
PPSZ on CSP Instances with Multiple
Solutions

Dominik Scheder

October 31, 2018

Abstract

We study the success probability of the PPSZ algorithm on (d, k)-
CSP formulas. We greatly simplify the analysis of Hertli, Hurbain,
Millius, Moser, Szedlák, and myself for the notoriously difficult case
that the input formula has more than one satisfying assignment.

1 Introduction

A (d, k)-CSP formula F over a variable set V is a bunch of constraints C1 ∧
· · · ∧ Cm, where each Ci is an arbitrary constraint on k variables from V .
Each variable takes on a value from [d] := {1, . . . , d}, and F is satisfied if
all constraints are satisfied. We assume that d and k are constants, so each
Ci can be represented explicitly, by its truth table, for example. We are
interested in the decision problem (d, k)-CSP, which asks whether a given
(d, k)-CSP formula is satisfiable. For d = 2, this is the well-known k-SAT
problem. Note that (d, 2)-CSP contains d-colorability as a special case. The
problem is NP-complete except for the trivial cases k = 1 or d = 1 and
the non-trivial case of (2, 2)-CSP, which is 2-SAT and has a polynomial-time
algorithm.

All other cases are NP-complete, and much effort has been invested into
finding moderately exponential algorithms, that is, algorithms solving (d, k)-
CSP in time cn for some c < d. For example, Schöning’s famous random walk

algorithm [11] runs in time O
((

d(k−1)
k

)n
· poly(n)

)
, or more precisely runs

in polynomial time and returns a satisfying assignment, if there is one, with

probability at least O

((
d(k−1)
k

)−n
/poly(n)

)
. Another example is PPZ [8],

named after its authors Paturi, Pudlák, and Zane. Originally stated only

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 179 (2018)

for k-SAT, it runs in polynomial time and has success probability at least
2−n+n/k. It has a straightforward generalization to (d, k)-CSP. For (d, 2)-
CSP, it has been analyzed by Feder and Motwani [2]. For general (d, k)-CSP,
Li, Li, Liu, and Xu [6] give a sub-optimal analysis, which has later been
improved by myself [9].

Concerning (conditional) lower bounds, Patrick Traxler [12] showed that
under the Exponential Time Hypothesis [5], (d, 2)-CSP takes time at least
dcn, for some c > 0. That is, an algorithm of running time f(d) · 100n

solving (d, 2)-CSP for all d is impossible under ETH. This stands in contrast
to d-colorability, which is a special case of (d, 2)-CSP and can be solved in
O(2npoly(n)) by a clever application of the Exclusion-Inclusion technique [1].

In this paper, we study the famous PPSZ algorithm [7] by Paturi, Pudlák,
Saks, and Zane. Originally, this algorithm has been designed for k-SAT.
Hertli, Hurbain, Millius, Moser, Szedlák, and myself give a version for (d, k)-
CSP and analyze its success probability. Here, we greatly simplify their
analysis for the notoriously difficult case that the input formula has more than
one satisfying assignment. This is itself a generalization of a recent paper
by Steinberger and myself [10], who simplify Timon Hertli’s breakthrough
analysis of PPSZ for k-CNF formulas (i.e., d = 2) that have more than one
satisfying assignment.

1.1 The Algorithm

The algorithm PPSZ, named after its inventors Paturi, Pudlák, Saks, and
Zane [7], is the currently fastest algorithm for solving k-SAT. It is a random-
ized algorithm, and analyzing its success probability is famously difficult.
However, it is very easy to state informally. Let us sketch the algorithm
when applied to a (d, k)-CSP formula F :

PPSZ Algorithm, Informally. Process the variables of
F in random order; when processing variable x, check for each
color c ∈ [d] whether F |x=c is “obviously unsatisfiable”. If so,
remove it from [d]. Let Px(F) be the remaining set of colors,
i.e., those c ∈ [d] for which F |x=c is not obviously unsatisfiable.
Select c ∈ Px(F) uniformly at random and set F := F |x=c. Then
iterate.

Of course, to make this a formal algorithm, we have to state what it means
to be “obviously unsatisfiable”. First of all, let Sx(F) be the set of all c ∈ [d]
such that F |x=c is satisfiable. Obviously 1 ≤ |Sx(F)| ≤ d if F is a satisfiable
(d, k)-CSP formula. Second, suppose the algorithm has access to a proof

2

heuristic P which, for every (d, k)-CSP formula F and variable x, outputs
a set Px(F) with Sx(F) ⊆ Px(F) ⊆ [d]. Note that P is sound, meaning
that c 6∈ Px(F) implies that F |x=c is unsatisfiable. It might, however, be
incomplete, namely if Sx(F) (Px(F). We call Sx(F) the set of satisfiable
colors and Px(F) the set of plausible colors.

Algorithm 1 Generic PPSZ Procedure for Fixed Permutation

1: procedure ppsz fixed(F, P, π)
2: β := the empty assignment on V
3: for x ∈ V in the order of π do
4: Select c ∈ Px(F |β) uniformly at random
5: β(x) := c
6: end for
7: return β
8: end procedure

Algorithm 2 Generic PPSZ Procedure

1: procedure ppsz(F, P)
2: π := a uniformly random permutation of var(F)
3: return ppsz fixed(F, P, π)
4: end procedure

It is understood that ppsz fixed returns failure if the set P (F |β, x) is
empty at any point in Line 4, or if β does not satisfy F . Let var(F) denote
the set of variables in F and sat(F) the set of satisfying assignments. Let π
a permutation of var(F), x ∈ var(F), and α ∈ sat(F). We write F |π,x,α to
denote the formula that arises if we fix y to α(y) for all variables y that appear
before x in π. Write Sx(F, π, α) := Sx(F |π,x,α) and Px(F, π, α) := Px(F |π,x,α).
If F is understood, we might write Sx(π, α) and Px(π, α) for brevity. We can
give an exact formula for the success probability of PPSZ in terms of these
expressions:

Observation 1. Let α be a satisfying assignment of F . The probability that
ppsz fixed(F, P, π) returns α is

∏
x∈var(F)

1
|Px(F,π,α)| .

3

Using this observation, one calculates:

Pr[ppsz(F, P) = α] = E
π

 ∏
x∈var(F)

1

|Px(F, π, α)|

= E

π

[
2−

∑
x∈var(F) log |Px(F,π,α)|

]
≥ 2−

∑
x∈var(F) Eπ [log |Px(F,π,α)|] . (1)

Next, we define a way to gauge the power of P .

Definition 2. Let P be a proof heuristic. We say P has error rate at most
γ against (d, k)-CSP formulas if Eπ[log |Px(F, π, α)|] ≤ γ for all (d, k)-CSP
formulas F , all α ∈ sat(F), and all x ∈ var(F) for which |Sx(F)| = 1.

We need the condition |Sx(F)| = 1 since otherwise we cannot state
anything useful about Px(F, π, α). For example, it might simply be that
Sx(F) = [d] and Px(F, π, α) = [d] for all π and α. Of course, one might be
able to bound Eπ[log |Px(F, π, α)|] if |Sx(F)| = 2, say. However, we do not
know how to use such a bound.

Observation 3. If F is a (d, k)-CSP formula with a unique satisfying as-
signment α, and P has error rate at most γ against (d, k)-CSP formulas,
then Pr[ppsz(F, P) = α] ≥ 2−γ n.

XXX move to top: This follows from (1) since |Sx(F)| = |{α(x)}| = 1 for
all variables x.

1.2 Which Error Rates Are Possible

In [4], Hertli, Hurbain, Millius, Moser, Szedlák, and myself have analyzed
the “usual” proof heuristic PD: it checks whether there is a set G ⊆ F of
D constraints for which G|x=c is unsatisfiable (and includes c into Px(F) if
this is not the case). The parameter D is usually taken to be some slowly
increasing function D(n), slowly enough so that PD can be implemented
to run in time 2o(n). It was shown in [4] that PD has error rate at most
γd,k + oD(1). Here, γd,k can be defined by the following random experiment
(next paragraph copied almost literally from [4]):

Let T be an infinite rooted tree in which every even-level ver-
tex (this includes the root, which has level 0) has k − 1 children,
and every odd-level vertex has d− 1 children (there are no leafs).
Take d−1 disjoint copies of T , choose a value p ∈ [0, 1] uniformly

4

at random, and delete each odd-level vertex of the d − 1 trees
with probability p, independently. Let Y be the number of trees
in which this deletion still leaves an infinite path starting at the
root. Obviously, Y is a random variable and 0 ≤ Y ≤ d − 1.
Define γd,k := E [log(1 + Y)].

Lemma 4 (Lemma 2.5 from [4]). PD has error rate at most γd,k+o(1) against
(d, k)-CSP formulas.

Observation 3 immediately implies the following theorem:

Theorem 5 (Theorem 1.1 from [4]). Let F be a (d, k)-CSP formula over
n variables. If F has a unique satisfying assignment, then PPSZ outputs it
with probability at least 2−γd,kn−o(n).

The theorem, as stated, raises the obvious question whether we can re-
move the condition that F have a unique satisfying assignment. For d = 2
(the Boolean case, k-SAT), and k ≥ 5, this has already been proved by Pa-
turi, Pudlák, Saks, and Zane [7]. Unfortunately, their proof ceases to work
for k = 3, 4 and has to look inside PD in great detail. In a breakthrough
paper, Hertli [3] gave a more abstract proof that also works for d = 3, 4, and
works for almost any proof heuristic P . Still, his proof is very technical and
somewhat obscure. Also, it only works provided that P is “not too strong”,
i.e., only as long as its error rate γ is at least 1 − log(e)

2
. Since this holds

for the concrete heuristic PD, this is a purely hypothetical limitation to his
proof. We simply don’t know of any proof heuristic that runs in subexpo-
nential time and has an error rate less than 1− log(e)

2
. In [4], Hertli, Hurbain,

Millius, Moser, Szedlák, and myself generalize Hertli’s result to (d, k)-CSP
problems:

Definition 6. A proof heuristic P is monotone if Px(F |y=c) ⊆ Px(F), for
all formulas F , variables x 6= y, and colors c.

Intuitively, this very mild condition states that adding information can
never hurt the heuristic. The reader is welcome to verify that PD is monotone.

Theorem 7 (Theorem 1.2 from [4]). Let F be a satisfiable (d, k)-CSP and
P a monotone proof heuristic of error rate at most γ against (d, k)-CSP
formulas. Then ppsz(F, P) finds a satisfying assignment of F with probability

at least 2−γ
′n−o(n), where γ′ = max(γ, θd) and θd := log(d)− log(e)

2
.

Lemma 1.3 of [4] states that for k ≥ 4 it holds that γd,k ≥ θd, and thus
the bound of Theorem 7 matches that of Theorem 5, when using PD as proof
heuristic. The same is true for d = 2 (the Boolean case). However, if k = 2
and d ≥ 3 or if k = 3 and d ≥ 6, it happens that γd,k < θd, and thus Hertli’s
hypothetical limitation of too strong a proof heuristic suddenly becomes real.

5

1.3 Our Contribution

In this paper, we reprove Theorem 7, giving a proof that is simpler, shorter,
and more accessible than the original one from [4]. This builds upon work
from Steinberger and myself [10], who simplified Hertli’s proof for d = 2.
However, the non-Boolean case d ≥ 3 comes with additional subtleties that
need to be addressed. Our proof also highlights where the mysterious θd
comes from.

1.4 Open Questions

We suspect that Theorem 7 holds true when we replace γ′ by γ. That is, the
limitation γ ≥ θd is simply an artifact of the proof. However, we currently
cannot prove this, not even for the Boolean case d = 2.

2 Proof of Theorem 7

For a CSP formula F and x ∈ var(F), recall that Sx(F) denotes the set of
satisfying colors, i.e., the set of all c ∈ [d] such that F |x=c is satisfiable. Let
S(F) be the set {(x, c) ∈ var(F) × [d] | c ∈ Sx(F)}. If F is unsatisfiable
then S(F) is obviously empty. Otherwise, |S(F)| is at least n and at most
dn. Recall that F |π,x,α denotes the formula that arises if we fix y to α(y) for
all variables y that appear before x in π, and Sx(F, π, α) := Sx(F |π,x,α) and
Px(F, π, α) := Px(F |π,x,α). If F is understood, we might write Sx(π, α) and
Px(π, α) for brevity.

For a satisfiable formula F , consider the following process RF : Start
with F ′ := F . Sample a pair (x, c) ∈ S(F) uniformly at random and set
F ′ := F ′|x=c. Then continue until all variables have been set. Let π denote
the order in which the variables have been chosen and let α denote the
resulting satisfying assignment. This defines a probability distribution RF ,
or simply R, if F is understood.

Observation 8. R(π, α) =
∏

x∈var(F)
1

|S(F |π,x,α)| .

As an aside, suppose we call ppsz(F, S), i.e., we give it access to a com-
plete proof heuristic (which is computationally intractable, of course). Since
S is complete, it will never output failure. Denote by Q(π, α) the prob-
ability that PPSZ chooses π and outputs α. One checks that Q(π, α) =
1
n!
·
∏

x∈var(F)
1

|Sx(π,α)| . The reader is invited to check three things: first, Q
and R are indeed different probability distributions. Second, and less obvi-
ously, Q and R induce the same marginal distribution on sat(F) if d = 2,

6

i.e., in the Boolean case. This is mentioned, without proof, in Scheder and
Steinberger [10]. Third, once d ≥ 3, however, those marginal distributions
are not the same in general.

One of the difficulties in proving Theorem 7 is that, if F is multiple satis-
fying assignments, the bound in (1) can be exponentially smaller than 2−γ n.
In fact, it can be exponentially small even for the complete proof heuristic
(γ = 0). Steinberger and myself [10] exhibit a CNF formula with this behav-
ior. This problem disappears once we do not apply Jensen’s inequality to the
uniform distribution over π (as in the derivation of (1), but “skew” that dis-
tribution using the R defined above. In what follows, we treat Px(π, α) and
Sx(π, α) as random variables over the probability space Sym(var(F))×sat(F)
and sometimes drop the argument, i.e., write Px and Sx if π, α are understood
from the context.

Pr[success] =
∑
α

E
π

[∏
x

1

|Px(π, α)|

]
=
∑
π,α

1

n!

∏
x

1

|Px|

= E
(π,α)∼R

[
1

n!R(π, α)

∏
x

1

|Px|

]
≥ 2−ER[log(n!R(π,α))]−

∑
x ER[log |Px|] . (2)

To complete the proof, it suffices to prove the following lemma.

Lemma 9. ER[log(n!R(π, α))] +
∑

x ER[log |Px|] ≤ γ′n.

Proof. Recall that Sx = Sx(π, α) is the set of satisfying colors for x at the
point in time when x is processed. Let Lx be the indicator variable that is
1 if [Sx| ≥ 2 and 0 otherwise. We call x frozen in F if |Sx(F)| = 1, and
liquid otherwise. Thus, Lx is the indicator variable of x being liquid. Recall

that P has error rate at most γ, and γ′ := max
(
γ, log(d)− log(e)

2

)
. Let

ε := log(d)− γ′ = min
(

log(d)− γ, log(e)
2

)
.

Lemma 10. ER[log |Px|] ≤ γ′ + ER[εLx].

Proof. Let the R process run until one of two things happens: (1) x freezes,
i.e., |Sx(F ′)| drops to 1; (2) x is selected as the next variable in π. If (2)
happens first, then Lx = 1. Since |Px| ≤ d always, the left-hand side is
at most log(d) and the right hand side is γ′ + ε = log(d). If (1) happens
first, then Lx = 0. Let F ′ be the restricted formula after (1) has happened,
and U the uniform distribution over permutations of var(F ′). We know that
Eπ∼U [log |Px(F ′, π, α)|] ≤ γ, for every fixed α ∈ sat(F ′), since P has error

7

rate at most γ by assumption. However, this is not exactly what we need.
We need to show that

E
(π,α)∼R

[log |Px(F, πα)| | (1) and F ′] ≤ γ ,

where the condition means that (1) happens first, and F ′ is the restricted
formula just after (1) happens. Sampling from R conditioned on this specific
past is basically the same as running the R-process, as defined above, on F ′

instead of F . That is, we have to show that

E
(π,α)∼RF ′

[log |Px(F ′, π, α)|] ≤ γ . (3)

Note that F ′ is again a (d, k)-CSP formula, and thus it suffices to show the
following lemma and apply it to F .

Lemma 11. Let F be a satisfiable (d, k)-CSP formula and R the distribution
over pairs (π, α) defined above. Then E(π,α)∼R[log |Px(F, π, α)|] ≤ γ.

This lemma is non-obvious since we take the expectation over R, where
both α and π are random, and π is typically not uniform, whereas in the
definition of error rate, we take a fixed α and a uniform π. This lemma is,
in a way, the heart of the overall proof, and also justifies the definition of
R. We will prove it in the next section. To summarize, we have showed
that if (2) happens first, then Lx = 1 and log |Px| ≤ log d trivially, and the
claimed bound holds. If (1) happens first, then Lx = 0, and by Lemma 11,
ER[log |Px| | (1)] ≤ γ ≤ γ′. Thus, the claimed bound holds in both cases,
which concludes the proof of Lemma 10, except for Lemma 11, a proof of
which we give in the next section.

Plugging the bound of Lemma 10 into the left-hand side of Lemma 9, it
suffices to show that

E[log(n!R(π, α))] + ε
∑
x

E[Lx] ≤ 0 . (4)

As an aside, note that the veracity of the above inequality depends solely
on sat(F) as a subset of [d]n, and neither on the way this set is presented
as a (d, k)-CSP formula nor on the proof heuristic P . Let us now change
perspective. Rather than summing over individual variables x, let us sum
/ multiply over the steps taken by the R-process. Consider the ith step, let
Fi be the formula at the beginning of step i, let ni := n − i + 1 be the
number variables in Fi, let si := |S(Fi)| =

∑
x∈var(Fi) |Sx(Fi)| be the number

of satisfying literals. Let xi be the variable chosen in step i and Li := Lxi

8

the indicator variable which is 1 if this variable is liquid and 0 if frozen.
All of these are random variables with respect to the underlying probability
distribution R (except ni, of course, which is known beforehand). Note
that R(π, α) =

∏n
i=1

1
si

. Indeed, there is, in every step, exactly one choice
out of si many to produce the pair (π, α). Consequently, log(n!R(π, α)) =∑n

i=1 log
(
ni
si

)
, and (4) is equivalent to

n∑
i=1

E
[
log

(
si
ni

)
− εLi

]
≥ 0 . (5)

In the next lemma, we will show that every summand is non-negative. This
concludes the proof of Lemma 9.

Lemma 12. For every 1 ≤ i ≤ n, it holds that E
[
log
(
si
ni

)
− εLi

]
≥ 0.

Proof. Let us imagine the R-process has already finished the first i−1 steps,
and interpret E as conditioned on this past. Then si becomes a constant.
Let us write s and n instead of si and ni, to simplify no tation. Let f be the
number of frozen variables in Fi. Note that E[Li] = 1− f

s
. Also, every liquid

variable has at least 2 possible colors, thus s ≥ f + 2(n − f) = 2n − f and
f ≥ 2n− s. Therefore,

E[Li] = 1− f

s
≤ 1− 2n− s

s
=

2s− 2n

s
.

Note that this upper bound can easily be larger than 1, in which case it is of
course trivial. Next, we will bound log

(
s
n

)
from below:

log
(s
n

)
= − log

(n
s

)
= − log

(
1− s− n

s

)
= − log(e) ln

(
1− s− n

s

)
≥ log(e) · s− n

s
.

Combining these two bounds, we obtain

E
[
log

(
si
ni

)
− εLi

]
≥ log(e) · s− n

s
− ε · 2s− 2n

s

=
s− n
s
· (log(e)− 2ε) .

Obviously s−n
s
≥ 0. Note that log(e)−2ε is non-negative since ε ≤ log(e)

2
.

9

3 Bounding ER[log |Px|]—Proof of Lemma 11

We have to show that E(π,α)∼R[log |Px(F, π, α)|] ≤ γ. For a fixed α ∈ sat(F),
let Rα(π) := R(π|α). So Rα is a distribution over permutations of variables.
We can rewrite our expression as

E
(π,α)∼R

[log |Px|] = E
α∼R

[
E

π∼Ra
[log |Px|]

]
, (6)

and we will show that this is at most γ by showing that

E
π∼Ra

[log |Px|] ≤ γ , for every fixed α ∈ sat(F) . (7)

Since the R-process samples π and α in a very intertwined way, it is by no
means clear how Rα behaves, and how (7) should be proved.

3.1 Informal Proof Outline

Let us first give an intuitive proof outline. Let π be some permutation and
consider log |Px|. Suppose we move x towards the back of π, creating a new
permutation π′. This can make Px smaller. In fact, Px(π

′, α) ⊆ Px(π, α).
This should be clear: the later x is processed, the more information the
heuristic P has about x, the more colors can be excluded as non-satisfying.

We claim that in π ∼ Rα, the variable x tends to come later than in a
uniform permutation (in a sense we make precise soon). This means that
Px tends to be smaller under Rα than under the uniform distribution, thus
Eπ∼Rα [log |Px|] ≤ Eπ∼U [log |Px|], and the latter expectation is at most γ by
definition of the error rate of the proof heuristic.

What is an intuitive reason that x tends to come later under Rα? When
we remove the condition on α and only consider R, then a variable y is
chosen first with probability |S(F,y)|

|S(F)| . Since x is frozen, we have |Sx(F)| = 1
and thus it is least likely to come first. The same argument applies to every
step of the R-process. However, this is not what we want—we want to show
x tends to come late under Rα, not R. Bayes’ formula tells us that we have
to correct |S(F,y)||S(F)| by a factor that measures how the probability of α changes
when conditioning on y being chosen first. A minute of thought shows that
choosing y first changes α’s probability to something at least 1

|S(F,y)| times
what it was before; furthermore, if y is frozen, it does not change it at all.
That is, under Rα, x comes first with probability 1

|S(F)| , while some other y

comes first with probability at least |S(F,y)||S(F)| ×
1

|S(F,y)| . So x is still least likely
to come first.

10

3.2 The Formal Proof

For two strings σ, π, we write σ � π if σ is a prefix of π. A permutation π
on set V of size n can be viewed as a string in V n without repeated letters.
A string σ ∈ V ∗ without repeated letters is called a partial permutation. If
D is a distribution over permutations on V and σ is a partial permutation,
we write D(σ) := Prπ∼D(σ � π) =

∑
π:σ�πD(π).

Definition 13. Let D be a distribution over permutations on V , and let
x ∈ V . We say D delays x if for all y ∈ V and all partial permutations σ
not containing x or y, it holds that D(σx) ≤ D(σy).

Lemma 11 will follow from the next two lemmas.

Lemma 14. Let x be a frozen variable. Then the distribution Rα delays x

Lemma 15 (Lemma 21 from [10]). Let V be a finite set, x ∈ V , D a
distribution over permutations of V that delays x, and f : V → R a monotone
function, meaning f(U1) ≤ f(U2) whenever U1 ⊆ U2. Denote by W = W (π)
the set of elements coming after x in π. Then

E
π∼D

[f(W)] ≤ E
π∼U

[f(W)] ,

where U is the uniform distribution over permutations.

To finish the proof of Lemma 11, let W be the set of variables occur-
ring after x in π, and note that Px indeed only depends on W : it depends
on which variables have been set yet; the order in which they have been
set is irrelevant. Also, it is monotone. The fewer variables come after x,
the more information the heuristic P has about x, the more colors can be
excluded as obviously non-satisfying, and the smaller Px becomes. Thus,
f : W 7→ log |Px| is monotone in the sense of Lemma 15. Lemma 11 now
follows since Rα delays x and thus can play the role of D in Lemma 15.

Lemma 15 can be proved by a simple coupling argument. A full formal
proof can be found in [10]. It remains to prove Lemma 14. The proof is
similar to that of Lemma 21 in [10].

Proof of Lemma 14. Let x and y be variables and let σ be a partial per-
mutation not containing x or y. We have to show that Rα(σx) ≤ Rα(σy).
Multiplying both sides with R(α), this is equivalent to R(σx, α) ≤ R(σy, α).
Note that R(σ, α) means

∑
π:σ�π R(π, α). This is good, since we removed the

hard-to-grasp conditioning on α.

11

We argue that it is enough to show this inequality for empty σ, i.e.,
R(x, α) ≤ R(y, α). Indeed, if σ is non-empty, one can imagine running the
R-process according to α and σ for the first |σ| steps, arriving at a formula
F ′, and then appeal to the case of empty prefix, for the new formula F ′.

To prove R(x, α) ≤ R(y, α), we consider an alternative way to sam-
ple (π, α) ∼ R. First, recall that S(F) is the set of all (v, c) such that
F |v=c is satisfiable. Choose a random permutation on S(F), namely τ =
(v1, c1), (v2, v2), . . . , (vs, cs). Start with F ′ = F and, for i = 1, . . . , s, check
whether (1) vi has not been set yet and (2) F ′|vi=ci is satisfiable. If so, apply
this assignment, i.e., set F ′ := F ′|vi=ci , and output (vi, si). Otherwise, do
nothing. Proceed to i + 1. The output sequence has length n and defines a
permutation π and a satisfying assignment α. We say τ leads to π and α. It
is easy to see that (π, α) follows distribution R.

Let T be the set of all such sequences, i.e., T = Sym(S(F)). Let Tv,α be
the set of all τ ∈ T leading to α and some π in which v comes first. With
this notation, R(v, α) = |Tv,α|

|T | . Thus, we have to show that |Tx,α| ≤ |Ty,α|.
We show this by defining an injection from the former set into the latter as
follows. Consider a sequence τ ∈ Tx,α. The first pair in τ must be (x, α(x)),
and the pair (y, α(y)) must appear somewhere in τ . Let ϕ(τ) be the sequence
arising from exchanging these two pairs. Clearly ϕ is injective, and we claim
that ϕ(τ) ∈ Ty,α. Indeed, since τ leads to α, we can move the pair (x, α(x))
to any position, and the new sequence still leads to α. This is because x is
frozen, and thus α(x) is the only satisfying value for x anyway, and it does
not matter when we actually apply the restriction x = α(x). So ϕ(τ) leads
to α, as well, and its first pair is (y, α(y)), so clearly y comes first in ϕ(τ),
thus ϕ(τ) ∈ Ty,α.

4 Conclusion

We would like to find a proof that works for all monotone proof heuristics,
for arbitrarily small error rates γ. More modestly, it would be nice if we
could extend the proof of this paper to cover all values (d, k) for the concrete
proof heuristic PD, or at least more than it currently does. There are two
points in the proof where we bound things too generously: first, in the proof
of Lemma 11 we bound log |Px| ≤ log(d), which is of course true. However,
it is too pessimistic on expectation. For example, suppose |Sx(F)| = 2.
Then |Px(π, α)| should still be less than d, on expectation. Indeed, for any
unsatisfiable color c, there is a certain chance that PD “catches” it and thus

12

excludes it from Px(π, α). This probability is not formalized in the definition
of γ, the error rate. However, we surely can bound it for the concrete heuristic
PD. However, there are some difficulties: if |Sx(F)| ≥ 2, then Lemma 14
does not apply anymore, and Rα quite possibly does not delay x. Thus,
Eπ∼Rα [log |Px(π, α)|] might be significantly larger than under uniform π.

The other point in the proof where we possibly give away a lot is in the
proof of Lemma 12. We argue that “every liquid variable has at least 2
possible colors. This might well be tight: sat(F) might well be contained
in the set {1, 2}n, for example. However, this is an extreme case, and the
pessimistic scenario that |Sx(F)| ≤ 2 for all (or even most) x might turn out
to be beneficial at some other point in the analysis.

References

[1] A. Björklund and T. Husfeldt. Inclusion–exclusion algorithms for count-
ing set partitions. In 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, Califor-
nia, USA, Proceedings, pages 575–582. IEEE Computer Society, 2006.

[2] T. Feder and R. Motwani. Worst-case time bounds for coloring and
satisfiability problems. J. Algorithms, 45(2):192–201, 2002.

[3] T. Hertli. 3-SAT faster and simpler—unique-SAT bounds for PPSZ hold
in general. In 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science—FOCS 2011, pages 277–284. IEEE Computer Soc.,
Los Alamitos, CA, 2011.

[4] T. Hertli, I. Hurbain, S. Millius, R. A. Moser, D. Scheder, and
M. Szedlák. The PPSZ algorithm for constraint satisfaction problems
on more than two colors. In M. Rueher, editor, Principles and Prac-
tice of Constraint Programming - 22nd International Conference, CP
2016, Toulouse, France, September 5-9, 2016, Proceedings, volume 9892
of Lecture Notes in Computer Science, pages 421–437. Springer, 2016.

[5] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity. J. Comput. System Sci., 63(4):512–530, 2001.
Special issue on FOCS 98 (Palo Alto, CA).

[6] L. Li, X. Li, T. Liu, and K. Xu. From k-sat to k-csp: Two generalized
algorithms. CoRR, abs/0801.3147, 2008.

[7] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-
time algorithm for k-SAT. J. ACM, 52(3):337–364 (electronic), 2005.

13

[8] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. Chicago
J. Theoret. Comput. Sci., pages Article 11, 19 pp. (electronic), 1999.

[9] D. Scheder. Ppz for more than two truth values - an algorithm for
constraint satisfaction problems. CoRR, abs/1010.5717, 2010.

[10] D. Scheder and J. P. Steinberger. PPSZ for General k-SAT - making
Hertli’s analysis simpler and 3-SAT faster. In R. O’Donnell, editor,
32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017,
Riga, Latvia, volume 79 of LIPIcs, pages 9:1–9:15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[11] U. Schöning. A probabilistic algorithm for k-SAT and constraint sat-
isfaction problems. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, pages 410–414. IEEE Computer So-
ciety, Los Alamitos, CA, 1999.

[12] P. Traxler. The time complexity of constraint satisfaction. In M. Grohe
and R. Niedermeier, editors, Parameterized and Exact Computation,
Third International Workshop, IWPEC 2008, Victoria, Canada, May
14-16, 2008. Proceedings, volume 5018 of Lecture Notes in Computer
Science, pages 190–201. Springer, 2008.

14

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

