
The Diptych of Communication Complexity Classes in

the Best-partition Model and the Fixed-partition Model

Alexander Knop

aknop@ucsd.edu

Department of Mathematics

University of California, San Diego

La Jolla, CA, USA

Abstract

Most of the research in communication complexity theory is focused on the fixed-partition
model (in this model the partition of the input between Alice and Bob is fixed). Nonetheless,
the best-partition model (the model that allows Alice and Bob to choose the partition) has a
lot of applications in studying stream algorithms and complexity of branching programs.

In the paper, we show how to transform separations between communication complexity
classes from the fixed-partition to the best-partition models. Using these and previously known
methods, we give an answer to the open question asked by Göös, Pitassi, and Watson by
providing an almost complete picture of the relations between best-communication complexity
classes between Pop and PSPACEop.

1 Introduction

In the communication complexity theory the following model is studied. Let f : {0, 1}n×{0, 1}m →
{0, 1} be a Boolean function. Alice and Bob want to compute f(x, y) but Alice knows only bits of x
and Bob only bits of y. In order to compute the function they communicate via a two-sided channel
and the communication complexity of the function f is the number of bits they sent (this model is
also known as a fixed-partition model, since we fix a partition of the input between Alice and Bob).
If Alice and Bob are deterministic, we call this complexity deterministic communication complexity
and denote it P(f); but like in computational complexity theory it is possible to define bounded
error probabilistic communication complexity (BPP(f)), one-side error probabilistic communication
complexity (RP(f)), nondeterministic communication complexity (NP(f)), and many others.

Studying different complexity classes form a core of complexity theory, and its principal goal is
to give a complete picture of relations between them. Similar research in communication complexity
theory was initiated by Babai et al. [2], where they considered classes of functions with polylog-
arithmic communication complexity. For example, in their paper, they proved that BPP 6⊆ NP

(here, and in the sequel we denote by P, NP etc. classes of functions with polylogarithmic com-
munication complexity in the corresponding model). The well-known result of Aho et al. [1] may
be reformulated as an equality of communication complexity classes; it says that P = NP ∩ coNP

for total functions. However, later Klauck [11] showed that for partial functions NP ∩ coNP is not
a subset of BPP. Consequently Buhrman et al. [3] showed that PP 6⊆ PNP and Papakonstantinou

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 177 (2018)

et al. [15] showed that ⊕P is not a subset of PNP. Finally, Göös et al. [6] proved separations for
almost all the classes between P and PSPACE.

Nonetheless, that there were a lot of papers about the fixed-partition model of communication
complexity, only few works were devoted to the optimal-partition model (or best-communication
complexity). In this model Alice and Bob would like to compute the value of a function f :
{0, 1}n → {0, 1} and they can choose a balanced partition of the input bits in advance; we denote the
deterministic communication complexity of the function f by Pop(f), bounded error probabilistic
by BPPop(f), etc. In 1984 JaJa et al. [8] showed that Pop does not contain RPop (here and after we
denote by Pop, NPop etc. the class of functions with polylogarithmic communication complexity in
the corresponding optimal-partition model), RPop does not contain NPop, and NPop is incomparable
with BPPop. Later, Jukna [9] proved that for total functions Pop does not even contain intersection
of RPop and coRPop (in contrast with the fixed-partition model).

In Section 3 we give an answer to the open question proposed by Göös et. al [6] and show how
to translate almost all separations between communication complexity classes in the fixed-partition
model into separations between communication complexity classes in the best-partition model. In
order to do it we consider two different transformations.
Shift transformation. Results in [8] were proven using a transformation of Boolean functions,
such that it transforms some hard functions for the fixed-partition model into hard functions for
the best-partition model; i.e., they considered “shifted” versions of an equality function and a
disjointness function. Later Lam and Ruzzo [14] generalized this technique and proved that for
any paddable function f with deterministic (bounded error, unbounded error, zero error, and
nondeterministic) communication complexity C, the “shifted” version of f has best-communication
complexity C in the same model. Theorem 3.2 generalizes this result and prove this “lifting” for
almost all known communication complexity measures.
Segerlinds transformation. Nevertheless, many of the functions separating other classes are not
paddable. In order to solve this issue, we introduce the second transformation that is based on
the ideas of Segerlind [17]. We extend the result of Knop [13] and construct a transformation Sg,

parameterized by a “good” function g : {0, 1}k → {0, 1}, such that if a function f : {0, 1}n → {0, 1}
has a communication complexity C in some model for some partition of inputs, then Sg(f) :

{0, 1}l → {0, 1} has a communication complexity at least C in this model for every balanced
partition and l = poly(n,m). Moreover, we prove that if a function f ◦ g has a communication
complexity at most C in some model for every balanced partition of inputs, then Sg(f) : {0, 1}l →
{0, 1} has a communication complexity at most C+2 log n in this model for some balanced partition
of inputs.

As the beforementioned separation between NPop ∩ coNPop and Pop shows that some equalities
of communication complexity classes in the fixed-partition can not be lifted to the corresponding
equalities of communication complexity classes in the best-partition model. In Section 4.1 we give
another example of such a phenomenon, we show that there is a total function f : {0, 1}n → {0, 1},
such that DPop(f) = O(log n), coDPop(f) = O(logn), and P

NP[1]
op (f) = Ω(

√
n), but in the fixed-

partition model such a result is not known for total functions.

1.1 Cartography

All the known inclusions and non-inclusions are drawn on Figure 1. The diagram does not show
any unnecessary arrows (arrows that follow from the drawn one) e.g. if there are arrows A −→ B

2

P

ZPP

RP ∩ coRP

RP

NP ∩ coNP

NPcoNP BPP

PNP[1]

DP ∩ coDP

DPcoDP

US MA

⊕P

AM ∩ coAM SBP

AM

P
NP[2]
‖

PNP

‖

PNP

PostBPP

S2P

ZPP
NP

Π2P

PSPACE

ZPP
NP[1]

ZPP
NP[2]
‖

PP

UPostBPP�

UPostBPP
UPP�

UPP

Figure 1: A −→ B denotes Bop ⊆ Aop, and A 99K B denotes Bop 6⊆ Aop. Red indicates new results
and Blue indicates classes for which no explicit lower bounds are known.

3

and B −→ C, then A −→ C is an unnecessary arrow.

Inclusions Establishing inclusions is much easier in the case of best-communication, since it is
easy to see that (Lemma 2.2) that if A and B are communication complexity classes and A ⊆ B,
then Aop ⊆ Bop. Note that this is not true for an intersection of communication complexity classes
e.g. NP ∩ coNP = P for total functions, but NPop ∩ coNPop 6= Pop [9] since NP and coNP protocols
may use different partitions.

Noninclusions

NPop ∩ coNPop 6⊆ BPPop: This result was proven by Jukna [9].

RPop ∩ coRPop 6⊆ ZPPop: This result was also proven by Jukna [9].

DPop ∩ coDPop 6= P
NP[1]
op : Using ideas similar to the ideas of Jukna we prove that there is a total

function separating these classes (Theorem 4.29). Note that in the fixed-partition model such
a separation is unknown.

The following results are proven using the transformations that lift communication complexity from
the fixed-partition model to the best-partition model.

Separation Fixed-partition Model Best-partition Model

BPPop 6⊆ PNP
op Papakonstantinou et al. [15, Lemma 14] Corollary 4.2

MAop 6⊆ ZPP
NP[1]
op Göös et al. [6, Theorem 1] Corollary 4.4

USop 6⊆ ZPP
NP[1]
op Göös et al. [6, Theorem 2] Corollary 4.7

USop 6⊆ coDPop Göös et al. [6, Theorem 3] Corollary 4.9

RPop 6⊆ USop Göös et al. [6, Observation 26] Corollary 4.11

ZPPop 6⊆ ⊕Pop Göös et al. [6, Observation 27] Corollary 4.13

PNP
op 6⊆ PPop Buhrman et al. [3, Section 3.2] Corollary 4.15

⊕Pop 6⊆ UPPop Forster [4, Corollary 2.2] Corollary 4.17

Π2Pop 6⊆ UPPop Razborov and Sherstov [16, Corollary 1.2] Corollary 4.19

SBPop 6⊆ MAop Göös et al. [5, Theorem 3] Corollary 4.21

PPop 6⊆ UPostBPP�op Göös et al. [6, Theorem 6] Corollary 4.23

coNPop 6⊆ SBPop Göös and Watson [7, Corollary 2] Corollary 4.26

AMop ∩ coAMop 6⊆ PPop Klauck [12, Theorem 5] Corollary 4.28

2 Preliminaries

We denote the set of all partitions Π of the numbers [n] into two sets Π0 and Π1 by Pn and the set
of all functions from {0, 1}n to {0, 1} by Bn. We say that a partition Π = (Π0,Π1) is balanced iff
||Π0| − |Π1|| ≤ 1.

4

A formal communication complexity measure µ is a function assigning to each pair of a Boolean
function and a partition of its inputs a natural number such that the following constraints are
satisfied.

• The measure cannot increase if we replace some variables by constants and flip some other
variables i.e. for every function f : {0, 1}n → {0, 1}, partition Π ∈ Pn, and sequence
{ρi : {0, 1} → {0, 1}}ni=1 of Boolean functions, µ(f,Π) ≥ µ(h,Π), where h(x1, . . . , xn) =
f(ρ1(x1), . . . , ρn(xn)).

• The measure cannot change if we add “dummy” variables i.e. for every function f : {0, 1}n →
{0, 1}, partition Π ∈ Pn, and set I = {i1 < i2 < · · · < in} ⊆ [k] µ(f,Π) = µ(g,Π′), where
g(x1, . . . , xk) = f(xi1 , . . . , xin) and Π′ is a partition such that j ∈ Π′b iff ij ∈ Πb for all j ∈ [n]
and b ∈ {0, 1}.

• The measure preserves under permutations of input variables i.e. for every function f :
{0, 1}n → {0, 1}, partition Π ∈ Pn, and permutation π ∈ Sn

1, µ(f,Π) = µ(g,Π′), where
g(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) and Π′ = ({i : π(i) ∈ Π0} , {i : π(i) ∈ Π1}).

• The measure decreases at most linearly if a part of the input is revealed i.e. for every function
f : {0, 1}n+ℓ → {0, 1} and partition Π ∈ Pn+ℓ, µ(f,Π) ≤ max

c1,...,cℓ∈{0,1}
µ(gc1,...,cℓ ,Π) + l, where

gc1,...,cℓ(x1, . . . , xn+ℓ) = f(x1, . . . , xn, c1, . . . , cℓ).

It is easy to see that all the standard communication complexity measures are formal com-
munication complexity measures indeed (one may found all the definitions of the measures and
explanations that these measures are formal communication measures in the appendix).

Remark 2.1. Let µ be a formal communication complexity measure, c1, . . . , cn ∈ {0, 1} be Boolean
numbers, i1 < i2 < · · · < ik be integers, f : {0, 1}n → {0, 1} be a Boolean function, and Π ∈ Pn be
a partition. Then, µ(f,Π) ≥ µ(g,Π′), where g(x1, . . . , xk) = f(c1, . . . , ci1−1, x1, ci1+1, . . . , cn) and
Π′ = ({j : ij ∈ Π0} , {j : ij ∈ Π1}).

For a formal communication complexity measure µ, a function f ∈ Bn, and a partition Π ∈ Pn

we say that µ(f,Π) is a µ communication complexity of f with respect to Π. Additionally, for a
function f : {0, 1}n × {0, 1}m → {0, 1}, we denote µ communication complexity of f with respect
to the partition ([1, n], [n+ 1, n+m]) by µ(f).

If µ is a formal communication complexity measure, we call µ best-communication complexity
of a function f : {0, 1}n → {0, 1} the minimal µ(f,Π) over all balanced partitions Π ∈ Pn and
denote it as µop(f).

As an abuse of notation we denote by µ not only the formal communication measure itself but
also a class of all families {(fn,Πn)}n∈N such that µ(fn,Πn) = poly(log n). Additionally, we denote
by µop not only the formal communication complexity measure itself but also a class of all families
{fn}n∈N such that µop(fn) = poly(log n).

Lemma 2.2. Let µ and ν be some formal communication complexity measures. If µ ⊆ ν, then
µop ⊆ νop.

Proof. Let us consider some family {fn}n∈N ∈ µop. Note that µ(fn,Πn) = poly(log n) for every
family of balanced partitions Πn since {fn}n∈N ∈ µop. Hence, ν(fn,Πn) = poly(log n). As a result,
νop(fn) = poly(log n), i.e., {fn}n∈N ∈ νop.

1
Sn denotes the set of all permutations of the numbers [n].

5

3 Transformations

In this section we explain the intuition behind the Shift and Segerlinds transformations. Consider
some set of permutations P ⊆ SN and a surjective function α : {0, 1}ℓ → P for N ≥ n and
ℓ = ⌈log |P |⌉.

Let f : {0, 1}n → {0, 1} be a Boolean function. Then permP,f : {0, 1}ℓ → {0, 1} is a
Boolean function such that permP,f (z1, . . . , zℓ, x1, . . . , xN) is equal to f(xπ(1), . . . , xπ(n)), where
α(z1, . . . , zℓ) = π.

Let µ be a formal communication complexity measure, Π be a partition of the variables of
permSn,f . It is easy to see that

µ(permSn,f ,Π) ≥ µ(f,Γ),

for Γ such that |Γi| = |{j ∈ [n] : (j + ℓ) ∈ Πi}| (an observation similar to this was used in [10] to
prove separations between classical OBDDs and their quantum counterparts). Indeed, application
of a partial substitution zk = ak for each k ∈ [ℓ] to permP,f (z1, . . . , zℓ, x1, . . . , xn) yields the function
g(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) where π = α(a1, . . . , aℓ). Hence, if π is a permutation such that
{j ∈ [n] : π(j) ∈ Γi} = {j ∈ [n] : (j + ℓ) ∈ Πi}, then

µ(permP,f ,Π) ≥ µ(g,Π′) ≥ µ(f,Γ),

where Π′ = ({j ∈ [n] : (j + ℓ) ∈ Π0} , {j ∈ [n] : (j + ℓ) ∈ Π1}).
Nonetheless, {j ∈ [n] : (j + ℓ) ∈ Πi} may be an empty set. In order to solve this issue we need

P to be a small set of permutations (note that |{j ∈ [n] : (j + ℓ) ∈ Πi}| ≥ |Πi| − ℓ). In this case
we encounter another problem: the permutation π from the previous argument may not belong to
the set P . Shift transformation and Segerlinds transformation propose two different approaches
to the former problem. However, both approaches follow the same plan: we choose some set of
permutations P and show that if there is a “good” permutation α for partitions Π ∈ PN+ℓ and
Γ ∈ Pn (in each case we formalize later what it means to be “good”), then µ(permP,f ,Π) ≥ µ(f,Γ).
Afterwards, we show that for every pair of balanced partitions Π ∈ PN+ℓ and Γ ∈ Pn such a “good”
permutation exists.

3.1 Shift Transformation

Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function. Then shiftf : {0, 1}2n+⌈log n⌉ is a Boolean
function, such that

shiftf (z1, . . . , zt, x1 . . . , xn, y1, . . . , yn) = f(x1, . . . , xn, y1+bin(z1,...,zt) mod n, . . . , yn+bin(z1,...,zt) mod n),

where t = ⌈logn⌉ and bin(z1, . . . , zt) is an integer with a binary representation z1 . . . zt. In other
words, shiftf = permP,f , where P = {πj ∈ Sn : j ∈ [1, n]} and for all i, j ∈ [1, n], πj(i) = i and
πj(n+ i) = n+ ((i+ j) mod n).

In this section we generalize the result of Lam and Ruzzo [14] and show that if a paddable
function f is hard for some formal communication complexity measure in the fixed-partition
model, then shiftf is hard for the same formal communication complexity measure in the best-
partition model. The initial definition of paddable functions was complicated, however, for all
known examples we may use a much simpler definition. We say that a family of functions
{fn : {0, 1}n × {0, 1}n → {0, 1}}n∈N is easily paddable iff for every n ∈ N and I = {i1 < · · · < ik} ⊆
[n], there are c1, d1, . . . , ci1−1, di1−1, ci1+1, di1+1, . . . , cn, dn ∈ {0, 1}, such that

fn(c1, . . . , ci1−1, x1, ci1+1, . . . , cn, d1, . . . , di1−1, y1, di1+1, . . . , dn) = fk(x1, . . . , xk, y1, . . . , yk).

6

Remark 3.1. Let µ be a formal communication complexity measure and
{fn : {0, 1}n × {0, 1}n → {0, 1}}n∈N be an easily paddable family of Boolean functions. Then
µ(fm) ≤ µ(fn) for all m ≤ n.

Theorem 3.2. Let µ be a formal communication complexity measure. If a family of Boolean
functions {fn : {0, 1}n × {0, 1}n → {0, 1}}n∈N is easily paddable, then µop(shiftfn) ≥ µ(fn/8).

Before we start to prove this theorem, let us prove the following technical lemmas.

Lemma 3.3. Let µ be a formal communication complexity measure. If a family of Boolean functions
{fn : {0, 1}n × {0, 1}n → {0, 1}}n∈N is easily paddable, then for every partition Π ∈ P2n such that
| {i : i ∈ Π0, (i+ n) ∈ Π1} | ≥ k,

µ(fn,Π) ≥ µ(fk).

Proof. Let us consider I = {i1 < · · · < ik} ⊆ {i : i ∈ Π0, (i+ n) ∈ Π1}. Since fn is easily paddable
there are c1, d1, . . . , ci1−1, di1−1, ci1+1, di1+1, . . . , cn, dn ∈ {0, 1}, such that

fn(c1, . . . , ci1−1, x1, ci1+1, . . . , cn, d1, . . . , di1−1, y1, di1+1, . . . , dn) = fk(x1, . . . , xk, y1, . . . , yk).

Hence, by Remark 2.1, µ(fn,Π) ≥ µ(fk,Π
′), where Π′ = ([1, k], [k+1, 2k]). As a result, µ(fn,Π) ≥

µ(fk).

Lemma 3.4. Let A,B ⊆ [n] be sets of size k. Then there is s, such that

|A ∩ {i : (i+ s mod n) ∈ B} | ≥ k2

n
.

Proof. Let us note that

∑

s∈[n]

|A∩{i : (i+ s mod n) ∈ B} | =
∑

i∈A,s∈[n]

1 =
∑

i∈A

| {s : (i+ s mod n) ∈ B} | = |A|·|B| = k2.

Hence, by pigeonhole principal there is s, such that

|A ∩ {i : (i+ s mod n) ∈ B} | ≥ k2

n
.

Proof of Theorem 3.2. Let us consider a balanced partition Π ∈ P2n+⌈logn⌉ of the input of the

function shiftfn . Note that both parts of Π contains at least n− 1
2 log n indices from [2n]. Without

loss of generality Π0 contains at least n
2 indices from [1, n] and Π1 contains at least n

2 − 1
2 logn

indices from [n+ 1, 2n].
Let A ⊆ [n] be a set of ⌊n2 − 1

2 logn⌋ indices i from [n], such that i ∈ Π0, B ⊆ [n] be a set of
⌊n2 − 1

2 log n⌋ indices i from [n], such that (i+ n) ∈ Π1.

Note that by Lemma 3.4, there is s, such that ℓ = |A∩{i : (i+ s mod n) ∈ B} | ≥ (n−logn)2

4n =
n
4 − logn

2 + log2 n
4n ≥ n

8 . Let us consider c1, . . . , ct ∈ {0, 1}, such that s = bin(c1, . . . , ct). In this case,

shiftfn(x1, . . . , xn, y1, . . . , yn, c1, . . . , ct) = fn(x1, . . . , xn, y(1+s) mod n, . . . , y(n+s) mod n).

7

Let us consider a Boolean function g : {0, 1}2n → {0, 1}, such that

g(x1, . . . , xn, y1, . . . , yn) = shiftfn(x1, . . . , xn, y1, . . . , yn, c1, . . . , ct)

and a partition Π′ ∈ P2n, such that Π′0 = Π0 ∩ [2n] and Π′1 = Π1 ∩ [2n]. By Re-
mark 2.1, µ(shiftfn ,Π) ≥ µ(g,Π′). Additionally, since µ is a communication complexity mea-
sure, µ(g,Π′) = µ(f,Π′′), where Π′′ ∈ P2n is a partition such that Π′′0 = (Π′0 ∩ [n]) ∪
{n+ i : n+ (i+ s mod n) ∈ Π′0} and Π′′1 = (Π′1 ∩ [n]) ∪ {n+ i : n+ (i+ s mod n) ∈ Π′1}.

Note that A ⊆ Π′′0 and {n+ i : (i+ s mod n) ∈ B} ⊆ Π′′1. Hence, by Lemma 3.3, µ(fn,Π
′′) ≥

µ(fℓ). Therefore, µ(shiftfn ,Π) ≥ µ(fℓ) ≥ µ(fn/8).

Theorem 3.5. Let µ be a formal communication complexity measure. For every fn : {0, 1}n ×
{0, 1}n → {0, 1}, µop(shiftfn) ≤ µ(fn) + ⌈logn⌉.

Proof. Let us consider an arbitrary partition Π ∈ P2n+t, such that [1, n] ⊆ Π0 and [n+1, 2n] ⊆ Π1.
For each s ∈ [n], let us define

fn,s(x1, . . . , xn, y1, . . . , yn, z1, . . . , zt) = fn(x1, . . . , xn, y1+s mod n, . . . , yn+s mod n).

Note that Π = ({i : πs(i) ∈ Π0} , {i : πs(i) ∈ Π1}) for every s ∈ [n]. Hence, µ(fn,Π) = µ(fn,s,Π)
and

µ(shiftfn ,Π) ≤ max
s∈[n]

µ(fn,s,Π) + t = µ(fn) + ⌈log n⌉

since µ is a formal communication complexity measure.

3.2 Segerlinds Transformation

In this section we propose an alternative approach originated in ideas of Segerlind [17]. The idea
of this transformation is to add “clones” of the variables and as a result increase the number of
reachable permutations. To define this transformation we need to define a composition of functions.
Let f : {0, 1}n → {0, 1} and g : {0, 1}k → {0, 1} be Boolean functions. We denote by f ◦ g :
{0, 1}nk → {0, 1} a Boolean function, such that

(f ◦ g)(y1,1, . . . , y1,k, . . . , yn,1, . . . , yn,k) = f(g(y1,1, . . . , y1,k), . . . , g(yn,1, . . . , yn,k)).

Let t ∈ N be given, F be a field of size 2t. Define the set Pt ⊆ S2t to be a set of all mappings
given by x 7→ ax+b with a, b ∈ F and a 6= 0. We also fix some surjective function αt : {0, 1}2t → Pt.

Let f : {0, 1}n → {0, 1} be a Boolean function and t = ⌈log(nk)⌉. Then Segerlinds transform
of f : {0, 1}n → {0, 1} parameterized by g : {0, 1}k → {0, 1}n is Sg(f) = permPt,f◦g.

In the paper [17], Segerlind used the transformation S∧m to prove lower bounds on an OBDD
based proof system, later in the paper [13] it was noticed that this transformation allows to lift
lower bounds for deterministic communication complexity from the fixed-partition model to the
best-partition model. However, it is easy to see that the transformation S∧m does not allow us
to prove the upper bound on complexity of S∧m(f); e.g. deterministic communication complexity
of ⊕n is a constant for every partition of inputs, but S∧2(⊕n) is equal to permPlog 2n,IPn

(IPn :

{0, 1}n×{0, 1}n → {0, 1} is the inner product function and ∧2 : {0, 1}2 → {0, 1} is a conjunction of
two bits) and communication complexity of this function is equal to Ω(n) for at least one partition.
In the application of the following theorem we use g = ⊕k, i.e, the parity function. However, we
prove the general theorem for the sake of completeness.

8

Theorem 3.6. Let µ be a formal communication complexity measure. Then for every n large
enough, Boolean function f : {0, 1}n → {0, 1}, k ≥ 100n, Boolean function g : {0, 1}k → {0, 1},
and partition Π ∈ Pn, µop(Sg(f)) ≥ µ(f,Π) providing that g depends on all its inputs.

Proof of this theorem is based on Lemmas 3.7 and 3.10. We prove these lemmas first and after
that return to the proof of this theorem.

Lemma 3.7. Let n and k be some integers such that k ≥ 100n, t = lognk, and Γ = (Γ0,Γ1) be a
partition of [2t], such that 2t ≥ |Γ0|, |Γ1| ≥ 2t−1 − 2t. There is π ∈ Pt, such that for every i ∈ [n]
and b ∈ {0, 1}, π((i− 1) · k + j) ∈ Γb for some j ∈ [k].

We prove this lemma using the probabilistic principle, hence, we need two following lemmas.

Lemma 3.8 ([18]). For every t, |Pt| = 2t · (2t − 1), every mapping from Pt is a permutation, and
for any x1, x2, y1, y2 ∈ [2t] if x1 6= x2 and y1 6= y2, then Pr

π∈Pt

[π(x1) = y1, π(x2) = y2] =
1

2t(2t−1) .

Lemma 3.9 (Chebyshev’s inequality). If X1, . . . , Xt are random Boolean variables and Y =
t
∑

i=1
Xi, then

Pr[Y = 0] ≤
E[Y] +

∑

i 6=j∈[t]

Cov(Xi, Xj)

(E[Y])2
.

Proof of Lemma 3.7. Choose uniformly random π ∈ Pt and for b ∈ {0, 1} and consider random

variables χb
i,j and Y b

i , such that χb
i,j = 1 iff π((i− 1) · k + j) ∈ Γb and Y b

i =
k
∑

j=1
χb
i,j .

By Lemma 3.8, expectation of χb
i,j equals |Γb|

2t and by additivity of expectation, expectation of

Y b
i is equal to k|Γb|

2t . Note that

Cov(χb
i,j0 , χ

b
i,j1) = E[χb

i,j0 · χ
b
i,j1]− E[χb

i,j0]E[χ
b
i,j1]

=
∑

u 6=v∈Γb

Pr[π((i− 1) · k + j0) = u, π((i− 1) · k + j1) = v]− |Γk|2
22t

=
|Γb|(|Γb| − 1)

2t(2t − 1)
− |Γb|2

22t
<

|Γb|2
2t

(

1

2t − 1
− 1

2t

)

=
|Γb|2

22t(2t − 1)
=

(

E[Y b
i]
)2

k2(2t − 1)
.

Hence, by Lemma 3.9,

Pr[Y b
i = 0] ≤

E[Y b
i] +

∑

i 6=j∈[n]

Cov(χb
i,j0

, χb
i,j1

)

(

E[Y b
i]
)2

≤ 2t

k|Γb|
+

k(k − 1)

k2(2t − 1)
≤ 2t

k (2t−1 − 2t)
+

1

2t − 1

≤ 2t

k2t−2
+

1

2t − 1
=

4

k
+

1

2t − 1
.

9

Therefore, by union bound, Pr
[

∃i, b Y b
i = 0

]

≤ 8n
k + 2n

2t−1 ≤ 1. As a result, there is a permutation
π ∈ Pt, such that for any i ∈ [n] and b ∈ {0, 1} there is j ∈ [k], such that π((i− 1) · k+ j) ∈ Γb.

Lemma 3.10. Let f : {0, 1}n → {0, 1} and g : {0, 1}k → {0, 1} be Boolean functions, such that g
depends on all its inputs, and Π′ ∈ Pnk and Π ∈ Pn be partitions. If for every i ∈ [n] and b ∈ {0, 1}
there is j ∈ [k] such that (i− 1) · k + j ∈ Π′b, then µ(f ◦ g,Π′) ≥ µ(f,Π).

Proof. Let b1, . . . , bn ∈ {0, 1} be Boolean numbers such that for every i ∈ [n], i ∈ Πbi . Let us
denote j such that (i− 1) · k + j ∈ Π′bi by ji. Since g depends on all its inputs, including ji, there
are ci,1, . . . , ci,n, si ∈ {0, 1}, such that

g(ci,1, . . . , cji−1, si ⊕ x, cji+1, . . . , ci,n) = x.

Note that

(f ◦ g)(c1,1, . . . , cj1−1, s1 ⊕ x1, cj1+1, . . . , c1,n, c2,1, . . .) = f(x1, . . . , xn).

Hence, µ(f ◦ g,Π′) ≥ µ(f,Π).

Proof of Theorem 3.6. Let N be an integer such that f ◦ g : {0, 1}N → {0, 1}. Fix two arbi-
trary balanced partitions Γ and Π of the variables of Sg(f) and f respectively. We prove that
µ(Sg(f),Γ) ≥ µ(f,Π).

Let t = ⌈logN⌉. By Lemma 3.7, there is a permutation π ∈ Pt, such that for any i ∈ [n] and
b ∈ {0, 1} there is j ∈ [k], such that π((i− 1) · k + j) ∈ Γb.

Let Γ′ be a partition induced by Γ on [1, 2t]. Let us consider a c1, . . . , c2t ∈ {0, 1} such that
α(c1, . . . , c2t) = π. In this case,

Sg(f)(x1, . . . , x2t , c1, . . . , c2t) = (f ◦ g)(xπ(1), . . . , xπ(n))

for all x1, . . . , x2t ∈ {0, 1} and a partition Π′, such that Π′0 =
{

i ∈ [2t] : π(i) ∈ Γ′0
}

and
Π′1 =

{

i ∈ [2t] : π(i) ∈ Γ′1
}

. By properties of the formal communication complexity measure,
µ(Sg(f),Γ) ≥ µ(f ◦ g,Π′). Note that for every i ∈ [n] and b ∈ {0, 1} there is j ∈ [k] such that
(i− 1) · k + j ∈ Π′b. Hence, by Lemma 3.10, µ(f ◦ g,Π′) ≥ µ(f,Π).

Theorem 3.11. Let µ be a formal communication complexity measure, f : {0, 1}n → {0, 1} be a
Boolean function, and g : {0, 1}k → {0, 1} be a Boolean function. If for every partition Π ∈ Pnk,
µ(f ◦ g,Π) ≤ S, then µop(Sg(f)) ≤ S + 2⌈logn⌉.

Proof. Let us fix some balanced partition Γ ∈ P2t+t and consider hπ(x1, . . . , x2t) = (f ◦
g)(xπ(1), . . . , xπ(nk)). Note that µ(Sg(f),Γ) ≤ max

π∈Pt

µ(hπ,Γ) + 2t ≤ S + 2t.

4 Separations

In this section we use the separations in the fixed-partition model to prove separations in the
best-partition model.

10

BPPop 6⊆ PNP

op

Let GHDn : {0, 1}n × {0, 1}n → {0, 1} be a partial Boolean function, such that GHDn(x, y) = 1 if
dH(x, y) ≥ 2n

3
2, GHDn(x, y) = 0 if dH(x, y) ≤ n

3 , and for all other x and y the function is not defined.

Theorem 4.1 (Papakonstantinou et al. [15, Lemma 14]). PNP(GHDn) = Ω(n).

Corollary 4.2. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• mn = O(n2),

• BPPop(hn) = O(log n), and

• PNP
op (hn) = Ω(n).

Proof. Let kn = 200n and hn = S⊕kn
(GHDn). By Theorem 3.6, PNP

op (hn) = Ω(n). Note that
BPP(GHDn◦⊕kn ,Π) = O(1), for every Π ∈ P2nkn since the following BPP protocol with cost O(logn)
computes GHDn◦⊕kn : Alice and Bob pick random i ∈ [n] and check if ⊕kn(yi,1, . . . , yi,kn) = 1. Hence,
by Theorem 3.11, BPPop(hn) = O(log n).

MAop 6⊆ ZPP
NP[1]
op

Let us consider the function Block-EQn : {0, 1}2n2 → n, such that

Block-EQn(x1,1, . . . , x1,n, . . . , xn,1, . . . , xn,n, y1,1, . . . , y1,n, . . . , yn,1, . . . , yn,n) = 1

iff for some i ∈ [n], for every j ∈ [n], xi,j = yi,j .

Theorem 4.3 (Göös et al. [6, Theorem 1]). ZPP
NP[1](Block-EQn) = Ω(n).

Corollary 4.4. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O(n4),

• MAop(hn) = O(logn), and

• ZPP
NP[1]
op (hn) = Ω(n).

Proof. Let kn = 200n2 and hn = S⊕kn
(Block-EQn). By Theorem 3.6, ZPP

NP[1]
op (hn) = Ω(n). Note

that MA(Block-EQn ◦ ⊕kn ,Π) = O(logn), for every Π ∈ P2n2kn . Indeed, the following MA protocol
computes Block-EQn ◦ ⊕kn : Merlin sends i ∈ [n], after that Alice and Bob evaluate EQn ◦ ⊕kn on
the ith block of input (it can be done with O(logn) communication). Hence, by Theorem 3.11,
MAop(hn) = O(logn).

2
dH is a Hamming distance.

11

USop 6⊆ ZPP
NP[1]
op

Let Unique-INTERn : {0, 1}2n → {0, 1} be a function such that

Unique-INTERn(x1, . . . , xn, y1, . . . , yn) = 1

iff | {i ∈ [n] : x1 = yi = 1} | = 1.

Remark 4.5. Unique-INTERn is easily paddable.

Theorem 4.6 (Göös et al. [6, Theorem 2]). • ZPP
NP[1](Unique-INTERn) = Ω(n) and

• US(Unique-INTERn) = O(logn).

Corollary 4.7. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O(n),

• USop(hn) = O(logn), and

• ZPP
NP[1]
op (hn) = Ω(n).

Proof. Let h = shiftUnique-INTERn . By Theorem 3.5, USop(hn) = O(logn), and by Theorem 3.2,

ZPP
NP[1]
op (hn) = Ω(n).

USop 6⊆ coDPop

The function , from the previous section can be also used to separate USop and coDPop.

Theorem 4.8 (Göös et al. [6, Theorem 3]). coDP(Unique-INTERn) = Ω(n).

Corollary 4.9. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O(n),

• USop(hn) = O(logn), and

• coDPop((hn) = Ω(n).

Proof. Let h = shiftUnique-INTERn . By Theorem 3.5, USop(hn) = O(log n), additionally by Theo-
rem 3.2, coDPop(hn) = Ω(n).

RPop 6⊆ USop

Let us also consider a function NEQn : {0, 1}2n → {0, 1}, such that

NEQn(x1, . . . , xn, y1, . . . , yn) = 1

iff for some i ∈ [n], xi 6= yi.

Theorem 4.10 (Göös et al. [6, Observation 26]). US(NEQn) = Ω(n).

Corollary 4.11. There is a family of functions hn : {0, 1}mn → {0, 1} such that

12

• m = O(n),

• RPop(hn) = O(logn), and

• USop((hn) = Ω(n).

Proof. Let hn = shiftNEQn . It is well-known that RP(NEQn) = O(logn). It is also easy to see
that NEQn is easily paddable. Hence, by Theorem 3.5, RPop(h) = O(log n), and by Theorem 3.2,
USop(h) = Ω(n).

ZPPop 6⊆ ⊕Pop

Let Which-EQn : {0, 1}2n → {0, 1} be a function, such that Which-EQn(x0x1, y0y1) = 1 iff x0 = y0
and Which-EQn(x0x1, y0y1) = 0 iff x1 6= y1, where |x0| = |y0| = ⌈n2 ⌉.

Theorem 4.12 (Göös et al. [6, Observation 27]). ⊕P(Which-EQn) = Ω(n).

Corollary 4.13. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O(n2),

• ZPPop(hn) = O(logn), and

• ⊕Pop(hn) = Ω(n).

Proof. Let kn = 200n and hn = S⊕kn
(Which-EQn). By Theorem 3.6, ⊕Pop(hn) = Ω(

√
n). However,

ZPP(Which-EQn ◦⊕kn ,Π) = O(logn) for every Π ∈ P2nkn since NEQn ∈ RP and EQn ∈ coRP. Indeed,
we compute NEQ⌈n

2
⌉(x1, y1) using an RP protocol and EQ⌊n

2
⌋(x0, y0) using an coRP protocol; if the

first one is equal to 1 we return 0, if the second one is equal to 1 we return 1, otherwise we return
⊥. Note that if Which-EQn(x0x1, y0y1) = 1, then the probability that we return 0 is equal to 0
and the probability of ⊥ is at most 1/2; if Which-EQn(x0x1, y0y1) = 0, then the probability that we
return 1 is equal to 0 and the probability of ⊥ is at most 1/2.

Hence, by Theorem 3.11, ZPPop(hn) = O(log n).

PNP

op 6⊆ PPop

Let ODD-MAX-BITn : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function, such that
ODD-MAX-BITn(x1, . . . , xn, y1, . . . , yn) = 1 iff max {i : xi = yi = 1} ≡ 1 (mod 2).

Theorem 4.14 (Buhrman et al. [3, Section 3.2]). PP(ODD-MAX-BITn) = Ω(n1/3).

Corollary 4.15. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O(n2),

• PNP
op (hn) = O(log2 n), and

• PPop(hn) = Ω(n1/3).

13

Proof. Let kn = 200n and hn = S⊕kn
(ODD-MAX-BITn). By Theorem 3.6, PPop(hn) = Ω(n1/3).

Nevertheless, using binary search one may show that PNP(ODD-MAX-BITn ◦ ⊕kn ,Π) = O(logn),
for every Π ∈ P2nkn . To show this, let us first note that if Alice and Bob are given x1,1, . . . , xn,kn
and y1,1, . . . , yn,kn , then for every 1 ≤ a < b ≤ n they may check if there is i ∈ [a, b] such that
kn
⊕

j=1
xi,j =

kn
⊕

j=1
yi,j = 1 using NP communication protocol of cost O(logn) with respect to Π. Using

this observation we may construct a PNP protocol for ODD-MAX-BITn ◦ ⊕kn . This protocol has at
most ⌈logn⌉ stages, on each stage Alice and Bob consider some segment [a, b]: initially the segment
is equal to [1, n] and on each iteration Alice and Bob guess (using the NP oracle) i ∈

[

a+b
2 , b

]

such

that
kn
⊕

j=1
xi,j =

kn
⊕

j=1
yi,j = 1 and if such i does not exist they go to the segment

[

a, a+b
2

]

, otherwise

they go to the segment
[

a+b
2 , b

]

. After at most ⌈log n⌉ iterations the segment consists of one point
i, if i is odd the value of the function is 1, otherwise it is 0. Note that cost of this protocol is
O(log2 n)

As a result, by Theorem 3.11, PNP
op (hn) = O(log2 n).

⊕Pop 6⊆ UPPop

Let Hn be a sequence of matrices 2n × 2n, such that H0 = 1 and Hn+1 =

Hn Hn

Hn −Hn

. Let

HADn : {0, 1}n ×{0, 1}n → {0, 1} be a Boolean function, such that HADn(x, y) = 1 iff the (r, c) entry
of Hn is 1 where r = bin(x) and c = bin(y).

Theorem 4.16 (Forster [4, Corollary 2.2]). UPP(HADn) = Ω(n1/3).

Corollary 4.17. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O(n2),

• ⊕Pop(hn) = O(log2 n), and

• UPPop(hn) = Ω(n1/3).

Proof. Let kn = 200n and hn = S⊕kn
(HADn). By Theorem 3.6, UPPop(hn) = Ω(n1/3).

Let us now prove that ⊕P(HADn ◦ ⊕kn ,Π) = O(log2 n) for any partition Π. Fix some partition

Π of the input x1,1, . . . , xn,kn , y1,1, . . . , yn,kn . Note that if
kn
⊕

j=1
y1,j = 1, and

kn
⊕

j=1
x1,j = 1,

HADn ◦ ⊕kn(x1,1, . . . , xn,kn , y1,1, . . . , yn,kn) = ¬HADn−1 ◦ ⊕kn(x2,1, . . . , xn,kn , y2,1, . . . , yn,kn);

otherwise,

HADn ◦ ⊕kn(x1,1, . . . , xn,kn , y1,1, . . . , yn,kn) = HADn−1 ◦ ⊕kn(x2,1, . . . , xn,kn , y2,1, . . . , yn,kn).

Hence, HADn ◦ ⊕kn =
n
⊕

i=1

((

kn
⊕

j=1
xi,j = 1

)

∧
(

kn
⊕

j=1
yi,j = 1

))

. Thus, HADn ◦ ⊕kn has ⊕P communi-

cation complexity O(logn) in any partition Π.
As a result, by Theorem 3.11, ⊕Pop(hn]) = O(log n).

14

Π2Pop 6⊆ UPPop

Let RSn : {0, 1}n3 × {0, 1}n3 → {0, 1} be a Boolean function such that

RSn(x1,1, . . . , xn,n2 , y1,1, . . . , yn,n2) =
n
∧

i=1

n2
∨

j=1

(xi,j ∧ yi,j).

Theorem 4.18 (Razborov and Sherstov [16, Corollary 1.2]). UPP(RSn) = Ω(n).

Corollary 4.19. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O(n6),

• Π2Pop(hn) = O(logn), and

• UPPop(hn) = Ω(n).

Proof. Let kn = 200n3 and hn = S⊕kn
(RSn). It is easy to see that Π2P(RSn ◦ ⊕kn ,Π) = O(logn),

for every Π ∈ P2n3kn . Indeed, (xi,j ∧ yi,j) ◦ ⊕kn has deterministic communication complexity O(1)
with respect to any partition Π.

As a result, by Theorem 3.11, Π2Pop(hn) = O(logn), and by Theorem 3.6, UPPop(hn) =
Ω(n).

SBPop 6⊆ MAop

WTℓn : {0, 1}n → {0, 1} is a partial Boolean function such that WTℓn(z) = 1 if wH(z) ≥ ℓ, WTℓn(z) = 0
if wH(z) ≤ ℓ/2, and for all other z the function is not defined3.

Theorem 4.20 (Göös et al. [5, Theorem 3]). MA(WTℓn ◦ IP100 logn) = Ω(n1/4 logn).

Corollary 4.21. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O((n logn)2),

• SBPop(hn) = O(log n), and

• MAop(hn) = Ω(n1/4 log n).

Proof. Let kn = 200n logn, bn = 100 log n, and hn = S⊕kn
(WTℓn ◦ IPbn). So, MAop(hn) =

Ω(n1/4 log n). It is easy to see that IPbn ◦ ⊕kn has communication complexity O(bn) with re-
spect to any partition; hence, SBP(WTℓn ◦ IPbn ◦ ⊕kn ,Π) = O(logn), for every Π ∈ P200nkn logn.
Thus, SBPop(hn) = O(log n).

3
wh(z) is a hamming weight of z

15

PPop 6⊆ UPostBPP�op

Let bn = 100 logn and MAJn : {0, 1}2n+1 → {0, 1} be a function, such that MAJ(z) = 1 iff wH(z) ≥
n+ 1.

Theorem 4.22 (Göös et al. [6, Theorem 6]). UPostBPP�(MAJn ◦ IPbn) = Ω(n log n).

Corollary 4.23. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O((n logn)2),

• PPop(hn) = O(log n), and

• MAop(hn) = Ω(n1/4 log n).

Proof. Let kn = 200(2n+1) log n and hn = S⊕kn
(MAJn◦IPbn). By Theorem 3.6, UPostBPP�op(hn) =

Ω(n log n). However, PP(MAJn ◦ IPbn ◦ ⊕kn ,Π) = O(logn), for every Π ∈ P200nkn logn. Hence, by
Theorem 3.11, PPop(hn) = O(logn).

coNPop 6⊆ SBPop

DISJn : {0, 1}n × {0, 1}n → {0, 1} is a Boolean function such that DISJn(x, y) = 1 iff for some
j ∈ [n], xi = yi = 1.

Remark 4.24. DISJn is easily paddable.

Theorem 4.25 (Göös and Watson [7, Corollary 2]). SBP(DISJn) = Ω(n).

Corollary 4.26. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O(n),

• coNPop(hn) = O(logn), and

• SBPop(hn) = Ω(n).

Proof. Let hn = shiftDISJn . It is well-known that coNP(DISJn) = O(logn). Hence, by Theorem 3.2,
SBPop(hn) = Ω(n) and by Theorem 3.5, coNPop(hn) = O(logn).

AMop ∩ coAMop 6⊆ PPop

Let M be a matrix in {0, 1}n×4n2

, we say that M is good if every row of M contains 1, and we say
that M is bad if at least 2n/3 rows of M contain only 0.

Let AppMPCn : {0, 1}n×4n2 × {0, 1}n×4n2 → {0, 1} be a partial function, such that
AppMPCn(M0,M1) = 1 iff M0 is good and M1 is bad and AppMPCn(M0,M1) = 0 iff M0 is bad
and M1 is good.

Let f : {0, 1}ℓ → {0, 1}. Then pattern matrix Pf of f is a communication problem Pf :

{0, 1}2ℓ× ({0, 1}ℓ×{0, 1}ℓ) → {0, 1} such that Pf (x, y, z) = f(x(y)⊕ z), where ⊕ is the bitwise xor
and denotes ℓ bit string that contains x2i−yi in position i ∈ [ℓ].

We denote by PAppMPCn the pattern matrix of AppMPCn.

16

Theorem 4.27 (Klauck [12, Theorem 5]). PP(PAppMPCn) = Ω(
√
n).

Corollary 4.28. There is a family of functions hn : {0, 1}mn → {0, 1} such that

• m = O(n3),

• AMop(hn) = O(logn), coAMop(hn) = O(log n), and

• PPop(hn) = Ω(
√
n).

Proof. Let kn = 3200n3 and hn = S⊕kn
(PAppMPCn). It is easy to see that AM(PAppMPCn ◦⊕kn ,Π) =

O(logn) and coAM(PAppMPCn ◦ ⊕kn ,Π) = O(log n), for every Π ∈ P3200n3 . Let us prove it for the
AM case, for coAM the proof is the same. Let the public coin random number i represents a random
row of the matrix M and Merlin replies with a position j such that Mi,j . Hence, Alice and Bob
just check that (x(y)⊕ z)i,j ◦ ⊕kn = 1 which can be done using O(logn) bits of communication.

As a result, by Theorem 3.11, AMop(hn) = O(log n) and coAMop(hn) = O(logn), and by
Theorem 3.6, PP(hn) = Ω(

√
n).

4.1 DPop ∩ coDPop 6= P
NP[1]
op

In the fixed-partition model it is not known if it is possible to separate these classes on total
functions; however, in the best-partition model we can construct a function with small DP and coDP

best-communication complexity measures, but with a big PNP[1] best-communication complexity
measure.

Theorem 4.29. There is a function f such that f ∈ DPop ∩ coDPop but f 6∈ P
NP[1]
op .

Proof. Let A ∈ {0, 1}n2

be a Boolean matrix n × n. We say that a row (a column) of A is good

iff there are exactly two 1’s in this row (column). We define a function fn : {0, 1}n2 → {0, 1} such
that fn(A) = 1 iff there is exactly one good row in A and the number of bad columns in A is not
equal to 1.

Claim 4.29.1. DPop(fn) = O(logn) and DPop(¬fn) = O(logn).

Let Π be the partition such that Alice knows all the values of the first n/2 columns and Bob
knows the rest.

We are going to prove that DP(fn,Π) = O(logn). Let gℓ,n : {0, 1}n2 → {0, 1} be the function
such that gℓ,n(A) = 1 iff A has ℓ good rows. Note that NP(gℓ,n,Π) = O(ℓ logn); indeed, the protocol
first guesses these ℓ rows (candidates for good rows). Then, using 3ℓ bits, Alice tells Bob whether
the first half of these rows contains none, one, two or more than two 1’s. After that Bob has the

whole information about the value gℓ,n(A), and can send the answer. Let hn : {0, 1}n2 → {0, 1} be
the function such that hn(A) = 1 iff the number of bad columns in A is not equal to 1. Note that
P(hn,Π) = O(logn); indeed, Alice may send the number of her bad columns. After that Bob has
the whole information about the value hn(A), and can send the answer. As a result, fn(A) = 1 iff
g1,n(A) = 1 ∧ g2,n(A) = 0 ∧ hn(A) and DP(fn,Π) = O(logn).

In order to prove that DP(¬fn,K) = O(logn) we just need to replace columns by rows and vice
versa.

Claim 4.29.2. P
NP[1]
op (fn) = Ω(n).

17

Without loss of generality we may assume that n ≥ 10. Let us assume that Alice and Bob
choose some balanced partition Γ. We say that a column is mixed iff there are neither Alice nor
Bob see all the entries of the column. Let m be the number of mixed columns and consider two
cases.

• (m ≤ n
2 − 1) Since each player can see at most n/2 columns each player will see at least

n− (n/2 +m) ≥ 1 columns. Choose one column seen by Alice and one column seen by Bob.
Let B be the (n − 3) × 2 submatrix of the input matrix A formed by these columns and all
but three last rows. Let x, y ∈ {0, 1}n−3. We set all the entries of the last three rows to one
(note that after this substitution all the columns are bad and last three rows are bad as well),
we set all the remaining entries of A outside B to 0, and set the first column to be equal to x
and the second column to be equal to y. Note that fn(A) = 1 iff there is only one good row
i.e. Unique-INTERn−3(x, y) = 1. Hence, PNP[1](fn,Γ) = Ω(n).

• (m ≥ n
2) Let B be the n×m submatrix of A formed by the mixed columns. For each column

i ∈ [m] of B select an entry ai known by Alice and and an entry bi known by Bob. Since
we selected 2m ≤ 2n entries there is a row r such that we selected at most 2 entries in it.
Let C be a n × (m − 3) submatrix of B such that nothing is selected in the row r. We set
two entries of r outside of C to be equal to 1 and all others to be equal to 0 (note that
after this substitution r is good). Additionally, we set all the not substituted entries of B
outside of C to be equal to 1 (note that after this all the rows except r are bad and all the
columns of B outside of C are bad) and we set all the entries outside of B to be equal to 0
(note that after this all the columns outside of B are bad). Let x, y ∈ {0, 1}m−3. Finally, for
each column i ∈ [m − 3] of C we substitute xi to ai and yi to bi. As a result, fn(A) = 1 iff
the number of bad columns of C is not equal to 1 i.e. Unique-INTERm−3(x, y) = 0. Hence,
PNP[1](fn,Γ) = Ω(n).

References

[1] Alfred V. Aho, Jeffrey D. Ullman, and Mihalis Yannakakis. On notions of information transfer
in VLSI circuits. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, STOC ’83, pages 133–139, New York, NY, USA, 1983. ACM.

[2] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity
theory (preliminary version). In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 337–347. IEEE Computer Society, 1986.

[3] Harry Buhrman, Nikolai K. Vereshchagin, and Ronald de Wolf. On computation and com-
munication with small bias. In 22nd Annual IEEE Conference on Computational Complexity
(CCC 2007), 13-16 June 2007, San Diego, California, USA, pages 24–32. IEEE Computer
Society, 2007.

[4] Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication
complexity. Journal of Computer and System Sciences, 65(4):612–625, 2002.

18

[5] Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016.

[6] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication com-
plexity classes. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 86:1—-86:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[7] Mika Göös and Thomas Watson. Communication complexity of set-disjointness for all proba-
bilities. Theory of Computing, 12(1):1–23, 2016.

[8] Joseph JáJá, Viktor K. Prasanna, and Janos Simon. Information transfer under different sets
of protocols. SIAM Journal on Computing, 13(4):840–849, 1984.

[9] Stasys Jukna. On the P versus NP intersected with co-NP question in communication com-
plexity. Information Processing Letters, 96(6):202–206, 2005.

[10] Kamil Khadiev, Aliya Khadieva, and Alexander Knop. Exponential Separation between Quan-
tum and Classical Ordered Binary Decision Diagrams, Reordering Method and Hierarchies.
Electronic Colloquium on Computational Complexity (ECCC), 24:176, 2017.

[11] Hartmut Klauck. Rectangle size bounds and threshold covers in communication complexity.
In 18th Annual IEEE Conference on Computational Complexity (Complexity 2003), 7-10 July
2003, Aarhus, Denmark, pages 118–134. IEEE Computer Society, 2003.

[12] Hartmut Klauck. On Arthur Merlin games in communication complexity. In Proceedings
of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose,
California, June 8-10, 2011, pages 189–199. IEEE Computer Society, 2011.

[13] Alexander Knop. IPS-like Proof Systems Based on Binary Decision Diagrams. Electronic
Colloquium on Computational Complexity (ECCC), 24:179, 2017.

[14] Tak Wah Lam and Walter L. Ruzzo. Results on communication complexity classes. Journal
of Computer and System Sciences, 44(2):324–342, 1992.

[15] Periklis A. Papakonstantinou, Dominik Scheder, and Hao Song. Overlays and limited memory
communication. In IEEE 29th Conference on Computational Complexity, CCC 2014, Vancou-
ver, BC, Canada, June 11-13, 2014, pages 298—-308. IEEE Computer Society, 2014.

[16] Alexander A. Razborov and Alexander A. Sherstov. The sign-rank of AC0. SIAM Journal on
Computing, 39(5):1833–1855, 2010.

[17] Nathan Segerlind. On the relative efficiency of resolution-like proofs and ordered binary deci-
sion diagram proofs. In Proceedings of the 23rd Annual IEEE Conference on Computational
Complexity, CCC 2008, 23-26 June 2008, College Park, Maryland, USA, pages 100–111. IEEE
Computer Society, 2008.

[18] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences, 22(3):265–279, 1981.

19

A List of Communication Complexity Measures

In this section we consider all the communication complexity models from Section 4 and explain
why all of them are formal communication complexity measures.

A.1 Deterministic Computations

Let us start from the definition of the rectangles and deterministic communication with an oracle
access.

Definition A.1. Let Π be a partition of [n]. We say that a set R ⊆ {0, 1}n is a rectangle with
respect to Π iff for every x(0), x(1) ∈ R and y ∈ {0, 1}n,

∀i ∈ Π0 yi = x
(0)
i

∀i ∈ Π1 yi = x
(1)
i

=⇒ y ∈ R.

Definition A.2. (P
µ[q]
‖) Let µ be a formal communication complexity measure.

Protocol: A P
µ[q]
‖ communication protocol with respect to a partition Π ∈ Pn is a deterministic

communication protocol with respect to Π such that for each leaf v with associated rectangle
Rv there are q associated functions fv,i (i ∈ [q]) and an output function ov : {0, 1}q → {0, 1}.

Value: Value of this protocol on x ∈ {0, 1}n is 1 iff ov(r) = 1, where v is a node such that x ∈ Rv

and r is Boolean string such that ri = fv,i(x) for all i ∈ [q].

Cost: Cost of this protocol is max
v

µ(f1,Π) + · · ·+ µ(fq,Π) plus the communication complexity of

the deterministic protocol.

Definition A.3. (Pµ)

Protocol: A Pµ communication protocol with respect to a partition Π ∈ Pn is a protocol tree where
each inner node v is labeled by a “query” function qv : {0, 1}n → {0, 1}.

Value: Value of this protocol on x ∈ {0, 1}n is equal to the label of the leaf reached from the root
if in each inner node v we go via the edge labeled by 1 iff qv(x) = 1.

Cost: Cost of this protocol is the maximum over all possible paths p from the root to a leaf of the
sum of µ(qv)’s for v in p.

Definition A.4. (Pµ[q])

Protocol: A Pµ[q] communication protocol is a Pµ protocol with at most q nontrivial queries on
each path from the source to a leaf (a query in a node v is trivial iff qv depends only on bits
with indices from either Π0 or Π1.

Value: Value of these protocols is the same as in the case of Pµ protocols.

Cost: Cost of these protocols is the same as in the case of Pµ protocols.

Definition A.5. (Pµ
‖)

20

Protocol: A P
µ
‖ communication protocol is a Pµ protocol where the result of each query is not

revealed until we reach a leaf of the tree, i.e., for each node v with a nontrivial query both
subtrees are the same except the labels of the leaves.

Value: Value of these protocols is the same as in the case of Pµ protocols.

Cost: Cost of these protocols is the same as in the case of Pµ protocols.

Let us prove that P(Pµ, Pµ[q], P
µ[q]
‖ , and P

µ
‖) is a formal communication complexity measure.

We need to check four properties.

• To check that P(Pµ, Pµ[q], P
µ[q]
‖ , and P

µ
‖) complexity cannot increase if we replace some

variables by constants and flip some of them note that Alice and Bob may compute ρ(x1),
. . . , ρ(xn) for their parts of the input and after that run the protocol for f (note that µ is a
formal communication complexity measure, hence, the query complexity will not change).

• It is easy to see that the P(Pµ, Pµ[q], P
µ[q]
‖ , and P

µ
‖) communication complexity cannot change

if we add “dummy” variables since Alice and Bob can simply ignore them (the oracle can do
the same, since µ is a formal communication measure).

• Let us now show that the P(Pµ, Pµ[q], P
µ[q]
‖ , and P

µ
‖) communication complexity preserves

under permutations of input variables. Let Π ∈ Pn be a partition and π be a permutation
of [n]. Note that xi ∈ Π0 iff xπ(i) ∈ Π′0. Hence, Alice and Bob may run the protocol for
the function f using xπ(i)’s instead of xi’s (it will not affect queries to the oracle since µ is a
formal communication measure).

• Finally, to check that the P(Pµ, Pµ[q], P
µ[q]
‖ , and P

µ
‖) communication complexity decreases at

most linearly if a part of the input is revealed we may notice that Alice and Bob may send
the revealed bits to each other (the subsection will not increase the complexity of the queries
since µ is a formal communication complexity measure).

A.2 Types of Protocols

In this section we give two definitions of general types of protocols and explaining that these
protocols describe formal communication measures.

We may note that many of the communication protocols we are going to discuss in the next
sections are sets of rectangles {Pi : i ∈ I} with respect to a partition Π such that the value of the
protocol on an input x depends only on the function rx : I → {0, 1}, where r(i) = 1 iff x ∈ Pi and
the complexity of the protocol depends only on I (we call these protocol type I protocols).

Let us fix a function f : {0, 1}n → {0, 1} and some communication protocol of this type
{Pi : i ∈ I} for f with respect to a partition Π ∈ Pn.

We will show that three first properties of the formal communication complexity measure hold
for such protocols.

• To check that these communication complexities cannot increase if we replace some variables
of the function by constants and flip some of them, note that for every sequence of functions
{ρi : {0, 1} → {0, 1}}ni=1, the protocol {Pw0,w1

: i ∈ I} is a protocol for h with respect to Π,
where h(x1, . . . , xn) = f(ρ1(x1), . . . , ρn(xn)) and P ′i is a rectangle with respect to Π such that

(x1, . . . , xn) ∈ P ′i ⇐⇒ (ρ1(x1), . . . , ρn(xn)) ∈ Pi.

21

• Let I = {i1 < i2 < · · · < in} ⊆ [k]. Fix some partition Π′ such that ij ∈ Π′b iff j ∈ Πb for all
j ∈ [n] and b ∈ {0, 1}. It is easy to see that {P ′i : i ∈ I} is a communication protocol for g
with respect to Π, where g(x1, . . . , xk) = f(xi1 , . . . , xin) and P ′i is a rectangle with respect to
Π′ such that

(x1, . . . , xk) ∈ P ′i ⇐⇒ (xi1 , . . . , xin) ∈ Pi.

• Let us now show that the P communication complexity preserves under permutations
of input variables. Let π be a permutation of [n]. Note that {P ′i : i ∈ I} is a com-
munication protocol for g with respect to Π′, where g(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)),
Π′ = ({i : π(i) ∈ Π0} , {i : π(i) ∈ Π1}), and

(x1, . . . , xk) ∈ P ′i ⇐⇒ (xπ(1), . . . , xπ(n)) ∈ Pi.

Another type of protocols is a family of functions {fi : {0, 1}n → {0, 1} : i ∈ I} such that the
value of the protocol depends only on the function rx : I → {0, 1}, where r(i) = fi(x) and the
complexity of the protocol depends only on I and the maximal µ communication complexity of fi’s
(µ is a formal communication measure); we call these protocol type II µ protocols. Since µ is a
formal communication complexity measure the communication complexity measures with respect
to protocols of type II µ are formal communication complexity measures as well.

A.3 Models with Nondeterminism and Alternation

Definition A.6. (NP)

Protocol: An NP communication protocol with respect to a partition Π ∈ Pn is a set
{

Rw ⊆ {0, 1}n : w ∈ {0, 1}k
}

of rectangles with respect to Π.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

f(x) = 1 ⇐⇒ ∃w x ∈ Rw.

Cost: Cost of this protocol is k.

Definition A.7. (US)

Protocol: A US communication protocol with respect to a partition Π ∈ Pn is a set
{

Rw ⊆ {0, 1}n : w ∈ {0, 1}k
}

of rectangles with respect to Π.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

f(x) = 1 ⇐⇒
∣

∣

∣

{

w ∈ {0, 1}k : x ∈ Rw

}∣

∣

∣
= 1.

Cost: Cost of this protocol is k.

Definition A.8. (⊕P)

Protocol: A ⊕P communication protocol with respect to a partition Π ∈ Pn is a set
{

Rw ⊆ {0, 1}n : w ∈ {0, 1}k
}

of rectangles with respect to Π.

22

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

f(x) = 1 ⇐⇒
∣

∣

∣

{

w ∈ {0, 1}k : x ∈ Rw

}
∣

∣

∣
≡ 1 (mod 2).

Cost: Cost of this protocol is k.

Definition A.9. (S2P)

Protocol: An S2P communication protocol with respect to a partition Π ∈ Pn is a set
{

Pw0,w1
: w0, w1 ∈ {0, 1}k

}

of deterministic protocols with respect to Π outputting values

from {0, 1}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

f(x) = 1 =⇒ ∃w1∀w0 Pw0,w1
(x) = 1

f(x) = 0 =⇒ ∃w0∀w1 Pw0,w1
(x) = 0

Cost: The maximum communication cost of any constituent deterministic protocol plus k.

Definition A.10. (Π2P)

Protocol: A Π2P communication protocol with respect to a partition Π ∈ Pn is a set
{

Rw0,w1
: w0, w1 ∈ {0, 1}k

}

of rectangles with respect to Π.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

f(x) = 1 ⇐⇒ ∀w0∃w1 x ∈ Rw0,w1

Cost: Cost of this protocol is k.

Definition A.11. (DP)

Protocol: A DP communication protocol with respect to a partition Π ∈ Pn is a pair of

sets
{

Rw ⊆ {0, 1}n × {0, 1}m : w ∈ {0, 1}k
}

and
{

Tw ⊆ {0, 1}n × {0, 1}m : w ∈ {0, 1}k
}

of rectangles with respect to Π.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

f(x) = 1 ⇐⇒ x ∈
⋃

w∈{0,1}k

Rw \
⋃

w∈{0,1}k

Tw.

Cost: Cost of this protocol is k.

Note that all the protocols described before (except S2P protocols) are type I proto-
cols; hence, to prove that these measures are formal communication measure, we need to
prove only the last property. Let f : {0, 1}n+ℓ → {0, 1} be a Boolean function and
{

Rc1,...,cℓ
w ⊆ {0, 1}n+ℓ : w ∈ {0, 1}k

}

be an NP (US, ⊕P, Π2P, DP) communication protocol for

gc1,...,cℓ with respect to a partition Π ∈ Pn+ℓ, where gc1,...,cℓ(x1, . . . , xn+ℓ) = f(x1, . . . , xn, c1, . . . , cℓ).

As a result,
{

Rc1,...,cℓ
w ⊆ {0, 1}n+ℓ : w ∈ {0, 1}k , c1, . . . , cℓ ∈ {0, 1}

}

is an NP (US, ⊕P, Π2P, DP)

communication protocol for f with respect to Π and the cost of this protocol is k + ℓ
As about S2P protocols, they are type II P communication protocols, hence S2P is a formal

communication complexity measure.

23

A.4 Probabilistic Models

Definition A.12. (ZPP)

Protocol: A ZPP communication protocol with respect to a partition Π ∈ Pn is a distribution D
over the deterministic protocols with respect to Π outputting values from {0, 1,⊥}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

Pr[D(x) ∈ {f(x),⊥}] = 1 and

Pr[D(x) = f(x)] ≥ 3
4

Cost: The maximum communication cost of any constituent deterministic protocol.

Definition A.13. (RP)

Protocol: An RP communication protocol with respect to a partition Π ∈ Pn is a distribution D
over the deterministic protocols with respect to Π outputting values from {0, 1}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

f(x) = 1 =⇒ Pr[D(x) = 1] ≥ 1
2

f(x) = 0 =⇒ Pr[D(x) = 0] = 1.

Cost: The maximum communication cost of any constituent deterministic protocol.

Definition A.14. (BPP)

Protocol: A BPP communication protocol with respect to a partition Π ∈ Pn is a distribution D
over the deterministic protocols with respect to Π outputting values from {0, 1}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

Pr[D(x) = f(x)] ≥ 3

4
.

Cost: The maximum communication cost of any constituent deterministic protocol.

Definition A.15. (MA)

Protocol: An MA communication protocol with respect to a partition Π ∈ Pn is a set
{

Dw : w ∈ {0, 1}k
}

of distributions over the deterministic protocols with respect to Π out-

putting values from {0, 1}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

f(x) = 1 =⇒ ∃w Pr[Dw = 1] ≥ 3
4

f(x) = 0 =⇒ ∀w Pr[Dw = 0] ≥ 3
4

24

Cost: The maximum communication cost of any constituent deterministic protocol plus k.

Definition A.16. (AM)

Protocol: An AM communication protocol with respect to a partition Π ∈ Pn is a distribution D
over the NP protocols with respect to Π.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

Pr[D(x) = f(x)] ≥ 3

4
.

Cost: The maximum communication cost of any constituent NP protocol.

Definition A.17. (ZPP
NP[q]
‖)

Protocol: An ZPP
NP[q]
‖ communication protocol with respect to a partition Π ∈ Pn is a distribution

D over the P
NP[q]
‖ protocols with respect to Π outputting values from {0, 1,⊥}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

Pr[D(x) = f(x)] ≥ 3

4
.

Cost: The maximum communication cost of any constituent P
NP[q]
‖ protocol.

Definition A.18. (ZPPNP

‖)

Protocol: An ZPP
NP

‖ communication protocol with respect to a partition Π ∈ Pn is a distribution

D over the PNP

‖ protocols with respect to Π outputting values from {0, 1,⊥}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

Pr[D(x) = f(x)] ≥ 3

4
.

Cost: The maximum communication cost of any constituent PNP

‖ protocol.

Definition A.19. (ZPPNP[q])

Protocol: An ZPP
NP[q] communication protocol with respect to a partition Π ∈ Pn is a distribution

D over the PNP[q] protocols with respect to Π outputting values from {0, 1,⊥}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

Pr[D(x) = f(x)] ≥ 3

4
.

Cost: The maximum communication cost of any constituent PNP[q] protocol.

Definition A.20. (ZPPNP)

25

Protocol: An ZPP
NP communication protocol with respect to a partition Π ∈ Pn is a distribution

D over the PNP protocols with respect to Π outputting values from {0, 1,⊥}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

Pr[D(x) = f(x)] ≥ 3

4
.

Cost: The maximum communication cost of any constituent PNP protocol.

Definition A.21. (SBP)

Protocol: An SBP communication protocol with respect to a partition Π ∈ Pn is a set
{

Pw : w ∈ {0, 1}k
}

of deterministic protocols with respect to Π outputting values from {0, 1}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

min
x∈f−1(1)

Pr
w←U({0,1}k)

[Pw(x) = 1] > 2 · max
x∈f−1(0)

Pr
w←U({0,1}k)

[Pw(x) = 1],

where U({0, 1}k) is a uniform distribution over {0, 1}k.

Cost: The maximum communication cost of any constituent deterministic protocol plus k.

Definition A.22. (PostBPP)

Protocol: A PostBPP communication protocol with respect to a partition Π ∈ Pn is a set
{

Pw : w ∈ {0, 1}k
}

of deterministic protocols with respect to Π outputting values from

{0, 1,⊥}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

Pr
w←U({0,1}k)

[Pw(x) = f(x)] > 2 · Pr
w←U({0,1}k)

[Pw(x) = 1− f(x)].

Cost: The maximum communication cost of any constituent deterministic protocol plus k.

Definition A.23. (UPostBPP�) Same as Definition A.22 but instead of U({0, 1}k) we may consider
an arbitrary distribution over {0, 1}k.

Definition A.24. (UPostBPP) Same as Definition A.22 but with private-randomness.

Definition A.25. (PP)

Protocol: A PP communication protocol with respect to a partition Π ∈ Pn is a set
{

Pw : w ∈ {0, 1}k
}

of deterministic protocols with respect to Π outputting values from {0, 1}.

Value: We say that the protocol is a protocol for a function f : {0, 1}n → {0, 1} iff

Pr
w←U({0,1}k)

[Pw(x) = f(x)] >
1

2
.

26

Cost: The maximum communication cost of any constituent deterministic protocol plus k.

Definition A.26. (UPP�) Same as Definition A.25 but instead of U({0, 1}k) we may consider an
arbitrary distribution over {0, 1}k.

Definition A.27. (UPP) Same as Definition A.25 but with private-randomness.

All the protocols described in this section are type II µ protocols where µ ∈
{

P,NP,PNP,PNP

‖ ,PNP[q],P
NP[q]
‖

}

; hence, all these measures are formal communication complexity
measures.

27

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

