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Abstract

We construct a simple and total XOR function F on 2n variables that has only O(
√
n) spectral

norm, O(n2) approximate rank and nO(logn) approximate nonnegative rank. We show it has poly-
nomially large randomized bounded-error communication complexity of Ω(

√
n). This yields the first

exponential gap between the logarithm of the approximate rank and randomized communication com-
plexity for total functions. Thus F witnesses a refutation of the Log-Approximate-Rank Conjecture
(LARC) which was posed by Lee and Shraibman [LS09] as a very natural analogue for randomized
communication of the still unresolved Log-Rank Conjecture for deterministic communication. The
best known previous gap for any total function between the two measures is a recent 4th-power
separation by Göös, Jayram, Pitassi and Watson [GJPW17].

Additionally, our function F refutes Grolmusz’s Conjecture [Gro97] and a variant of the Log-
Approximate-Nonnegative-Rank Conjecture, suggested recently by Kol, Moran, Shpilka and Yehu-
dayoff [KMSY14], both of which are implied by the LARC. The complement of F has exponentially
large approximate nonnegative rank. This answers a question of Lee [Lee12] and Kol et al. [KMSY14],
showing that approximate nonnegative rank can be exponentially larger than approximate rank. The
function F also falsifies a conjecture about parity measures of Boolean functions made by Tsang,
Wong, Xie and Zhang [TWXZ13]. The latter conjecture implied the Log-Rank Conjecture for XOR
functions. Our result further implies that at least one of the following statements is true: (a) The
Quantum-Log-Rank Conjecture is false; (b) The total function F exponentially separates quantum
communication complexity from its classical randomized counterpart.
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1 Introduction

One of the most classical open problems in communication complexity is the Log-Rank Conjecture
(LRC), introduced by Lovász and Saks [LS88]. Informally, it states that the deterministic communi-
cation complexity of a function F , a fundamental interactive complexity measure, is equivalent up to
polynomial factors to a basic algebraic measure, namely the logarithm of the rank of the communica-
tion matrix of F , denoted by MF . Despite receiving intense research focus, and some interesting recent
progress [GL14, Lov16], the problem still remains wide open with surprising connections to other fields
(see the recent survey by Lovett [Lov14]). The best upper bound on communication complexity has
been improved, after decades, to square-root of the rank by Lovett [Lov16]. The best lower bound was
improved, also recently, to Ω(log2 rank(MF )) by Göös, Pitassi and Watson [GPW15].

If one expects linear algebraic measures to characterize deterministic communication complexity, it
is natural to expect matrix analytic measures to characterize randomized communication complexity. It
is well known that a deterministic communication protocol of cost c for F decomposes MF into at most
2c rank-one matrices (in fact combinatorial rectangles). Similarly, an ε-error randomized protocol for
F decomposes the acceptance probability matrix Π of the protocol into at most 2c rank-one matrices.
The fact that the acceptance probability matrix point-wise approximates MF to within ε, shows that the
ε-approximate rank of MF , denoted by rankε

(
MF

)
(see Definition 2.5), is at most 2c. Motivated by this

observation, Lee and Shraibman [LS09] made the following conjecture about ten years ago analogous to
the original LRC.

Conjecture 1.1 (Log-Approximate-Rank Conjecture [LS09]). There exists a universal constant α, such
that the randomized (1/3)-error communication complexity of every total Boolean function F is
O
(
logα rank1/3 (MF )

)
.

There are multiple reasons to be interested in the Log-Approximate-Rank Conjecture (LARC). In
particular, the LARC implies a variety of other intriguing conjectures (see Figure 1), each of which has
received significant individual attention. First, Gavinsky and Lovett [GL14] showed that the deterministic
communication complexity of any function F is at most a multiplicative factor of log2(rank(MF )) away
from the randomized complexity of F . Thus, the LARC implies the LRC and is a tempting generalization
of the latter. Indeed in their survey, Lee and Shraibman [LS09] observed that all lower bounds that had
been obtained on the randomized communication complexity of any F were within a quadratic factor of
the logarithm of the approximate rank. The quadratic separation is witnessed by the classical linear lower
bound [KS92, Raz92] on the randomized complexity of the Set-Disjointness function and the breakthrough
tight bound of Θ(

√
n) on the quantum complexity [BCW98, Raz03] of the same function. Very recently,

the lower bound on the parameter α in the LARC was improved to 4 by Göös et al. [GJPW17] by
exhibiting another function. Lovett in his survey [Lov14] recommends making progress towards the
LARC as a natural future research direction. A related notion to rank is the nonnegative rank of a
matrix M with nonnegative entries, denoted by rank+(M). It is the smallest number of rank-1 matrices,
each with nonnegative entries, needed such that their sum equals M . Yannakakis [Yan91] proved that the
nonnegative rank of the slack matrix is essentially equivalent to its extension complexity. This has enabled
a lot of recent exciting progress in combinatorial optimization (see, for example, [FMP+15, KMR17]).
More relevant to this work, we note that the deterministic communication complexity of a function F
is long known [Lov90] to be bounded from above by a polynomial in the logarithm of the nonnegative
rank. Motivated by this and other reasons, Kol et al. [KMSY14] proposed a weakening of the LARC,

wherein they replace rank1/3(MF ) with max
{

rank+
1/3(MF ), rank+

1/3(MF )
}

(see Definition 2.5). This they

call the Log-Approximate-Nonnegative-Rank Conjecture, which we abbreviate as the LANRC. They also
consider the following strengthening of the LANRC.

Conjecture 1.2 (Strong Form of the Log-Approximate-Nonnegative-Rank Conjecture [KMSY14]). There
is some universal constant α+, such that the randomized (1/3)-error communication complexity of every

total Boolean function F is O
(

logα
+

rank+
1/3 (MF )

)
.

In a much earlier work, Grolmusz [Gro97] made a seemingly different conjecture that he called the
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randomized analogue of the Log-Rank conjecture. For any real-valued function f : {0, 1}n → R, let
∣∣∣∣f̂ ∣∣∣∣

1
denote the 1-norm of the Fourier transform of f , also known in the literature as the spectral norm of
f . Interestingly, several recent papers, both in theoretical computer science and additive combinatorics,
have been studying the structure of functions of low spectral norm (see, for example, [GS08, AFH12,
TWXZ13, STV17, San18]).

Conjecture 1.3 (Grolmusz [Gro97]). There exists a constant β > 0, such that the (1/3)-error randomized

communication complexity of every total Boolean function F is at most O
(

logβ
∣∣∣∣F̂ ∣∣∣∣

1

)
.

As Figure 1 shows, Grolmusz’s conjecture also follows1 from the LARC, by observing that functions of
small spectral norm can be well approximated point-wise by a sparse real-valued function (see Appendix A
for a full proof). Further, it can be seen using a result of Gavinsky and Lovett [GL14] that Grolmusz’s
conjecture itself implies the Log-Rank conjecture for XOR functions, i.e. functions of the form f ◦ XOR,
where f is an arbitrary Boolean function. This is an important class of functions for which the LRC
remains open despite recent efforts [TWXZ13, TXZ16, STV17].

In this work, we construct a simple and total Boolean XOR function on O(n) bits, that has spectral
norm O(

√
n), but whose randomized communication complexity is Θ

(√
n
)

. This immediately yields a
strong refutation not only of the LARC, but also of both the strong form of the LANRC and Grolmusz’s
Conjecture at the same time. In particular, our function has approximate nonnegative rank bounded by
nO log(n). Further, our work has interesting consequences for parity measures of Boolean functions and
rules out an approach to prove the LRC for XOR functions.

The parity kill number of f is defined as

C⊕,min(f) := min{co-dim(S)|S is an affine subspace on which f is constant}.

Tsang et al. [TWXZ13] conjectured that the parity kill number of any non-constant f is bounded above

by a polynomial in the logarithm of
∣∣∣∣f̂ ∣∣∣∣

1
.

Conjecture 1.4 (Parity Kill Number Conjecture, Conjecture 25 in [TWXZ13]). There is an absolute

constant θ such that for any non-constant f : {−1, 1}n → {−1, 1}, C⊕,min(f) = O
(

logθ(
∣∣∣∣f̂ ∣∣∣∣

1
)
)

.

Conjecture 1.4 implies, via results of Tsang et al. [TWXZ13], the Log-Rank Conjecture for XOR
functions. Establishing the LRC for this class is particularly appealing as it boils down to neat Fourier
analytic questions of independent interest. Tsang et al. could not find a counter-example to the above for
even θ = 1. Later, O’Donnell et al. [OWZ+14] constructed a function for which θ needs to be at least 1.58.
In contrast, the Boolean function SINK, which is our main construction, strongly refutes Conjecture 1.4.

We show that C⊕,min(SINK) is exponentially larger than log
(∣∣∣∣ŜINK

∣∣∣∣
1

)
.

1.1 Our Results and Intuition

The difficulty in coming up with counter-examples for either the LRC or the LARC is that most func-
tions in use in communication complexity are block-composed functions of the form f ◦ g, where g is
a convenient obfuscating gadget. A recent success story in the field is that of lifting theorems (see, for
example, [GPW15, CKLM17, GPW17]) which lift decision-tree complexity of f to the communication
complexity of f ◦ g, suitably multiplied by a measure of g that very closely approximates the communi-
cation complexity of g. We believe the main reasons such composed functions so far have not generated
any counter-example for the LRC/LARC, is that the analogue of the log-rank type of conjectures in the
decision-tree world is long known to be true. In particular, both the exact and approximate (real) degree
of a function f is polynomially related to its decision tree complexity.

This is the reason we turn to XOR functions, i.e. functions of the form f ◦ XOR. Here, it is expected
that instead of the ordinary decision tree complexity of f , its parity decision tree (PDT) complexity2

1up to a polylogarithmic factor in the input size
2Refer to Section 2 for formal definitions of measures used in the remaining part of this section.
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Figure 1: Implications between various interesting conjectures. Shaded conjectures are disproved in this
work, and the rest remain unresolved.

ComplexityO(log n) O(log2 n) Ω(
√
n)

log
∣∣∣∣F̂ ∣∣∣∣

1

log rank1/3(MF )

log rank+
1/3(MF ) R1/3(F )

log rank+
1/66(MF )

Corr(F )

Figure 2: Various complexity measures of our function F := SINK ◦ XOR on 2n bits. Prior to this work,
no exponential separation between any pair of these measures was known for a total function.

should lift to the communication complexity of f ◦ XOR. Much less is understood about parity decision
tree complexity. It is natural to expect that the role of degree of a function f , should be played by its
Fourier sparsity, i.e. the size of the support set of the Fourier transform of f , denoted by

∣∣∣∣f̂ ∣∣∣∣
0
. The

analogue of the Log-Rank conjecture for PDT’s states that the PDT complexity of f should be at most
logO(1)(

∣∣∣∣f̂ ∣∣∣∣
0
). This is tantalizingly open, despite recent efforts [TWXZ13, STV17, TXZ16].

A natural analogue of the LARC for PDT’s would state that the randomized PDT complexity of f
is bounded from above by a polynomial in the logarithm of its approximate Fourier sparsity. The ε-
approximate sparsity of f , denoted by

∣∣∣∣f̂ ∣∣∣∣
0,ε

, is the smallest number s such that there exists an s-sparse

real function g that point-wise (on the Boolean cube) ε-approximates f . Our main construction comes
up with a function that refutes this analogue of LARC for PDT’s.

We define a function SINK : {0, 1}n → {0, 1} where the input of length n :=
(
m
2

)
specifies the

orientation of the edges of the complete graph on m vertices. The function outputs 1 if there is a vertex
that is a sink in the given orientation of edges, and 0 otherwise. A formal definition is given below.

Definition 1.5 (SINK). Consider a tournament (see Definition 2.12) on m vertices defined by the
(
m
2

)
variables xi,j for i < j ∈ [m] in the following way: xi,j = 1 =⇒ vi → vj is the direction of the (vi, vj)
edge, and xi,j = 0 =⇒ vi ← vj is the direction. The function SINK computes whether or not there is a
sink in the graph. In other words,

SINK(x) = 1 ⇐⇒ ∃ i ∈ [m] such that all edges adjacent to vi are incoming.

A simple but key fact about SINK is that the value of each edge variable rules out exactly one of its
endpoints from being a sink. This ensures that at most one vertex can be a sink. This results in the
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following Fourier analytic measures being low for SINK.

Claim 1.6 (Part of Theorem 1.10).

1.
∣∣∣∣ŜINK

∣∣∣∣
1
≤ m.

2.
∣∣∣∣ŜINK

∣∣∣∣
0,1/3

= O(m4).

The same key fact makes it simple to observe that SINK can be computed by an ordinary deterministic
decision tree that makes at most 2m queries. However, it turns out that even a randomized parity decision
tree cannot do substantially better. The intuition is that a linear query, unless localized to the edges
incident to a specific vertex of the graph, cannot get much information about the status of that vertex.
Thus, one expects that after t linear queries, the PDT algorithm will only have information about O(t)
vertices, keeping the status of the remaining m−O(t) vertices virtually undetermined. A careful analysis
formalizing this intuition results in two strong lower bounds.

Theorem 1.7.

1. C⊕,min(SINK) = d2m/3e.

2. Any PDT computing SINK has size at least 22m/3.

The first part above shows that the parity kill number of SINK is exponentially larger than the
logarithm of its spectral norm, strongly refuting a conjecture of Tsang et al. [TWXZ13] (Conjecture 1.4).
The best known previous separation, due to O’Donnell et al. [OWZ+14], was sub-quadratic. The second
part of Theorem 1.7 easily follows from the first, but has the following interesting consequence. Combining
the work of Tsang et al. with their own results, Shpilka, Tal and Volk [STV17] showed that any Boolean

function f on n bits has a deterministic parity decision tree of size 2An2A, where A =
∣∣∣∣f̂ ∣∣∣∣

1
. This, in

particular, showed that every function can be decomposed as a sum of at most 2An2A many indicator
functions of affine spaces, yielding an exponential improvement upon the earlier doubly exponential bound
given by the structure theorem of Green and Sanders [GS08]. Shpilka et al. hoped that their upper bound
on PDT size could be further significantly improved to poly(n,A). The second part of Theorem 1.7, on
the other hand, shows that the bound of Shpilka et al. is indeed tight in its dependence on the spectral
norm of f .

Our next result shows that SINK remains hard for even randomized parity decision trees. Let
RPDTε(g) denote the ε-error randomized parity decision tree complexity of the Boolean function g.

Theorem 1.8. RPDT1/3(SINK) = Θ(m).

We prove this lower bound as a robust version of Part 1 of Theorem 1.7. We give a balanced
distribution under which any nearly 0-monochromatic affine subspace must have large co-dimension.
The existence of such a distribution is then shown to imply an RPDT lower bound.

Theorem 1.8 and Claim 1.6 together already refute the analogue of the LARC for randomized parity
decision trees. This makes the XOR function SINK ◦ XOR a natural candidate for refuting the LARC for
randomized communication complexity.

While proving a randomized lifting theorem for XOR functions remains an interesting open problem
(a deterministic analogue of this was established recently by Hatami, Hosseini and Lovett [HHL18]), we
are able to confirm that hardness lifting does take place for SINK.

More precisely, we are interested in the composed function SINK ◦ XOR : {0, 1}n × {0, 1}n → {0, 1},
where n :=

(
m
2

)
.

Theorem 1.9. R1/3(SINK ◦ XOR) = Θ(m).

To lift the RPDT hardness to communication hardness, we use the natural lift of the distribution
used to prove Theorem 1.8. We then follow ideas from Gavinsky [Gav16] and use it in conjunction with
Shearer’s lemma to conclude an Ω(m) lower bound on the corruption (see Definition 2.13) of SINK◦XOR,
which in turn gives us the randomized communication lower bound.

In contrast, through well-known connections, the Fourier simplicity of SINK recorded in Claim 1.6
also results in several analytic measures being low for SINK ◦ XOR.
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Theorem 1.10.

1.
∣∣∣∣ ̂SINK ◦ XOR

∣∣∣∣
1

=
∣∣∣∣ŜINK

∣∣∣∣
1
≤ m.

2. rank1/3(MSINK◦XOR) ≤
∣∣∣∣ŜINK

∣∣∣∣
0,1/3

= O(m4).

3. rank+
1/3(MSINK◦XOR) = mO(logm).

Theorems 1.9 and 1.10 together immediately yield a refutation of Grolmusz’s Conjecture (Conjec-
ture 1.3), the strong form of the LANRC (Conjecture 1.2) and therefore the LARC (Conjecture 1.1).

Since corruption lower bounds approximate nonnegative rank, our proof also shows that the approx-
imate nonnegative rank of the complement of SINK ◦ XOR is large, showing for the first time that the
property of having small approximate nonnegative rank is not closed under complementation of Boolean
functions.

Theorem 1.11.
rank+

1/66(MSINK◦XOR) ≥ 2Ω(m).

Before our work, the largest known gap between log of the approximate rank and the log of the ap-
proximate nonnegative rank for any total Boolean function was quadratic, witnessed by Set-Disjointness,
as shown by Kol et al. [KMSY14]. Theorem 1.11 yields an exponential improvement in the gap via
SINK ◦ XOR.

Implications for quantum communication complexity

Our refutation of the LARC entails an interesting consequence for quantum communication. The
Quantum-Log-Rank Conjecture (QLRC) is a weakening of the LARC that states that the quantum
communication complexity of a function is upper bounded by a polynomial in the logarithm of its ap-
proximate rank. If the QLRC were true, then SINK ◦ XOR would yield the first exponential separation
between the quantum and randomized communication complexities of a total function, resolving a major
open problem. Otherwise, the QLRC would be falsified by SINK ◦ XOR. It is worth remarking that Lee
and Shraibman [LS09] considered the QLRC to be the most plausible one in the Log-Rank family of
conjectures. Previous works [ZS09, Zha14] established the QLRC for special classes of functions. Much
more recent work of Anshu et al. [ABG+17] gave the first (quadratic) separation of quantum communica-
tion complexity from the logarithm of the approximate rank, via an involved function, using the recently
developed cheat-sheet framework [ABK16]. On the other hand, SINK◦XOR could plausibly provide much
stronger separations.

Remark 1.12. Note that the communication lower bound for SINK ◦XOR stated in Theorem 1.9 already
implies the RPDT hardness of SINK stated in Theorem 1.8. We still choose to state them separately in
order to convey the natural intuition that led us to our results. Further, the proof of Theorem 1.8 uses
just linear algebraic notions, without requiring the use of Shearer’s Lemma.

1.2 Organization

In Section 2, we review the necessary preliminaries. In Section 3, we formally define the SINK function and
look at some interesting properties of it. In Section 4, we show that SINK is simple under some measures.
Next, we show the hardness of SINK under various parity measures in Section 5, refuting Conjecture 1.4.
In Section 6, we show a randomized communication lower bound for SINK ◦ XOR, yielding refutations of
Conjecture 1.1, Conjecture 1.2 and Conjecture 1.3. In the same section, we prove Theorem 1.11. Finally
we state some conclusions in Section 7.
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2 Preliminaries and Definitions

Lemma 2.1 (Hoeffding’s Inequality, [Hoe63]). Let Xi ∈ [ai, bi] for i = 1, 2, . . . , n be independent random
variables and X =

∑
iXi. Then

Pr[|X − E[X]| ≥ t] < 2 exp

(
− 2t2∑

i(bi − ai)2

)
.

Consider the vector space of functions V = {f : {0, 1}n → R} equipped with the inner product defined
by

〈f, g〉 :=
1

2n

∑
x∈{0,1}n

f(x)g(x).

The set of parity functions {χS}S⊆[n], defined by χS(x) = (−1)
∑

i∈S xi , forms an orthonormal basis
for this vector space under the inner product defined above. Thus, every function f : {0, 1}n → R has a

unique representation f =
∑
S⊆[n] f̂(S)χS . The coefficients {f̂(S)}S⊆[n] are called the Fourier coefficients

of f .

Definition 2.2 (Spectral norm). Define the spectral norm of a function f : {0, 1}n → R as follows.∣∣∣∣f̂ ∣∣∣∣
1

:=
∑
S⊆[n]

∣∣∣f̂(S)
∣∣∣.

Definition 2.3 (Sparsity). Define the sparsity of a function f : {0, 1}n → R as follows.∣∣∣∣f̂ ∣∣∣∣
0

:=
∣∣∣{S ⊆ [n]|f̂(S) 6= 0}

∣∣∣.
For any function F : {0, 1}n×{0, 1}n → R, define a 2n× 2n matrix MF as MF [(x, y)] = F (x, y). MF

is called the communication matrix of F .
We now define the rank and nonnegative rank of a matrix.

Definition 2.4 (Rank and Nonnegative rank). The rank (nonnegative rank, respectively) of a matrix
M , denoted rank(M) (rank+(M), respectively), is the minimum k for which there exist k rank 1 matrices

(nonnegative-valued rank 1 matrices, respectively) such that M =
∑k
i=1Mi.

The “approximate” versions of spectral norm, sparsity, rank and nonnegative rank are defined as
follows.

Definition 2.5. For any function f : {0, 1}n → R and matrix M , define the following measures.

• ε-approximate spectral norm:
∣∣∣∣f̂ ∣∣∣∣

1,ε
:= min{

∣∣∣∣ĝ∣∣∣∣
1

: ∀x, |g(x)− f(x)| ≤ ε}.

• ε-approximate sparsity:
∣∣∣∣f̂ ∣∣∣∣

0,ε
:= min{

∣∣∣∣ĝ∣∣∣∣
0

: ∀x, |g(x)− f(x)| ≤ ε}.

• ε-approximate rank: rankε(M) := min{rank(M ′) : ∀x, y, |M ′(x, y)−M(x, y)| ≤ ε}.

• ε-approximate nonnegative rank: rank+
ε (M) := min{rank+(M ′) : ∀x, y, |M ′(x, y)−M(x, y)| ≤ ε}.

Definition 2.6 (XOR functions). A function F : {0, 1}n×{0, 1}n → R is called an XOR function if there
exists a function f : {0, 1}n → R such that F (x1, . . . , xn, y1, . . . , yn) = f(x1 ⊕ y1, . . . , xn ⊕ yn) for all
x, y ∈ {0, 1}n. Denote F = f ◦ XOR.

Lemma 2.7 (Folklore). For any function f : {0, 1}n → R,

rank(Mf◦XOR) =
∣∣∣∣f̂ ∣∣∣∣

0
.
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Zhang [Zha14] showed that if a function f : {0, 1}n → R has small spectral norm (in fact small
approximate spectral norm), then f has small approximate sparsity. While not explicitly stated as such,
it is a straightforward corollary of Lemma 3.1 in [Zha14].3

Lemma 2.8. For any g : {0, 1}n → R and δ > ε ≥ 0,∣∣∣∣ĝ∣∣∣∣
0,δ
≤ O

(∣∣∣∣ĝ∣∣∣∣2
1,ε
n/(δ − ε)2

)
.

Definition 2.9 (Subcube). A set T ⊆ {0, 1}n is said to be a subcube if there exist coordinates i1, . . . ik
and integers a1, . . . ak ∈ {0, 1} such that T = {x ∈ {0, 1}n|xi1 = a1, xi2 = a2, . . . , xik = ak}. We call
fixed(T ) := {i1, . . . , ik} the set of fixed coordinates in T .

Definition 2.10 (Affine subspace). A set T ⊆ {0, 1}n is said to be an affine subspace if there exist
independent linear forms L1, . . . , Lk and integers a1, . . . , ak ∈ {0, 1} such that T = {x ∈ {0, 1}n|Li(x) =
ai for all i ∈ [k]}. k is called the co-dimension of T , denoted co-dim(T ).

Given a system of linear equations {L1 = a1, . . . , Lr = ar}, we define its span as {L′ = a′ : L′ ∈
span{L1, . . . , Lr}} (where a′ is inferred from a1, . . . , ar).

Claim 2.11. Let W be an affine subspace of {0, 1}n defined by a system of equations with span L. Let
S ⊆ [d]. Let LS ⊆ L be the subset of equations that are supported completely by variables indexed within
S. For any y ∈ {0, 1}S, the number of extensions of y in W is 0 if y violates a constraint in LS and
2dim(W )−(|S|−dim(LS)) otherwise.

Proof. Let TS ⊆ {0, 1}S be the affine subspace where the equations LS are satisfied.

• If y ∈ {0, 1}S is not in TS , then y must contradict one of the equations in LS . Since this is also an
equation satisfied in W , no extension of y is in W .

• If y ∈ {0, 1}S is in TS , we now count the number of its completions that lie in W . Consider
the space Sy ⊆ {0, 1}n obtained by fixing the coordinates in S according to y. There are still
dim(L)− dim(LS) linearly independent forms that W depends on. Hence the number of solutions
that extend y to an element of W is 2(n−|S|)−(dim(L)−dim(LS)) = 2dim(W )−(|S|−dim(LS)).

Definition 2.12 (Tournament). A tournament on n vertices is a directed graph, which is obtained by
assigning directions to each edge in the undirected complete graph, Kn.

A parity decision tree (PDT) computing a function f : {0, 1}n → {0, 1} is a binary tree with leaf
nodes labelled in {0, 1}, each internal node is labelled by a linear form χS and has two outgoing edges,
labelled 1 and −1. On input x, the tree’s computation proceeds by computing χS(x) as indicated by
the node’s label and following the edge indicated by the value of the computed linear form. The output
value at the leaf must equal f(x). The parity decision tree complexity of f , denoted PDT(f) is defined
as follows.

PDT(f) := min
T :T is a PDT
computing f

depth(T ).

The PDT size complexity of f , denoted sizePDT(f), is the minimum number of leaves in a PDT computing
f .

A randomized parity decision tree (RPDT) is a parity decision tree that is equipped with an arbitrarily
long string of random bits. At every vertex, the linear form queried is now a function of the random
string. The output T (x) of the tree T on an input x is now a random variable. To say that the tree
computes a function f to within error ε, we require that for each x, Pr[T (x) = f(x)] ≥ 1 − ε. The
randomized parity decision tree complexity of f , denoted RPDT(f) is defined as follows.

RPDT(f) := min
T :T is an RPDT

computing f

depth(T ).

3Zhang [Zha14] attributes this lemma to Grolmusz [Gro97], who attributes it to Bruck and Smolensky [BS90]. For
completeness and clarity, we reproduce a proof in Appendix A.
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2.1 Communication Complexity

We are interested in the two-party classical bounded-error (BPP) model of communication introduced by
Yao [Yao79]. In this communication model, two parties, Alice and Bob, receive x ∈ X, y ∈ Y , respectively.
They wish to jointly compute a function F : X × Y → {0, 1} on the input (x, y) via a communication
protocol Π. They have unbounded computational power individually and wish to minimize the number
of bits communicated. Alice and Bob are given access to an arbitrarily long string of public random bits.
At any point in the protocol, the party that sends the next message is decided by the previous messages
communicated. The message communicated by the party is a function of the party’s input, the previous
messages communicated and the random string. We say that a protocol Π computes F to within error ε
if Pr[Π(x, y) = F (x, y)] ≥ 1− ε for each x ∈ X, y ∈ Y . The cost of the protocol is the largest number of
bits communicated in the worst case over all possible inputs and outcomes of the random coin tosses. The
ε-error randomized communication complexity of F , denoted Rε(F ), is the minimum cost of a protocol
that computes F to within error ε.

One can also define Rpriε (F ) in the same way, except that the protocols are restricted so that instead
of having a string of public random bits, each party has their own private string of random bits.

One way to prove lower bounds against randomized communication complexity is via the corruption
bound.

Definition 2.13 (Corruption). For any function F : {0, 1}n × {0, 1}n → {0, 1} and any bit z ∈ {0, 1},
we define

Corrzε (F ) := max
µ

min
R

log
1

µ(R)
,

where µ and R range over

• Balanced distributions: Distributions µ such that µ(F−1(z)) ∈ [1/3, 2/3],

• Biased rectangles: Rectangles R such that µ(R ∩ F−1(z̄)) < εµ(R).

Corrε(F ) is defined as the maximum of Corr0
ε(F ) and Corr1

ε(F ).

Klauck [Kla03] showed that Corrε and Corrδ are equivalent up to a multiplicative constant for any
constants ε, δ ∈ (0, 1/12]. By Corr(F ), we refer to Corr1/12(F ). It is well known (see, for example, [KN97])
that this quantity is a lower bound against randomized communication.

Fact 2.14. For any function F : {0, 1}n × {0, 1}n → {0, 1},

R1/3(F ) ≥ Ω(Corr(F )).

2.2 Entropy

Definition 2.15 (Entropy). Let X be a discrete random variable. The entropy H(X) is defined as

H(X) :=
∑

s∈supp(X)

Pr[X = s] log
1

Pr[X = s]
.

Fact 2.16 (Folklore). supp(X) = k =⇒ H(X) ≤ log k, with equality if and only if X is uniform.

Definition 2.17 (Relative Entropy). Let ν, µ be distributions over a finite set S of outcomes. The relative
entropy (or Kullback-Liebler divergence) dKL(ν||µ) is defined as

dKL(ν||µ) :=
∑
s∈S

ν(s) log
ν(s)

µ(s)
.

Lemma 2.18 (Pinsker’s Inequality). For two distributions ν, µ over the same set of outcomes,

dKL(ν||µ) ≥ 1

2 ln 2
||ν − µ||21.
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The following claim appears in [Gav16].

Claim 2.19 (Two faraway distributions cannot both have near-maximum entropy, [Gav16]). If ν1 and
ν2 are two distributions in {0, 1}n, then ||ν1 − ν2||21 ≤ 8 ln 2 · (n−min{H(ν1), H(ν2)}).

We reproduce a proof for completeness.

Proof. Let u be the uniform distribution over {0, 1}n and d be ||ν1 − ν2||1. Without loss of generality,
assume ||ν1−u||1 ≥ d/2. From Pinsker’s inequality (Lemma 2.18) we know that d2/4 ≤ 2 ln 2 dKL(ν1||u).
But

dKL(ν1||u) =
∑
x

ν1(x) log
ν1(x)

2−n
=
∑
x

ν1(x)

(
log ν1(x) + log

1

2−n

)
= −H(ν1) + n.

We thus see that d2 ≤ 8 ln 2(n−H(ν1)), or that H(ν1) ≤ n− ||ν1 − ν2||2/(8 ln 2).

Lemma 2.20 (Shearer’s Lemma). Let X = (X1, . . . , Xn) be a random variable. If S is a random
variable distributed on subsets of the coordinates [n], such that for every i ∈ [n], Pr[i ∈ S] ≥ t, then
E[H(XS)] ≥ tH(X) where XS is the random variable (Xi : i ∈ S).

3 The Disjoint Subcube Function

Definition 3.1 (DISJ− SUBCUBES). Consider a set S = {S1, S2, . . . , Sm} of m disjoint subcubes in
{0, 1}k. Define

DISJ− SUBCUBES(x) :=

{
1 x ∈

⋃
i∈[m] Si

0 otherwise.

Claim 3.2. Let S = {S1, . . . , Sm} be any set of m disjoint subcubes in {0, 1}k. Then,∣∣∣∣ ̂(DISJ− SUBCUBES)
∣∣∣∣

1
≤ m.

Proof. Since the subcubes are disjoint, the exact polynomial representation for DISJ− SUBCUBES is

DISJ− SUBCUBES =
∑
Si∈S

pSi
,

where pSi
is the polynomial that evaluates to 1 for all x ∈ Si and 0 otherwise. That is,

pSi(x) =
∏

j∈fixed(Si)

(
1 + (−1)bjχ{j}(x)

2

)
,

where Si fixes xj to bj . Expanding the above gives a sum of 2|fixed(Si)| monomials, each with a coeffi-
cient of absolute value 2−|fixed(Si)|. Thus the spectral norm of pSi is 1, and hence the spectral norm of
DISJ− SUBCUBES is at most m.

3.1 The Sink Function

We first recall the definition of SINK.

Definition 1.5 (SINK). Consider a tournament (see Definition 2.12) on m vertices defined by the
(
m
2

)
variables xi,j for i < j ∈ [m] in the following way: xi,j = 1 =⇒ vi → vj is the direction of the (vi, vj)
edge, and xi,j = 0 =⇒ vi ← vj is the direction. The function SINK computes whether or not there is a
sink in the graph. In other words,

SINK(x) = 1 ⇐⇒ ∃ i ∈ [m] such that all edges adjacent to vi are incoming.
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We now note that SINK is a specific instance of DISJ− SUBCUBE.

Lemma 3.3. Consider the function SINK on
(
m
2

)
variables. There exists a set of disjoint subcubes

S = {S1, . . . , Sm} in {0, 1}(
m
2 ) such that SINK = DISJ− SUBCUBES .

Proof. Label each of the
(
m
2

)
coordinates by a unique (i, j) pair for i < j ∈ [m]. The description of

fixed(Si) is given below.

• xi,j = 0 for all j > i.

• xj,i = 1 for all j < i.

For each i < j, Si ∩Sj = ∅ since xi,j = 0 in Si and xi,j = 1 in Sj . Thus, the subcubes S1, . . . , Sm are
disjoint. Note that the function DISJ− SUBCUBES is exactly the same as SINK.

Unless mentioned otherwise, we consider the SINK function to be on
(
m
2

)
variables.

3.1.1 Projections

While analyzing the complexity of SINK, we will often use projections of the inputs. Let X ∈ {−1, 1}(
m
2 ).

To see how X orients the edges incident to a vertex vi, let Evi be the set of m− 1 input coordinates that
correspond to the edges incident to vi. We use the notation Xvi to denote the input projected to the
coordinates in Evi . Note that Xvi decides whether or not vi is a sink. By zi, we refer to the m − 1 bit
string such that vi is a sink if and only if Xvi = zi.

4 Simplicity of SINK

In this section, we prove Theorem 1.10, showing that SINK is simple in the sense that the spectral norm
of SINK is small, the approximate rank of SINK ◦ XOR is small, and so is the approximate nonnegative
rank of SINK ◦ XOR.

Theorem 1.10.

1.
∣∣∣∣ ̂SINK ◦ XOR

∣∣∣∣
1

=
∣∣∣∣ŜINK

∣∣∣∣
1
≤ m.

2. rank1/3(MSINK◦XOR) ≤
∣∣∣∣ŜINK

∣∣∣∣
0,1/3

= O(m4).

3. rank+
1/3(MSINK◦XOR) = mO(logm).

Proof. Proof of Part 1: It follows from Claim 3.2, Lemma 3.3 and the observation that composing
with XOR does not change the spectral norm: if pSINK(x) is the polynomial computing SINK, then
pSINK◦XOR(x, y) is obtained by replacing every monomial χS(x) in pSINK(x) with χS(x)χS(y) = χS(x⊕ y).

Proof of Part 2: Recall that Part 1 of Theorem 1.10 implies that
∣∣∣∣ ̂SINK ◦ XOR

∣∣∣∣
1
≤ m. Lemma 2.8

implies existence of a function f : {0, 1}(
m
2 ) → R with sparsity O(m4) such that |SINK(x)− f(x)| ≤ 1/3

for all x. Hence, by Lemma 2.7, f ◦ XOR has rank O(m4) and |SINK ◦ XOR(x, y)− f ◦ XOR(x, y)| ≤ 1/3
for all x, y.

Proof of Part 3: We show that the communication matrix of SINK ◦ XOR is pointwise close to a
matrix M such that M can be written as the nonnegative sum of at most mO(logm) nonnegative rank 1
matrices.

Note that SINK ◦ XOR(X,Y ) can be written as an OR of Equalities:
∨m
i=1 (Xvi = Yvi ⊕ zi). Since at

most one of these Equalities can fire for any input, it is in fact the sum of the m Equalities. It is well known
that any 2(m− 1) size Equality can be solved to error at most 1/3m with a randomized communication
protocol (with private randomness) of cost O(log2m). [Kra96] showed that Rpriε (F ) ≥ log rank+

ε (MF ).

So the matrix for any of the Equalities has (1/3m)-approximate nonnegative rank at most 2O(log2m). By
adding up these matrices, we get a matrix that pointwise approximates the matrix of SINK ◦ XOR as a
sum of m2O(log2m) nonnegative rank 1 matrices.
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5 Parity Hardness of SINK

Recall that Conjecture 1.4 states that for any Boolean function f , the smallest co-dimension of an affine

subspace on which f is a constant (i.e. C⊕,min(f)) is bounded from above by O
(

logc
(∣∣∣∣f̂ ∣∣∣∣

1

))
. Tsang

et al. expressed that no counterexample to Conjecture 1.4 was known even for c = 1. O’Donnell et

al. [OWZ+14] showed that c ≥ log2 3 is necessary. We show that C⊕,min(SINK) = Ω(
∣∣∣∣ŜINK

∣∣∣∣
1
), strongly

refuting Conjecture 1.4.
We first show that any affine subspace in which every input has no sink must be small. We will in

fact prove a stronger statement.

Lemma 5.1 (Sink Avoidance is Costly). Fix any k ≤ m. Let W be an affine subspace such that the
vertices v1, v2, . . . , vk are not sinks in any input in W . Then co-dim(W ) ≥ 2k/3.

Proof. Let W be an affine subspace of {0, 1}(
m
2 ), defined by a system of linear equations with span L,

such that for every input in W , none of V = {v1, . . . , vk} is a sink. This is equivalent to saying that
for every 1 ≤ i ≤ k, no extension of zi appears in W . Then, by Claim 2.11, we know that for every
1 ≤ i ≤ k, there exists a linear equation in L of the form li = ai, where li is supported completely by the
variables indexed within Evi , that is violated by zi. Let us call such a linear constraint a vi-constraint.
It is not hard to see that no constraint can simultaneously be a vi-constraint and a vj-constraint where
i, j ∈ [k], i 6= j. We form a set L of size k by picking a vi-constraint for each vi ∈ V . We argue that the
dimension of span(L) is at least 2k/3, to conclude that W has co-dimension at least 2k/3.

Let B ⊆ L be a basis of span(L), |B| = b. Suitably relabelling vertices, let LB denote L \ B =
{l1, l2, . . . , lk−b} where li is a vi-constraint. We make the two following simple claims which together
easily imply our lemma.

Claim 5.2. Let lr ∈ LB, such that lr = l′1 + · · · + l′s, where each l′i ∈ B. Then, the set B \ {l′1, . . . , l′s}
spans every element in LB \ {lr}.

Claim 5.3. Let lr ∈ LB and B0 ⊆ B, such that lr ∈ span(B0). Then, |B0| ≥ 2.

Before proving the above two claims, let us use them to establish our lemma. Pick any l ∈ LB . Then,
find the minimal B0 ⊆ B such that l ∈ span(B0). By Claim 5.3, |B0| ≥ 2. Now, shrink B and LB by
deleting B0 and l from them respectively. Then, by Claim 5.2, the shrunk B still spans the new LB .
Hence, we can repeat the above step to shrink B this way at least k − b times before it becomes empty.
At each step B shrinks in size by at least 2. Thus, b ≥ 2(k − b), yielding b ≥ d2k/3e.

All that is left is to establish the two claims. Let us begin by proving Claim 5.2. First, consider the
vertices v′1, . . . , v

′
s, v, where l′i is a vi constraint and lr is a vr constraint. It is simple to observe that

xi,j is supported by l′i iff it is supported by l′j . Hence, consider the undirected graph Gr with vertex-set
{v1, . . . , vs} ∪ {vr}, where edge (vi, vj) is present iff xi,j is supported by l′i. Further, it is also simple to
observe, using the fact that B is a basis, that Gr is connected. This also means that in any non-trivial
linear sum of linear forms in L that is identically zero, l′i participates for any 1 ≤ i ≤ s iff each of l′1, . . . , l

′
s

participate. Otherwise, there will be some j 6= k and 1 ≤ j, k ≤ s such that xj,k will appear exactly once
in the sum, contradicting the fact that the sum is zero.Now take any l ∈ LB \ lr. Because B is a basis,
there is a linear sum of elements just from B that equals l. If any element from B0 participates in this,
then by the above argument lr will also participate, yielding a contradiction as lr /∈ B.

Finally, we prove Claim 5.3. For the sake of contradiction, let B0 = {lj}, for some j ≤ s. Then,
lr = lj = xj,r, leading to a contradiction.

We now observe that the lower bound on the co-dimension obtained in Lemma 5.1 is tight.

Claim 5.4. Fix any k ≤ m. There is an affine subspace W of co-dimension d2k/3e such that the vertices
V = {v1, v2, . . . , vk} are not sinks in any input in W .
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Proof. Let k′ be the largest multiple of 3 less than or equal to k. For vertex vk′+1, should it exist, we
set x(1,k′+1) so that the (v1, vk′+1) edge is directed out of vk′+1. We do the same for vk′+2. Now we only
need to ensure that none of v1, . . . , vk′ are sinks.

Group these k′ vertices into triples (v1, v2, v3), . . . , (vk′−2, vk′−1, vk′). Consider the space W obtained
as the solution space to the constraints defined below. For each triple (vi, vi+1, vi+2), add the following
two constraints to the constraint list of W .

• x(i,i+1) + x(i,i+2) is set so that exactly one of the two edges (vi, vi+1) and (vi, vi+2) is directed out
of vi.

• x(i,i+1) + x(i+1,i+2) is set so that exactly one of the two edges (vi, vi+1) and (vi+1, vi+2) is directed
out of vi+1.

The two constraints above are simultaneously satisfied if and only if vi, vi+1, vi+2 forms a cycle. Hence the
above constraints ensure that none of v1, . . . , vk′ are sinks. The total number of constraints is 2bk/3c+(k
mod 3) = d2k/3e.

Proof of Theorem 1.7. Proof of Part 1: Let W be an affine subspace of {0, 1}(
m
2 ) such that every input

in W has a sink. Since the number of such inputs is at most 2(m
2 ) ·m/2m−1, this means W must must

have co-dimension at least m− 1− logm.

Now let W be an affine subspace of {0, 1}(
m
2 ) such that every input in W has no sink. By Lemma 5.1

(set k = m), W must have co-dimension at least 2m/3.
By Lemma 5.4, we see that there in fact is a monochromatic affine subspace of co-dimension d2m/3e.
Proof of Part 2: Every leaf of the PDT is a monochromatic affine subspace of co-dimension at most

the depth of the leaf. From Part 1, we know that every leaf in a PDT computing SINK has to be at depth
at least 2m/3. Hence the number of leaves in any PDT computing SINK is at least 22m/3.

5.1 RPDT Hardness

Throughout this section, we refer to the function SINK on
(
m
2

)
inputs as f to avoid clutter. Our RPDT

lower bound will mimic a corruption bound, but for affine subspaces.

Fact 5.5. Given a randomized parity decision tree Π1 of cost c and error ε for a function g : {0, 1}k →
{0, 1} and any distribution µ on {0, 1}k, there exists a deterministic parity decision tree Π2 of cost at
most c such that Prx∼µ[Π2(x) 6= g(x)] ≤ ε.

We fix µ to be the distribution that is a half-and-half combination of “uniform over the universe” and

“uniform over the 1-inputs”. More precisely, let µ0 be uniform over {0, 1}(
m
2 ) and µ1 be uniform over

f−1(1). Define µ := (µ0 + µ1)/2.

Claim 5.6. For µ as defined above, µ(f−1(1)) = 1/2 + o(1).

Proof. By the definition of µ, this is equivalent to proving that µ0(f−1(1)) = o(1). Recall that µ0 is the
uniform distribution on all inputs. In order for a vertex v to be a sink, all the edges adjacent to it must
be incoming. Thus,

Pr
µ0

[
v is a sink = 2−(m−1)

]
.

A union bound yields the claim.

Lemma 5.7. Let ε ≤ 1/8 be any constant. Any deterministic parity decision tree Π of cost c for f with
error probability ε under the input distribution µ induces an affine subspace W such that µ(W ∩f−1(1)) ≤
4εµ(W ) and co-dim(W ) ≤ c.

Proof. A deterministic parity decision tree gives a partition of the universe into at most 2c labelled affine
subspaces, each of co-dimension at most c, where the label is 1 iff the affine subspace has a larger mass
over its 1-inputs than over its 0-inputs. We note the following about the affine subspaces in the partition.
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• By Claim 5.6, only 1/2+o(1) mass of the distribution is on 1-inputs. Since the error probability of Π
is ε, it cannot have 1-affine subspaces covering more than 1/2 + o(1) + ε mass under the distribution
µ.

• Affine subspaces W which have error ≥ 4εµ(W ) can only make up 1/4 mass, to keep the total error
below ε.

Hence, if ε ≤ 1/8 is a constant, Π must induce a 0-affine subspace W such that µ(W∩f−1(1)) ≤ 4εµ(W )
and co-dim(W ) ≤ c.

Lemma 5.8 (Smallness of Biased Affine Subspaces). Let ε < 1/16. Any affine subspace W that has
µ(W ∩ f−1(1)) ≤ 4εµ(W ) satisfies

co-dim(W ) ≥ m/3.

The proof of the Lemma 5.8 is given in Section 5.1.1. We first prove Theorem 1.8 assuming the lemma.
Recall that Theorem 1.8 states that f is hard for randomized parity decision trees.

Theorem 1.8. RPDT1/3(SINK) = Θ(m).

Proof. Set ε = 1/32. By Fact 5.5, a randomized parity decision tree of cost c for f implies existence
of a deterministic parity decision tree of cost at most c, which errs on at most ε mass of the inputs
under the distribution µ. Lemma 5.7 then implies the existence of an affine subspace W satisfying
µ(W ∩ f−1(1)) ≤ 4εµ(W ) and co-dim(W ) ≤ c. By Lemma 5.8, any such W has co-dim(W ) ≥ m/3.
Thus, RPDT1/32(f) ≥ m/3. A standard error reduction argument shows that any randomized parity
decision tree for f with 1/3 error would also require Ω(m) cost.

5.1.1 Smallness of Biased Affine Subspaces

Lemma 5.8 states that any 0-biased affine subspace under µ must have large co-dimension. We prove this
in two steps.

• We show that any 0-biased affine subspace must have a very small fraction of 1 inputs.

• We then show that any affine subspace with a very small fraction of 1 inputs must have large
co-dimension.

We formally state these two steps below and then prove them.

Claim 5.9. Let ε ≤ 1/8. An affine subspace W such that µ(W ∩ f−1(1)) ≤ 4εµ(W ) must satisfy

|W ∩ f−1(1)|
|W |

≤ 8ε
|f−1(1)|

2(m
2 )

.

Claim 5.10. Let ε < 1/16. If an affine subspace W satisfies

|W ∩ f−1(1)|
|W |

≤ 8ε
|f−1(1)|

2(m
2 )

,

then co-dim(W ) ≥ m/3.

Proof of Claim 5.9. Since µ(W ) = µ(W ∩ f−1(1)) + µ(W ∩ f−1(0)),

µ(W ∩ f−1(1)) ≤ 4εµ(W ) =⇒ µ(W ∩ f−1(1)) ≤ 4ε

1− 4ε
µ(W ∩ f−1(0)).

Note that

µ(W ∩ f−1(1)) ≥ µ1(W ∩ f−1(1))

2
=

1

2

|W ∩ f−1(1)|
|f−1(1)|

and

µ(W ∩ f−1(0)) ≤ µ0(W )

2
=

1

2

|W |
2(m

2 )
.
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Therefore,
|W ∩ f−1(1)|
|f−1(1)|

≤ 4ε

1− 4ε

|W |
2(m

2 )
.

Cross multiplying and using the assumption that ε ≤ 1/8,

|W ∩ f−1(1)|
|W |

≤ 8ε
|f−1(1)|

2(m
2 )

.

Proof of Claim 5.10. Let S be the set of inputs X that represent a graph with a sink, i.e. S = f−1(1).
Let Si ⊂ S be the set of inputs in which the graph represented has vertex vi as a sink.

Consider the set I of all i ∈ [m] such that

|W ∩ Si|
|W |

≤ 16ε
|Si|
2(m

2 )
.

Then, by the condition assumed in the claim

8ε
|S|

2(m
2 )
≥ |W ∩ S|

|W |
=

m∑
i=1

|W ∩ Si|
|W |

≥
∑
i∈I

|W ∩ Si|
|W |

> |I|16ε
|S|/m
2(m

2 )
= |I| · 2

m
· 8ε |S|

2(m
2 )
,

where the second inequality follows from the definition of I and the fact that |Si| = |S|/m. Hence
|I| ≥ m/2, and for all i ∈ I,

|W ∩ Si|
|W |

≤ 16ε
|Si|
2(m

2 )
= 16ε2−(m−1).

Fix any i ∈ I. Define the distribution Wvi by the following sampling procedure: Sample an input
uniformly at random from W and project it to Evi .

We know from the last inequality that,

Pr
X∼Wvi

[X = zi] ≤ 16ε2−(m−1).

But the distribution Wvi is, by Claim 2.11, the uniform distribution over some affine subspace W ′ of
size ≤ 2m−1. Hence every element in the support of Wvi must have probability at least 2−(m−1). So if
ε < 1/16, Wvi cannot have zi in its support.

So for all i ∈ I, vi is never a sink in W . Since |I| ≥ m/2, Lemma 5.1 implies that the co-dimension
of W is at least m/3.

Proof of Lemma 5.8. By chaining together Claim 5.9 and Claim 5.10, we get

µ(W ∩ f−1(1)) <
1

4
µ(W ) =⇒ co-dim(W ) ≥ m/3.

6 Randomized Communication Lower Bound

In this section, we prove that the randomized communication complexity of SINK ◦ XOR is large. While
it is similar to the RPDT lower bound, we will phrase this lower bound as a lower bound on corruption.

Let F := SINK ◦ XOR. Again, we fix ν to be the distribution that is a half-and-half combination
of “uniform over the universe” and “uniform over the 1-inputs”. More precisely, let ν0 be uniform over

{0, 1}(
m
2 )+(m

2 ) and ν1 be uniform over F−1(1). Define ν := (ν0 + ν1)/2.

Claim 6.1 (Balanced Distribution, analogous to Claim 5.6). For ν as defined above, ν(F−1(1)) =
1/2 + o(1).
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The proof of the above is omitted due to syntactic equivalence with that of Claim 5.6.

Lemma 6.2 (Corruption Bound, analogous to Lemma 5.8). Let ε ≤ 1/8. Any rectangle R that has
ν(R ∩ F−1(1)) ≤ 4εν(R) satisfies

ν(R) ≤ 2−m(1/2−32ε)2/(64 ln 2).

We will prove the above lemma in Subsection 6.1 after noting that it shows that Corr0(F ) ≥ Ω(m),
and hence gives an Ω(m) randomized communication lower bound.

Setting ε = 1/128, Lemma 6.2 says that any rectangle R with ν(R ∩ F−1(1)) ≤ ν(R)/32 must have
ν(R) < 2−m/800. Since we know from Claim 6.1 that ν is balanced, this shows that Corr0

1/32(F ) ≥ m/800.
Using Fact 2.14, we conclude Theorem 1.9.

Theorem 1.9. R1/3(SINK ◦ XOR) = Θ(m).

6.1 The Corruption Bound

Lemma 6.2 states that any 0-biased rectangle under ν must have small ν-mass. We prove this in three
steps. We show that any 0-biased rectangle must have a very small fraction (under the uniform distribu-
tion) of 1-inputs. We then show that any rectangle with a very small fraction of 1-inputs must be small.
We finish the proof by showing that any 0-biased small rectangle must have small ν mass.

Claim 6.3 (Analogous to Claim 5.9). Let ε ≤ 1/8. A rectangle R such that ν(R∩F−1(1)) ≤ 4εν(R) must
satisfy

|R ∩ F−1(1)|
|R|

≤ 8ε
|F−1(1)|

22(m
2 )

.

Claim 6.4 (Analogous to Claim 5.10). If a rectangle R = A×B satisfies

|R ∩ F−1(1)|
|F−1(1)|

≤ 8ε
|R|

22(m
2 )
,

then min{|A|, |B|} ≤ 2(m
2 )−m(1/2−32ε)2/(64 ln 2).

Claim 6.5. If a rectangle R satisfies ν(R ∩ g−1(1)) ≤ ν(R)/2, then ν(R) ≤ |R|/22(m
2 ).

The proof of Claim 6.3 is omitted due to syntactic equivalence with the proof of Claim 5.9.
Proof idea of Claim 6.4: This proof goes via the following intuition.

1. The rectangle R has a very small fraction of sinks relative to its size.

2. Hence for many vertices, R has a very small fraction of those vertices as sinks.

3. Any vertex v that is a sink very rarely in R must have its Ev projections on Alice’s side and Bob’s
side quite “different” from each other.

4. Hence, either Alice’s or Bob’s projections must be small.

5. All these projections being small for Alice, say, shows that A must be really small, thus completing
the proof via Shearer’s lemma.

We now formalize this intuition.

Proof of Claim 6.4. We define S to be F−1(1). For i ∈ [m], Si is defined as the subset of S in which the
vertex vi is the sink. We note, by applying the same argument that we did at the beginning of the proof
of Claim 5.10, that there is a set I ⊆ [m] of size at least m/2 such that for all i ∈ I,

|R ∩ Si|
|R|

≤ 16ε
|Si|

22(m
2 )

= 16ε2−(m−1).
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Here, the proof departs from the parallel RPDT lower bound. Fix any i ∈ I. Define the distribution
Avi by the following sampling procedure. Sample an input uniformly at random from A and project it
to Evi . Similarly define Bvi . Define B′vi = Bvi ⊕ zi.

We now show that the distributions Avi and B′vi are far apart, and hence one of them has a loss in
entropy by Claim 2.19. We use the notation α ∈U S to denote that α is drawn uniformly at random from
S.

16ε2−(m−1) ≥ |R ∩ Si|
|R|

= Pr
X,Y ∈UR

[Xvi ⊕ Yvi = zi]

= E
X∈UA

[
E

Y ∈UB

[
1Xvi

⊕Yvi
=zi

]]
= E
X∈UA

[
Pr

Y ∈UB
[Xvi ⊕ Yvi = zi]

]
= E
X∼Avi

[
Pr

Y∼Bvi

[X ⊕ Y = zi]

]
= E
X∼Avi

[
Pr

Y∼B′
vi

[X = Y ]

]
.

Let

T =

{
x ∈ supp(Avi)

∣∣∣∣∣ Pr
Y∼B′

vi

[Y = x] ≤ 32ε2−(m−1)

}
.

By Markov’s inequality, Avi(T ) ≥ 1/2. But T is defined such that B′vi(T ) ≤ 32ε2−(m−1) · |supp(Avi)| ≤
32ε. Hence,

||Avi −B′vi ||1 ≥ 1/2− 32ε

=⇒ (1/2− 32ε)2 ≤ 8 ln 2 · (m− 1−min{H(Avi), H(B′vi)}) (by Claim 2.19)

=⇒ min{H(Avi), H(B′vi)} ≤ m− 1− (1/2− 32ε)2/(8 ln 2).

Note that the distributions Bvi and B′vi are the same distribution but for a relabelling of the elements
in its support. Hence H(Bvi) = H(B′vi).

Either Alice’s side or Bob’s side hence experiences a loss in entropy for at least half the projections in
I. Without loss of generality, we assume it is Alice’s side. Since |I| ≥ m/2, the expected entropy (when
uniformly sampling a projection) for Alice is at most m− 1− 1/4 · (1/2− 32ε)2/(8 ln 2).

Note that each coordinate in Alice’s input appears in exactly 2 out of the m projections. We now
apply Shearer’s lemma (Lemma 2.20) with X ∈U A and S uniform over {Evi}i∈[m]. We have t = 2/m and

E[H(XS)] ≤ m− 1− (1/2− 32ε)2/(32 ln 2). Hence we can conclude that

H(X) ≤ m

2
·
(
m− 1− (1/2− 32ε)2/(32 ln 2)

)
.

Since X is uniform over A, we also have

|A| ≤ 2(m/2)(m−1−(1/2−32ε)2/(32 ln 2)) = 2(m
2 )−m(1/2−32ε)2/(64 ln 2).
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Proof of Claim 6.5.

|R|
22(m

2 )
≥ |R ∩ F

−1(0)|
22(m

2 )

= ν0(R ∩ F−1(0))

= 2ν(R ∩ F−1(0)) (ν1 places no mass on 0-inputs)

≥ ν(R). (by assumption)

Proof of Lemma 6.2. By chaining together Claim 6.3, Claim 6.4 and Claim 6.5, we get that if ε ≤ 1/8
and ν(R ∩ F−1(1)) ≤ 4εν(R), then

ν(R) ≤ |R|
22(m

2 )
≤ 2−m(1/2−32ε)2/(64 ln 2).

6.2 Large Approximate Nonnegative Rank

Proof of Theorem 1.11. To prove this theorem, we will need to introduce two measures: the rectangle
bound, reczε (F ), and the smooth rectangle bound, sreczε (F ), where z ∈ {0, 1}. (We provide their definitions
in Appendix B). Jain and Klauck [JK10] introduce the latter measure and show the following.

sreczε (F ) ≥ reczε (F ) ≥ 1

2
·
(

1

2
− ε
)
· r̃ec

z
2ε(F )

where r̃ec
z
2ε is a measure they define (definition provided in Appendix B) that is a variant of our definition

of corruption. Upon translating it to our definition of corruption, it can be seen that the latter inequality
becomes

log (reczε (F )) ≥ log

(
1

3
·
(

1

2
− ε
)
· (1 + 2ε)

)
+ Corrz2ε/(1+2ε)(F ).

Kol et al. [KMSY14] show that the approximate nonnegative rank is equivalent to the smooth rectangle
bound. In particular they show that

rank+
ε (MF ) ≥ srec0

3ε(F ).

Put together, we have

log rank+
ε (MF ) ≥ log

(
1

3
·
(

1

2
− 3ε

)
· (1 + 6ε)

)
+ Corr0

6ε/(1+6ε)(F )

Since F has an Ω(m) corruption bound for 0 rectangles (Lemma 6.2) with ε = 1/12 (via error reduction
for corruption, see Section 2), it follows that log rank+

1/66(MF ) ≥ Ω(m).

6.3 A Variant of SINK

Recall from Part 3 of Theorem 1.10 that the approximate nonnegative rank of SINK ◦ XOR is bounded
above by mO(logm). In this subsection, we define a variant of SINK◦XOR which still has small approximate
rank, but the approximate nonnegative rank of both this function and its complement are large.

Define the function VARSINK : {0, 1}1+(m
2 ) → {0, 1} as follows. We interpret the last

(
m
2

)
variables

exactly the way we did for SINK. The output of the function is given below, where b is the first bit and
x is the remaining

(
m
2

)
bits.

VARSINK(b, x) = b⊕ SINK(x).
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Let M0,i(b, x) be the 0− 1 indicator that is 1 if and only if b = 0 and vi is a sink in x. Similarly, let
M1,i(b, x) be 1 if and only if b = 1 and vi is a sink in x. Let M1(b, x) be 1 if and only if b = 1. Note that
each of M0,i and M1,i and M1 is a subcube. Also

VARSINK(b, x) =

m∑
i=1

M0,i(b, x) +M1(b, x)−
m∑
i=1

M1,i(b, x).

Hence
∣∣∣∣ ̂VARSINK

∣∣∣∣
1
≤ 2m+ 1 and exactly as we analyzed for SINK, we have rank1/66(MVARSINK◦XOR) ≤

O(m4).
Now, note that if we set b = 0, VARSINK(0, x) = SINK(x), so

rank+
1/66(MVARSINK◦XOR) ≥ 2Ω(m).

If we set b = 1, VARSINK(1, x) = SINK(x). Hence

rank+
1/66(MVARSINK◦XOR) ≥ 2Ω(m).

7 Conclusions

To recall, we construct a simple total function called SINK. Quite remarkably, this function and its
natural lift, SINK◦XOR, refute several conjectures in communication complexity and parity decision tree
complexity as summarized below.

1. SINK ◦ XOR refutes Grolmusz’s conjecture [Gro97].

2. It refutes the strong form of the Log-Approximate-Nonnegative rank conjecture (Conjecture 1.2)
suggested relatively recently by Kol, Moran, Shpilka and Yehudayoff [KMSY14]. It is worth noting
that, in contrast, the Log-Rank Conjecture for deterministic protocols is long known to be true when
rank is replaced by nonnegative rank. The LANRC being true would allow for the compression of
a protocol down to its information content (see Conjecture 3, [KMSY14]). This and various related
notions of protocol compression are of fundamental interest and have been the topic of a lot of
recent research [BBCR13, BR11, GKR16, BGKR18].

3. Both the above conjectures were implied by the LARC (formulated by Lee and Shraibman [LS09]
about ten years ago), which therefore gets refuted. Approximate rank is known to dominate powerful
analytic measures like generalized/smooth discrepancy. Our main result shows an exponential
separation between the classical corruption bound and approximate rank. No such separation
between corruption and even generalized/smooth discrepancy was known for any total function.

4. SINK disproves a conjecture on parity kill number made by Tsang et al. [TWXZ13]. This conjecture
implied the Log-Rank Conjecture for XOR functions. SINK also falsifies the belief of Shpilka et
al. [STV17] that the deterministic PDT size of f can be upper bounded by a quasi-polynomially
growing function of its spectral norm.

5. Our result yields the following interesting situation for quantum communication complexity: either
the quantum log-rank conjecture is falsified by SINK ◦ XOR or the function establishes exponential
quantum supremacy over classical communication for computing even total Boolean functions. The
latter would be a major breakthrough. Proving the former, on the other hand, raises an interesting
challenge of developing new techniques. All known lower bounds for quantum complexity are
within a polynomial of the log of the approximate rank. Anshu et al. [ABG+17] gave a quadratic
separation of quantum communication complexity from the logarithm of the approximate rank.
Yet, SINK ◦ XOR could conceivably show an O(logm) vs Ω(

√
m) separation. The Õ(

√
m) upper

bound follows from composing an O(
√
m) cost Grover’s search with O(logm) cost communication

protocols for the equalities. (See [ABG+17, BCW98] for details on such compositions).
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To conclude, it is worth noting the following curious situation: log(rankε(Mf )) is known to exactly
characterize communication complexity when ε approaches 1/2 from below, as was shown in the classical
work of Paturi and Simon [PS86]. The LRC asks the corresponding question for ε = 0 and remains wide
open. Our result can be interpreted as saying that when 0 < ε < 1/2 is a constant, the logarithm of the
rank measure completely fails to capture the corresponding communication complexity.
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A LARC implies Grolmusz’s Conjecture

In this section, we observe that it is implicit from prior work that the LARC would have implied Grol-
musz’s conjecture, up to a polylogarithmic factor in the input size.

Lemma A.1 (LARC implies Grolmusz’s conjecture). For any function F : {0, 1}n × {0, 1}n → {0, 1},

R1/3(F ) ≤ logO(1) rank1/3(MF ) =⇒ R1/3(F ) ≤ (log
∣∣∣∣F̂ ∣∣∣∣

1
+ log n)O(1).

The observation follows from Lemma 2.8, which we restate here for convenience and prove for com-
pleteness.

Lemma 2.8. For any g : {0, 1}n → R and δ > ε ≥ 0,∣∣∣∣ĝ∣∣∣∣
0,δ
≤ O

(∣∣∣∣ĝ∣∣∣∣2
1,ε
n/(δ − ε)2

)
.

Proof. Let g : {0, 1}N → R be any function. Let g′ be a function witnessing
∣∣∣∣ĝ∣∣∣∣

1,ε
. Consider the

distribution over subsets of [n] where the probability of sampling α is |ĝ′(α)|/
∣∣∣∣ĝ′∣∣∣∣

1
. Draw M =

O
(∣∣∣∣ĝ′∣∣∣∣2

1
n log(1/λ)/(δ − ε)2

)
samples α1, . . . , αM independently from this distribution. Define the func-

tion

h(x) =

∣∣∣∣ĝ′∣∣∣∣
1

M

M∑
i=1

sign(ĝ′(αi))χαi(x).

Then,

Pr[∀x ∈ {0, 1}n, |h(x)− g′(x)| ≤ δ − ε] ≥ 1− λ. (1)

Setting λ to be any constant in (0, 1) yields an h that witnesses the small approximate sparsity of g.
The proof of Equation (1) follows from a union bound over all x, after using Hoeffding’s inequality.

Fix an input x ∈ {0, 1}n. We use Hoeffding’s inequality (Lemma 2.1) with Xi = sign(ĝ′(αi))χαi(x).
Hence X = M∣∣∣∣ĝ′∣∣∣∣

1

h(x) and

E[X] =

M∑
i=1

E[sign(ĝ′(αi))χαi(x)] =

M∑
i=1

∑
α

|ĝ′(α)|∣∣∣∣ĝ′∣∣∣∣
1

sign(ĝ′(α))χα(x) =
M∣∣∣∣ĝ′∣∣∣∣

1

g′(x).

The lemma gives us that

Pr

[∣∣∣∣∣ M∣∣∣∣ĝ′∣∣∣∣
1

h(x)− M∣∣∣∣ĝ′∣∣∣∣
1

g′(x)

∣∣∣∣∣ ≥ M∣∣∣∣ĝ′∣∣∣∣
1

(δ − ε)

]
< 2 exp

(
−

2M2(δ − ε)2/
∣∣∣∣ĝ′∣∣∣∣2

1

4M

)
= 2 exp

(
−M(δ − ε)2

2
∣∣∣∣ĝ′∣∣∣∣2

1

)
.

Hence for M = O(
∣∣∣∣ĝ′∣∣∣∣2

1
n log(1/λ)/(δ − ε)2), we can make Pr[|h(x) − g′(x)| > δ − ε] < λ2−n. By

a union bound over all x, it is clear that with probability ≥ 1 − λ, our sampling of h is such that
∀x ∈ {0, 1}n, |h(x)− g′(x)| ≤ δ − ε.

Proof of Lemma A.1. Denote w =
∣∣∣∣F̂ ∣∣∣∣

1
. Lemma 2.8 implies existence of a functionG =

∑
S⊆[n]×[n] cSχS

such that |G(x)− F (x)| ≤ 1/3 for all x ∈ {0, 1}n × {0, 1}n and
∣∣∣∣Ĝ∣∣∣∣

0
= O(

∣∣∣∣F̂ ∣∣∣∣2
1
n).

Next, note that for any S ⊆ [n] × [n], the function cSχS is a matrix of rank at most 4. By the

sub-additivity of rank, log rank(G), and thus log rank1/3(F ), is at most O(log
∣∣∣∣F̂ ∣∣∣∣

1
+ log n).
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B Definitions of rectangle bounds

In this section, we define a few measures as defined in [JK10] (but for total Boolean functions). Let
F : X × Y → {0, 1} and R be the set of all rectangles in X × Y. z takes values in {0, 1}.

Definition B.1 (Rectangle Bound). reczε (F ) is defined to be the optimal value of the following linear
program.

Variables {wR : R ∈ R}
Minimize

∑
R∈R

wR

s.t. ∀(x, y) ∈ F−1(z)
∑

R:(x,y)∈R

wR ≥ 1− ε

∀(x, y) ∈ F−1(z̄)
∑

R:(x,y)∈R

wR ≤ ε

∀R ∈ R wR ≥ 0

Definition B.2 (Rectangle Bound: Conventional Definition). r̃ec
z
ε (F ) is defined as follows.

r̃ec
z
ε (F ) = max

µ
min
R

1

µ(R ∩ F−1(z))

where µ and R range over

• Heavy distributions: Distributions µ on X × Y with µ(F−1(z)) ≥ 0.5.

• Biased rectangles: Rectangles R ∈ R with µ(R ∩ F−1(z̄)) < εµ(R ∩ F−1(z)).

Definition B.3 (Smooth Rectangle Bound). sreczε (F ) is defined to be the optimal value of the following
linear program.

Variables {wR : R ∈ R}
Minimize

∑
R∈R

wR

s.t. ∀(x, y) ∈ F−1(z)
∑

R:(x,y)∈R

wR ≥ 1− ε

∀(x, y) ∈ F−1(z)
∑

R:(x,y)∈R

wR ≤ 1

∀(x, y) ∈ F−1(z̄)
∑

R:(x,y)∈R

wR ≤ ε

∀R ∈ R wR ≥ 0
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