in each of the internal vertices v follows the edge, that has label equal to the value of⊕

i∈Sv
xi. Label of the leaf that is reached by the path is the output of the computation.

The tree T computes the function f : {0, 1}n → {−1, 1} iff on each input x ∈ {0, 1}n the
output of T is equal to f(x). Parity decision tree complexity of f is the minimal depth of a
tree computing f . We denote this value by D⊕(f).

One known way to lower bound parity decision tree complexity goes through commu-
nication complexity of XOR functions. We state the bound in the following lemma (see,
e.g. [6]).

Lemma 2. For any function f : {0, 1}n → {−1, 1} we have

D⊕(f) ≥ log spar(f)

2
.

This lower bound turns out to be useful in many cases, especially when we are interested
in the complexity up to a multiplicative constant or up to a polynomial factor. However, it
does not always help to find an exact value of the complexity of the function and in principle
cannot give lower bounds greater than n/2.

Another more combinatorial approach goes through analogs of certificate complexity and
block sensitivity for parity decision trees [22]. Since parity block sensitivity is always less
or equal then parity certificate complexity and we are interested in lower bounds, we will
introduce only certificate complexity here.

For a function f : {0, 1}n → {−1, 1} and x ∈ {0, 1}n denote by C⊕(f, x) the minimal
co-dimension of an affine subspace in {0, 1}n that contains x and on which f is constant.
The parity certificate complexity of f is C⊕(f) = maxxC⊕(f, x).

Lemma 3 ([22]). For any function f : {0, 1}n → {−1, 1} we have

D⊕(f) ≥ C⊕(f).

6

This approach allows to show strong lower bounds for some functions. For example, it
can be used to show that D⊕(ANDn) = n. However, for more complicated functions like
majority or recursive majority this lemma does not give tight lower bounds.

Yet another approach to lower bounds for parity decision tree complexity is through
polynomials. Although it is very similar to analogous connection for standard decision trees,
we have not observed it in the literature.

Lemma 4. For any f : {0, 1}n → {−1, 1} we have D⊕(f) ≥ deg2(f).

Proof. The proof of this lemma follows closely the proof connecting standard decision tree
complexity of a function with its degree over R (see, e.g. [4]).

Consider a parity decision tree T computing f with depth equal to D⊕(f). Consider
arbitrary leaf l of this tree and consider the path in T leading from the root to l. For
computation to follow this path on input x in each internal vertex v the input x must satisfy
some linear restriction L(x) = 1 (L(x) is the parity Lv(x) labeling v if the path follows the
edge labeled by −1 out of v and L(x) = Lv(x) ⊕ 1 if the path follows the edge labeled by
1). Denote all these linear forms in these restrictions along the path by L1(x), . . . , Lp(x),
where p ≤ D⊕(f). Thus, on input x we follow the path to l iff L1(x)∧ . . .∧Lp(x) is satisfied.
Denote this expression by Tl(x).

Denote by S the set of all leaves of T that are labeled by −1. For any input x we have
that f(x) = −1 iff the computation path in T reaches a leaf labeled with −1 iff⊕

l∈S

Tl(x) = 1.

It is left to observe that the latter expression is a multilinear polynomial over F2 of degree
at most D⊕(f).

2.3 Multiplicative Complexity

Multiplicative complexity c∧(f) of a Boolean function f is the minimal number of AND-gates
in a circuit computing f and consisting of AND, ⊕ and NOT gates, each gate of fan-in at
most 2 (for formal definitions from circuit complexity see, e.g. [7]). This measure was studied
in Circuit Compexity [3, 8, 2] as well as in connection to Cryptography [9, 20] and providing
an explicit function f on n variables with c∧(f) > n is an important open problem.

The following lemma was communicated to us by Alexander Kulikov [10] and with his
permission we include it with a proof.

Lemma 5. For any f on n variables

D⊕(f) ≤ c∧(f) + 1.

Proof. The proof is by induction on s = c∧(f).
If s = 0, then f is computed by a circuit consisting of ⊕ and NOT gates and thus f is a

linear form of its variables. We can compute it by one query in parity decision tree model.
For the step of induction, consider an arbitrary f and consider a circuit C computing f

with the number of AND-gates equal to c∧(f). Consider the first AND-gate g in C. Both of

7

its inputs compute linear forms over F2. Our decision tree algorithm queries one of inputs of
g. Depending on the answer to the query, g computes either constant 0, or its second input.
In both cases the gate g computes a linear form over F2, so we can simplify the circuit and
obtain a new circuit C ′ computing the same function on inputs consistent with the answer to
the first query and with at most s−1 AND-gates. By induction hypothesis in both cases the
function computed by C ′ is computable in parity decision tree model with at most s queries.
Overall, we make s+ 1 queries.

3 Lower Bound on Parity Decision Trees

Through the connection to communication complexity it is known that D⊕(f) ≥ log spar(f)
2

for any f . In our main result we improve this bound.

Theorem 6. For any non-constant f : {0, 1}n → {−1, 1} we have

D⊕(f) ≥ gran(f) + 1.

Proof. We prove the theorem by an adversary argument. That is, we will describe the
strategy for the adversary to answer queries of a parity decision tree in order to make the
tree to make many queries to compute the output.

Denote k = gran(f) and denote by S ⊆ [n] the subset on which the granularity is achieved,

that is k = gran(f̂(S)). We have that

f̂(S) =
1

2n

∑
x∈{0,1}n

f(x)χS(x) =
1

2n

 ∑
x∈f−1(1)

χS(x)−
∑

x∈f−1(−1)

χS(x)


=

1

2n

 ∑
x∈{0,1}n

χS(x)− 2 ·
∑

x∈f−1(−1)

χS(x)

 .

Note that the first sum in the last expression is equal to 2n if S = ∅ and is equal to 0

otherwise. Thus for the granularity of f̂(S) to be equal to k the sum
∑

x∈f−1(−1) χS(x)

should be divisible by 2n−k−1 and should not be divisible by 2n−k. In other words (recall
that P(L) is the maximal power of 2 that divides L),

P

 ∑
x∈f−1(−1)

χS(x)

 = n− k − 1. (1)

After each step of the computation the query fixes some parity of inputs to be equal to
some fixed value. Denote by Ci ⊆ [n] the set of inputs that are still consistent with the
current node of a tree after step i, and on which the function is equal to −1. We have that
C0 = f−1(−1).

8

We will show that we can answer the queries in such a way that

P

 ∑
x∈Ci+1

χS(x)

 ≤ P

(∑
x∈Ci

χS(x)

)
. (2)

To see this observe that the (i+1)-st query splits the current set Ci into two disjoint subsets
A and B. In particular, ∑

x∈Ci

χS(x) =
∑
x∈A

χS(x) +
∑
x∈B

χS(x).

If both sums in the right-hand side are divisible by some power of 2, then the left-hand side
also is. Thus,

min

(
P

(∑
x∈A

χS(x)

)
,P

(∑
x∈B

χS(x)

))
≤ P

(∑
x∈Ci

χS(x)

)
.

Pick for Ci+1 the set, on which the minimum in the left-hand side is achieved.
Suppose the protocol makes t queries. The set of inputs that reach the leaf forms an

affine subspace of Boolean cube of dimension at least n − t, on which the function f must
be constant. Thus the sum ∑

x∈Ct

χS(x)

is the sum of a character over an affine subspace, and thus is equal to either 0, or 2n−t. In
both cases

P

(∑
x∈A

χS(x)

)
≥ n− t. (3)

Combining (1)-(3) we get
n− k − 1 ≥ n− t

and the theorem follows.

4 Majority Function

In this section we analyze parity decision tree complexity of the majority function MAJn : {0, 1}n →
{−1, 1}. The function is defined as follows:

MAJn(x) = −1⇔
n∑

i=1

xi ≥
n

2
.

To state our results we will need the following notation: let B(k) be the number of ones
in a binary representation of k.

We start with an upper bound. The following lemma is a simple adaptation of the folklore
algorithm (see, e.g. [15]).

9

Lemma 7.
D⊕(MAJn) ≤ n− B(n) + 1.

Proof. Our parity decision tree will mostly make queries of the form y ⊕ z for a pair of
variables. Note that such a query basically checks whether y and z are equal.

Our algorithm will maintain splitting of input variables into blocks of two types. We will
maintain the following properties:

• the size of each block is a power of 2;

• all variables in each block of type 1 are equal;

• blocks of type 2 are balanced, that is they have equal number of ones and zeros.

In the beginning of the computation each variable forms a separate block of size one. During
each step the algorithm will merge two blocks into a new one. Thus, after k steps the number
of blocks is n− k.

The algorithms works as follows. On each step we pick two blocks of type 1 of equal size.
We pick one variable from each block and query the parity of these two variables. If the
variables are equal, we merge the blocks into a new block of type 1. If the variables are not
equal, the new block is of type 2. The process stops when there are no blocks of type 1 of
equal size.

It is easy to see that all of the properties listed above are maintained. In the end of the
process we have some blocks of the second type (possibly none of them) and some blocks
of the first type (possibly none of them) of pairwise non-equal size. Note that the value of
the majority function is determined by the value of variables in the largest block of type 1.
Indeed, all blocks of type 2 are balanced and the largest block of type 1 has more variables
then all other blocks of type 1 in total. Thus, to find the value of MAJn it remains to query
one variable from the largest block of type 1. Note, that the case when there are no blocks
of type 1 in the end of the process correspond to balanced input (and even n). In this case
we can tell that the output is −1 without any additional queries.

Note that the sum of sizes of all blocks is equal to n. Since the size of each block is a
power of 2, there are at least B(n) blocks in the end of the computation (one cannot break
n in the sum of less then B(n) powers of 2). Thus, overall we make at most n − B(n) + 1
queries and the lemma follows.

Before proceeding with the lower bound we briefly discuss lower bounds that can be
obtained by other approaches. It is known that spar(MAJn) = 2n−1 [14]. Thus from the
sparsity lower bound we can only get D⊕(MAJn) ≥ log spar(MAJn)/2 = n−1

2
.

Note also that each input x ∈ {0, 1}n to MAJn lies in the subcube of dimension at least
dn−1

2
e. Indeed, if MAJn(x) = 1 just pick a subcube on some subset of variables of size dn−1

2
e

containing all ones of the input. The case MAJn(x) = −1 is symmetrical. Thus, in the
approach through certificate complexity we get D⊕(MAJn) ≥ dn−1

2
e.

Finally, we observe that the degree approach also does not give a matching lower bound.

Lemma 8. For any n we have deg(MAJn) = 2p where p is the largest integer such that
2p ≤ n.

10

The proof of this lemma is provided in Appendix.
It is not hard to see that this lower bound matches the upper bound of Lemma 7 only

for n = 2r and n = 2r + 1. On the other hand, for example it is far from optimal by
approximately a factor of 2 for n = 2r − 1 for some r.

We next show that Theorem 6 gives a tight lower bound for parity decision tree complexity
of MAJn.

Lemma 9. gran(MAJn) = n− B(n).

Proof. We will show that gran(MAJn) ≥ n − B(n). The inequality in the other direction
follows from Lemma 7.

We consider the Fourier coefficient M̂AJn([n]) and show that its granularity is at least
n − B(n). Let k = b(n + 1)/2c. Note that k is the smallest number such that MAJn is −1
on inputs with k ones.

Then we have

M̂AJn([n]) =
1

2n

(
k−1∑
i=0

(−1)i
(
n

i

)
−

n∑
i=k

(−1)i
(
n

i

))

=
1

2n

(
n∑

i=0

(−1)i
(
n

i

)
− 2

n∑
i=k

(−1)i
(
n

i

))
=

1

2n

(
0− 2

n∑
i=k

(−1)i
(
n

i

))
.

From this we can see that

gran(M̂AJn([n])) = n− P

(
2

n∑
i=k

(−1)i
(
n

i

))
.

We proceed to simplify the sum of binomials (a very similar analysis is presented in [15]):

n∑
i=k

(−1)i
(
n

i

)
=

n∑
i=k

(−1)i
((

n− 1

i− 1

)
+

(
n− 1

i

))
= (−1)k

(
n− 1

k − 1

)
.

Thus it remains to compute P(2
(
n−1
k−1

)
). For even n = 2h we have k = h and 2

(
n−1
k−1

)
=

2
(
2h−1
h−1

)
=
(
2h
h

)
. For odd n = 2h+ 1 we have k = h+ 1 and 2

(
n−1
k−1

)
= 2
(
2h
h

)
.

By [15, Proposition 3.4] we have P(
(
2h
h

)
) = B(h) (alternatively this can be seen from

Kummer’s theorem). Finally, notice that B(2h) = B(h) and B(2h+ 1) = B(h) + 1. It follows
that

P

(
2

n∑
i=k

(−1)i
(
n

i

))
= B(n)

and
gran(M̂AJn([n])) = n− B(n).

Overall, we have the following theorem.

11

Theorem 10.
D⊕(MAJn) = n− B(n) + 1.

As a corollary from this result and Lemma 5 we get the following lower bound on the
multiplicative complexity of majority.

Corollary 11.
c∧(MAJn) ≥ n− B(n).

This improves a lower bound of [3]. Previously our lower bound was known only for
n = 2k for some k [3].

5 Recursive Majority

Next we study the parity decision tree complexity of recursive majority MAJ⊗k3 . This is
a function on n = 3k variables and it can be defined recursively. For k = 1 we just let
MAJ⊗13 = MAJ3. For k > 1 we let

MAJ⊗k3 = MAJ3

(
MAJ⊗k−13 ,MAJ⊗k−13 ,MAJ⊗k−13

)
,

where each MAJ⊗k−13 is applied to a separate block of variables.
We start with an upper bound.

Lemma 12. D⊕(MAJ⊗k3) ≤ (n+ 1)/2.

Proof. Basically, recursive majority MAJ⊗k3 is a function computed by a Boolean circuit
which graph is a complete ternary tree of depth k, each internal vertex is labeled by the
function MAJ3 and each leaf is labeled by a (fresh) variable.

To construct an algorithm we first generalize the problem. We consider functions com-
puted by Boolean circuits which graphs are ternary tree, where each non-leaf has fan-in 3
and is labeled by MAJ3, and each leaf is labeled by a fresh variable. We will show that if
the number of non-leaf variables in the circuit is l, then the function can be computed by a
parity decision tree of size l + 1.

The proof is by induction on l. If l = 1, then the function in question is just MAJ3 and
by the results of Section 4 it can be computed by a parity decision tree of size 2.

For the step of induction consider a tree with l non-leaf vertices. Consider a non-leaf
vertex of the largest depth. All of its three inputs must be variables, lets denote them by y,
z and t, and in this vertex the function MAJ3(y, z, t) is computed. Our first query will be
y ⊕ z. It will tell us whether y and z are equal. If y = z are equal, then MAJ3(y, z, t) = y,
and if y 6= z, then MAJ3(y, z, t) = t. Thus, we can substitute the gate in our vertex by the
corresponding variable and reduce the problem to the circuit with l − 1 non-leaf vertices.
By induction hypothesis, the function computed by this circuit can be computed by at most
(l − 1) + 1 = l queries. Thus, our original function is computable by l + 1 queries.

It is left to observe that a complete ternary tree of depth k has 3k−1 + . . . + 1 = 3k−1
2

non-leaf vertices and for this tree our algorithm makes 3k+1
2

= n+1
2

queries.

12

Before proceeding to the lower bound we again discuss lower bounds that can be obtained
by other techniques.

First note that each input x ∈ {0, 1}n lies in the subspace of co-dimension at most 2k on
which the function is constant. For this it is enough to show that in each x we can flip 3k−2k

variables without changing the value of the function. This is easy to check by induction on
k. For k = 1 there are two variables that are equal to each other and we can flip the third
variable without changing the value of the function. For k > 1 consider inputs to the MAJ3

at the top of the circuit. Two of them are equal and by induction hypothesis we can flip
3k−1 − 2k−1 variables in each of them without changing the value of the function. The last
input to the top gate does not affect the value of the function and we can flip all 3k−1 variables
in it. Overall this gives us 3k − 2k variables. This gives us C⊕(MAJ⊗k3) ≤ 2k = nlog3 2 which
does not give a matching lower bound.

Also note that the polynomial computing MAJ3 is p(x) = x1x2 ⊕ x2x3 ⊕ x1x3. The
polynomial for MAJ⊗k3 can be computed by a simple composition of p with itself. It is easy
to see that its degree is 2k = nlog3 2. Thus, an approach through polynomials over F2 does
not give strong lower bounds.

For Fourier analytic considerations it is convenient to switch to {−1, 1} Boolean inputs.
For a variable y ∈ {0, 1} let us denote by y′ ∈ {−1, 1} the variable y′ = 1− 2y. For now we
will use new variables as inputs to Boolean functions.

The Fourier decomposition of MAJ3 is

MAJ3(y
′, z′, t′) =

1

2
(y′ + z′ + t′ − y′z′t′) . (4)

From this the Fourier decomposition of MAJ⊗k3 can be obtain by recursion:

MAJ⊗k3 (x1, x2, x3) =
1

2
(MAJ⊗k−13 (x1) + MAJ⊗k−13 (x2) + MAJ⊗k−13 (x3)

−MAJ⊗k−13 (x1) ·MAJ⊗k−13 (x2) ·MAJ⊗k−13 (x3)),
(5)

where x1, x2, x3 are blocks of 3k−1 variables.
Lemma 2 can give lower bounds up to n/2 and thus in principle might give at least almost

matching lower bound. However, this is not the case as we discuss below.
Note that since there is no free coefficient in the polynomial (4), Fourier coefficients

arising from all three summands in the right-hand side of (5) will not cancel out with each
other: none two of them have equal set of variables. Thus, if we denote S(k) = spar(MAJ⊗k3)
we have that S(1) = 4 and

S(k) = 3S(k − 1) + S(k − 1)3 (6)

for k > 1. On one hand, this means that S(k) > S(k − 1)3. This gives S(k) > 22·3k−1
. Thus

log spar(MAJ⊗k3) > 2 · 3k−1 = 2n/3 and D⊕(MAJ⊗k3) > n/3.
On the other hand if we let S ′(k) = S(k) + 1/2, it is easy to check that (6) implies

S ′(k) < S ′(k − 1)3.

13

Since S ′(1) = 9/2 this gives S ′(k) < 2(log2
9
2
)·3k−1

. Thus,

log spar(MAJ⊗k3) <

(
log2

9

2

)
· n

3
< 0.723 · n.

Thus Lemma 2 can give us a lower bound of at most 0.362 · n. We note that this upper
bound on the sparsity can be further improved by letting S ′(k) = S(k) + α for smaller α.

Now we proceed to the tight lower bound. Again we will estimate gran(M̂AJ
⊗k
3 [n]).

Observe that this Fourier coefficient can be easily computed from (4) and (5). Indeed,

from (4) we have that
∣∣∣M̂AJ

⊗1
3 [n]

∣∣∣ = 1
2
. From (5) we have that

∣∣∣M̂AJ
⊗k
3 [n]

∣∣∣ =

∣∣∣∣12(M̂AJ
⊗k−1
3 [n])3

∣∣∣∣ .
The numerator of this Fourier coefficient equals to 1 for any k. Thus, denoting G(n) =

gran(M̂AJ
⊗k
3 [n]) for n = 3k we have G(3) = 1 and

G(n) = 3G
(n

3

)
+ 1.

It is straightforward to check that G(n) = n−1
2

. From this, Theorem 6 and Lemma 12 the
following theorem follows.

Theorem 13. D⊕(MAJ⊗k3) = n+1
2

, where n = 3k is the number of variables.

6 A Function f with D⊕(f) > gran(f) + 1

In this section we provide an example of a function for which our lower bound is not tight.
For this we study the family of threshold functions.

For arbitrary n and k we let

THRk
n(x) = −1⇔

n∑
i=1

xi ≥ k,

where x ∈ {0, 1}n. Note that MAJn = THRdn/2en .
Our examples will form a subfamily of this family of functions.
To show that our lower bound is not tight we need an approach to prove even better

lower bounds. We will do it via the following theorem.

Theorem 14. For any s, k, n if D⊕(THRk
n) ≥ s, then D⊕(THRk+1

n+2) ≥ s+ 1.

Proof. We will argue by a contradiction. Assume that D⊕(THRk+1
n+2) ≤ s. We will construct

a parity decision tree for THRk
n making no more than s− 1 queries.

Denote the input variables to THRk
n by x = (x1, . . . , xn). We introduce one more vari-

able y (which we will fix later) and consider the sequence x1, . . . , xn, y,¬y as inputs to the

14

algorithm for THRk+1
n+2. Note that THRk

n(x) = THRk+1
n+2(x, y,¬y). Our plan is to simulate

the algorithm for THRk+1
n+2 on (x, y,¬y) and save one query on our way.

Consider the first query that the algorithm makes to (x1, . . . , xn, y,¬y). Suppose first
that the query does not ask the parity of all variables (

⊕n
i=1 xi)⊕ y⊕¬y (we will deal with

this case later). Since the function THRk+1
n+2 is symmetric we can rename the input bits in

such a way that the query contains input y and does not contain ¬y, that is the query asks
the parity (

⊕
i∈S xi) ⊕ y for some S ⊆ [n]. Now it is time for us to fix the value of y. We

let y =
⊕

i∈S xi. Then the answer to the first query is 0, we can skip it and proceed to

the second query. For each next query of the algorithm for THRk+1
n+2 if it contains y or ¬y

(or both) we substitute them by
⊕

i∈S xi and (
⊕

i∈S xi) ⊕ 1 respectively. The result is the
parity of some variables among x1, . . . , xn and we make this query to our original input x.
Clearly the answer to the query to x is the same as the answer to the original query to
(x, y,¬y). Thus, making at most s− 1 queries we reach the leaf of the tree for THRk+1

n+2 and

thus compute THRk+1
n+2(x, y,¬y) = THRk

n(x).

It remains to consider the case when the first query to THRk+1
n+2 is (

⊕n
i=1 xi) ⊕ y ⊕ ¬y.

This parity is equal to
⊕n

i=1 xi and we make this query to x. Now we proceed to the second

query in the computation of THRk+1
n+2 and this query is not equal to (

⊕n
i=1 xi)⊕ y⊕¬y. We

perform the same analysis as above for this query: rename the inputs, fix y to the parity
of subset of x to make the answer to the query to be equal to 0, simulate further queries
to (x, y,¬y). Again we save one query in this case and compute THRk

n(x) in at most s− 1
queries.

Next we analyze the decision tree complexity of THR2
n functions. For them our lower

bound is tight, but we need this analysis to use in combination with Theorem 14 to provide
our example.

Lemma 15. For even n we have D⊕(THR2
n) = n and for odd n we have D⊕(THR2

n) = n−1.

Proof sketch. The proof of the lower bound is technical and is omitted. The complete proof
of the lemma can be found in Appendix 7.2.

Here we only prove that the lower bound is tight for odd n. To provide an algorithm
making at most n− 1 queries we again will split variables into blocks and again will assume
that in the beginning all blocks are of size 1. We split all variables but one into pairs and
check whether variables in each pair are equal. After this we have (n− 1)/2 blocks of size 2
and one block of size 1. If there is a balanced block of size 2, again we can just query one
variable from each of the remaining blocks thus learning the number of ones in the input.
This allows us to compute the function in at most n−1 queries. If all blocks of size 2 contain
equal variables, then note that the value of the function does not depend on the variable in
the block of size 1. Indeed, THR2

n(x) = 1 iff
∑

i xi ≥ 2 iff there is a block of size 2 containing
variables equal to 1. Thus it remains to query one varaible from each block of size 2, which
again alows us to compute the function with at most n− 1 queries.

We are now ready to proceed to the example of the functions for which the lower bound
in Theorem 6 is tight.

Lemma 16. For n = 8k + 2 for integer k we have gran(THR3
n) = n− 3.

15

The proof of this lemma is technical and can be found in Appendix 7.3.
We now show that for functions in Lemma 16 their decision tree complexity is greater

than their granularity plus one. Note, that since granularity lower bound is not worse than
the lower bounds through the sensitivity and the degree, they also do not give tight lower
bounds. Also it is easy to see that the approaches through certificate complexity does not
give optimal lower bound as well.

Theorem 17. For n = 8k + 2 for integer k > 0 we have D⊕(THR3
n) = n− 1.

Proof. For the lower bound we note that n − 3 is odd and thus by Lemma 15 we have
D⊕(THR2

n−2) ≥ n− 2. Then by Theorem 14 we have D⊕(THR3
n) ≥ n− 1.

For the upper bound we again view the inputs as blocks of size 1 and by checking equality
of variables combine all variables but two into blocks of size 4. If we encounter a balanced
block we just query one variable from all remaining block thus learning the number of ones
in the input in at most n − 1 queries. If all blocks contain equal variables, then as in the
proof of Lemma 15 we observe that two variables outside of blocks of size 4 does not affect
the value of the function. Indeed, THR3

n(x) = 1 iff
∑

i xi ≥ 3 iff there is a block of size 4
containing variables equal to 1.

Thus, we have shown that the lower bound in Theorem 6 is not tight for THR3
8k+2.

However, the gap between the lower bound and the actual complexity is 1.

Remark 18. We note that from our analysis it is straightforward to determine the complexity
of THR3

n for all n. If n = 4k or 4k + 3 for some k, then D⊕(THR3
n) = n and if n = 4k + 1

or n = 4k + 2, then D⊕(THR3
n) = n− 1. The lower bounds (apart from the case covered by

Theorem 17) follows from the consideration of T̂HR
3

n(∅) and T̂HR
3

n([n]) as in the proof of
Lemma 16. The upper bound follows the same analysis as in the proof of Theorem 17.

Acknowledgments We would like to thank Alexander Kulikov for letting us know about the
connection between parity decision trees and multiplicative complexity and for permission to
add the proof to the paper. We also would like to thank Alexander for drawing our attention
to the possibility of connection of parity decision tree complexity to the degree over F2.

References

[1] A. Bernasconi and B. Codenotti. Spectral analysis of boolean functions as a graph
eigenvalue problem. IEEE Trans. Computers, 48(3):345–351, 1999.

[2] J. Boyar and M. G. Find. The relationship between multiplicative complexity and
nonlinearity. CoRR, abs/1407.6169, 2014.

[3] J. Boyar and R. Peralta. Tight bounds for the multiplicative complexity of symmetric
functions. Theor. Comput. Sci., 396(1-3):223–246, 2008.

[4] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002.

16

[5] P. Gopalan, R. O’Donnell, R. A. Servedio, A. Shpilka, and K. Wimmer. Testing fourier
dimensionality and sparsity. SIAM J. Comput., 40(4):1075–1100, 2011.

[6] H. Hatami, K. Hosseini, and S. Lovett. Structure of protocols for XOR functions. In
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 282–288, 2016.

[7] S. Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algo-
rithms and combinatorics. Springer, 2012.

[8] A. Kojevnikov and A. S. Kulikov. Circuit complexity and multiplicative complexity of
boolean functions. In F. Ferreira, B. Löwe, E. Mayordomo, and L. M. Gomes, editors,
Programs, Proofs, Processes, 6th Conference on Computability in Europe, CiE 2010,
Ponta Delgada, Azores, Portugal, June 30 - July 4, 2010. Proceedings, volume 6158 of
Lecture Notes in Computer Science, pages 239–245. Springer, 2010.

[9] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and ap-
plications. In Automata, Languages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography Foun-
dations, pages 486–498, 2008.

[10] A. S. Kulikov. Personal communication.

[11] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press,
1997.

[12] L. Lovász and M. E. Saks. Lattices, Möbius functions and communication complexity.
In 29th Annual Symposium on Foundations of Computer Science, White Plains, New
York, USA, 24-26 October 1988, pages 81–90, 1988.

[13] F. Magniez, A. Nayak, M. Santha, J. Sherman, G. Tardos, and D. Xiao. Improved
bounds for the randomized decision tree complexity of recursive majority. Random
Struct. Algorithms, 48(3):612–638, 2016.

[14] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[15] M. E. Saks and M. Werman. On computing majority by comparisons. Combinatorica,
11(4):383–387, 1991.

[16] M. E. Saks and A. Wigderson. Probabilistic boolean decision trees and the complexity
of evaluating game trees. In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 October 1986, pages 29–38. IEEE Computer Society,
1986.

[17] A. Shpilka, A. Tal, and B. lee Volk. On the structure of boolean functions with small
spectral norm. In Innovations in Theoretical Computer Science, ITCS’14, Princeton,
NJ, USA, January 12-14, 2014, pages 37–48, 2014.

17

[18] H. Y. Tsang, C. H. Wong, N. Xie, and S. Zhang. Fourier sparsity, spectral norm, and
the log-rank conjecture. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 658–667, 2013.

[19] H. Y. Tsang, N. Xie, and S. Zhang. Fourier sparsity of GF(2) polynomials. In Computer
Science - Theory and Applications - 11th International Computer Science Symposium in
Russia, CSR 2016, St. Petersburg, Russia, June 9-13, 2016, Proceedings, pages 409–424,
2016.

[20] V. Vaikuntanathan. Computing blindfolded: New developments in fully homomorphic
encryption. In R. Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages
5–16. IEEE Computer Society, 2011.

[21] P. Yao. Parity decision tree complexity and 4-party communication complexity of xor-
functions are polynomially equivalent. Chicago J. Theor. Comput. Sci., 2016, 2016.

[22] Z. Zhang and Y. Shi. On the parity complexity measures of boolean functions. Theor.
Comput. Sci., 411(26-28):2612–2618, 2010.

7 Appendix: Omitted Proofs

7.1 Proof of Lemma 8

Consider a multilinear polynomial p over F2 computing MAJn. For a set S ⊆ [n] denote by
cS the coefficient of the monomial

∏
i∈S xi in p. Denote |S| = k and denote by xS ∈ {0, 1}n

the input such that xi = 1 iff i ∈ S. By [7, Section 2.1] we have

cS =
⊕
x≤xS

MAJn(x),

where the order on {0, 1}n is coordinate-wise.
From this we obtain that

cS =
k∑

i=dn
2
e

(
k

i

)
=

k∑
i=dn

2
e

(−1)i
(
k

i

)
(mod 2),

where the second equation follows since changing the sign of an integer summand does not
change its remainder when divided by 2.

Denote l = dn
2
e. We can simplify the latter sum as follows:

k∑
i=l

(−1)i
(
k

i

)
=

k∑
i=l

(−1)i
((

k − 1

i− 1

)
+

(
k − 1

i

))
= (−1)l

(
k − 1

l − 1

)
.

By Kummer’s theorem
(
k−1
l−1

)
is odd iff the summation process of l− 1 and k− l in binary

representation does not have any carry bits. Note that both l− 1 = dn
2
e− 1 and k− l ≤ bn

2
c

18

are less or equal n/2. Thus their binary representations are one bit shorter than the binary
representation of n. The maximal k for which

(
k−1
l−1

)
is odd (and thus cS is non-zero) is

the one for which k − l has a binary representation inverted compared to l − 1, that is
(k − l) + (l − 1) = k − 1 has a binary representation consisting of ones only. That is, k is a
power of 2 not exceeding n.

7.2 Complete Proof of Lemma 15

We start with a lower bound.

Here we will need to consider two Fourier coefficients, T̂HR
2

n(∅) and T̂HR
2

n([n]). We start
with the latter one.

We have

T̂HR
2

n([n]) =
1

2n

(
1∑

i=0

(−1)i
(
n

i

)
−

n∑
i=2

(−1)i
(
n

i

))

=
1

2n

(
2

1∑
i=0

(−1)n
(
n

i

)
−

n∑
i=0

(−1)n
(
n

i

))
=

1

2n

(
2

1∑
i=0

(−1)n
(
n

i

)
− 0

)
.

From this we can see that gran(T̂HR
2

n([n])) = n− P
(∑1

i=0(−1)n
(
n
i

))
− 1 and thus

D⊕(THR2
n) ≥ n− P

(
1∑

i=0

(−1)n
(
n

i

))
.

By the same analysis for T̂HR
2

n(∅) we can show that

D⊕(THR2
n) ≥ n− P

(
1∑

i=0

(
n

i

))
.

Note that
∑1

i=0(−1)n
(
n
i

)
= 1−n and

∑1
i=0

(
n
i

)
= 1+n. From this for even n we clearly obtain

a lower bound of D⊕(THR2
n) ≥ n. For odd n it is easy to see that one of the numbers 1− n

and 1 + n is not divisible by 4. Thus for odd n we obtain lower bound D⊕(THR2
n) ≥ n− 1.

It remains to prove that the lower bound is tight for odd n. To provide an algorithm
making at most n− 1 queries we again will split variables into blocks and again will assume
that in the beginning all blocks are of size 1. We split all variables but one into pairs and
check whether variables in each pair are equal. After this we have (n− 1)/2 blocks of size 2
and one block of size 1. If there is a balanced block of size 2, again we can just query one
variable from each of the remaining blocks thus learning the number of ones in the input.
This allows us to compute the function in at most n−1 queries. If all blocks of size 2 contain
equal variables, then note that the value of the function does not depend on the variable in
the block of size 1. Indeed, THR2

n(x) = 1 iff
∑

i xi ≥ 2 iff there is a block of size 2 containing
variables equal to 1. Thus it remains to query one varaible from each block of size 2, which
again alows us to compute the function with at most n− 1 queries.

19

7.3 Proof of Lemma 16

For the upper bound we need to consider an arbitrary Fourier coefficient T̂HR
3

n(S). We have

T̂HR
3

n([S]) =
1

2n

 ∑
x,|x|≤2

χS(x)−
∑

x,|x|≥3

χS(x)

 =
1

2n

2
∑

x,|x|≤2

χS(x)−
∑

x∈{0,1}n
χS(x)

 ,

where by |x| we denote
∑n

i=1 xi. The second sum in the last expression is equal to either 2n

or 0 depending on S. Thus we have

gran(T̂HR
3

n(S)) = n− P

 ∑
x,|x|≤2

χS(x)

− 1. (7)

Denote the size of S by l. Then we have∑
x,|x|≤2

χS(x) = 1− l + (n− l) +
l(l − 1)

2
− l(n− l) +

(n− l)(n− l − 1)

2
,

where the first summand corresponds to x with |x| = 0, the next two summands correspond
to |x| = 1 and the last three correspond to |x| = 2.

Rearranging this expression we obtain∑
x,|x|≤2

χS(x) =
4l2 + 2 + (n+ 1)(n− 4l)

2
.

We need to show that for n ≡ 2 (mod 8) this number is divisible by 4, that is its numerator
is divisible by 8. Since divisibility by 8 depends only on the remainder of n when divided by
8, it is enough to check divisibility of the numerator by 8 for n = 2. We have

4l2 + 2 + (n+ 1)(n− 4l) = 4l2 + 2 + 3(2− 4l) = 4(l2 − 3l + 2),

which is clearly divisible by 8 for all l. Thus P
(∑

x,|x|≤2 χS(x)
)
≥ 2 for n = 8k + 2 and

gran(THR3
n) ≤ n− 3.

For the lower bound on the granularity it is enough to consider Fourier coefficients

T̂HR
3

n(∅) and T̂HR
3

n([n]). For them we have∑
x,|x|≤2

χ∅(x) = 1 + n+
n(n− 1)

2
=

2 + n(n+ 1)

2

and ∑
x,|x|≤2

χ[n](x) = 1− n+
n(n− 1)

2
=

2 + n(n− 3)

2
.

20

To show the lower bound it is enough to show that for any n = 8k + 2 at least one of
these expressions is not divisible by 8, that is their numerators are not divisible by 16. It is
straightforward to check that for n ≡ 2 (mod 16) we have 2 + n(n + 1) ≡ 8 (mod 16) and
for n ≡ 10 (mod 16) we have 2 + n(n − 3) ≡ 8 (mod 16). In both cases by (7) we found a
Fourier coefficients with granularity at least n− 3.

21

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

