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Abstract. We study the complexity of representing polynomials by arithmetic circuits in both
the commutative and the non-commutative settings. Our approach goes through a precise under-
standing of the more restricted setting where multiplication is not associative, meaning that we
distinguish (xy)z from x(yz).

Our first and main conceptual result is a characterization result: we show that the size of
the smallest circuit computing a given non-associative polynomial is exactly the rank of a matrix
constructed from the polynomial and called the Hankel matrix. This result applies to the class of all
circuits in both commutative and non-commutative settings, and can be seen as an extension of the
seminal result of Nisan giving a similar characterization for non-commutative algebraic branching
programs.

The study of the Hankel matrix provides a unifying approach for proving lower bounds for
polynomials in the (classical) associative setting. We demonstrate this by giving alternative proofs
of recent results proving superpolynomial and exponential lower bounds for different classes of
circuits as corollaries of our characterization result.

Our main technical contribution is to provide generic lower bound theorems based on analyzing
and decomposing the Hankel matrix. This yields significant improvements on lower bounds for
circuits with many parse trees, in both (associative) commutative and non-commutative settings.
In particular in the non-commutative setting we obtain a tight result showing superpolynomial
lower bounds for any class of circuits which has a small defect in the exponent of the total number
of parse trees.
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1. Introduction

The model of arithmetic circuits is the algebraic analogue of Boolean circuits: the latter computes
Boolean functions and the former computes polynomials, replacing OR gates by addition and AND
gates by multiplication. Computational complexity theory is concerned with understanding the
expressive power of such models. A rich theory investigates the algebraic complexity classes VP
and VNP introduced by Valiant [Valiant, 1979]. A widely open problem in this area of research
is to explicitly construct hard polynomials, meaning for which we can prove super polynomial
lower bounds. To this day the best general lower bounds for arithmetic circuits were given by
Baur and Strassen [Baur and Strassen, 1983] for the polynomial

∑n
i=1 x

d
i , which requires Ω(n log d)

operations.

1.1. Non-Commutative Computations. The seminal paper of Nisan [Nisan, 1991] initiated the
study of non-commutative computation: in this setting variables do not commute, and therefore
xy and yx are considered as being two distinct monomials. Non-commutative computations arise
in different scenarios, the most common mathematical examples being when working with algebras
of matrices, group algebras of non-commutative groups or the quaternion algebra. A second mo-
tivation for studying the non-commutative setting is that it makes it easier to prove lower bounds
which can then provide powerful ideas for the commutative case. Indeed, commutativity allows a
circuit to rely on cancellations and to share calculations across different gates, making them more
complicated to analyze.

The main result of Nisan [Nisan, 1991] is to give a characterization of the smallest algebraic
branching program (ABP) computing a given polynomial. As a corollary of this characterization
Nisan obtains exponential lower bounds for the non-commutative permanent against the subclass
of circuits given by ABPs.

We sketch the main ideas behind Nisan’s characterization, since our first contribution is to
extend these ideas to the class of all non-associative circuits. An ABP is a layered graph with two
distinguished vertices, a source and a target. The edges are labelled by affine functions in a given
set of variables. An ABP computes a polynomial obtained by summing over all paths from the
source to the target, with the value of a path being the multiplication of the affine functions along
the traversed edges. Fix a polynomial f , and define following Nisan a matrix Nf whose rows and
columns are indexed by monomials: for u, v two monomials, let Nf (u, v) denote the coefficient of
the monomial u · v in f .

The beautiful and surprisingly simple characterization of Nisan states that for a homogeneous
(i.e., all monomials have the same degree) non-commutative polynomial f the size of the smallest
ABP computing f is exactly the rank of Nf . The key idea is that the computation of the polynomial
in an ABP can be split into two parts: let r be a vertex in an ABP C computing the polynomial
f , then we can split C into two ABPs, one with the original source and target r and the other
one with source r and the original target. We let Lr and Rr denote the polynomials computed by
these two ABPs. For u, v two monomials, we observe that the coefficient of uv in f is equal to∑

r Lr(u)Rr(v), where r ranges over all vertices of C, Lr(u) is the coefficient of u in Lr, and Rr(v)
is the coefficient of v in Rr. We see this as a matrix equality: Nf =

∑
r Lr · Rr, where Lr is seen

as a column vector, and Rr as a row vector. By subadditivity of the rank and since the product
of a column vector by a row vector is a matrix of rank at most 1, this implies that rank (Nf ) is
bounded by the size of the ABP, yielding the lower bound in Nisan’s result.

The crucial idea of splitting the computation of a monomial into two parts had been indepen-
dently developed by Fliess when studying so-called Hankel Matrices in [Fliess, 1974] to derive a very
similar result in the field of weighted automata, which are finite state machines recognising words
series, i.e., functions from finite words into a field. Fliess’ theorem [Fliess, 1974, Th. 2.1.1] states
that the size of the smallest weighted automaton recognising a word series f is exactly the rank of
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the Hankel matrix of f . The key insight to relate the two results is to see a non-commutative mono-
mial as a finite word over the alphabet whose letters are the variables. Using this correspondence
one can obtain Nisan’s theorem from Fliess’ theorem, observing that the Hankel matrix coincides
with the matrix Nf defined by Nisan and that acyclic weighted automata correspond to ABPs.
(We refer to an early technical report of this work for more details on this correspondence [Fijalkow
et al., 2018].)

1.2. Non-Associative Computations. Hrubeš, Wigderson and Yehudayoff in [Hrubeš et al.,
2011] drop another classical rule of computation, namely associativity: (xy)z is no longer equal
to x(yz). In this foundational work the authors show how to define the complexity classes VP
and VNP in the absence of either commutativity or associativity (or both) and prove that these
definitions are sound in particular by obtaining the completeness of the permanent.

In the same way that a non-commutative monomial can be seen as a word, a non-commutative
and non-associative monomial such as (xy)(x(zy)) can be seen as a tree, and more precisely as an
ordered binary rooted tree whose leaves are labelled by variables. The starting point of our work
was to exploit this connection. The work of Bozapalidis and Louscou-Bozapalidou [Bozapalidis and
Louscou-Bozapalidou, 1983] extends Fliess’ result to trees; although we do not technically rely on
their results they serve as a guide, in particular for understanding how to decompose trees.

Let us return to the key idea in Nisan’s proof, which is to decompose the computation of an
ABP into two parts. The way a monomial, e.g., x1x2x3 · · ·xd, is evaluated in an ABP is very
constrained, namely from left to right, or if we make the implicit non-associative structure explicit
as w = (· · · (((x1x2)x3)x4) · · · )xd. The decompositions of w into two monomials u, v are of the form
u = (· · · ((x1x2)x3) · · · )xi−1) and v = (· · · ((�xi)xi+1) · · · )xd . Here � is a new fresh variable (the
hole) to be substituted by u. Moving to non-associative polynomials, a monomial is a tree whose
leaves are labelled by variables. A context is a monomial over the set of variables extended with a
new fresh one denoted � and occurring exactly once. For instance the composition of the monomial
t = z((xx)y) with the context c = (xy)((z�)y) is the monomial c[t] = (xy)((z(z((xx)y)))y).

Figure 1. On the left hand side the monomial t, in the middle the context c, and
on the right hand side the monomial c[t].

Let f be a non-associative (possibly commutative) polynomial f , the Hankel matrix Hf of f is
defined as follows: the rows of Hf are indexed by contexts and the columns by monomials, the
value of Hf (c, t) at row c and column t is the coefficient of the monomial c[t] in f .

Extending Nisan’s proof to computations in a general circuit, which are done along trees, we
obtain a characterization in the non-associative setting.

Theorem 1. Let f be a non-associative homogeneous polynomial and let Hf be its Hankel matrix.
Then, the size of the smallest circuit computing f is exactly rank (Hf ).

Note that this is a characterization result: the Hankel matrix exactly captures the size of the
smallest circuit computing f (upper and lower bounds), exactly as in Nisan’s result. Hence, un-
derstanding the rank of the Hankel matrix is equivalent to studying circuits for f . We recover and
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extend Nisan’s characterization as a special case of our result. This is better understood with the
notion of parse trees at hand, which we present now.

1.3. Parse Trees. At an intuitive level, parse trees can be used to explain in what way a circuit
uses the associativity rule. Consider the case of a circuit computing the (associative) monomial
2xyz. Since this monomial corresponds to two non-associative monomials: (xy)z and x(yz), the
circuit may sum different computations, for instance 3(xy)z − x(yz), which up to associativity is
2xyz. We say that such a circuit contains two parse trees, corresponding to the two different ways
of parenthesizing xyz.

The shape of a non-associative monomial is the tree obtained by forgetting the variables, e.g.,
the shape of (z((xy)((xx)y))) is ( (( )(( ) ))). The parse trees of a circuit C are the shapes
induced by computations in C.

Unique Parse Trees. Lagarde, Malod and Perifel introduced in [Lagarde et al., 2016] the class of
Unique Parse Tree circuits (UPT), which are circuits computing non-commutative homogeneous
(but associative) polynomials such that all monomials are evaluated in the same non-associative
way. In other words, a circuit is UPT if it has a unique parse tree, which can be understood as a
unique evaluation policy. ABPs are UPT circuits with the unique parse tree being the left-comb
tree. Indeed, as already mentioned, in an ABP monomials are evaluated left to right, so the parse
trees all have the same non-associative structure which is ((· · · ((( ) ) ) · · · ) ). It intuitively
corresponds to a greedy computation; in contrast, a divide and conquer evaluation policy would
correspond to using a complete binary tree as unique parse tree.

By restricting a circuit to having a unique parse tree we fix the non-associative polynomial
it computes. As a result, we obtain as a Corollary of Theorem 1 a characterization result for
UPT circuits. This marginally strengthens the result of [Lagarde et al., 2016] since they require
a notion of canonical form for UPT circuits. We apply this characterization and provide for any
parse tree s an expression for the size of the smallest UPT circuit with parse tree s computing the
non-commutative permanent.

Parse Tree Restrictions. Many interesting classes of circuits can be defined by restricting the set
of allowed parse trees, both in the commutative and the non-commutative setting. We already
discussed ABP [Nisan, 1991; Dvir et al., 2012; Ramya and Rao, 2018] and UPT circuits [Lagarde
et al., 2016]. The class of skew circuits [Toda, 1992; Allender et al., 1998; Malod and Portier, 2008;
Limaye et al., 2016] and its extension small non-skew depth circuits [Limaye et al., 2016], together
with the class of unambiguous circuits [Arvind and Raja, 2016] are all defined by looking at the
parse trees. We propose in our technical developments some related restrictions called slightly
balanced and slightly unbalanced circuits. Last but not least, the class of k-PT circuits [Arvind
and Raja, 2016; Lagarde et al., 2018; Saptharishi and Tengse, 2017] is simply the class of circuits
having at most k parse trees.

1.4. Contributions and Outline. In this paper we prove lower bounds for classes of circuits with
parse tree restrictions, both in the commutative and non-commutative setting.

Our first and conceptually main contribution is the characterization result stated in Theorem 1
and proved in Section 2, which gives an algebraic approach to understanding circuits in the non-
associative setting. All the subsequent results in this paper are based on this approach.

Section 3 is devoted to the definition of parse trees and a classical tool for proving lower bounds,
the partial derivative matrices. We can already show at this point how Theorem 1 can be specialized
to give a characterization result for UPT circuits, extending Nisan’s result. (We note that a
characterization result for UPT circuits was already known [Lagarde et al., 2016], we slightly
improve on it.) As a corollary we obtain exponential lower bounds on the size of the smallest UPT
circuit computing the permanent.
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Our most technical developments are discussed in Section 4. We prove generic lower bound
results by further analyzing and decomposing the Hankel matrix, with the following proof scheme.
We consider a polynomial f in the associative setting. Let C be a circuit computing f . Forgetting
about associativity we can see C as computing a non-associative polynomial f̃ , which projects onto
f , meaning is equal to f assuming associativity. This induces a set of linear constraints: for instance
if the monomial xyz has coefficient 3 in f , then we know that f̃((xy)z) + f̃(x(yz)) = 3. We make
use of the linear constraints to derive lower bounds on the rank of the Hankel matrix Hf̃ , yielding

a lower bound on the size of C.
The final section is devoted to applications of our results, where we obtain superpolynomial and

exponential lower bounds for various classes. In the results mentioned below, n is the number of
variables, d is the degree of the polynomial, and k the number of parse trees. We note that the
lower bounds hold for any (prime) n, any d, and any field.

We obtain alternative proofs of some known lower bounds: unambiguous circuits [Arvind and
Raja, 2016], skew circuits [Limaye et al., 2016] and small non-skew depth circuits (obtaining a much
shorter proof than [Limaye et al., 2016]).

Our main contributions are:

• Slightly unbalanced circuits. We extend the exponential lower bound from [Limaye et al.,
2016] on 1

5 -unbalanced circuits to
(
1
2 − ε

)
-unbalanced circuits.

• Slightly balanced circuits. We derive a new exponential lower bound for ε-balanced circuits.
• Circuits with k parse trees in the non-commutative setting. We extend the superpolynomial

lower bound of [Lagarde et al., 2018] from k = 2d
1/3−ε

to k = 2d
1−ε

.
• Circuits with k parse trees in the commutative setting. We extend the superpolynomial

lower bound from [Arvind and Raja, 2016] from k = d1/2−ε to k = 2d
1/3−ε

, and even to

k = 2d
1−ε

when d is polylogarithmic in n.

We comment on the last two results. In the non-commutative setting this closes the gap with the
upper bound k = 2O(d) on the total number of parse trees. In other words, we obtain superpoly-
nomial lower bound on any class of circuits which has a small defect in the exponent of the total
number of parse trees. However, in the commutative setting although we improve from a sublinear
to superpolynomial number of parse trees, no gap is closed since the number of commutative parse
trees is roughly d!.

1.5. Related Work. We argued that proving lower bounds in the non-commutative setting is
easier, but this has not yet materialized since the best lower bound for general circuits in this
setting is the same as in the commutative setting (by Baur and Strassen, already mentionned
above). Indeed, recent impressive results suggest that this may be hard: Carmosino, Impagliazzo,
Lovett, and Mihajlin [Carmosino et al., 2018] (essentially) proved that a lower bound in the non-
commutative setting which would be slightly stronger than superlinear can be amplified to get
strong lower bounds (even exponential, in some cases).

Most approaches for proving lower bounds rely on algebraic techniques and the rank of some
matrix. A different and beautiful approach was investigated by Hrubeš, Wigderson and Yehu-
dayoff [Hrubeš et al., 2011] in the non-commutative setting through the study of the so-called
sum-of-squares problem. Roughly speaking, the goal is to decompose (x21 + · · ·+x2k) · (y21 + · · ·+ y2k)
into a sum of n squared bilinear forms in the variables xi and yj . They show that almost any su-
perlinear bound on n implies non-trivial lower bounds on the size of any non-commutative circuit
computing the permanent.

The quest of finding lower bounds is deeply connected to another problem called polynomial
identity testing (PIT) for which the goal is to decide whether a given circuit computes the formal
zero polynomial. The connection was shown in [Kabanets and Impagliazzo, 2003], in which it is
proved that providing an efficient deterministic algorithm to solve the problem implies strong lower
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bounds either in the arithmetic or boolean setting. PIT was widely investigated in the commutative
and non-commutative settings for classes of circuits based on parse trees restrictions, see e.g., [Raz
and Shpilka, 2005; Forbes et al., 2014; Agrawal et al., 2015; Gurjar et al., 2017; Saptharishi and
Tengse, 2017].

2. Characterizing Non-Associative Circuits

2.1. Basic Definitions. For an integer d ∈ N, we let [d] denote the integer interval {1, . . . , d}.

Polynomials. Let K be a field and let X be a set of variables. Following [Hrubeš et al., 2011]
we consider that unless otherwise stated multiplication is neither commutative nor associative. We
assume however that addition is commutative and associative, and that multiplication distributes
over addition. A monomial is a product of variables in X and a polynomial f is a formal finite
sum

∑
i cimi where mi is a monomial and ci ∈ K is a non-zero element called the coefficient of mi

in f . We let f(mi) denote the coefficient of mi in f , so that f =
∑

i f(mi)mi.
The degree of a monomial is defined in the usual way, i.e., deg(x) = 1 when x ∈ X and

deg(m1m2) = deg(m1)+deg(m2); the degree of a polynomial f is the maximal degree of a monomial
in f . A polynomial is homogeneous if all its monomial have the same degree. Depending on
whether we include the relations u·v = v ·u (commutativity) and u·(v ·w) = (u·v)·w (associativity)
we obtain four classes of polynomials.

Unless otherwise specified, for a polynomial f we use n for the number of variables and d for the
degree.

Trees and Contexts. The trees we consider have a single root and binary branching (every internal
node has exactly two children). To account for the commutative and for the non-commutative
setting we use either unordered trees or ordered trees, the only difference being that in the
case of ordered trees we distinguish the left child from the right child. We let Tree denote the set
of trees (it will be clear from the context whether they are ordered or not). The size of a tree is
defined as its number of leaves.

A non-associative monomial m is a tree with leaves labelled by variables. For instance the
monomial z((xx)y) is represented on the left hand side of Figure 1. If m is non-commutative then
it is an ordered tree, and if m is commutative then it is an unordered tree. We let Tree(X) denote
the set of trees whose leaves are labelled by variables in X and Treei(X) denote the subset of such
trees with i leaves, which are monomials of degree i.

In this paper we see a non-associative polynomial as a mapping from monomials to K, i.e., an
element f : Tree(X)→ K. To avoid possible confusion, let us insist that the notation f(m) refers
to the coefficient of the monomial m in the polynomial f , not to be confused with the evaluation
of f at a given point. Similarly, a non-commutative associative homogeneous polynomial of degree
d is seen as a mapping f : Xd → K.

A (ordered or unordered) context is a tree with a distinguished leaf labelled by a special symbol
called the hole and written �. We let Context(X) denote the set of contexts whose leaves are
labelled by variables in X. Given a context c and a tree t we construct a new tree c[t] by substituting
the hole of c by t. This operation is defined in both ordered and unordered settings. An example
of a context c and the construction of c[t] is given in Figure 1.

Hankel Matrices. Let f be a non-associative polynomial. The Hankel matrix Hf of f is the
matrix whose rows are indexed by contexts and columns by monomials and such that the value of
Hf at row c and column t is the coefficient of the monomial c[t] in f .

Arithmetic Circuits. An (arithmetic) circuit is a directed acyclic graph such that the vertices are
of three types:

• input gates: they have in-degree 0 and are labelled by variables in X,
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• addition gates: they have arbitrary in-degree, an output value in K, and a weight w(a) ∈ K
on each incoming arc a,
• multiplication gates: they have in-degree 2, and we distinguish between the left child and

the right child.

Each gate v in the circuit computes a polynomial fv which we define by induction.

• An input gate labelled by a variable x ∈ X computes the polynomial x.
• An addition gate v with n arcs incoming from gates v1, . . . , vn and with weights α1, . . . , αn,

computes the polynomial α1fv1 + · · ·+ αnfvn .
• A multiplication gate with left child u and right child v computes the polynomial fufv.

The circuit itself computes a polynomial given by the sum over all addition gates of the output
value times the polynomial computed by the gate. Note that it is slightly unusual that all addition
gates contribute to the circuit; one can easily reduce to the classical case where there is a unique
output addition gate by adding an extra gate.

To define the size of a circuit we make a syntactic assumption: each arc is either coming from,
or going to (but not both), an addition gate. This is a small assumption which can be lifted at the
price of a linear blow-up. The size of a circuit C is denoted |C| and defined to be its number of
addition gates. Note that this is how the size of ABPs is defined, it will be a convenient definition
here since our characterization result captures the exact size of the smallest circuit computing a
given polynomial.

Note that the definitions we gave above do not depend on which of the four settings we consider:
commutative or non-commutative, associative or non-assocative.

Consider the circuit on the left hand side of Figure 2: it computes the polynomial 7y2+2xy+yx,
which in the commutative setting is equal to 7y2 + 3xy.

Figure 2. On the left hand side a circuit computing the polynomial 7y2+2xy+yx,
which in the commutative setting is equal to 7y2 +3xy. The only addition gate with
a non-zero output value is at the bottom, its output value is 1. On the right hand
side the monomial xy, seen as non-associative. The dashed red arrow show one run
of the circuit over this monomial.

2.2. The Characterization. We prove the characterization stated in Theorem 1. It extends
Nisan’s characterization of non-commutative ABPs to general circuits in the non-associative setting.
The result holds for both commutative and non-commutative settings, the proof being the same
up to cosmetic changes.

The key step to go from ABPs to general circuits is the following: the polynomial computed by
an ABP is the sum over the paths of the underlying graph, whereas in a general circuit the sum is
over trees. We formalize this in the next definition by introducing runs of a circuit. The definition
is given in the non-commutative setting but easily adapts to the commutative setting as explained
in Remark 1.

Definition 1. Let C be a circuit and V⊕ denote its set of addition gates. Let t ∈ Tree(X) be a
monomial. A run of C over t is a map ρ from nodes of t to V⊕ such that
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(i) A leaf of t with label x ∈ X is mapped to a gate with a non-zero edge incoming from an
input gate labelled by x.

(ii) If n is a node of t with left child n1 and right child n2, then ρ(n) has a non-zero edge
incoming from a multiplication gate with left child ρ(n1) and right child ρ(n2).

(iii) The root of t is mapped to a gate with non-zero output value.

The value val(ρ) of ρ is a non-zero element in K defined as the product of the weights of the edges
mentioned in items (i) and (ii) together with the output value of ρ(r), r being the root of t.

We write by a small abuse of notation ρ : t→ V⊕ for runs of C over t.

We refer to Figure 2 for an example of a run over the monomial xy. The value of the run is 2.

Remark 1. In the commutative setting we simply replace item (ii) by: “if n is a node of t with
children n1, n2, then ρ(n) has a non-zero edge incoming from a multiplication gate with children
ρ(n1), ρ(n2)”.

A run of C over a monomial t additively contributes to the coefficient of t in the polynomial
computed by C, leading to the following lemma.

Lemma 1. Let C be a circuit computing the non-associative polynomial f : Tree(X) → K. Then
the coefficient f(t) of a monomial t ∈ Tree(X) in f is equal to∑

ρ:t→V⊕

val(ρ).

We may now state and prove our cornerstone result, which holds in both the commutative and
non-commutative settings.

Theorem 2. Let f : Tree(X)→ K be a non-associative polynomial, Hf be its Hankel matrix, and
C be a circuit computing f . Then |C| ≥ rank (Hf ). Moreover, if f is homogeneous this bound is
tight, meaning there exists a circuit C computing f of size rank (Hf ).

An interesting feature of this theorem is that the upper bound is effective: given a homogenous
polynomial one can construct a circuit computing this polynomial of size rank (Hf ).

We only prove the lower bound as the upper bound is not used in the rest of the paper (we
refer to Appendix A for the latter). The proof of the lower bound follows the same lines as Nisan’s
original proof for non-commutative ABPs [Nisan, 1991].

Proof. Let C be a circuit computing the non-associative polynomial f : Tree(X) → K. Let V⊕
denote the set of addition gates of C. To bound the rank of the Hankel matrix Hf by |C| = |V⊕|
we show that Hf can be written as the sum of |V⊕| matrices each of rank at most 1.

For each v ∈ V⊕ we define two circuits which decompose the computations around v. Let Cv1 be
the restriction of C to descendants of v, and Cv2 to be a copy of C with just an extra input gate
labelled by a fresh variable � /∈ X with a single outgoing edge with weight 1 going to v.

We let fv : Tree(X) → K denote the polynomial computed by Cv1 and gv : Context(X) → K
denote the restriction of the polynomial computed by Cv2 to Context(X) ⊆ Tree(X t {�}).

We show the equality

Hf (c, t) =
∑
v∈V⊕

fv(t)gv(c).

Fix a monomial t ∈ Tree(X) and a context c ∈ Context(X). We let n� denote the leaf of c
labelled by �, which is also the root of t and the node to which t is substituted with in c[t]. Relying
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on Lemma 1, we calculate the coefficient f(c[t]) of c[t] in f .

f(c[t]) =
∑

ρ:c[t]→V⊕

val(ρ) =
∑
v∈V⊕

∑
ρ:c[t]→V⊕
ρ(n�)=v

val(ρ) =
∑
v∈V⊕

∑
ρv1 :t→V⊕
ρv1(n�)=v

∑
ρv2 :c→V⊕
ρv2(n�)=v

val(ρv1)val(ρv2)

=
∑
v∈V⊕

∑
ρv1 :t→V⊕
ρv1(n�)=v

val(ρv1)
∑

ρv2 :c→V⊕
ρv2(n�)=v

val(ρv2) =
∑
v∈V⊕

fv(t)gv(c).

Let Mv ∈ KTree(X)×Context(X) be the matrix given by Mv(t, c) = fv(t)gv(c): its rank is at most one
as Mv is the product of a column vector by a row vector. The previous equality reads in matrix
form Hf =

∑
v∈V⊕Mv. Hence, we obtain the announced lower bound using rank subadditivity:

rank (Hf ) = rank

∑
v∈V⊕

Mv

 ≤ ∑
v∈V⊕

rank (Mv) ≤ |V⊕| = |C|.

�

The remainder of this paper consists in applying Theorem 1 to obtain lower bounds in various
cases. To this end we need a better understanding of the Hankel matrix: in Section 3 we define
the notion of parse trees for deconstructing circuits and in Section 4 we develop decomposition
theorems for the Hankel matrix.

Before digging deeper we can already give applications of Theorem 1, yielding simple proofs of
non-trivial results from the literature.

Our first corollary is an alternative separation argument of the classes VP and VNP in the
commutative non-associative setting. The original proof is due to [Hrubeš et al., 2010, Theorem 6],
it exhibits an explicit polynomial which requires a superpolynomial circuit to be computed. We
give here a different polynomial but our bounds are very similar.

Corollary 1. Let f be the commutative non-associative polynomial of degree 2d and over two
variables x0 and x1 defined by

f =
∑

ε1,...,εd∈{0,1}

(((· · · (xε1xε2)xε3) · · · )xεd)
2.

Any circuit computing f has size at least 2d−1.

Proof. We give a lower bound on the rank of the Hankel matrix. We look at the submatrix restricted
to contexts with (d+ 1) leaves of the form (((· · · (((xε1 · xε2) xε3) xε4) · · · ) xεd)�) and to rows with
d leaves of the form ((· · · (((xε′1 · xε′2) xε′3) xε′4) · · · ) xε′d). This matrix is (almost) a permutation

matrix of size 2d, the only difference being the symmetry between the two leaves at the top of the
comb, hence it has rank 2d−1. �

Our second corollary is an alternative proof of [Arvind and Raja, 2016, Theorem 26], which gives
an exponential lower bound for the permanent and the determinant against unambiguous circuits
in the associative setting. A circuit is said unambiguous, if for each (associative) monomial m,
there is at most one tree t labelled by m such that C has a run over t. Note that this notion makes
sense in both the commutative and the non-commutative settings. Our lower bounds hold in both
settings.

Corollary 2. Any unambiguous circuit computing the determinant or the permanent has size at
least

(
n
n/3

)
.
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Proof sketch. Consider an unambiguous circuit computing the permanent (the arguments are sim-
ilar for the determinant) of degree n over the variables X = {xi,j | i, j ∈ [n]}. For any permutation
σ, let tσ ∈ Tree(X) be the (non-associative) monomial over which there is a run computing the (as-
sociative) monomial x1,σ(1)x2,σ(2) · · ·xn,σ(n). Since the circuit is unambiguous the non-associative

polynomial f̃ computed by C is f̃ =
∑

σ tσ. We obtain a lower bound on the rank of Hf̃ by writing

it as a diagonal block matrix and arguing by a simple counting argument that there must be many
blocks of rank at least 1. We refer to Appendix B for details. �

This proof goes beyond the case of unambiguous circuits. It is actually sufficient to assume
that all non-associative monomials t such that f̃(t) 6= 0 are labelled by a monomial of the form
x1,σ(1)x2,σ(2) · · ·xn,σ(n) for some permutation σ.

3. Parse Trees, Partial Derivative Matrices and Unique Parse Tree Circuits

In this section we define two useful tools for analyzing circuits. The first is parse trees, which is
the lens through which we analyze circuits. The second is partial derivative matrices, which have
been used for proving lower bounds. The principal aim is to use these two tools for studying the
Hankel matrix in the next section. Before this we will show how they can be used in combination
with Theorem 1 to give a characterization result for unique parse tree circuits.

In this section we restrict ourselves to the non-commutative setting. We later explain in Sec-
tion 4.4 how to extend the study to the commutative case.

3.1. Parse Trees. With any monomial t ∈ Tree(X) we associate its shape shape(t) ∈ Tree as the
tree obtained from t by removing the labels at the leaves.

Definition 2. Let C be a circuit computing a non-commutative non-associative polynomial f . A
parse tree of C is any shape s ∈ Tree for which there exists a monomial t ∈ Tree(X) whose
coefficient in f is non-zero and such that s = shape(t). We let PT (C) = {shape(t) | f(t) non-zero}.

3.2. Partial Derivative Matrices. For A ⊆ [d] of size i , u ∈ Xd−i, and v ∈ Xi, we define the
monomial u⊗A v ∈ Xd: it is obtained by interleaving u and v with u taking the positions indexed
by [d] \A and v the positions indexed by A. For instance x1x2 ⊗{2,4} y1y2 = x1y1x2y2.

Definition 3. Let f be a homogeneous non-commutative associative polynomial. Let A ⊆ [d] be a
set of positions of size i.

The partial derivative matrix MA (f) of f with respect to A is defined as follows: the rows
are indexed by u ∈ Xd−i and the columns by v ∈ Xi, and the value of MA (f) (u, v) is the coefficient
of the monomial u⊗A v in f .

Example 1. Let f = xyxy+ 3xxyy+ 2xxxy+ 5yyyy and A = {2, 4}. Then MA (f) is given below.

x x x y y x y y
x x 0 2 0 1
y x 0 0 0 0
x y 0 3 0 0
y y 0 0 0 5

3.3. Application: Unique Parse Tree Circuits. Recall that UPT is the class of circuits having
a unique parse tree. This class was introduced in [Lagarde et al., 2016] and a characterization of
the smallest UPT circuit was obtained. We give an alternative simple proof of this result using
Theorem 1. We obtain a small improvement since the original result requires a normal form which
can lead to an exponential blow-up.

Given a shape s ∈ Tree of size d, i.e., with d leaves and a node v of s, we let sv denote the subtree
of s rooted in v, and Iv ⊆ [d] denote the interval of positions of the leaves of sv in s. We say that
s′ ∈ Tree is a subshape of s if s′ = sv for some v, and that I is spanned by s if I = Iv for some v.
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Let f : Xd → K be a homogeneous non-commutative associative polynomial of degree d, let
s ∈ Tree be a shape of size d, and let s′ be a subshape of s such that v1, . . . , vp are all the nodes v
of s such that s′ = sv. We define

Ms′ =


MIv1

(f)
MIv2

(f)
...

MIvp (f)

 .
Theorem 3. Let f : Xd → K be a homogeneous non-commutative associative polynomial and let
s ∈ Tree be a shape of size d. Then the smallest UPT circuit with shape s computing f has size
exactly ∑

s′ subshape of s

rank (Ms′) .

Proof. Let C be a UPT circuit with shape s computing f . We let f̃ denote the non-associative
polynomial computed by C. Since C is UPT with shape s, f̃ is the unique non-associative polynomial
which is non-zero only on trees with shape s and projects to f , i.e., f̃(t) = f(u) if shape(t) = s and

t is labelled by u, and f̃(t) = 0 otherwise.
In particular, the size of the smallest UPT circuit with shape s computing f is the same as the

size of the smallest circuit computing f̃ , which thanks to Theorem 1 is equal to the rank of the
Hankel Matrix Hf̃ .

The Hankel matrix of f̃ may be non-zero only on columns indexed by trees whose shapes s′

are subshapes of s, and on such columns, non-zero values are on rows corresponding to a context
obtained from s by replacing an occurrence of s′ by �. The corresponding blocks are precisely the
matrices Ms′ , and are placed in a diagonal fashion, hence the lower bound. �

Theorem 3 can be applied to concrete polynomials, for instance to the permanent of degree d.

Corollary 3. Let s ∈ Tree be a shape. The smallest UPT circuit with shape s computing the
permanent has size ∑

v node of s

(
d

|Iv|

)
,

where Iv is the set of leaves in the subtree rooted at v in s. In particular, this is always larger than(
d
d/3

)
.

Applied to s being a left-comb, Corollary 3 yields that the smallest ABP computing the perma-
nent has size 2d + d. Applied to s being a complete binary tree of depth k = log d, the size of the

smallest UPT is Θ
(
2d

d

)
, showing that this circuit is more efficient than any ABP. We recall here

that we count the number of addition gates.

4. Decomposing the Hankel Matrix

We now get to the technical core of the paper where we establish generic lower bounds theorems
that we will later instantiate in Section 5 to concrete classes of circuits. We first define a distance
which is often used to compare the ranks of partial derivative matrices of a given polynomial with
respect to different subsets. We use the same general ideas for both the commutative and the
non-commutative settings. However, since technical developments differ in the two settings, and
in particular in the commutative setting we need to explain how to adapt the tools defined in
Section 3, we treat the two settings one after the other.
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4.1. Distance and Partial Derivative Matrices. We define a distance dist : P([d])×P([d])→
N on subsets of [d] by letting dist(A,B) be the minimal number of additions and deletions of
elements of [d] to go from A to B, assuming that complementing is for free. Formally, dist(A,B) =
min{|∆(A,B)|, |∆(Ac, B)|}, where ∆(A,B) = (A\B)∪(B \A) is the symmetric difference between
A and B.

The following lemma (see e.g., [Limaye et al., 2016]) informally says that, if A and B are close to
each other, then the ranks of the corresponding partial derivative matrices are close to each other
as well.

Lemma 2. Let f be a homogeneous non-commutative associative polynomial. Then, for any subsets
A,B ⊆ [d], rank (MA (f)) ≤ ndist(A,B)rank (MB (f)).

4.2. General Road Map. We expand here on the proof scheme given in the introduction. Let
f be a (commutative or non-commutative) polynomial for which we want to prove lower bounds.

Consider a circuit C which computes f , and let f̃ be the non-associative polynomial computed by
C. Our aim is, following Theorem 1, to give lower bounds on the rank of the Hankel matrix Hf̃ .

We know that the f̃ and f are equal up to associativity, which provides linear relations among the
coefficients of Hf̃ .

The bulk of the technical work is to reorganize the rows and columns of Hf̃ in order to decompose

it into blocks which may be identified as partial derivative matrices with respect to some subsets
A1, A2, · · · ⊆ [d], of some associative polynomials which depend on f̃ and sum to f . The number
and choice of these subsets depend on the parse trees of the circuit C.

Now, assume there exists a subset A ⊆ [d] which is at distance at most δ to each Ai. Losing
a factor of nδ on the rank through the use of Lemma 2 we reduce the aforementioned blocks of
Hf̃ to partial derivatives with respect to A. Such matrices can then be summed to recover the

partial derivative matrix of f with respect to A, yielding in the lower bound a (dominating) factor
of rank (MA (f)).

4.3. Non-Commutative Setting. Following the general road map described above, we obtain a
first generic lower bound result.

Theorem 4. Let f : Xd → K be a non-commutative homogeneous polynomial computed by a
circuit C. Let A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at distance at most
δ from A. Then C has size at least rank (MA (f))n−δ|PT (C) |−1.

We now explain how to improve on this first result. Our main result, stated in Theorem 5,
replaces the multiplicative factor |PT (C) |−1 by d−2. This is an important improvement since the
number of parse trees can be up to about 22d.

The crux to prove Theorem 4 is to identify for each parse tree s of C a block in Hf̃ containing the

partial derivative matrix MI(s) (fs) where fs is the polynomial corresponding to the contribution
of the parse tree s in the computation of f and I(s) is an interval spanned by s.

However, we do not consider in this analysis how these blocks are located relative to each other.
A more careful analysis of Hf̃ consists in grouping together all parse trees that lead to the same

spanned interval. Aligning and then summing these blocks we remove the dependence in |PT (C) |
and instead use d2 which is the total number of possibly spanned intervals of [d]. This yields
Theorem 5.

Theorem 5. Let f be a non-commutative homogeneous polynomial computed by a circuit C. Let
A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at distance at most δ from A.
Then C has size at least rank (MA (f))n−δd−2.

As we shall see in Section 5 the lower bounds we obtain using Theorem 4 match known results,
while using Theorem 5 yields substantial improvements.
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4.4. Commutative Setting. We explain how to extend the notions of parse trees and the generic
lower bound theorems to the commutative setting.

Let X = X1tX2t· · ·tXd be a partition of the variable set X. A monomial is set-multilinear
with respect to the partition if it is the product of exactly one variable from each set Xi, and a
polynomial is set-multilinear if all its monomials are.

The permanent and the determinant of degree d are set-multilinear with respect to the partition
X = X1 tX2 t · · · tXd where Xi = {xi,j , j ∈ [d]}. The iterated matrix multiplication polynomial
is another example of important and well-studied set-multilinear polynomial.

The notion of shape was defined by [Arvind and Raja, 2016], and it slightly differs from the
non-commutative case because we need to keep track of the indices of the variable sets given by the
partition from which the variables belong. More precisely, given a partition ofX = X1tX2t· · ·tXd,
we associate to any monomial t ∈ Tree(X) of degree d its shape shape(t) ∈ Tree([d]) defined as
the tree obtained from t by replacing each label by its index in the partition. We let Td ⊆ Tree([d])
denote the set of trees for which the leaves cover all [d].

Let C be a circuit computing a non-commutative non-associative polynomial f . A parse tree
of C is any shape s ∈ Td for which there exists a monomial t ∈ Tree(X) whose coefficient in f is
non-zero and such that s = shape(t). We let PT (C) = {shape(t) | f(t) non-zero} ∩ Td.

Given a shape s ∈ Tree([d]) with d leaves and a node v of s, we let sv denote the subtree rooted
at v and Av ⊆ [d] denote the set of labels appearing on the leaves of sv.

Definition 4. Let X = X1 t X2 t · · · t Xd, f be a set-multilinear polynomial of degree d, and
A ⊆ [d] be a set of indices. The partial derivative matrix MA (f) of f with respect to A is
defined as follows: the rows are indexed by set-multilinear monomials g with respect to the partition⊔
i/∈AXi and the columns are indexed by set-multilinear monomials h with respect to the partition⊔
i∈AXi. The value of MA (f) (g, h) is the coefficient of the monomial g · h in f .

Following the same road map as in the non-commutative setting we obtain the following coun-
terpart of Theorem 4. We assume that the set of variables is partitioned into d parts of equal size
n (this is a natural setting for polynomials such as the determinant, the permanent or the iterated
matrix multiplication). In particular, it means that the polynomials we consider are of degree d
and over nd variables.

Theorem 6. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d] and δ ∈ N
such that all parse trees of C span a subset at distance at most δ from A. Then C has size at least
rank (MA (f))n−δ|PT (C) |−1.

A notable difference with the non-commutative setting is that now parse trees no longer span
intervals of [d] but subsets of [d]. As a consequence, the technique used to prove Theorem 5 groups
together blocks corresponding to the same subset of [d] and therefore the multiplicative factor is
now 2−d as there are 2d such subsets.

Theorem 7. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d] and δ ∈ N
such that all parse trees of C span a subset at distance at most δ from A. Then C has size at least
rank (MA (f))n−δ2−d.

While in the non-commutative setting, Theorem 5 strengthens Theorem 4 (when d2 is small), this
is no longer the case in the commutative setting. Indeed, the maximal number of commutative parse

trees being roughly d! (the exact asymptotic is

√
2−
√
2dd−1

ed(
√
2−1)d+1 , see e.g., https://oeis.org/A036774),

Theorem 6 and Theorem 7 are incomparable.

5. Applications

In this section we instantiate our generic lower bounds theorems on concrete classes of circuits.
We first show how the weaker version (Theorem 4) yields the best lower bounds to dates for skew
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and small non-skew depth circuits. Extending these ideas we obtain exponential lower bounds for(
1
2 − ε

)
-unbalanced circuits, an extension of skew circuits which are just slightly unbalanced. We

also adapt the proof to ε-balanced circuits, which are slightly balanced.
Our main results concern circuits with many parse trees. In this context we see the benefits of

Theorem 5 over Theorem 4, considerably improving previously known lower bounds.

High-ranked polynomials. The lower bounds we state below hold for any polynomial whose partial
derivative matrices with respect to either a fixed subset A or all subsets have large rank. Such
polynomials exist for all fields in both the commutative and non-commutative settings, and can
be explicitly constructed. For instance the so-called Nisan-Wigderson polynomial given in [Kayal
et al., 2014] (inspired by the notion of designs by Nisan and Wigderson [Nisan and Wigderson,
1994]) has this property. They are given by

NWn,d =
∑

h∈Fn[z]
deg(h)≤d/2

d∏
i=1

xi,h(i),

where Fn[z] denotes univariate polynomials with coefficients in the finite field of prime order n.
The fact that there exists a unique polynomial h ∈ Fn[z] of degree at most d/2 which takes d/2
given values at d/2 given positions exactly implies that the partial derivative matrix of NWn,d with
respect to any A ⊆ [d] of size d/2 is a permutation matrix. This is then easily extended to any
A ⊆ [d].

5.1. Skew, Slightly Unbalanced, Slightly Balanced and Small Non-Skew Depth Circuits.
We show how using Theorem 4 yields exponential lower bounds for four classes of circuits in the
non-commutative setting.

Skew Circuits. A circuit C is skew if all its parse trees are skew, meaning that each node has
at least one of its children which is a leaf. As a direct application of Theorem 4, we obtain the
following result.

Theorem 8. Let f be a homogeneous non-commutative polynomial such that M[d/4+1,3d/4] (f) has

full rank nd/2. Then any skew circuit computing f has size at least 2−dnd/4.

Slightly unbalanced circuits. A circuit C computing a homogeneous non-commutative polynomial
of degree d is said to be α-unbalanced if every multiplication gate has at least one of its children
which computes a polynomial of degree at most αd.

Theorem 9. Let f be a homogeneous non-commutative polynomial such that M[d/4+1,3d/4] (f) has

full rank nd/2. Then any
(
1
2 − ε

)
-unbalanced circuit computing f has size at least 4−dnεd.

This result improves over a previously known exponential lower bound on
(
1
5

)
-unbalanced cir-

cuits [Limaye et al., 2016].

Slightly balanced circuits. A circuit C computing a homogeneous non-commutative polynomial of
degree d is said to be α-balanced if every multiplication gate which computes a polynomial of
degree k has both of its children which compute a polynomial of degree at least αk.

Theorem 10. Let f be a homogeneous non-commutative polynomial such that M[1,d/2] (f) has full

rank nd/2. Then any ε-balanced circuit computing f has size at least 4−dnεd.
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Small Non-skew Depth Circuits. A circuit C has non-skew depth k if all its parse trees are such
that each path from the root to a leaf goes through at most k non-skew nodes, i.e., nodes for which
the two children are inner nodes.

We obtain an alternative proof of the exponential lower bound of [Limaye et al., 2016] on non-
skew depth k circuits as an application of Theorem 4. In the statement below A refers to an explicit
subset of [d] that we do not define here (see Appendix K for more details).

Theorem 11. Let f be a homogeneous non-commutative polynomial of degree d = 12kp such that
MA (f) has full rank nd/2. Then any circuit of non-skew depth k computing f has size at least

4−dnp/3 = 4−dnd/36k.

5.2. Circuits with Many Parse Trees. We focus on k-PT circuits which are circuits with at
most k different parse trees.

The Non-commutative Setting. Lagarde, Limaye, and Srinivasan [Lagarde et al., 2018] obtained

a superpolynomial lower bound for superpolynomial k (up to k = 2d
1
3−ε). We first show how to

obtain the same result using Theorem 4.
For s ∈ Treed and A ⊆ [d], we define dist(A, s) = min {dist(A, I) | I spanned by s}. The follow-

ing lemma is a subtle probabilistic analysis ensuring the existence of a subset which is close enough
to all k parse trees.

Lemma 3 (adapted from Claim 15 in [Lagarde et al., 2018]). Let s ∈ Treed be a shape with d

leaves, and δ ≤
√
d. Then

Pr
A∼U

(
( [d]
d/2)

) [dist(A, s) > d/2− δ
]
≤ 2−αd/δ

2
,

where α is some positive constant and U
(( [d]

d/2

))
the uniform distribution of subsets of d of size d/2.

Proof sketch. Following [Lagarde et al., 2018], we find a sequence of r = Ω(d/δ2) nodes of s which
all span distant enough subtrees. We then obtain the bound by splitting the previous event into r
essentially independent events. �

From there, the lower bound is obtained using Theorem 4 and a fine tuning of the parameters.

Theorem 12. Let f be a homogeneous non-commutative polynomial such that for all A ⊆ [d]

MA (f) has full rank. Let k = 2d
1/3−ε

and ε > 0. Then for large enough d any k-PT circuit

computing f has size at least 2d
1/3(logn−d−ε).

Proof. Let C be a k-PT circuit computing f , and δ = d1/3 ≤
√
d. We first show that there exists a

subset A ⊆ [d] which is close to all parse trees in C. Indeed, a union bound and Lemma 3,

Pr
A∼U

(
( [d]
d/2)

) [∃s ∈ PT (C) ,dist(A, s) > d/2− δ
]
≤

∑
s∈PT(C)

Pr
A∼U

(
( [d]
d/2)

) [dist(A, s) > d/2− δ
]

≤ k2−αd/δ
2

= 2d
1/3−ε−αd1/3 < 1,

for large enough d. We now pick a subset A ⊆ [d] of size d/2 such that for all s ∈ PT (C) , dist(A, s) ≤
d/2− δ, that is, any s ∈ PT (C) spans an interval I(s) at distance at most d/2− δ from A. Finally,
we apply Theorem 4 to obtain

|C| ≥ rank (MA (f))n−(d/2−δ)k−1 = nd/2n−(d/2−d
1/3)2−d

1/3−ε
= 2d

1/3(logn−d−ε).

�
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We may improve the previous bound by applying Theorem 5 instead of Theorem 4. Indeed,
since Theorem 5 gets rid of the factor k−1 in the lower bound, picking a much smaller δ (δ = dε/3

instead of d1/3) still leads to a superpolynomial lower bound, while allowing for more parse trees.

Theorem 13. Let f be a homogeneous non-commutative polynomial such that for all A ⊆ [d]

MA (f) has full rank. Let k = 2d
1−ε

and ε > 0. Then for large enough d any k-PT circuit

computing f has size at least nd
ε/4
d−2.

The bound 2d
1−ε

on the number of parse trees is to be compared to the total number of shapes

of size d which is 1
d

(2(d−1)
d−1

)
∼ 4d

d3/2
√
π
≤ 22d. As explained in the introduction this means that

we obtain superpolynomial lower bounds for any class of circuits which has a small defect in the
exponent of the total number of parse trees.

The Commutative Setting. Arvind and Raja [Arvind and Raja, 2016] showed a superpolynomial

lower bound for sublinear k (up to k = d1/2−ε). We improve this to superpolynomial k (up to

k = 2d
1−ε

).
Indeed, in the commutative setting, Lemma 3 holds as such (with a shape being an element of Td,

that is, a commutative parse tree of size d). However, the generic lower bound theorems, namely
Theorem 6 and Theorem 7, are not exactly the same, so we obtain slightly different results. In
particular, the two results we obtain are incomparable. Applying Theorem 6 leads to Theorem 14,
whereas Theorem 7 leads to Theorem 15

Theorem 14. Let f be a set-multilinear commutative polynomial such that for all A ⊆ [d] MA (f)

has full rank. Let k = 2d
1/3−ε

and ε > 0. Then for large enough d any k-PT circuit computing f

has size at least 2d
1/3(logn−d−ε).

Theorem 15. Let f be a set-multilinear commutative polynomial such that for all A ⊆ [d] MA (f)

has full rank. Let k = 2d
1−ε

and ε > 0. Then for large enough d any k-PT circuit computing f has

size at least nd
ε/4

2−d.

6. Discussion

We presented a new tool for proving lower bounds for arithmetic circuits in the form of the Hankel
matrix. We obtained strong lower bounds both in the commutative and non-commutative settings
using generic decompositions of the Hankel matrix. A natural question is how far this approach can
be pushed. The first remark is that the rank of the Hankel matrix is exactly the size of the smallest
circuit computing a given (non-associative) polynomial, hence the potential loss can only be in
analyzing the Hankel matrix. Indeed, our generic theorems find inside the Hankel matrix blocks
corresponding to partial derivate matrices. Limaye, Malod and Srinivasan defined in [Limaye et al.,
2016] a polynomial computed by a circuit of polynomial size but such that all partial derivative
matrices have full rank: this shows that one cannot use our decomposition of the Hankel matrix
to obtain strong lower bounds for the class of all circuits. This limitation is an invitation to get a
deeper understanding of the Hankel matrix and to find other ways of decomposing it.

On a different perspective, the Hankel matrix has been successfully used as a data structure
for learning algorithms (in both supervised and unsupervised settings). It is tempting, using the
characterization that we present in this paper, to construct algorithms for learning polynomials
relying on the Hankel matrix as algorithmic representation.
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TECHNICAL APPENDIX

The permanent and determinant are the two most studied polynomials in this area, they are
homogeneous polynomials of degree d over the d2 variables {xi,j | 1 ≤ i, j ≤ d} defined by

Per =
∑
σSd

d∏
i=1

xi,σ(i) Det =
∑
σSd

(−1)sig(σ)
d∏
i=1

xi,σ(i)

where σ ranges over permutations of [d].

Appendix A. Proof of the Upper Bound in Theorem 1

We prove the upper bound in Theorem 1 that we recall below.

Theorem 1 (Upper bound). Let f be a non-associative homogeneous polynomial and let Hf

be its Hankel matrix. Then, the size of the smallest circuit computing f is exactly rank (Hf ).

We first give a construction of a circuit, then provide and prove by induction a strong invariant
which implies that the circuit does indeed compute f . For every t ∈ Tree(X), we let Ht denote the
corresponding column in the Hankel matrix, i.e. Ht : c 7→ c[t].

Let T ⊆ Tree(X) be such that (Ht)t∈T is a basis of {Ht | t ∈ Tree(X)}. In particular T has size

rank (Hf ). For any t′ ∈ Tree(X), we let αt
′
t denote the coefficient of Ht in the decomposition of Ht′

on (Ht)t∈T , that is,

(1)
∑
t∈T

αt
′
t Ht = Ht′ .

We may now explicitly define circuit C:
• The addition gates are (identified with) elements of T . The output value of t ∈ T is f(t).
• The input gates are given by elements of X (and the matching label). The input gate x ∈ X

has an outgoing arc to the addition gate t ∈ T with weight αxt .
• The multiplication gates are given by elements (t0, t1, t) ∈ T 3. Such a multiplication gate

has an incoming arc from t0 on the left, an incoming arc from t1 on the right, and an
outgoing arc to t, with weight αt1·t2t .

Note that the size of C is |T | = rank (Hf ).
For C to be well-defined as a circuit, it remains to show that its underlying graph is acyclic.

This is implied by the fact that αt1·t2t may only be non-zero if deg(t) = deg(t1) + deg(t2), which
we now prove. Since f is homogeneous of degree d, Ht may be non-zero only on contexts c such
that deg(c[t]) = d, that is, deg(c) = d− deg(t) + 1. Hence, the set {Ht, t ∈ T} may be partitioned
according to the degree of t into parts with disjoint support, so for the decomposition (1) to hold,

it must be that αt
′
t 6= 0 implies deg(t) = deg(t′).

For t ∈ T , we let gt : Tree(X)→ K denote the polynomial computed at gate t in C. We will now
show, by induction on the size of t′ ∈ Tree(X), that

gt(t
′) = αt

′
t .

If t′ = x ∈ X, then gt(t
′) = αxt , so the base case is clear. We now assume that t′ = t′1 · t′2 ∈ Tree(X),

and show that
∑

t∈T gt(t
′)Ht = Ht′ , which is enough to conclude by uniqueness of the decomposition

in (1). For that we will show that the previous equality holds for any context c ∈ Context(X).
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We first remark the following

∑
t∈T

gt(t
′)Ht =

∑
t∈T

 ∑
t1,t2∈T

αt1·t2t gt1(t′1)gt2(t′2)

Ht

=
∑
t∈T

 ∑
t1,t2∈T

αt1·t2t α
t′1
t1
α
t′2
t2

Ht

=
∑

t1,t2∈T
α
t′1
t1
α
t′2
t2

(∑
t∈T

αt1·t2t Ht

)

=
∑

t1,t2∈T
α
t′1
t1
α
t′2
t2
Ht1·t2 .

Now, let c ∈ Context(X). For any tree t ∈ Tree(X), we define c1t = c[� · t] ∈ Context(X), and
c2t = c[t ·�] ∈ Context(X) (see Figure 3).Then for any t1, t2, c[t1 · t2] = c1t2 [t1] = c2t1 [t2].

Figure 3. A context c, and the contexts c1t2 and c2t1 .

Evaluating at c, we now obtain∑
t∈T

gt(t
′)Ht(c) =

∑
t1,t2∈T

α
t′1
t1
α
t′2
t2
Ht1·t2(c) =

∑
t1,t2∈T

α
t′1
t1
α
t′2
t2
f(c[t1 · t2])

=
∑

t1,t2∈T
α
t′1
t1
α
t′2
t2
f(c1t2 [t1]) =

∑
t1,t2∈T

α
t′2
t2
Ht1(c1t2)

=
∑
t2∈T

α
t′2
t2
Ht′1

(c1t2) =
∑
t2∈T

α
t′2
t2
Ht′1·t2(c)

=
∑
t2∈T

α
t′2
t2
f(c2t′1

[t2]) =
∑
t2∈T

α
t′2
t2
Ht2(c2t′1

) = Ht′2
(c2t′1

)

= Ht(c),

which proves the wanted invariant, namely gt(t
′) = αt

′
t . Hence, the value computed by the circuit

for monomial t′ is precisely∑
t∈T

gt(t
′)f(t) =

∑
t∈T

αt
′
t Ht(�) = Ht′(�) = f(t′),

which concludes the proof.
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Appendix B. Proof of Corollary 2

We give a detailed proof of Corollary 2 which is a lower bound for unambiguous circuits computing
the associative permanent or determinant. The proof holds in either the commutative or the non-
commutative setting.

Corollary 2. Any unambiguous circuit computing the determinant or the permanent has size at
least

(
n
n/3

)
.

Proof. Consider an unambiguous circuit computing the permanent (the proof is easily adapted
to a circuit computing the determinant) of degree n on variables X = {xi,j | i, j ∈ [n]}. For
any permutation σ, let tσ ∈ Tree(X) be the (non-associative) monomial along which there is
a run computing the (associative) monomial x1,σ(1)x2,σ(2) · · ·xn,σ(n). Then, the non-associative

polynomial f̃ computed by C when it is seen as a non-associative circuit is precisely f̃ =
∑

σ tσ.
According to Theorem 1, it suffices to lower bound the rank of Hf̃ .

Let (A,S) ⊆ [n]2 be a pair of subsets. We let TA→S ⊆ Tree(X) be the subset of trees t such that
the set of first (resp. second) indices of the labels of t is precisely A (resp. S). Symmetrically, let
CA→S ⊆ Context(X) be the subset of contexts c such that the set of first (resp. second) indices
of the labels (except for the �) of c is precisely [n] \ A (resp. [n] \ S). If (A,S) 6= (A′, S′), then
TA→S and TA′→S′ are disjoint, as is the case for CA→S and CA′→S′ . Moreover, if t ∈ TA→S and
c ∈ CA′→S′ , it must be that f̃(c[t]) = 0. Hence, Hf̃ is a block-diagonal matrix, with blocks HA,S

being given by restricting the columns to some TA→S and the rows to CA→S . Note that if |A| 6= |S|
then HA,S = 0. In particular, rank

(
Hf̃

)
=
∑

A,S⊆[n]
|A|=|S|

rank (HA,S). We now show using a counting

argument that an exponential number of such blocks are non-zero and hence, have rank at least 1.
For all permutations σ, we choose a subtree t′σ of tσ which has size in [n/3, 2n/3], and let

(Aσ, Sσ) be such that t′σ ∈ TAσ→Sσ . Note that n/3 ≤ |Aσ| = |Sσ| = |t′σ| ≤ 2n/3, and that
HAσ ,Sσ 6= 0. Moreover, it must be that σ(Aσ) = Sσ. Hence, if A,S ⊆ [n] are fixed such that
n/3 ≤ |A| = |S| ≤ 2n/3,

|{σ | Aσ = A and Sσ = S}| ≤ |{σ | σ(A) = S}| ≤
(n

3

)
!

(
2n

3

)
!

Hence, the number of non-zero blocks HA,S is at least

n!(
n
3

)
!
(
2n
3

)
!

=

(
n

n/3

)
which concludes the proof. �

Appendix C. Proof of Corollary 3

We now prove Corollary 3, which characterizes the size of the smallest UPT circuit with given
shape T computing the permanent.

Corollary 3. Let s ∈ Tree be a shape. The smallest UPT circuit with shape s computing the
permanent has size ∑

v node of s

(
d

|Iv|

)
,

where Iv is the set of leaves in the subtree rooted at v in s. In particular, this is always larger than(
d
d/3

)
.

Let s′ be a sub-shape of s, and v1, ..., vp be all the nodes of s such that svi = s′. Let ` = |Ivi |
which does not depend on i. There are no i 6= j such that vi is a descendant of vj , so the Ivi are
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pairwise disjoint. Let Ivi = [ai, ai + ` − 1]. The coefficient of MIvi
(Per) in (u,w) ∈ Xd−` × X`,

namely, Per(u⊗Ivi w), may be non-zero only if w is of the form xai,b1xai+1,b2 · · ·xai+`−1,b` for some

b1, . . . , b` ∈ [d]. In particular, the MIvi
(Per) have non-zero columns with disjoint supports, so

rank (Ms′) =
∑

i rank
(
MIvi

(Per)
)
.

We claim now that rank
(
MIvi

(Per)
)

=
(
d
`

)
, which leads to the announced formula. Indeed, any

subset A of [d] of size ` corresponds to a block full of 1 in the matrix MIvi
(Per) in the following

way: Per(u ⊗Ivi w) = 1 whenever u is a monomial whose first indices are [d] \ Ivi and the second

indices are any permutation of [d] \ A, and w is a monomial whose first indices are Ivi and the
second indices are any permutation of A. Two such blocks have disjoint rows and columns, and
these are the only 1’s in MIvi

(Per). Moreover, there are
(
d
`

)
such sets A.

Appendix D. Proof of Theorem 4

This appendix is devoted to the proof of Theorem 4 that we recall below.

Theorem 4. Let f : Xd → K be a non-commutative homogeneous polynomial computed by a
circuit C. Let A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at distance at most
δ from A. Then C has size at least rank (MA (f))n−δ|PT (C) |−1.

The proof relies on a better understanding of the structure of the Hankel matrix H = Hf̃ of a

general non-associative polynomial f̃ : Tree(X)→ K.
More precisely, we organize the columns androws of H in order to write it as a block matrix in

which we can identify and understand the blocks in terms of partial derivative matrices of some
non-commutative (but associative) polynomials which will eventually correspond to parse trees. In
the following we refer to Figure 4 for illustration of the decompositions.

Figure 4. Decomposing H as blocks Hp
i,j , which further decompose into partial

derivative matrices. Here, I denotes the interval [p, p+ i− 1].

Recall that Treek(X) ⊆ Tree(X) denotes the set of trees with k leaves, and let Contextk(X) ⊆
Context(X) denote the set of contexts with k leaves (among which one is labelled by �). We

further partition Contextk(X) =
⋃k
p=1 Contextpk (X), with Contextpk (X) being the set of contexts

where � is on the p-th leaf. Note that any tree t ∈ Treed(X) decomposes into 2d − 1 different
couples (t′, c) ∈ Treek(X)× Contextd−k+1(X) for some k, such that c[t′] = t, which correspond to
the 2d− 1 nodes in t.
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Using these partitions for trees and contexts, we may write H as a block matrix with blocks
Hi,j = H|Treei(X)×Contextj(X)

. Using the finer refinement of contexts, we write block Hi,j as a tower1

of sub-blocks Hp
i,j , for p ∈ j, where Hp

i,j = H|
Treei(X)×Context

p
j

(X)
. We now focus on Hp

i,j , which we will

decompose into blocks that are partial derivative matrices of some homogeneous non-commutative
polynomials on the interval [p, p+ i− 1].

As Treei(X) is the set of trees with i leaves, it can be seen as all possible labeling of shapes

with i leaves by variables in X. Hence, Treei(X) ' Treei × Xi ' Treei × X [p,p+i−1]. Likewise,
Contextpj (X) is the set of contexts with j leaves and � on the p-th leave, which can be seen as

Contextpj (X) ' Contextpj × Xj−1 ' Contextpj × X [1,i+j−1]\[p,p+i−1], where Contextpj is the set
of contexts of size j with no labels, except for a unique � on the p-th leaf. We now let, for any
shape s ∈ Treei+j−1, the non-commutative (but associative) homogeneous polynomial fs of degree
i+ j − 1 be defined by

fs : Xi+j−1 → K

u 7→ f̃(s labelled by u)

Now, grouping the columns t ∈ Treei(X) of Hp
i,j which correspond to the same shape s ∈ Treei,

and the rows c ∈ Contextpj (X) which correspond to the same shape (of context) r ∈ Contextpj , we

obtain a block matrix, in which the block indexed by (s, r) is precisely the partial derivative matrix
M[p,p+i−1]

(
fr[s]

)
.

In the following, we will be interested in non-associative polynomials f̃ : Tree(X) → K which
project to a given associative f : X∗ → K, meaning that for each u ∈ X∗,

∑
t∈Tree(X)
label(t)=u

f̃(t) = f(u).

In this setting, one can see the decomposition f =
∑

s∈Tree fs as a decomposition over parse trees
of a circuit computing f , fs being the contribution of the parse tree s in the computation of
f . We have seen that if I = [p, p + i − 1] is an interval such that s decomposes into s = r[s′]
for (s′, r) ∈ Treei × Contextpj , which means that I is spanned by s, then MI (fs) appears as a
sub-matrix of H. Hence,

(2) rank (H) ≥ max
s∈Tree

I spanned by s

MI (fs) .

Now, we have all the necessary tools to prove Theorem 4. Let f̃ : Tree(X) → K be the non-
associative polynomial computed by C when it is seen as a non-associative circuit. For any shape
s ∈ Treed, let fs : Xd → K be defined as previously. In particular,

∑
s∈PT(C) fs = f.

With a shape s ∈ PT (C), we associate an interval I(s) spanned by s and such that dist(A, I(s)) ≤
δ. Then we have

1Recall that contexts label the rows of H.
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rank (MA (f)) = rank

 ∑
s∈PT(C)

MA (fs)


≤

∑
s∈PT(C)

rank (MA (fs)) by rank subadditivity

≤
∑

s∈PT(C)

nδrank
(
MI(s) (fs)

)
by Lemma 2

≤ |PT (C) |nδrank (H) by equation (2)

Since, by Theorem 1, rank (H) ≥ rank (MA (f))n−δ|PT (C) |−1 is a lower bound on |C|, we obtain
the announced result.

Appendix E. Proof of Theorem 5

This appendix is devoted to the proof of Theorem 5, which is a refinement of the proof of
Theorem 4, given in Appendix D. In particular, we will use, without re-introducing them, some
notations used in Appendix D.

Theorem 5. Let f be a non-commutative homogeneous polynomial computed by a circuit C. Let
A ⊆ [d] and δ ∈ N such that all parse trees of C span an interval at distance at most δ from A.
Then C has size at least rank (MA (f))n−δd−2.

Before going on to the formal proof, we start by giving a high-level interpretation of the techniques
used to go from Theorem 4 to Theorem 5. Our aim is still to lower bound the rank of the Hankel
matrix H = Hf̃ of some (unknown) non-associative polynomial f̃ , under the constraints that, for

each u ∈ X∗, ∑
t∈Tree(X)
label(t)=u

f̃(t) = f(u),

for some non-commutative (but associative) polynomial f : X∗ → K that we control. Given the
form of our constraints, a natural strategy would be to sum some well chosen sub-matrices of H in
order to obtain a matrix that depends only on f , which we could choose to have high rank.

As exposed earlier when proving Theorem 4, it is possible to decompose f as the sum of some
fs’s, where s ranges over the shapes used by f̃ , and then obtain partial derivative matrices of the
fs’s with respect to interval spanned by s, as sub-matrices of H. If one can find a subset A ⊆ [d]
such that each s spans an interval I(s) that is δ-close to A for some small δ, then one obtains a
lower bound for polynomials f with high rank with respect to A.

This first method leads to Theorem 4 as exposed in Appendix D, and it is already strong enough
to prove several lower bounds. We believe that in many occurrences in the literature, when obtaining
lower bounds involving a circuit decomposition and a partial derivative matrix with respect to a
given partition of the set of positions [d], this is somehow the underlying method.

However, this method poorly makes use of the structure of H, since it may happen that some of
the chosen sub-blocks are face to face with one another. A short illustration of this phenomenon is
the following. Let

M =


A1,1 A1,2

A2,1 A2,2
C1

C2
B1,1 B1,2

B2,1 B2,2


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be a block matrix, for which one wants to obtain a lower bound on the rank, knowing a lower bound

on rank
(∑

i,j Ai,j +Bi,j

)
, and with no assumption on the Ci’s.

The previous method would go as follows:

rank (M) ≥ max

[
max
i,j

rank (Ai,j),max
i,j

rank (Bi,j)

]
≥ 1

8

∑
i,j

rank (Ai,j) + rank (Bi,j)

≥ 1

8
rank

∑
i,j

Ai,j +Bi,j

 .

Note that we have lost a factor of 8, which is the number of small blocks that we wish to sum.
A more efficient method would consist in first summing rows and columns of M in order to put

together the A’s and the B’s. This would go as follows, for some matrices C ′1 and C ′2,

rank (M) ≥ rank

([∑
i,j Ai,j C ′1
C ′2

∑
i,j Bi,j

])
≥ max

rank

∑
i,j

Ai,j

 , rank

∑
i,j

Bi,j


≥ 1

2
rank

∑
i,j

Ai,j +Bi,j

 .

By doing so, we have decreased the factor 8 to 2, which is the number of larger blocks.
Going back to the matrix H, this corresponds to putting together the polynomials fs for which we

have chosen the same spanned interval (this corresponds to d2 larger blocks) instead of considering
them separately (which corresponds to |PT (C) | smaller blocks). We now formalize this idea, using
a total order to model the choice of intervals for convenience.

Lemma 4. Let f̃ : Tree(X)→ K be a non-associative non-commutative polynomial and let ≤int be
a total order on intervals of [d]. For any shape s, we let I(s) be the smallest (with respect to ≤int)
interval spanned by s. For any interval I, we define a non-commutative associative polynomial by

fI : X∗ → K

u 7→
∑

t∈Tree(X)
label(t)=u

I(shape(t))=I

f̃(t).

Then,

rank
(
Hf̃

)
≥ max

I
rank (MI (fI)) .

Proof. Our aim is to obtainMI (fI) from Hf̃ , by first taking a sub-matrix, then adequately summing

its rows and columns. The proof is summarized in Figure 5.
Let I = [p, p+ i−1] be some fixed interval and j = d− i+ 1. The proof relies on the fact that for

any shape s ∈ Treed, I = I(s) if and only if s = r[s′] for some (s′, r) ∈ Treei ×Contextpj such that

I is the smallest interval spanned by r (when it is assumed that � spans the positions I), and also
the smallest interval spanned by s′ (when it is assumed that all intervals are shifted by p), these
two conditions being somehow independent.

Now, for any node v of shape of a context r ∈ Contextpj , we define the interval I ′v by

I ′v =


[a, b] if b < p

[a, b+ i− 1] if a ≤ p ≤ b
[a+ i− 1, b+ i− 1] if a > p,
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Figure 5. Decomposition of the Hankel matrix used in the proof of Lemma 4.
Here, I = [p, p+ i− 1].

where [a, b] is the interval of positions in r of the leaves that are descendants of v in r. The interval
I ′v is to be seen as the interval of positions of the leaves that are descendants of v in some r[s′]
where s′ is any element of Treei. In particular, if v is the leaf labelled by � in r, then I ′v = I.

Likewise, for a node v of a (sub)shape s′ ∈ Treei, we define I ′v by I ′v = [a + p − 1, b + p − 1],
where [a, b] is the interval of positions of descendants of v in s′. Note that if v is the root of s′ then
Iv = I. We may now define

CI = {r ∈ Contextpj | I = min
v node in r

I ′v},

and

TI = {s′ ∈ Treei | I = min
v node in s′

I ′v}.

We extend these subsets to labelled trees and context in a straightforward fashion by defining
C̃I = {c ∈ Contextpj (X) | shape(c) ∈ CI} and T̃I = {t ∈ Treei(X) | shape(t) ∈ TI}. We now

consider the submatrix H̃I of Hp
i,j where the rows are restricted to C̃I and the columns to T̃I . In

this matrix, we now sum the rows which have the same label, and the columns which have the same

label, to obtain matrix HI . Clearly, rank (HI) ≤ rank
(
Hf̃

)
. We finally prove that HI = MI (fI) .

Indeed, let g ∈ XI ' Xi and h ∈ Xd\A ' Xj . Then

MI (fI) (g, h) =
∑

t∈Tree(X)
label(t)=g⊗Ih
I(shape(t))=I

f̃(t) =
∑
s∈TI
c∈CI

label(s)=g
label(c)=h

f̃(c[s]) = HI(g, h),

which concludes the proof of Lemma 4. �

With Lemma 4 in hands, we may now prove Theorem 5. Let f̃ : Tree(X) → K be the non-
associative polynomial computed by C when seen as non-associative. Let ≤int be a total order on
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intervals of d such that I 7→ dist(I, A) is non-decreasing. In other words, I1 <int I2 if and only if
d(I1, A) < d(I2, A). Let fI : Xd → K be given by

fI(u) =
∑

t∈Tree(X)
label(t)=u

I(shape(t))=I

f̃(t).

Then any interval I such that d(I, A) > δ is such that for every parse tree s ∈ PT (C), one has
I 6= I(s), so fI = 0. Hence, we obtain

rank (MA (f)) = rank

MA

 ∑
I interval of [d]

fI



= rank

MA

 ∑
I interval of [d]
dist(A,I)≤δ

fI




≤
∑

I interval of [d]
dist(A,I)≤δ

rank (MA (fI)) by rank subadditivity

≤
∑

I interval of [d]
dist(A,I)≤δ

nδrank (MI (fI)) by Lemma 2

≤ d2nδrank
(
Hf̃

)
by Lemma 4

which leads the announced lower bound.

Appendix F. Proof of Theorem 6

We now give the proof of Theorem 6 which is the following. As this proof is an adaptation to
the commutative setting of the proof of Theorem 4 given in Appendix D, we only highlight the
changes.

Theorem 6. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d] and
δ ∈ N such that all parse trees of C span a subset at distance at most δ from A. Then C has size at
least rank (MA (f))n−δ|PT (C) |−1.

Let X1 tX2 t · · · tXd = X denote the underlying partition. Previously, we grouped together
(sub-)trees and (sub-)contexts which correspond to a given interval of positions. In the commutative
setting, we instead group together the (sub-)trees and (sub-)contexts which correspond to a given
subset of positions, where a position is now being given by its index in the partition. Formally, for
A ⊆ [d], we let

TreeA(X) = {t ∈ Tree(X) | the set of indices of variables labeling t is A},
and likewise,

ContextA(X) = {c ∈ Context(X) | the set of indices of variables

(different from �) labeling c is A},
and finally HA = H|TreeA(X)×ContextAc (X)

.

Now, grouping together the columns of HA which correspond to trees which have a given fixed
shape s′ (recall that a commutative shape contains the index in the partition of each leaf), and the
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rows which correspond to contexts which have a given fixed shape of context r yields the partial
derivative matrix MA

(
fr[s′]

)
, where the (commutative, associative) polynomial fs is defined, for

any commutative shape s, by

fs(u) = f̃(s labelled by u),

where the labeling respects the partition of X. Hence, rank (H) ≥ rank (MA (fs)) whenever A is
spanned by s. The remainder of the proof exactly follows Appendix D.

Appendix G. Proof of Theorem 7

We now give the proof of Theorem 7 which is the following.

Theorem 7. Let f be a set-multilinear polynomial computed by a circuit C. Let A ⊆ [d] and
δ ∈ N such that all parse trees of C span a subset at distance at most δ from A. Then C has size at
least rank (MA (f))n−δ2−d.

Again, we extend the ideas for the non-commutative setting (see Appendix E) to the commutative
setting, and we reuse the notations of Appendix F. As for proving Theorem 5, we start with a
Lemma.

Lemma 5. Let f̃ : Tree(X) → K be a non-associative commutative polynomial and let ≤int be a
total order on subsets of [d]. For any commutative shape s, we let A(s) be the smallest (with respect
to ≤int) subset spanned by s. For any subset A, we define a commutative associative polynomial by

fA(u) =
∑

t∈Tree(X)
label(t)=u

A(shape(t))=A

f̃(t).

Then,

rank
(
Hf̃

)
≥ max

A
rank (MA (fA)) .

The proof of Lemma 5 is very similar, yet (surprisingly!) a bit more pleasant than that of
Lemma 4, since we no longer need to shift any interval. Formally, for A ⊆ [d] we define

TA = {t ∈ TreeA(X) | A is the smallest interval spanned by shape(t)},
and likewise,

CA = {c ∈ ContextA(X) | A is the smallest interval spanned by shape(c)}.
Now, the lemma follows from the fact that MA (fA) is obtained by summing rows from TA and
columns from CA in H.

The remainder of the proof is a very straightforward adaptation of the end of the proof of
Theorem 5 from Appendix E.

Appendix H. Proof of Theorem 8

We now give the proof of Theorem 8 which is the following.

Theorem 8. Let f be a homogeneous non-commutative polynomial such that M[d/4+1,3d/4] (f) has

full rank nd/2. Then any skew circuit computing f has size at least 2−dnd/4.

The proof relies on the following easy observations.

• Any skew tree spans intervals of each possible size, and in particular, an interval of size
3d/4.
• Any interval of size 3d/4 is at distance at most (in fact, equal to) d/4 from Imid = [d/4 +

1, 3d/4] (see Figure 6).
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Figure 6. Any interval I of size 3d
d is at distance d

4 from Imid.

A skew circuit has only skew parse trees, which all span an interval of size 3d/4. Such an interval is
at distance d/4 from Imid, so the announced lower bound follows directly from Theorem 4, together
with the fact that there are 2d skew trees.

Remark 2. Note that the factor 2−d is easily replaced by d−2 by applying Theorem 5 instead, but
we find it remarkable that simply using a decomposition of H into blocks is enough to obtain such
an exponential lower bound.

Appendix I. Proof of Theorem 9

We now give the details for the exponential lower bound on
(
1
2 − ε

)
-unbalanced circuits. This is

really the same idea as for skew circuits. Note that we use Theorem 4 with δ being really close to
d/2, which will also be the case for k-PT circuits.

Theorem 9. Let f be a homogeneous non-commutative polynomial such that M[d/4+1,3d/4] (f) has

full rank nd/2. Then any
(
1
2 − ε

)
-unbalanced circuit computing f has size at least 4−dnεd.

We now rely on these two observations:

• Any (12 − ε)-unbalanced shape spans an interval of size between 3d/4 − (12 − ε)d/2 and

3d/4 + (12 − ε)d/2, that is, between d/2 + dε/2 and d− dε/2.
• Any such interval is at distance at most d/2− ε/2 from [d/4, 3d/4].

We finally conclude by applying Theorem 4, just as for skew circuits.

Appendix J. Proof of Theorem 10

We now give the details for the exponential lower bound on ε-balanced circuits.
Theorem 10. Let f be a homogeneous non-commutative polynomial such that M[1,d/2] (f) has

full rank nd/2. Then any ε-balanced circuit computing f has size at least 4−dnεd.

Let s be an ε-balanced shape, and r be the root of s. Let I = [1, b] be the interval spanned by
the left child of r. Since s is ε-balanced, εd ≤ |I| = b ≤ (1− ε)d. Hence, I is at a distance of atmost
d/2− ε from [1, d/2], which allows us to conclude using Theorem 4. Note that it is sufficient to just
restrict the last multiplication in the circuit to be ε-balanced.

Appendix K. Proof of Theorem 11

This appendix is devoted to the proof of Theorem 11 that we recall below. We will make extended
use of the subset A ⊆ [d] introduced in [Limaye et al., 2016],

A = [1, 3kp] ∪
3k⋃
i=1

[3(k + i)p+ 2p+ 1, 3(k + i+ 1)p] ⊆ [d],

of size d/2 which is better understood in Figure 7.

Theorem 11. Let f be a homogeneous non-commutative polynomial of degree d = 12kp such
that MA (f) has full rank nd/2. Then any circuit of non-skew depth k computing f has size at least

4−dnp/3 = 4−dnd/36k.

We shall prove that any s ∈ Treed with non-skew depth k spans an interval I(s) at distance
≤ d/2− p/3 from A. Then, the result follows by applying Theorem 4.
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Figure 7. Subset A ⊆ [d].

Assume towards contradiction that a non-skew depth k shape s ∈ Treed spans only interval at
distance > d/2− p/3 from A. We consider (see Figure 8) the path v1 · · · vr in s from its root to the
leaf with position 3kp, and write ui for i ∈ r − 1, to refer to the child node of vi which is not vi+1

(see Figure 8). Since s has non-skew depth k, at least r − k nodes among v1, . . . , vr−1 are leaves.

Figure 8. The path from the root v1 to vr, the leaf with position 3kp.

We now state and prove some facts which then lead to a contradiction:

Fact 1. For every i ∈ [r], if vi is the left child of ui then |Ivi | < p/3.

Indeed, vi being at the left of the path to the leaf at position 3kp, Ivi ⊆ [1, 3kp] ⊆ A. But
dist(Ivi , A) > d/2− p/3, so it must be that |Ivi | < p/3.

Fact 2. For every i ∈ [r], if vi is the right child of ui then |Ivi | < 5p.

Likewise, we now have Ivi ⊆ [3kp + 1, d]. Intuitively, a large interval in this zone must contain
roughly twice as much elements from Ac than from A, so they cannot be at distance close to the
maximum d/2. Formally, each block of the form [3(k+i)p+2p+1, 3(k+i+1)p] ⊆ A which intersects
Ivi , apart possibly from the rightmost one, is such that [3(k + i + 1)p, 3(k + i + 1)p + 2p] ⊆ Ac

is contained in Ivi . Now, if l is the number of such blocks, it follows that |Ivi ∩ A| ≤ lp + p and
|Ivi∩Ac| ≥ 2lp. If |Ivi | > 5p, then either l ≥ 2 which implies d(A, Ivi) = d/2−(|Ac∩Ivi |−|A∩Ivi |) ≤
d/2− 2lp+ lp− p ≤ d/2− p, a contradiction, or l = 1, in which case |Ivi ∩Ac| = |Ivi | − |Ivi ∩A| ≥
5p− 2p = 3p which leads to the same contradiction.

Fact 3. It must be that r ≥ 7kp.

Indeed, since [1, d] \ {3kp} = [1, 12kp] \ {3kp} is covered by the Ivi , which have size bounded by 5p
and among which all but k may have size > 1, there must be at least 12kp− 5kp = 7kp of them.

Fact 4. There is some index i0 such that vi0 , vi0+1, . . . , vi0+7p−1 are all leaves in s.

Indeed, only k among the 7kp vi’s may not be leaves, so there must be 7p successive indexes i such
that vi is a leaf.
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We now consider the decreasing sequence Ivi0 ⊇ Ivi0+1 ⊇ · · · ⊇ Ivi0+7p−1 of intervals (where the

nodes vi0 , vi0+1, . . . , vi0+7p−1 are those given by Fact 4), which we simply denote I1 ⊇ I2 ⊇ · · · ⊇ I7p.
Each Ii = [ai, bi] contains 3kp, and |Ii+1| = |Ii|+ 1. We put ni = |Ii ∩A| and mi = |Ii ∩Ac|. Fact
1 stating that d(A, Ii) > d/2 − p/3 can be rewritten as |ni −mi| ≤ p/3. We now prove that there
must be i1 ≤ 6p such that bi1 is a multiple of 3p.

Indeed, otherwise b1− b6p ≤ 3p− 1 so a6p− a1 ≥ 3p+ 1, hence n6p−n1 ≥ a6p− a1 ≥ 3p+ 1, but
since m6p −m1 ≤ 2p,

p/3 ≥ n6p −m6p ≥ 3p+ 1 + n1 −m6p ≥ 3p+ 1 + n1 −m1 − 2p ≥ p+ n1 −m1,

so n1 −m1 ≤ −2p/3, a contradiction.
Since bi1 is a multiple of 3p, both intervals [ai1 , ai1 + p− 1] and [bi1 − p+ 1, bi1 ] are contained in

A. Hence, ni1+p = ni1 + p, whereas mi1+p = mi1 , which contradicts the fact that |ni1 −mi1 | ≤ p/3
and |ni1+p −mi1+p| ≤ p/3.

Appendix L. Proof of Lemma 3

We now prove the main technical result to obtain lower bound on k-PT, which is adapted
from [Lagarde et al., 2018] in our vocabulary. It holds in both the commutative and the non-
commutative settings (even though it was originally proved only in the non-commutative setting).

Lemma 3 (adapted from Claim 15 in [Lagarde et al., 2018]]). Let s ∈ Treed be a shape with d

leaves, and δ ≤
√
d. Then

Pr
A∼U

(
( [d]
d/2)

) [dist(A, s) > d/2− δ
]
≤ 2−αd/δ

2
,

where α is some positive constant and U
(( [d]

d/2

))
the uniform distribution of subsets of d of size

d/2.

We shall use an intermediate result from the aforementioned paper. Their proof can be read just
as such in the commutative setting.

Lemma 6 (Subclaim 21 in [Lagarde et al., 2018]). Let s ∈ Treed, and r, t be integers such that
rt ≤ d/4. Then there exists a sequence v1, ..., vr of nodes of s such that for all i ∈ [r],∣∣∣∣∣∣Ivi \

i−1⋃
j=1

Iuj

∣∣∣∣∣∣ ≥ t.
In the commutative setting, replace the spanned intervals of the form Iv by spanned subsets of

the form Av in the statement above as well as in the proof below. We now prove Lemma 3. We
pick t = δ2 and r = d

4δ2
, and apply Lemma 6 to obtain sequence v1, ..., vr of nodes of s. We first

note that if X and Y are two sets and X has size d/2 then dist(X,Y ) rewrites as dist(X,Y ) =
d/2− ||X ∩ Y | − |Xc ∩ Y ||. As dist(A, s) = min {dist(A, I) | I spanned by s}, the previous remark
leads the first equality below.

Pr
A∼U

(
( [d]
d/2)

) [dist(A, s) > d/2− δ
]

= Pr
A∼U

(
( [d]
d/2)

) [for all node v of s,
∣∣|A ∩ Iv| − |Ac ∩ Iv|

∣∣ ≤ δ]
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≤ d Pr
A∼U(2[d])

[
for all node v of s,

∣∣|A ∩ Iv| − |Ac ∩ Iv|
∣∣ ≤ δ] as

(
d
d/2

)
/2d ≤ d

≤ d Pr
A∼U(2[d])

[
∀i ∈ [r],

∣∣|A ∩ Ivi | − |Ac ∩ Ivi |
∣∣ ≤ δ]

≤ d
r∏
i=1

Pr
A∼U(2[d])

∣∣|A ∩ Ivi | − |Ac ∩ Ivi |
∣∣ ≤ δ

∣∣∣∣∣∣A ∩
⋃
j<i

Iuj


If A is sampled uniformly among [d] and A ∩

(⋃
j<i Iuj

)
is fixed, realizing the event

∣∣|A ∩ Ivi | −
|Ac ∩ Ivi |

∣∣ ≤ δ amounts to having a random variable following an unbiased binomial law of size at

least t = δ2 sit in a certain interval of size at most δ, which is bounded by a constant β < 1. Hence,

Pr
A∼U

(
( [d]
d/2)

) [dist(A, s) > d/2− δ
]
≤ dβr = dβ

d
4δ2 ≤ 2−αd/δ

2

for some positive constant α.
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Hrubeš, P., Wigderson, A., and Yehudayoff, A. (2011). Non-commutative circuits and the sum-of-
squares problem. Journal of the American Mathematical Society, 24(3):871–898.

Kabanets, V. and Impagliazzo, R. (2003). Derandomizing polynomial identity tests means prov-
ing circuit lower bounds. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing (STOC 2003), pages 355–364. ACM.

Kayal, N., Saha, C., and Saptharishi, R. (2014). A super-polynomial lower bound for regular
arithmetic formulas. In Proceedings of the 46th Symposium on Theory of Computing, (STOC
2014), pages 146–153. ACM.

Lagarde, G., Limaye, N., and Srinivasan, S. (2018). Lower bounds and PIT for non-
commutative arithmetic circuits with restricted parse trees. Computational Complexity, pages
1–72. https://doi.org/10.1007/s00037-018-0171-9.

Lagarde, G., Malod, G., and Perifel, S. (2016). Non-commutative computations: lower bounds
and polynomial identity testing. Electronic Colloquium on Computational Complexity (ECCC),
23:94.

Limaye, N., Malod, G., and Srinivasan, S. (2016). Lower bounds for non-commutative skew circuits.
Theory of Computing, 12(1):1–38.

Malod, G. and Portier, N. (2008). Characterizing valiant’s algebraic complexity classes. Journal of
Complexity, 24(1):16–38.



32 LOWER BOUNDS FOR ARITHMETIC CIRCUITS VIA THE HANKEL MATRIX

Nisan, N. (1991). Lower bounds for non-commutative computation (extended abstract). In Pro-
ceedings of the 23rd Symposium on Theory of Computing (STOC 1991), pages 410–418. ACM.

Nisan, N. and Wigderson, A. (1994). Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167.

Ramya, C. and Rao, B. V. R. (2018). Lower bounds for special cases of syntactic multilinear abps.
In Proceedings of the 24th International Computing and Combinatorics Conference (COCOON
2018), volume 10976 of Lecture Notes in Computer Science, pages 701–712. Springer.

Raz, R. and Shpilka, A. (2005). Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19.

Saptharishi, R. and Tengse, A. (2017). Quasi-polynomial hitting sets for circuits with restricted
parse trees. Electronic Colloquium on Computational Complexity (ECCC), 24:135.

Toda, S. (1992). Classes of arithmetic circuits capturing the complexity of computing the determi-
nant. IEICE Trans. Inf. Systems, E75-D(1):116–124.

Valiant, L. G. (1979). The complexity of computing the permanent. Theoretical Computer Science,
8:189–201.

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


