
The Function-Inversion Problem:
Barriers and Opportunities

Henry Corrigan-Gibbs
henrycg@cs.stanford.edu

Dmitry Kogan
dkogan@cs.stanford.edu

Stanford University

Abstract

We study preprocessing algorithms for the function-inversion problem. In this problem, an
algorithm gets oracle access to a function f : [N]→ [N] and takes as input S bits of auxiliary
information about f , along with a point y ∈ [N]. After running for time T , the algorithm
must output an x ∈ [N] such that f(x) = y, if one exists. This problem, first studied by
Hellman (1980), has manifold applications to cryptanalysis.

Hellman’s algorithm for this problem achieves the upper bound S = T = Õ(N2/3) when f is
a random function, while the best known lower bound, due to Yao (1990) shows that ST = Ω̃(N),
which admits the possibility of an S = T = Õ(N1/2) algorithm. There remains a long-standing
and vexing gap between these upper and lower bounds.

By uncovering connections between function inversion and other areas of theoretical computer
science, we explain why making progress on either the lower-bound or upper-bound side of this
problem will be difficult. Along the way, we use these connections—in concert with Hellman-style
algorithms—to improve the best upper bounds for well-studied problems in communication
complexity and data structures.

In particular, we obtain the following results:
• We show that any improvement on Yao’s lower bound for function inversion will imply

new lower bounds on depth-two circuits with arbitrary gates.
• We show that proving strong lower bounds for function inversion would imply breakthrough

lower bounds against linear-size log-depth circuits.
• We use a cryptanalytic algorithm to obtain an O

(
(N/k +

√
N) logN

)
-bit protocol for the

permutation variant of the k-party pointer jumping problem in the number-on-the-forehead
model of communication complexity. For any k = ω

(
logN

log logN

)
, we improve the previous

best bound of O
(
N · log logN

logN

)
, due to Pudlák, Rödl, and Sgall (1997).

• We give the first data structure for the systematic substring-search problem achieving index
size and query time Õ(Nδ), for some δ < 1. In fact, we achieve δ = 3/4. In doing so, we
answer an open question of Gál and Miltersen (2003).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 182 (2018)

mailto:henrycg@cs.stanford.edu
mailto:dkogan@cs.stanford.edu

1 Introduction

A central task in cryptanalysis is that of function inversion. That is, given a function f : [N]→ [N]
and a point y ∈ [N], find a value x ∈ [N] such that f(x) = y, if one exists. The hardness of function
inversion underpins the security of almost every cryptographic primitive we use in practice: block
ciphers, hash functions, digital signatures, and so on. Understanding the exact complexity of function
inversion is thus critical for assessing the security of our most important cryptosystems.

One particularly interesting class of function-inversion algorithms are those that only have black-
box access to the function f—or formally, that have only oracle access to f—since these algorithms
invert all functions. A straightforward argument shows that any such inversion algorithm that makes
at most T queries to its f -oracle succeeds with probability at most O(T/N). This argument suggests
that an attacker running in o(N) time cannot invert a black-box function on domain [N] with good
probability.

When the inversion algorithm may use preprocessing, this logic breaks down. An algorithm with
preprocessing runs in two phases: In the preprocessing phase, the algorithm repeatedly queries f
and then outputs an “advice string” about f . In the subsequent online phase, the algorithm takes as
input its preprocessed advice string and a challenge point y ∈ [N]. It must then produce a value
x ∈ [N] such that f(x) = y. We seek to jointly minimize the bit-length S of the advice string and
the running time T of the online algorithm. The computation required to construct the advice string,
though usually expensive, can often be amortized over a large number of online inversions.

A trivial preprocessing algorithm stores a table of f−1 in its entirety as its advice string using
S = Õ(N) bits and can then invert the function on all points using a single lookup into the table.
In contrast, constructing algorithms that simultaneously achieve sublinear advice and online time
S = T = o(N) is non-trivial.

In a seminal paper, Hellman [Hel80] introduced time-space tradeoffs as a tool for cryptanalysis,
and gave a black-box preprocessing algorithm that inverts a function f : [N] → [N] using only
S = Õ(N2/3) bits of advice and online time T = Õ(N2/3), where the algorithm is guaranteed to
succeed only on a random function. (More precisely, the algorithm has a constant success probability
where the probability is taken over a uniform choice of function f .) Fiat and Naor [FN91, FN99]
later gave a rigorous analysis of Hellman’s algorithm and extended it to invert all possible functions,
albeit with a slightly worse trade-off of the form S3T = Õ(N3) for any choice of N3/4 ≤ S ≤ N .
This trade-off is the best known today, and is a fundamental tool in real-world cryptanalysis [BS00,
BSW00, Oec03, NS05].

In this work, we investigate the hardness of the following question:

Is Hellman’s time-space trade-off optimal?

Yao first asked this question in 1990 [Yao90a] and proved that any preprocessing algorithm
for function inversion that uses S bits of advice and T online queries must satisfy ST = Ω̃(N).
(Counting only queries—and not online computation—only strengthens lower bounds in this model.)
This lower bound does not rule out an algorithm that achieves S = T = Õ(N1/2). In contrast,
Hellman’s algorithm gives an upper bound of S = T = Õ(N2/3) even for the slightly easier case of
inverting a random function. The question resurfaces in the work of Fiat and Naor [FN99], Barkan,
Biham, and Shamir [BBS06] (who show that Hellman’s method is optimal for a certain natural class
of algorithms), De, Trevisan and Tulsiani [DTT10], and Abusalah et al. [AACKPR17]. In addition
to the problem’s theoretical appeal, determining the best possible time-space trade-offs for function
inversion is relevant to practice, since the difference between an N2/3 and an N1/2 online time attack
becomes crucial when dealing with 128-bit block ciphers, such as the ubiquitous AES-128.

1

Recent work proves new lower bounds on preprocessing algorithms for various cryptographic
problems, using both incompressibility arguments [GGKT05, DGK17, AACKPR17] and the newer
presampling method [Unr07, CDGS18]. While this progress might give hope for an improved lower
bound for function inversion as well, both techniques mysteriously fail to break the ST = Ω̃(N)
barrier.

Non-adaptive algorithms. Another avenue for study is to explore the role of parallelism or
adaptivity in preprocessing algorithms for function inversion. All non-trivial algorithms for function
inversion, including Hellman’s algorithm and Rainbow-table methods [Oec03], critically use the
adaptivity of their queries. It would be very interesting to construct a highly parallelizable prepro-
cessing algorithm for function inversion. Such an algorithm would achieve the same advice and time
complexity S = T = Õ(N2/3) as Hellman’s algorithm, but would make all Õ(N2/3) of its queries to
the f -oracle in one non-adaptive batch. Such a non-adaptive inversion algorithm could speed up
function inversion on cryptanalytic machines with a very large number of parallel processing cores.

We do not even know if there exists a non-adaptive algorithm with S = T = o(N). Can we find
new non-adaptive inversion algorithms, or is adaptivity necessary for good time-space trade-offs?
Proving lower bounds in this more restricted model could be a stepping stone to improving the
general lower bounds on function inversion.

1.1 Our results

This work makes two primary contributions. First, we show that improving on the known lower bounds
for the function-inversion problem will be very difficult. In particular, new lower bounds for inversion
will imply new circuit lower bounds and could even resolve complexity-theoretic questions that predate
Hellman’s results [Val77]. Second, we show that improving upper bounds for function inversion will
immediately yield new upper bounds for standard problems in communication complexity and data
structures. Even further, we obtain the best known upper bounds for these problems by instantiating
our new connection with Hellman-style algorithms. In sum, we demonstrate that making essentially
any progress on the function-inversion problem would have important consequences—not only for
cryptography, but also for other areas of theoretical computer science.

Proving the optimality of Hellman’s algorithm requires new circuit lower bounds. A
major question in circuit complexity, open since the 1970s [Val77, Val92], is to give an explicit family
of functions Fn : {0, 1}n → {0, 1}n that cannot be computed by fan-in-two circuits of size O(n) and
depth O(log n). Following ideas of Brody and Larsen [BL15], we demonstrate a close connection
between this classic problem in circuit complexity and non-adaptive preprocessing algorithms for
function inversion.

Specifically, we show that proving that every non-adaptive black-box function-inversion algorithm
that uses S = N log logN/ logN bits of advice requires at least T = Ω(N ε) oracle queries, for some
constant ε > 0, would give an explicit family of functions that cannot be computed by linear-size
log-depth Boolean circuits. This, in turn, would resolve this long-standing open problem in circuit
complexity. Though we cannot prove it, we suspect that the above lower bound holds even for ε = 1.

This connection implies that proving lower bounds for non-adaptive function-inversion algorithms
that use the relatively large amount of advice S = N log logN/ logN should be quite difficult. A
much more modest goal would be to rule out any non-adaptive algorithm using S = T = Õ(N1/2+ε),
for some ε > 0. This would represent only a slight strengthening of Yao’s ST = Ω̃(N) bound for
adaptive algorithms. However, we show that achieving even this far-more-modest goal would improve
the best known lower bound for circuits in Valiant’s common-bits model [Val77, Val92]. This, in
turn, would represent substantial progress towards proving lower bounds against linear-size log-depth

2

circuits. In particular, since any lower bound against algorithms without a restriction on adaptivity
would only be more general, proving that Hellman’s method is optimal would imply new circuit lower
bounds in Valiant’s common-bits model.

We believe that the difficulty of proving such a circuit lower bound suggests that beating the
square-root barrier exhibited by both the compression [Yao90a, GT00] and presampling [Unr07,
CDGS18] techniques might prove more difficult than previously expected.

New protocols for multiparty pointer jumping. We show that improved algorithms for the
black-box function-inversion problem imply improved upper bounds for a well-studied problem
in communication complexity. In particular, any black-box preprocessing algorithm for inverting
permutations yields a protocol for the permutation variant of the “k-party pointer-jumping” problem
(MPJperm

N,k) [PRS97, DJS98, BC08, Bro09, VW09, Lia14, BS15] in the number-on-the-forehead model
of communication complexity [CFL83].

Then, by instantiating the permutation-inversion algorithm with a variant of Hellman’s method,
we obtain the best known protocol for MPJperm

N,k for k = ω(logN/ log logN) players, improving the
previous best upper bound of O(N log logN/ logN), by Pudlák et al. [PRS97], to Õ(N/k+

√
N). We

thus make progress on understanding the communication complexity of multiparty pointer jumping,
a problem with significance to ACC0 circuit lower bounds [Yao90b, HG91, BT94].

Beyond the quantitative improvement, our protocol is different from all previous approaches
to the problem and, as far as we know, is the first application of a cryptanalytic algorithm to a
communication-complexity problem.

Taking an optimistic view: this connection also presents a path forward for proving non-adaptive
lower bounds for permutation inversion. In particular, we show that for every non-adaptive black-box
permutation-inversion algorithm using S bits of advice and T online queries, it must hold that
max{S, T} is at least as large as the communication complexity of MPJperm

N,3 . Any improvement
on the lower bound for MPJperm

N,3 would give an improved lower bound for non-adaptive black-box
permutation-inversion algorithms. The best lower bound for MPJperm

N,3 is Ω(
√
N) [Wig96, BHK01].

Interestingly, this matches the best lower-bound for black-box permutation-inversion algorithms,
regardless of their adaptivity.

Or, taking a pessimistic view: this connection suggests that constructing non-adaptive or partially
adaptive function-inversion algorithms will be difficult—as difficult as devising better communication
protocols for pointer jumping.

New time-space trade-off for systematic substring search. Finally, we show that improved
algorithms for function inversion will also imply improved data structures for the systematic substring-
search problem [DLO03, GM03, GM07, Gol07, Gol09]. In particular, we prove that there is a
preprocessing algorithm for the function-inversion problem using few bits of advice and few online
queries if and only if there is a space- and time-efficient data structure for systematic substring
search in the cell-probe model [Yao81]. In the systematic substring-search problem, we are given
a bitstring of length N (the “text”) and from it we must construct an S-bit data structure (the
“index”). Given a query string, we should be able to determine whether the query string appears as
a substring of the text by reading the index and by inspecting at most T bits of the original text.

This connection is fruitful in two directions: First, we show that instantiating this connection
with the Fiat-Naor algorithm for function inversion [FN99] yields an S3T = Õ(N3) systematic
data structure, which is the best known in the parameter regime S = Õ(N ε) for ε < 1. Gál and
Miltersen [GM03] ask whether a very strong S + T = Ω̃(N) lower bound on this problem is possible.
By beating this hypothetical lower bound, our algorithm answers their open question in the negative.

Second, Gál and Miltersen prove an ST = Ω̃(N) lower bound for systematic substring search.

3

Our barrier to proving lower bounds against black-box algorithms for function inversion implies
that improving this lower bound would also imply new lower bounds in Valiant’s circuit model and
therefore may be quite challenging.

1.2 Related work

We now recall a few salient related results on function inversion, and we discuss additional related
work at relevant points throughout the text.

Fiat and Naor [FN91, FN99] proved that Hellman’s algorithm [Hel80] achieves a trade-off
of the form S2T = Õ(N2), when the algorithm needs only to invert a random function with
constant probability (i.e., in the cryptanalytically interesting case). For the worst-case problem
of inverting arbitrary functions, Fiat and Naor give an algorithm that achieves a trade-off of the
form S3T = O(N3). De, Trevisan, and Tulsiani [DTT10] improve the Fiat-Naor trade-off when the
algorithm needs only to invert the function at a sub-constant fraction of points.

For inverting functions, Yao [Yao90a] proved that every algorithm that uses S bits of advice and
makes T online queries must satisfy ST = Ω̃(N) lower bound and Dodis et al. [DGK17], building
on prior work [GT00, DTT10], gave a similar lower bound even for algorithms that invert on a
sub-constant fraction of functions f .

Barkan, Biham, and Shamir [BBS06] show that, for a restricted class of preprocessing algorithms,
a Hellman-style trade-off of the form S2T = Õ(N2) is is the best possible. Their lower bound
is powerful enough to capture the known inversion schemes, including Hellman’s algorithm and
Oechslin’s practically efficient “Rainbow tables” technique [Oec03]. At the same time, this restricted
lower bound leaves open the possibility that an entirely new type of algorithm could subvert their
lower bound.

For inverting permutations, Yao [Yao90a] observed that a Hellman-style algorithm can achieve the
ST = Õ(N) upper bound and he proved the matching lower bound. Gennaro and Trevisan [GT00],
Wee [Wee05], and De, Trevisan, and Tulsiani [DTT10] extend this this lower bound to handle
randomized algorithms and those that succeed with small probability.

1.3 Notation and definitions

Notation. Through this paper, Z≥0 denotes the non-negative integers, and Z>0 denotes the positive
integers. For any N ∈ Z>0 we write [N] = {1, 2, . . . , N}. We often identify every element x ∈ [N]
with the binary representation of x− 1 in {0, 1}dlogNe. We use x← 4 to denote assignment and, for
a finite set X , we use x←R S to denote a uniform random draw from X . For a function f : A→ B,
we denote the image of the function as Im(f) = {f(x) | x ∈ A} ⊆ B, and for every y ∈ B, we
define the preimage set of y as f−1(y) = {x ∈ A|f(x) = y}. All logarithms are base-two unless
stated otherwise. Parameters S and T are always implicit functions of the parameter N , and to
to simplify the bounds, we always implicitly take S = T = Ω(1). The notation Ω̃(·) and Õ(·) hide
factors polynomial in logN .

Definition 1 (Black-box inversion algorithm with preprocessing). Let N ∈ Z>0. A black-box
inversion algorithm with preprocessing for functions on [N] is a pair (A0,A1) of oracle algorithms,
such that A0 gets oracle access to a function f : [N]→ [N], takes no input, and outputs an advice
string stf ∈ {0, 1}∗. Algorithm A1 gets oracle access to a function f : [N]→ [N], takes as input a
string stf ∈ {0, 1}∗ and a point y ∈ [N], and outputs a point x ∈ [N]. Moreover, for every x ∈ [N],
it holds that Af1(Af0(), f(x)) ∈ f−1(x).

4

We can define a black-box inversion algorithm for permutations analogously by restricting the
oracle f : [N]→ [N] to implement a one-to-one function. In this case, we will often denote the oracle
as π instead of f .

Definition 2 (Adaptivity). We say that an oracle algorithm is:
• k-round adaptive if the algorithm’s oracle queries consist of k sets, such that each set of queries

depends on the advice string, the input, and the replies to the previous rounds of queries,
• non-adaptive if given its input and its advice string, the algorithm first outputs a single set of

queries, then receives the oracle’s responses to this queries, and finally outputs its output, and
• strongly non-adaptive if the algorithm is non-adaptive, and furthermore the set of queries only

depends on the algorithm’s input, but not on the advice string.
In all of the above cases, when referring to the number of queries made by the algorithm, we account
for the sum over all rounds.

We discuss additional subtleties with our computational model in Appendix A.

2 Lower bounds on inversion imply circuit lower bounds

The motivating question of this work is whether Hellman’s S = T = Õ(N2/3) algorithm for inverting
random functions is optimal. In this section, we show that resolving this question will require proving
significant new lower bounds in Valiant’s “common bits” model of circuits [Val77]. Towards this goal,
we first show that proving strong lower bounds on non-adaptive algorithms for function inversion
would imply new lower bounds against linear-sized logarithmic-depth circuits.

Related work. Brody and Larsen [BL15] showed that proving certain lower bounds against linear
data structures for dynamic problems would imply strong lower bounds on the wire complexity
of linear depth-two circuits. We follow their general blueprint, but we instead focus on arbitrary
algorithms for solving a static data-structure problem (i.e., function inversion), and our connection
is to Valiant’s common-bits model of circuits, rather than to linear depth-two circuits.

Boyle and Naor [BN16] make a surprising connection between cryptographic algorithms and
circuit lower bounds. They show that proving the non-existence of certain “offline” oblivious RAM
algorithms (ORAMs) [Gol87, Ost90, GO96] would imply new lower bounds on the size of Boolean
circuits for sorting lists of integers. Larsen and Nielsen [LN18] recently skirted this barrier by proving
a lower bound against ORAMs in the “online” setting. Following that, Weiss and Wichs [WW18]
showed that a variant of the Boyle-Naor barrier still holds against “online read-only” ORAMs.

2.1 A strong lower bound on non-adaptive function inversion implies
a lower bound against linear-size log-depth circuits

A major open question in circuit complexity is whether there exists an explicit family of Boolean
functions on n bits that cannot be computed by fan-in-two circuits of size O(n) and depth O(log n).
An easier question, which is still famously difficult, is to ask instead for an explicit family of functions
Fn : {0, 1}n → {0, 1}n with n-bit output—often called Boolean operators—that cannot be computed
by this same class of circuits. Even this latter question has been open since the 1970s [Val77, Val92,
JS11].

More precisely, we say that a family of Boolean operators {Fn}∞n=1, for Fn : {0, 1}n → {0, 1}n, is
an explicit operator if the decision problem associated with each bit of the output of Fn is in the
complexity class NP.

The following theorem is the main result of this section.

5

Theorem 3. If every explicit operator has fan-in-two Boolean circuits of size O(n) and depth
O(log n) then, for every ε > 0, there exists a family of strongly non-adaptive black-box algorithms
that inverts all functions f : [N]→ [N] using O(N logN/ log logN) bits of advice and O(N ε) online
queries.

We give the proof idea in Section 2.2 and the full proof in Appendix B.
Observe that a function f : [N]→ [N] requires O(N logN) bits to describe, so there is a trivial

algorithm that inverts f using O(N logN) bits of advice and no queries to f . The algorithm implied
by the consequence of Theorem 3 is non-trivial because it uses o(N logN) bits of advice—just slightly
fewer bits than it takes to describe the function. We know of no non-adaptive algorithm that inverts
with constant probability using o(N logN) bits of advice and o(N) queries.

The contrapositive of Theorem 3 immediately yields the following corollary:

Corollary 4. If, for some ε > 0, every family of strongly non-adaptive black-box algorithms for
inverting functions f : [N] → [N] that uses O(N ε) queries requires ω(N logN/ log logN) bits of
advice, then there exists an explicit operator that cannot be computed by fan-in-two Boolean circuits
of size O(n) and depth O(log n).

The corollary considers a restricted class of inversion algorithms that:
• may only use strongly non-adaptive queries (the most restrictive type of query),
• are only allowed, for example, O(N0.0001) queries (very few queries), and
• must invert arbitrary functions with probability one (the most difficult variant of the inversion

problem).
The corollary states that proving that such restricted algorithms must use a large amount of
space is as hard as proving lower bounds against linear-size logarithmic-depth circuits. So, even
though we may suspect that there are no algorithms for inverting functions f : [N] → [N] using
O(N logN/ log logN) bits of advice and O(N0.0001) non-adaptive queries, proving such an assertion
seems very challenging.

2.2 Proof idea for Theorem 3

To prove Theorem 3, we first recall Valiant’s common-bits model of circuits [Val77, Val92].

Valiant’s common-bits model. A circuit in the common-bits model of width w and degree d
computing a Boolean operator Fn : {0, 1}n → {0, 1}n contains an input layer, a middle layer, and
output layer. (See Figure 1 in Appendix B.) The n input variables x1, . . . , xn ∈ {0, 1} are presented
as wires at the input layer of the circuit and there are n output gates at the output layer of the
circuit. There are w gates in the middle layer of the circuit (the “common bits”); each input wire
feeds into each of these w middle gates, and the output of each of the w middle gates feeds into
each output gate. Further, each output gate reads from at most d of the input wires. Unlike in a
standard circuit, the gates in the middle and output layers of the circuit compute arbitrary functions
of their inputs. The output of the circuit is the n-bit string formed at the output gates.

It is immediate that any Boolean operator Fn : {0, 1}n → {0, 1}n has common-bits circuits of
width n and degree 0, and also of width 0 and degree n. A non-trivial question is: For a given
operator Fn and choice of degree (e.g., d = n1/3), what is minimal width of a common-bits circuit
that computes Fn?

Proof idea for Theorem 3. The full proof appears in Appendix B.

6

1. First, we define an inversion operator F inv
n (Definition 12.) This operatator takes as input

the description of a function f : [N]→ [N], for n = N logN , represented as its function table
(f(1), f(2), . . . , f(N)) ∈ [N]N . The inversion operator F inv

n outputs an inverse of every point
(1, 2, . . . , N) ∈ [N]N under the function f , whenever these inverses exist.

2. Next, we prove a result about circuits in the common-bits model. We show in Lemma 13 that
if the inversion operator F inv

n has a width-w degree-d circuit in Valiant’s common-bits model
of circuits [Val77, Val92], then there is a strongly non-adaptive inversion algorithm for f using
w bits of advice and d logN online queries.

3. Finally, we apply a result of Valiant (Theorem 14), who proved that if all explicit operators
have linear-size logarithmic-depth circuits, then all explicit operators have circuits in the
common-bits model of width w = O(n/ log logn) and degree d = nε, for any ε > 0.

Putting these pieces together, we conclude that if all explicit operators have linear-size log-depth
circuits, then there is a strongly non-adaptive inversion algorithm using O(N logN/ log logN) bits
of advice and O(N ε) online queries, for any ε > 0.

2.3 Why proving the optimality of Hellman’s algorithm is difficult

Corollary 4 suggests the hardness of proving stronger lower bounds for non-adaptive inversion
algorithms, but it applies only to algorithms that use a relatively long advice string, of length
O(N logN/ log logN). We might still hope to improve upon Yao’s ST = Ω̃(N) lower bound for
function inversion without breaking the aforementioned barrier.

The following corollary shows that ruling out function-inversion algorithms using advice and
time S = T = Õ(N1/2+ε), for any ε > 0, would imply the existence of an explicit operator that
cannot be computed by circuits of width O(n1/2+ε′) and degree O(n1/2+ε′) in the common-bits
model, for some ε′ > 0. As we will discuss, no such lower bound in the common-bits model is known,
so proving the optimality of Hellman’s Õ(N2/3) algorithm, or even showing that inverting functions
with preprocessing is marginally harder than inverting permutations with preprocessing, would imply
an advance in the state of lower bounds on circuits in the common-bits model.

Corollary 5. If, for some ε > 0, there does not exist a family of strongly non-adaptive algorithms for
inverting functions f : [N]→ [N] using O(N1/2+ε) bits of advice and O(N1/2+ε) queries, then there
exists an explicit operator that does not have circuits in the common-bits model of width O(n1/2+ε′)
and degree O(n1/2+ε′), for every ε′ satisfying 0 < ε′ < ε.

Proof. We prove the contrapositive. Assume that for every ε′ > 0, every explicit operator has common-
bits circuits of width O(n1/2+ε′) and depth O(n1/2+ε′). Then, as in the proof of Theorem 3, we can ap-
ply Lemma 13 to show that, for n = N logN , there exists a strongly non-adaptive preprocessing algo-
rithm that inverts functions f : [N]→ [N] using O(n1/2+ε′) = O((N logN)1/2+ε′) = O(N1/2+ε′ logN)
bits of advice and O(n1/2+ε′ logN) = O((N logN)1/2+ε′ logN) online queries. Then, for any ε > ε′,
the advice usage and number of online queries is O(N1/2+ε).

Notice that while the hypothesis of Corollary 5 considers a lower bound against strongly non-
adaptive inversion algorithms, this only strengthens the statement. This is true because proving
a lower bound against adaptive inversion algorithms implies a lower bound against strongly non-
adaptive algorithms as well.

If we instantiate Corollary 5 with ε = 1
6 , we find that ruling out function-inversion algorithms

using S = T = o(N2/3), even against the restricted class of strongly non-adaptive algorithms, would

7

give an explicit operator that does not have common-bits circuits of width w and degree d satisfying
w = d = o(n2/3−δ), for any δ > 0.

Proving such a lower bound on common-bits circuits is not strong enough to yield a lower bound
against linear-size log-depth circuits via Valiant’s method (Theorem 14). However, this lower bound
would improve the best known lower bound against circuits in the common-bits model. The best
known bound, due to Pudlák, Rödl, and Sgall, gives d = Ω(nw · log(nw)), for a common-bits circuit
of width w and degree d [PRS97]. In particular, they construct an explicit operator that does not
have common-bits circuits satisfying w = d = Õ(n1/2). By Corollary 5, ruling out function-inversion
algorithms with S = T = Õ(N1/2+ε), for any ε > 0, would thus improve the best lower bounds on
common-bits circuits.

Should we hope for new lower bounds in the common-bits model? Drucker [Dru12] discusses
the limitations of current techniques, and we recall these and other limitations in more detail in
Appendix C. A generalization of Corollary 5 actually applies more generally to proving strong lower
bounds for any so-called “succinct” data-structure problem [Jac89, CM96, GRR06, SG06, GM07,
Gol07, Gol09, GOR10, BHMS11, MRRR12, HMS12] of which function inversion is a special case.
We discuss this extension in Appendix C.3.

3 From cryptanalysis to new communication protocols

In this section, we develop connections between the function-inversion problem and the multiparty
pointer-jumping problem in the number-on-the-forehead (NOF) model of communication complex-
ity [CFL83]. By combining these new connections with the classic cycle-walking algorithm for
permutation inversion, we obtain the best known NOF protocols for the permutation variant of the
pointer-jumping problem.

3.1 Multiparty pointer-jumping in the NOF model.

A classical problem in the NOF model is the pointer-jumping problem. We describe the permutation
variant of the problem, and then discuss the general case. In the pointer-jumping problem MPJperm

N,k ,
there are k computationally-unbounded players, denoted P0, P1, . . . , Pk−1, and each has an input
“written on her forehead.” The first player P0 has a point x ∈ [N] written on her forehead, the last
player Pk−1 has a Boolean mapping β : [N]→ {0, 1} written on her forehead, and each remaining
player Pi, for i = 1, . . . , k − 2, has a permutation πi : [N] → [N] written on her forehead. Each
player can see all k − 1 inputs except the one written on her own forehead. The goal of the players
is to compute the value β ◦ πk−2 ◦ · · · ◦ π1(x), which loosely corresponds to “following a trail of
pointers” defined by the permutations, starting from x. (See Figure 3 in Appendix D.) The players
can communicate by writing messages on a public blackboard. The communication complexity of a
protocol is the total number of bits written on the blackboard for a worst-case input.

A one-way protocol is a protocol in which each player writes a single message on the blackboard
in the fixed order P0, . . . , Pk−1, and the last player’s message must be the output. The one-
way communication complexity of a function f , denoted CC1(f), is the minimum communication
complexity of all one-way protocols that successfully compute f . Without the “one-way” restriction,
there are protocols for MPJperm

N,k that require only O(logN) bits of communication.
Pudlák et al. [PRS97] develop a connection between NOF communication complexity and

common-bits circuits, which we elaborate on in Appendix D.1. There, we also discuss applications
of NOF complexity to data-structure lower bounds [Păt10, CEEP16].

One of the major open problems in NOF communication complexity is to obtain a non-trivial
lower bound for some problem for a super-poly-logarithmic number of players. Such a bound would

8

in turn lead to a breakthrough circuit lower bound for the complexity class ACC0 [Yao90b, HG91,
BT94]. Since pointer jumping is a candidate hard problem in the k-party NOF setting, understanding
the exact communication complexity of pointer jumping for a super-poly-logarithmic number of
players is an important step towards the eventual goal of proving circuit lower bounds [PRS97,
DJS98, BC08, Bro09, VW09, Lia14, BS15].

Known bounds. The best upper bound for MPJperm
N,k is due to Pudlák et al. [PRS97], who showed

that CC1(MPJperm
N,k) = O(N log logN/ logN). More recently, Brody and Sanchez [BS15] showed that

this upper bound applies to the more general pointer-jumping problem, in which we replace the
permutations π1, . . . , πk−2 with arbitrary functions. In this general case, Wigderson [Wig96] proved
an Ω(

√
N) lower bound for k = 3 players (see also [BHK01]), and Viola and Wigderson [VW09]

proved an Ω̃(N
1

k−1) lower bound for k ≥ 3 players.

3.2 A new communication protocol from permutation inversion

We obtain the best known communication protocol for the permutation variant of the pointer-jumping
game on parameter N for k = ω(logN/ log logN) players. Our result improves the previously best
known upper bound of Õ(N) to Õ

(
N/k+

√
N
)
. Extending our upper bound to the general multiparty

pointer-jumping problem remains an open problem, which we discuss in Appendix D.2.
On the lower-bound side, this connection suggests a path to prove lower bounds against partially

adaptive permutation-inversion algorithms, as in Definition 2. In contrast, the techniques of Section 2
can only prove lower bounds against strongly non-adaptive algorithms.

In this section, we prove the following new upper bound on CC1(MPJperm
N,k):

Theorem 6. CC1(MPJperm
N,k) ≤ O

(
(N/k +

√
N) logN

)
.

To prove Theorem 6, we use the integer-valued version the pointer-jumping problem, commonly
denoted M̂PJ

perm

N,k . In this version, the last player Pk−1 holds a permutation πk−1 : [N] → [N],
instead of a boolean mapping, so the output of the problem is a value in [N]. We then use the
following lemma, which we prove in Appendix D.3:

Lemma 7. CC1(MPJperm
N,k) ≤ CC1(M̂PJ

perm

N,k) + dlogNe .

Then, our main technical lemma uses an arbitrary permutation-inversion algorithm with prepro-
cessing to solve M̂PJ

perm

N,k :

Lemma 8. If there exists a (k−2)-round adaptive algorithm for inverting permutations π : [N]→ [N]

that uses advice S and time T , then CC1(M̂PJ
perm

N,k) ≤ S + 2T dlogNe.

Proof idea. Consider the composition of the players’ permutations in reverse order. Namely, define
a permutation π = π−1

1 ◦ · · · ◦ π−1
k−1. We can then reinterpret the players’ task of computing

πk−1 ◦ · · · ◦ π1(x) as the task of computing the inverse of x under π.
Now, we observe that the k players can simulate a black-box permutation-inversion algorithm

with preprocessing in the one-way NOF model at the cost of paying a single round of communication
for each round of queries. The players then can use an inversion algorithm to compute π−1(x), which
yields the desired output. The players run the simulation as follows:

• First, Player P0, who can see all the permutations, runs the preprocessing step of the inversion
algorithm on the composed permutation π and writes the S-bit advice string on the blackboard.

9

• Next, Player P1, who can see the input x ∈ [N] and the permutations π2, . . . , πk−1, runs
the online phase of the inversion algorithm on input x. As the inversion algorithm runs,
it makes queries to π. To evaluate π at the first queried point q ∈ [N], Player P1 follows
the pointers in reverse order from point q in the last layer until she reaches her own layer:
p ← π−1

2 ◦ · · · ◦ π−1
k−1(q). Since Player P1 cannot see π1—it is written on her forehead—she

cannot compute π(q) = π−1
1 (p). So, Player P1 writes this partial response p ∈ [N] on the

blackboard.
• Next, Player P2, who can see π1, computes the answer π(q) = π−1

1 (p) to the first query and
writes it on the blackboard. Player P2 then re-runs the online inversion algorithm on input x
and replies to the inversion algorithm’s first query q with the value π(q).

• Players P2, . . . , Pk−1 reply to the remaining rounds of queries this way, until Player Pk−2 is
able to answer all queries and compute the output π−1(x) = πk−1 ◦ · · · ◦ π1(x).

Finally, since the algorithm is (k − 2)-round adaptive, it makes its queries in k − 2 sets. The k
players can respond to each set of queries in parallel.

We give the formal protocol and analyze its communication complexity in Appendix D.3.

To complete the proof of Theorem 6 we instantiate Lemma 8 using Hellman’s cycle-walking
algorithm [Hel80], which we recall in Appendix E. The algorithm inverts permutations using T
queries and S bits of advice, for every choice of S and T such that ST ≥ 2NdlogN+1e. Furthermore
the algorithm is T -round adaptive. Specifically, for k ≤

√
N + 2, using Hellman’s algorithm with

T = k − 2 and S = d(2N logN)/T e gives a protocol with communication O((N/k) logN). For
k >
√
N + 2, we use Hellman’s algorithm with T =

√
N and S =

√
2N(dlogNe+ 1) to get a protocol

with communication O(
√
N logN).

4 Function inversion is equivalent to substring search

In this section, we demonstrate an equivalence between the function-inversion problem and the
systematic substring-search problem, a static data-structure problem studied by Demaine and López-
Ortiz [DLO03], Gál and Miltersen [GM03, GM07], and Golynski [Gol07, Gol09]. We use this
connection to demonstrate the best known algorithm for systematic substring search on texts of
length N when using an index of size O(N ε) bits, for any ε < 1. Gál and Miltersen [GM07] asked for
a strong lower bound against search algorithms using an O(N/polylogN)-bit index, and we answer
this question by giving an upper bound that beats their hypothetical lower bound. This connection
also gives evidence that finding a faster algorithm for systematic substring search will require a
cryptanalytic breakthrough.

In the systematic substring-search problem, we are given a bitstring of length N (“the text”) and
a string of length P � N (“the pattern”). If the pattern appears in the text, we must output an index
i ∈ [N] into the text at which the pattern begins. We take the pattern length to be P = Θ(logN).

An algorithm for systematic substring search is a two-part algorithm A = (A0,A1). The
preprocessing algorithm A0 takes as input only the text, may perform arbitrary computation on it,
and then outputs an S-bit “index” into the text. The online algorithm A1 takes as input the index
and the pattern, queries T bits of the text, and then outputs the location of pattern in the text, if
one exists.

Known lower bounds. Demaine and López-Ortiz [DLO03] prove that on texts of length N with
pattern length P = Θ(logN), any algorithm that uses an S-bit index and makes T = o(P 2/ logP)
queries in the online phase must satisfy ST = Ω(N logN). Golynski [Gol07, Gol09] gives a stronger
version of this bound that applies even for larger T = o(

√
N/ logN). Gál and Miltersen prove a

10

slightly weaker bound but that holds for all values of T . They show that for certain pattern lengths
P = Θ(logN), and any choice of T , any algorithm must satisfy ST = Ω(N/ logN).1

The main technical result of this section is the following Theorem, which we prove in Appendix F.

Theorem 9. For any integer N ∈ Z>0 and integral constant c > 2, if there is an algorithm for
systematic substring search on texts of length cN · dlogNe with pattern length c · dlogNe that uses
an S-bit index and reads T bits of the text in its online phase, then there is a black-box algorithm for
inverting functions f : [N]→ [N] that uses S bits of advice and makes T online queries.

For any integer N ∈ Z>0, if there is a black-box algorithm for inverting functions f : [2N]→ [2N]
that uses S bits of advice and T queries, then, for any integral constant c > 1, there is an algorithm
for systematic substring search on texts of length N with pattern length c · dlogNe that uses an
Õ(S)-bit index and reads Õ(T) bits of the text in its online phase.

Proof idea for Theorem 9. In the first part, we must use a substring search algorithm to invert
a function f : [N] → [N]. The idea, formalized in Lemma 16, is to construct a text τ of length
Θ(N logN) by writing out the evaluation of f at all points in its domain, in order, with a few extra
bits added as delimiters. To invert a point y ∈ [N], we use the substring search algorithm to find the
location at which y appears in the text τ . This location immediately yields a preimage of y under f .
Demaine and López-Ortiz [DLO03] use a similar—but more sophisticated encoding—on the way
to proving a data-structure lower bound for systematic substring search. Their encoding maps a
function f : [N]→ [N] into a string of length (1 + o(1))N logN , while ours maps f into a string of
length 3N logN .

In the second part, we must use a function inversion algorithm to solve substring search on a
text τ of length N with pattern length P = c · dlogNe, for some constant c > 1. To do so, we
define in Lemma 18 a function f ′ : [N] → [N c] such that f ′(i) is equal to the length-P substring
that starts from the ith bit of the text τ . Given a pattern string σ = {0, 1}P , finding the inverse
of y under f ′ is enough to locate the position of the pattern string σ in the text τ . The only
remaining challenge is that f ′ is length-increasing, rather than length-preserving. In Lemma 17, we
use universal hashing to reduce the problem of inverting length-increasing functions to the problem
of inverting length-preserving functions, which completes the proof.

We now apply Theorem 9 to construct a new algorithm for systematic substring search that
resolves an open question of Gál and Miltersen. In their 2007 paper, Gál and Miltersen say that “it
would be nice to prove a lower bound of, say, the form,” T < N/ polylogN ⇒ S > N/ polylogN
(using our notation) for systematic substring search [GM07]. Goyal and Saks [GS05] use an elegant
argument to show that the specific technique of Gál and Miltersen cannot prove this lower bound. As
a corollary of Theorem 9, we construct an algorithm for substring search that beats the hypothetical
lower bound.

Corollary 10. For any integral constant c > 1 there is an algorithm for systematic substring search
on texts of length N with pattern length c · dlogNe, that uses an S-bit index, reads T bits of the text
in its online phase, and achieves the trade-off S3T = Õ(N3).

Proof. Theorem 9 shows that systematic substring search on strings of length N with pattern length
Θ(logN) reduces to the problem of inverting arbitrary functions f : [N] → [N]. The inversion

1Gál and Miltersen in fact prove their lower bound against algorithms that solve the decision version of the problem,
rather than the search version that we describe here. Using an argument similar to that of Theorem 11, which treats
the case of black-box PRG distinguishers, we can show that these problems are equivalent up to log factors when we
demand constant success probability.

11

algorithm of Fiat and Naor [FN99] inverts such functions f achieving the desired complexity
bounds.

In particular, we get an algorithm that solves systematic substring search using an index size
and time satisfying S = T = Õ(N3/4), for strings of length N and patterns of length Θ(logN).
Furthermore, this connection, along with the results of Section 2.3, shows that improving on the
ST = Ω̃(N) bound of Gál and Miltersen will require advances in techniques for proving lower bounds
on the power of depth-two circuits.

5 Future directions

We close with a few directions for future work on the function-inversion problem.

One-to-one functions. Almost all cryptanalytic applications of Hellman tables only require
inverting one-to-one functions. Is it easier to invert a random one-to-one function f : [N]→ [M],
for N �M , than it is to invert a random length-preserving function f : [N]→ [N]? A better-than-
Hellman attack against one-to-one functions would be remarkable.

Pseudorandom generators. De, Trevisan, and Tulsiani [DTT10] introduced the problem of
breaking pseudorandom generators (PRGs) with preprocessing. In that problem, we model a “black-
box” PRG as an oracle G : [N]→ [M], with N < M . A PRG distinguisher with preprocessing first
makes arbitrarily many queries to G and outputs an S-bit advice string. In the online phase, the
distinguisher can then use its advice string, along with T queries to G, to distinguish whether a
given sample y ∈ [M] has been drawn from the distribution {G(x) | x←R [N]} or the distribution
{y | y ←R [M]}.

In their work, De, Trevisan, and Tulsiani give a distinguisher with S = O(N/ε2) and T = Õ(1)
that achieves a distinguishing advantage ε ≤ 1/

√
N . They ask whether it is possible to realize the

trade-off ST = Õ(ε2N) for other parameter settings as well. While we still cannot answer that
question, the following theorem shows that a PRG distinguisher that achieves constant distinguishing
advantage at points on this trade-off (e.g., ε = 1/100, S = N1/4, and T = N3/4) would imply a
better-than-Hellman algorithm for inverting one-to-one functions.

Theorem 11 (Informal). Suppose that there is a black-box PRG distinguisher that uses S bits
of advice, makes T online queries to a PRG G : [N] → [M], and achieves constant distinguishing
advantage. Then there exists a black-box inversion algorithm for any one-to-one function f : [N]→
[M] that uses Õ(S) bits advice, makes Õ(T) online queries, and inverts f with constant probability.

We prove the theorem in Appendix G.

Barriers for upper bounds. Is there a barrier to getting an S = T = o(N2/3) algorithm for
function inversion? Barkan, Biham, and Shamir [BBS06] prove a lower bound against a certain
restricted class of Hellman-like algorithms, which suggests that better algorithms must use new
techniques. It would be satisfying to show at least that improving Hellman’s upper bound would
result in a dramatic algorithmic improvement for a well-studied problem in another domain.

Acknowledgments. We would like to thank Dan Boneh for encouraging us to investigate whether Hellman’s
method can be improved and for his continued advice as we undertook this project. Iftach Haitner gave
us meaningful guidance on our research process early on and, along with Ronen Shaltiel, suggested many
possible approaches towards proving new lower bounds. Peter Bro Miltersen, Joshua Brody, Andrew Drucker,
Michael Kim, Ilya Mironov, Omer Reingold, Avishay Tal, Li-Yang Tan, and David Wu made a number of
suggestions that improved the presentation of our results.

12

A Model of computation

We discuss some choices in the model of computation for black-box function inversion with prepro-
cessing as appears Definition 1.

Worst-case versus average case. The algorithms in Definition 1 are deterministic and successfully
invert all functions on all points. It is also interesting to consider probabilistic inversion algorithms,
which invert successfully only with probability ε < 1. Depending on the application, this probability
may be taken over any of the random choice of a function f : [N]→ [N], the point to invert, and
algorithm’s randomness. However, as most of the results in this paper deal with lower bounds,
restricting ourselves to deterministic algorithms that always succeed in inverting only makes our
results stronger. In any case, even if we bound only the number of queries, we assume that all
algorithms we consider halt with probability 1.

Running time versus query complexity. For the purposes of proving lower bounds, and
reductions towards proving lower bounds, it suffices to consider the query complexity of a preprocessing
algorithm’s online phase. Counting only queries (and not computation time) only strengthens lower
bounds proved in this model.

When running an algorithm with preprocessing, the computation time (e.g., in the RAM model)—
of both the preprocessing and online phases—is practically important. The standard algorithms
with preprocessing for function inversion, including those of Hellman [Hel80], Fiat and Naor [FN99],
and De, Trevisan, and Tulsiani [DTT10] all can use Õ(N) preprocessing time in a suitable RAM
model, when they are allowed to fail with small probability. The running time of these algorithms’
T -query online phase is Õ(T).

In the case of our new preprocessing algorithm for systematic substring search (Section 4), it
is similarly possible to make the preprocessing time Õ(N) by allowing the algorithm to fail with
probability O(1/N) over the randomness of the preprocessing phase. Similarly, the running time of
the T -query algorithm is Õ(T).

Non-uniformity. Our definition allows for “free” non-uniformity in the parameter N . Nevertheless,
in a model that only “charges” the online algorithm for queries to the oracle and ignores the actual
running time, non-uniformity makes little difference. To see this, consider a non-uniform family of
algorithms that make fewer than T (N) oracle queries and use an |stf | = S(N) bits of advice about
the oracle function f . We can then construct a uniform algorithm that given N , S(N), and T (N)
enumerates all possible non-uniform algorithms that use advice S(N) and make T (N) queries, on
all possible functions f : [N]→ [N] and all possible inputs x ∈ [N] and chooses one that successfully
inverts all functions on all points. Note that that for a given N , all of the enumerated sets are finite.
Also note that this simulation does not require making any actual oracle queries.

Shared randomness. We allow the preprocessing and online phases to share an unlimited number
of random bits. In other words, our reductions hold also with respect to random oracles.

B Proof of Theorem 3

Theorem 3 (restated). If every explicit operator has fan-in-two Boolean circuits of size O(n)
and depth O(log n) then, for every ε > 0, there exists a family of strongly non-adaptive black-box
algorithms that inverts all functions f : [N] → [N] using O(N logN/ log logN) bits of advice and
O(N ε) online queries.

The proof of Theorem 3 uses the following operator:

13

x1 x2 x3 x4
Inputs

Common
bits

Outputs

Figure 1: A circuit in the common-bits model with n = 4 inputs, degree d = 2, and width w = 2.

Definition 12 (Inversion operator). Let n = N logN , where N ∈ Z>0 is a power of two. (For all
other values of n define the inversion operator trivially as the identity mapping.) We define the
inversion operator F inv

n : {0, 1}n → {0, 1}n as follows. Let x ∈ {0, 1}n be an input to F inv
n , and view

x as the concatenation of N strings of length logN bits each: x = x1‖x2‖ · · · ‖xN . For each i ∈ [N],
let yi ∈ [N] be the least j ∈ [N] such that xj = i, if one such j exists. If no such j exists, set
yi = 0 ∈ [N]. We define F inv

n (x) =
(
y1‖y2‖ · · · ‖yN

)
.

Lemma 13. Let n = N logN ∈ Z>0, where N ∈ Z>0 is a power of two. If there exists a circuit in
the common-bits model of width w and degree d that computes the inversion operator F inv

n , then there
exists a strongly non-adaptive preprocessing algorithm that inverts a function f : [N]→ [N] using an
advice string of length w and d logN oracle queries.

Proof. Let C be a circuit in the common-bits model as in the statement of the lemma. The advice
string consists of the outputs of the middle-layer gates in the circuit C (i.e., the circuit’s common
bits). Divide the output gates into N blocks of size logN each. On input y ∈ [N], the algorithm
queries f on all the points containing input bits connected to the y-th block of output gates of C.
Using the advice string and the oracle replies, it then computes and outputs the value of all of the
values in the y-th block of output gates of the circuit C. These output bits are enough to recover
some inverse of y under f , if it exists.

Finally, we need the following result of Valiant:

Theorem 14 (Valiant [Val77, Val92]). If every explicit operator has fan-in-two Boolean circuits of
size O(n) and depth O(log n), then for every constant ε > 0, every explicit operator has circuits in
the common-bits model of width O(n/ log logn) and degree nε.

Viola [Vio09, Section 3] and Jukna [Juk12, Chapter 13] give detailed proofs of Theorem 14.
Now we can prove Theorem 3:

Proof of Theorem 3. First, observe that the inversion operator F inv
n is explicit, since it is possible to

compute any bit of its output with a linear scan over the input.
Under the hypothesis of Theorem 3, the operator F inv

n has fan-in two Boolean circuits of size O(n)
and depth O(log n). Therefore, by Valiant’s result (Theorem 14), F inv

n has circuits in the common-bits
model of width w = O(n/ log log n) and degree d = nε, for any ε > 0. For n of the form n = N logN ,
where N > 0 is a power of two, we get w = O(N logN/ log log(N logN)) = O(N logN/ log logN)
and d = (N logN)ε = O(N ε′), for any ε′ > ε. The theorem then follows from Lemma 13.

14

C Limits of current lower-bound approaches

C.1 Limits of the strong-multiscale-entropy method

Drucker [Dru12] shows, at the very least, that improving lower bounds in the common-bits model
will require new types of arguments. In particular, Jukna [Juk12, Chapter 13], generalizing earlier
arguments of Cherukhin [Che11] defined the “strong multiscale entropy” (SME) property of Boolean
operators. Jukna proved that an operator on n bits with the SME property cannot be computed by
common-bits circuits of width o(n1/2) and degree o(n1/2). (These results are actually phrased in
terms of the wire complexity of depth-two circuits with arbitrary gates, but the implications to the
common-bits model are straightforward.)

Strengthening Jukna’s lower bound on the circuit complexity of SME operators appeared to
be one promising direction for progress on lower bounds. Thwarting this hope, Drucker constructs
an explicit operator with the SME property that has circuits in the common-bits model of width
O(n1/2) and degree O(n1/2). Thus, SME-type arguments alone are not strong enough to prove that
an operator cannot be computed by circuits of width O(n1/2+ε) and degree O(n1/2+ε) for ε > 0.

C.2 Yao’s box problem and limits of compression and presampling

Yao’s “box problem” [Yao90a, NABT15] is a preprocessing problem that is closely related to
the function-inversion problem. In the box problem, we are given oracle access to a function
f : [N]→ {0, 1}. First, we get to look at all of f and write down an S-bit advice string stf . Later on,
we are given our advice string stf and a point x ∈ [N]. We may then make T queries to f , provided
that we do not query f(x), and we must then output a value y ∈ {0, 1} such that y = f(x).

The box problem is in some sense the dual of the function-inversion problem: we are given an
f -oracle and we must compute f in the forward direction, rather than in the inverse direction. The
same ST = Ω̃(N) lower bound applies to both problems [Yao90a]. However, in contrast to the
inversion problem, for which we suspect that good parallel (i.e., non-adaptive) algorithms do not exist,
the natural algorithm for the box problem is already non-adaptive and achieves ST = O(N logN).2

Puzzlingly, the two main techniques for proving time-space lower bounds do not distinguish
between the function-inversion problem and Yao’s box problem. In particular, the known lower
bounds use compression [Yao90a, GT00, DTT10, DGK17] or bit-fixing [Unr07, CDG18, CDGS18].
Both techniques essentially look at the information that the oracle queries and their replies give on
the pair (x, f(x)) induced by the challenge, regardless of whether the actual challenge is x, and the
algorithm has to find f(x) (as in the case of Yao’s box problem), or the challenge is y = f(x), and
the algorithm has to find x = f−1(y) (as in the case of the inversion problem).

Since there is an ST = Õ(N) upper bound for Yao’s box problem, then any method that proves
a lower bound better than ST = Ω(N) for function inversion must not apply to the box problem.
Therefore, a “sanity check” for any improved lower bound for the function-inversion problem is to
verify that the same proof technique does not apply to Yao’s box problem.

C.3 Barriers for other succinct data-structure problems

Brody and Larsen [BL15] showed that lower bounds on a certain class of dynamic data-structures
(linear data structures) would imply lower bounds on the wire complexity of depth-two circuits with
arbitrary gates.

2Divide [N] into disjoint blocks of (at most) T + 1 points each. For each block, store the sum of the values of the
function over all points in the block. In the online phase, query all the other points in the block given by the challenge
point, and use the stored sum to recover the value of the function over the given challenge point.

15

Along similar lines, Corollary 5 gives a barrier to proving strong lower bounds for any so-called
“succinct” data-structure problem [GM07], a class of static data-structure problems that includes
function inversion. In fact the barrier applies to proving lower bounds against systematic data
structures, which are a special case of succinct data structures. The barrier to proving lower bounds
against weaker (i.e., systematic) data structures implies that the same barrier applies to proving
lower bounds against stronger (i.e., succinct) data structures.

To explain how this barrier applies to a data-structure problem, consider the systematic variant
of the standard problem of polynomial evaluation with preprocessing [Mil95]: On parameter N ∈ Z>0,
let F be a finite field of size Θ(N). We are given a polynomial p ∈ F[X] of degree at most N − 1,
represented as its vector of coefficients c̄ = (c0, c1, . . . , cN−1) ∈ FN . In a preprocessing phase, we may
read these coefficients and produce an preprocessed S-bit data structure about p. In a subsequent
online phase, we are given a point x0 ∈ F, and we must output the value p(x0) ∈ F after reading
the entire S-bit data structure, querying at most T coordinates of the coefficient vector c̄, and
performing an unlimited amount of computation.

It seems very difficult to construct an algorithm that simultaneously uses a data structure of
size S = o(N) and only T = o(N) online queries. And yet, the best lower bound we have for this
problem, implied by a bound of Gál and Miltersen [GM07], is of the form ST = Ω̃(N). A variant
of Corollary 5 implies that proving stronger lower bounds for this problem—or proving any lower
bound better than ST = Ω̃(N) for any systematic or succinct data-structure problem, for that
matter—will also imply new lower bounds in Valiant’s common-bits model.

D Deferred material from Section 3

D.1 Relevance of NOF complexity to data structures

There is a close connection between communication complexity in the NOF model and circuit
complexity in Valiant’s common-bits model, which we introduced in Section 2.2. Pudlák et al. [PRS97]
showed that an operator Fn : {0, 1}n → {0, 1}n can be computed by a small common-bits circuit
if and only if there exists a low-communication three-party protocol that computes the ith bit of
the operator Fn, for some partition of the value i and the input to Fn. Applying the result of
Pudlák et al. to Corollary 5 yields a NOF communication game that captures the hardness of the
function-inversion problem. Proving a communication-complexity lower bound for this game would
give a time-space lower bound for strongly non-adaptive algorithms with preprocessing for function
inversion. Unfortunately, the resulting communication game is rather ad hoc, and we can say little
about its communication complexity.

Therefore, rather than going through Valiant’s common-bits model, Section 3 takes a more direct
path, in the form of a reduction from the permutation variant of the pointer-jumping problem in
communication complexity to the permutation-inversion problem.

Another relevant connection is an asymmetric variant of the three-party NOF model, introduced
by Pătraşcu [Păt10], and later denoted by Chattopadhyay et al. [CEEP16] by A→B (B ↔ C). In
this model, the inputs are written on the foreheads of the players as in the standard NOF model.
However, the first player is allowed to send a single “advice” message to the second player, after which
only the second and the third player can communicate bidirectionally. Pătraşcu conjectured a lower
bound for a variant of the set-disjointness problem in this model, and showed that such a lower bound
implies new lower bounds on a plethora of data-structure problems. Chattopadhyay et al. [CEEP16]
later refuted this conjecture, but used the model to prove the non-adaptive data-structure lower
bounds obtained by Brody and Larsen [BL15] via different means.

16

D.2 The function case

One might have hoped for reducing the general (non-permutation) case of multiparty pointer
jumping to the function-inversion problem, and then use a function-inversion algorithm with
preprocessing [Hel80, FN99] to obtain a communication protocol. However, we could not construct
the analogue of Theorem 8 for the function case. The problem is that for the reduction to succeed,
the composition f−1

1 ◦ f−1
2 ◦ · · · ◦ f−1

k−1, rather than fk−1 ◦ fk−2 ◦ · · · ◦ f1, needs to be a function, and
this is not true in the general case (unlike when f1, . . . , fk are all permutations, in which case both
f−1

1 ◦ f−1
2 ◦ · · · ◦ f−1

k−1 and fk−1 ◦ fk−2 ◦ · · · ◦ f1 are permutations).
That said, even the permutation variant is often considered to be the hard case of the pointer-

jumping problem [DJS98, BC08]. In addition, several upper bounds for the permutation case [PRS97,
DJS98, BC08] led to subsequent upper bounds for the unrestricted case [BC08, BS15].

D.3 Omitted proofs from Section 3

Lemma 7 (restated). CC1(MPJperm
N,k) ≤ CC1(M̂PJ

perm

N,k) + dlogNe .

Proof. The first step is to define a permutation πβ : [N]→ [N], for every function β : [N]→ {0, 1}. We
then use this permutation πβ to convert a Boolean-valued pointer-jumping instance (x, π1, . . . , πk−1, β)
to an integer-valued pointer-jumping instance (x, π1, . . . , πk−1, πβ). Solving the integer-valued
instance using a protocol for M̂PJ

perm

N,k is then enough—with a few extra bits of communication—to
solve the Boolean-valued instance of MPJperm

N,k .

Towards constructing πβ, consider first the case when N is a power of two. For N = 2n,
consider the following mapping from {0, 1}N to permutations on {0, 1, . . . , N − 1} = {0, 1}n. On
β : {0, 1}n → {0, 1} we construct a permutation πβ on {0, 1}n as follows: let x ∈ {0, 1}n and let
x = xnxn−1 . . . x1 be the binary representation of x. Set πβ(x) = y = ynyn−1 . . . y1 defined by
yi = β(x|i)⊕ xi ⊕ 1 where x|i = 0 . . . 01xi−1xi−2 . . . x1. The following two properties hold:

• The mapping πβ defined above is a permutation. To see this let x 6= x′ be two distinct elements
in {0, 1}n, and let y = πβ(x) and y′ = πβ(x′). Let i ∈ [n] be the rightmost bit position on which
x and x′ differ. Then xi 6= x′i but x|i = x′|i. Therefore yi = β(x|i)⊕xi⊕1 6= β(x′|i)⊕x′i⊕1 = y′i,
so y 6= y′.

• For any x ∈ {0, 1}n such that x = xn . . . x1 6= 0, let i be the leftmost bit position such that
xi = 1. It then holds that β(x) is equal to the ith bit of πβ(x).

Note that the latter property guarantees that the value of β(x) for every x 6= 0 can be recovered
from a single bit of πβ(x).

For N which is not a power of 2, we can view N as a sum
∑`

j=1 2nj of at most dlogNe powers
of 2, and construct a permutation πβ on {0, . . . , N − 1} = {0, 1}n1 ∪ · · · ∪ {0, 1}n` as a union of
permutations on {0, 1}nj . By the properties above, for all but ` = dlogNe bad points, the value of β
can be recovered from the corresponding value of πβ . Note that the set of bad points depends only
on N and not on β. We give an example of this encoding procedure in Table 2.

Therefore, given a communication protocol for M̂PJ
perm

N,k , we construct a protocol for MPJperm
N,k as

follows. Let β ∈ {0, 1}N be the input (on the forehead) of the last player. Each of the first k − 1
players computes the permutation πβ from β according to the mapping above. The first player also
writes on the blackboard the value of β evaluated on all of the bad points of πβ. The players then
run the protocol for M̂PJ

perm

N,k on the instance (x, π1, . . . , πk−2, πβ).
The last player computes the output of the original protocol πβ ◦ πk−2 ◦ · · · ◦ π1(x) = πβ(x̂) ∈

{0, 1, . . . , N − 1} where x̂ = πk−2 ◦ · · · ◦ π1(x). If x̂ is not a bad point she can recover and output

17

Table 2: Example of the encoding procedure of Lemma 7. N = 23, and β : [N]→ {0, 1}. Note that the last
column is a permutation over the elements of [N]. Also note how β can be recovered from πβ(x) for all x 6= 0.

x β(x) (x|3, x|2, x|1) β(x|3)β(x|2)β(x|1) y = πβ(x)

000 1 (100, 010, 001) 001 100
001 1 (101, 011, 001) 011 101
010 0 (110, 010, 001) 101 000
011 1 (111, 011, 001) 111 011
100 0 (100, 010, 001) 001 010
101 0 (101, 011, 001) 011 001
110 1 (110, 010, 001) 101 100
111 1 (111, 011, 001) 111 111

β ◦ πk−2 ◦ · · · ◦ π1(x) = β(x̂) ∈ {0, 1} from πβ(x̂). Otherwise, if x̂ is a bad point, she outputs the
value β(x̂), which the first player wrote on the blackboard.

The new protocol increases the communication complexity of the original protocol by dlogNe.

Lemma 8 (restated). If there exists a (k − 2)-round adaptive algorithm for inverting permutations
π : [N]→ [N] that uses advice S and time T , then CC1(M̂PJ

perm

N,k) ≤ S + 2T dlogNe.

Proof. Let (A0,A1) be a (k − 2)-round adaptive algorithm for inverting permutations with prepro-
cessing. We give a protocol for M̂PJ

perm

N,k .
• Player P0 runs the preprocessing algorithm A0 on the permutation π−1

1 ◦ · · · ◦ π
−1
k−1 and writes

the advice string on the blackboard.
• Player P1 runs the online inversion algorithm A1 on the input x (written on player P0’s
forehead) using the advice string that has been written on the blackboard, to produce the
first round of queries q1,1, . . . , q1,t1 . For each query q1,`, she computes the partial reply
p1,` = π−1

2 (. . . (π−1
k−1(q1,`)) . . .) and writes it on the blackboard.

• Player Pi, for i ∈ {2, . . . , k − 2}, reads the partial replies pi−1,1, . . . , pi−1,ti−1 written by
the previous player, computes the (complete) query replies ri−1,1, . . . , ri−1,ti−1 by computing
ri−1,` = π−1

1 (. . . (π−1
i−1(pi−1,`)) . . .), and writes them down on the blackboard. Player Pi then

runs (in her head) the first i− 1 rounds of the online inversion algorithm on input x, using
the advice string and the replies to the first i− 1 rounds of queries, all of which, by this time,
have already been written on the blackboard. Player Pi then produces the ith round of queries,
on which, similarly to Player P1, she computes the partial answers and writes them on the
blackboard.

• Player Pk−1 completes the evaluation of round k− 2 of the queries by evaluating the remaining
permutations π−1

1 ◦ · · · ◦ π
−1
k−2 on the partial replies written by Pk−2. Player Pk−1 then runs

in her head all k − 2 rounds of the online inversion algorithm and writes the output on the
blackboard.

By definition, the output y of the algorithm satisfies π−1
1 ◦ · · · ◦ π−1

k−1(y) = x. Since all πi are
permutations, it must hold πk−1 ◦ · · · ◦ π1(x) = y and so y is the correct output for M̂PJ

perm

N,k .
The communication consists of the advice string written by Player P0 as well as a partial reply

and a complete reply for each query, giving a total of S + 2T dlogNe. (The last player writes the
dlogNe-bit output, but does not need to write the response to the T -th query).

18

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

x π1 π2 π3

Figure 3: A pointer-jumping instance for M̂PJ
perm

k=4,N=5 with π1 = (1 2 4 5 3), π2 = (2 3)(4 5), π3 = (2 3 4 5) and
x = 2. Lemma 7 reduces this instance to inverting the permutation π−1

1 π−1
2 π−1

3 = (1 3 5 4) on the point x = 2.

E Background: Cycle walking and Hellman tables

We briefly recall the cycle-walking algorithm for inverting permutations with preprocessing.
This algorithm, which Yao [Yao90a] makes explicit, is implicit in Hellman’s more general algorithm

for inverting random functions with preprocessing [Hel80]. This cycle-walking algorithm also serves
as a building-block for other inversion algorithms [FN99, Oec03].

Theorem 15 (Hellman [Hel80]). There exists a black-box algorithm for inverting permutations
π : [N]→ [N] that, for any S, T ∈ Z>0 satisfying ST ≥ 2NdlogN + 1e, uses T queries and S bits of
advice and is T -round adaptive.

Proof. In the preprocessing phase, consider the cycle structure of the permutation π : [N] → [N]
given by the oracle. There are at most N/(T + 1) cycles of length greater than T . For every such
cycle, store a sequence of “checkpoints” in the order they appear in the cycle, such that every point
on the cycle is at a distance of at most T points on the cycle from the previous checkpoint.

If the ith cycle has length `i, that cycle requires b`i/T c checkpoints to cover its first b`i/T c · T
points and one checkpoint to cover the remaining `i mod T points. In the worst case, all cycles have
length `i = T + 1, in which case we have N/(T + 1) cycles with two checkpoints each. This amounts
to a total of 2N/(T + 1) ≤ 2N/T checkpoints.

We can therefore store the checkpoints as a list of lists using 2NdlogNe/T bits. We add one
additional bit to each checkpoint (i.e., at most 2N/T bits total) to indicate whether the checkpoint
belongs to the same cycle as the prior one.

In the online phase, given a point y ∈ [N] as input and the list of checkpoints as an advice string,
take y0 = y and yi+1 = π(yi) iteratively, until either (i) yi = y, at which point output yi−1 as the
preimage of y, or (ii) yi is one of the stored checkpoints, at which point set yi+1 to be the previous
checkpoint in the list on the same cycle and continue iterating. As each point on the permutation is
either on a cycle of length at most T , or at a distance of at most T from a checkpoint, the total
number of oracle queries in the online phase is at most T .

We can think of this cycle-walking algorithm as dividing each cycle in the permutation π to at
most 2N/T “chains” of length at most T . The online algorithm then traverses one of those chains by
computing iterates of the permutation π.

To see why the cycle-walking algorithm does not apply to general functions: If we view a general
function f : [N] → [N] as a graph Gf on vertices [N] with edges {(i, f(i))}i∈[N], then, because of

19

collisions in the function f , it will almost never be possible to cover the entire graph Gf with O(N/T)
chains each of length T .

Hellman’s algorithm [Hel80] gets around this difficulty by creating many rerandomized versions
g1, g2, . . . of f , and covering part of each graph Gg1 , Gg2 , . . . with chains. By balancing the number
of functions gi, the number of chains per graph, and the length of each chain, Hellman’s algorithm
can invert a constant fraction of points in the image of f . See De, Trevisan, and Tulsiani [DTT10,
Section 2.1] for details.

F Proof of Theorem 9

Theorem 9 (restated). For any integer N ∈ Z>0 and integral constant c > 2, if there is an algorithm
for systematic substring search on texts of length cN · dlogNe with pattern length c · dlogNe that uses
an S-bit index and reads T bits of the text in its online phase, then there is a black-box algorithm for
inverting functions f : [N]→ [N] that uses S bits of advice and makes T online queries.

For any integer N ∈ Z>0, if there is a black-box algorithm for inverting functions f : [2N]→ [2N]
that uses S bits of advice and T queries, then, for any integral constant c > 1, there is an algorithm
for systematic substring search on texts of length N with pattern length c · dlogNe that uses an
Õ(S)-bit index and reads Õ(T) bits of the text in its online phase.

The following lemma proves the first part of the theorem.

Lemma 16. For any integral constant c > 2, If there is an algorithm for systematic substring search
on texts of length cN · dlogNe with pattern length c · dlogNe that uses an S-bit index and reads
T bits of the text in its online phase, then there is a black-box algorithm for inverting functions
f : [N]→ [N] that uses S bits of advice and makes T online queries.

Proof. We prove the lemma for the case when c = 3, but the generalization is immediate. Given
an algorithm (A0,A1) for substring search, we describe the preprocessing algorithm for function
inversion.

• Preprocessing. Let ` = dlogNe. View f as a function that outputs `-bit strings. Construct
a text τ ∈ {0, 1}3N` by writing out the function table of f delimited by strings of zeros and
ones.

τ = 0` ‖ f(1) ‖ 1` ‖ 0` ‖ f(2) ‖ 1` ‖ · · · ‖ 0` ‖ f(N) ‖ 1` ∈ {0, 1}3N`.

Then, run the preprocessing algorithm A0 on τ and return the S-bit index stτ it produces.
• Online. We are given a challenge y ∈ [N] and we must find a value x ∈ [N] such that f(x) = y.
Write the challenge as a pattern py = 0`‖y‖1` ∈ {0, 1}3`. Then, run the substring-search
algorithm A1(stτ , py).
As the algorithm runs, it makes at most T queries for the bits of τ . If the query is to the
constant part of τ , we can respond with a “0” or “1” without making any f queries. Otherwise,
we can respond to A1’s query by making a single query to f .
When the algorithm outputs the position i∗ of the substring, we can uniquely identify the
location of the inverse as i∗/3` ∈ [N].

The claimed efficiency properties follow by construction. We must only show that the constructed
algorithm solves the function-inversion problem.

20

We say that an position i of a symbol in the text τ is on a “block boundary” if i = 0 (mod 3`),
where we count the bits of τ starting from zero. We now claim that every substring of the form
qy = 0`‖y‖1` in τ must begin on block boundary.

To prove the claim: Towards a contradiction, assume that there exists a pattern py ∈ {0, 1}3`
that is a substring of τ but that does not appear on a block boundary. There are three cases:

• 0 < i mod 3` < `: In this case, i points to a substring that ends with a “0”, while qy ends with
a “1,” so the strings cannot match.

• ` ≤ i mod 3` < 2`: If this case, i points to a substring whose 2`-th symbol is a “0,” while qy’s
2`-th character is a “1”, so the strings cannot match.

• 2` ≤ i mod 3` < 3`: In this case, i points to a substring that begins with a “1”, while qy begins
with a “0,” so the strings cannot match.

In all cases, we derive a contradiction, which proves the claim.
If the substring qy appears at position i∗ in τ , then by the claim just proved, it must be that i∗

(mod 3`) = 0. This implies that the middle ` bits of the substring of τ beginning at position i∗ must
be the value f(i∗/3`). Thus, f(i∗/3`) = y and the algorithm successfully inverts f .

The following two lemmata together prove the second part of Theorem 9. We show (roughly) in
Lemma 17 that inverting a length-preserving function f : [2N]→ [2N] is enough to invert a length-
increasing function f : [N]→ [N c]. Then, we show in Lemma 18 that inverting a length-increasing
function f : [N]→ [N c], for constant c > 1 is enough to solve substring search.

Lemma 17. If there is a black-box inversion algorithm for functions f : [2N]→ [2N] that uses S
bits of advice and makes T online queries, then for any integral constant c > 1, there is a a black-box
inversion algorithm for functions f : [N]→ [N c], that uses O(S logN + log2N) bits of advice and
makes O(T logN) online queries.

The idea of the proof of Lemma 17 is that we choose a hash function h : [N c] → [2N] from a
universal family. Then we use our preprocessing algorithm to invert the function h ◦ f .

To sketch why this works: Let y = f(x) be the point that we aim to invert. As long as z = h(y)
has a unique preimage under h, then any inverse of h(f(x)) will also be a preimage of y under f . If
the point h(y) has multiple preimages under h, then this is not so.

However, we can just choose many hash functions h1, . . . , hk and run the preprocessing algorithm
on each. Then, as long as there exists an hi ∈ {h1, . . . , hk} such that hi(y) has a unique preimage
under hi, we will be able to invert. By choosing the number of hash functions k appropriately, we
will invert all points with good probability.

The idea of using “reduction functions” that map a large range into a small domain in this setting
goes back to Hellman [Hel80] and features in the work of Fiat and Naor [FN99] and Oechslin’s
Rainbow tables [Oec03]. As far as we know, the analysis and the application to the setting of
inverting length-increasing functions are new.

Proof. Given an algorithm (A0,A1) for inverting a function from [2N] to [2N], we construct an
algorithm for inverting a function f : [N]→ [N c], for any integral constant c > 1.

Preliminaries. The algorithm makes use of a family H of universal hash functions mapping [N c]
into [2N]. Using the Carter-Wegman construction [CW79], we can evaluate any function h ∈ H in
O(logN) time and we can represent an element h ∈ H using O(logN) bits. We define a “domain-
extended” version of the function f : [N] → [N c] that we wish to invert. The domain-extended
version f̂ maps [2N] to [N c]. We define f̂(x) = f(x) for all x ∈ [N], and f̂(x) = 1 otherwise.

21

We first describe the algorithm as using a randomized preprocessing phase. We then explain how
to derandomize it. The algorithm proceeds as follows:

• Preprocessing. Sample k = 2dlogNe functions h1, . . . , hk independently at random from the
universal hash function family H. For every i ∈ {1, . . . , k}:
– Define a function gi : [2N]→ [2N] as gi = hi ◦ f̂ .
– Run the preprocessing algorithm A0 on gi to get advice string stgi .

As the algorithm’s advice string, output:

– the strings stg1 , . . . , stgk ,
– the short descriptions of the hash functions h1, . . . , hk, and
– a preimage of 1 under f , if one exists.

• Online. We are given as input a point y ∈ Im(f) ⊂ [N c]. If y = 1, output the preimage of 1
hardcoded into the advice string.
Otherwise, for each i ∈ {1, . . . , k}:
– Run the online algorithm xi ← A1(stgi , hi(y)) ∈ [N]. As A1 runs, it makes queries to gi.

We can reply to each query by making at most a single query to f and applying hi to the
output.

– Use a single query to f to test whether f(xi) = y. If so, return xi as the preimage of y
under f .

If the algorithm has not yet found a preimage of x, output the failure symbol ⊥.
By construction, the algorithm satisfies the claimed bounds on advice and time complexity. By

construction, it also always outputs a preimage of y under f . To complete the proof, we need only
show that the failure probability is as claimed.

Towards this goal, say that in the online phase our task is to invert a point y ∈ Im(f). First,
observe that the algorithm trivially inverts the point y = 1, so assume that the input point y 6= 1.
Next, notice that if there exists some function hi ∈ {h1, . . . , hk} such that hi(y) has a unique
preimage under f̂ , then the online algorithm will succeed.

In this case, the algorithm A1(stgi , hi(y)) must output a value x such that gi(x) = hi(y). But,
by definition of gi, this implies that hi(f̂(x)) = hi(y). Since hi(y) only has a single preimage in the
image of f̂ , we know that f̂(x) = y. By construction of f̂ , whenever y 6= 1, all preimages of y under
f̂ are in the range {1, . . . , N}. Furthermore, for every such preimage x0, f(x0) = f̂(x0). Therefore,
the point x that the algorithm outputs is indeed a preimage of y under f .

Thus, our task now is to prove that, with high probability over the random choice of the hash
functions h1, . . . , hk from the universal family H, for every point y ∈ Im(f), there exists a hash
function hi such that hi(y) has a single inverse in the image of f̂ .

Consider one such function hi : [N c]→ [2N]. By definition of universal hashing, for distinct values
y, y′ ∈ [N c], Prhi [hi(y) = hi(y

′)] ≤ 1/(2N). Therefore, by the Union Bound, for every y ∈ Im(f),
the probability (over the choice of hi ∈ H) that hi(y) has more than one preimage in Im(f) under
hi is at most (| Im(f)| − 1)/(2N) ≤ 1/2.

If we sample k hash functions independently from the family H, then for every y ∈ Im(f), the
probability that for every i ∈ [k] the point hi(y) has more than one preimage under hi is at most
1/2k. Then the probability that there exists a point y ∈ Im(f) that does not have a unique preimage
under any of the k functions is, by the Union Bound, at most | Im(f)| · (1/2)k ≤ N · (1/2)k. For
k = 2 logN , this failure probability is at most 1/N .

To get an algorithm that never fails, we can repeat the preprocessing phase with fresh randomness

22

until we find an advice string that inverts all points.

Lemma 18. Let c > 1 be an integral constant. If there is a black-box algorithm for inverting
length-increasing functions f : [N] → [N c] that uses S bits of advice and makes T online queries,
then there is an algorithm for systematic substring search on texts of length N with pattern length
c · dlogNe that uses an S-bit index and reads cT dlogNe bits of the text in its online phase.

Proof. Given an algorithm (A0,A1) for inverting length-increasing functions, we describe the pre-
processing algorithm for systematic substring search. Let ` = dlogNe.

• Preprocessing. We are given a text τ ∈ {0, 1}N to preprocess. Define a function f : [N]→
[N c] such that the value f(i) is equal to the c` bits of the text τ beginning at position i.
For the extremal values i ≥ N c − c`, set f(i) to be some special (c`)-bit string that appears
nowhere in τ . (Such a string is guaranteed to exist, since c > 1.)
Run the preprocessing algorithm A0 on f and output the advice string stf it outputs as the
index.

• Online. We are given a pattern p ∈ {0, 1}c` and we must find a value i ∈ [N] such that the
(c`)-bit substring of τ beginning at position i is equal to s. As A1 runs, it makes queries to f .
We can respond to each query to f using at most c` queries to the text τ .
To do so, run i← A1(stf , q). If 0 ≤ i < (N − c`) output i. Otherwise output “⊥.”

The efficiency and correctness properties follow immediately by construction.

We can now assemble the results of this section to prove Theorem 9:

Proof of Theorem 9. Lemma 16 proves the first part of the theorem.
To prove the second part: Lemma 17 then shows that, for any N ∈ Z≥0, if there is an algorithm

for inverting length-preserving functions f : [2N] → [2N] that uses S bits of advice and makes T
online queries, then for any integral constant c > 1, there is algorithm for inverting length-increasing
functions f ′ : [N]→ [N c], that uses S′ = Õ(S) bits of advice and makes T ′ = Õ(T) online queries.

Then, Lemma 18 shows that if there is an algorithm that inverts such functions f ′ that uses S′

bits of advice and that makes T ′ online queries, then there an algorithm for systematic substring
search on texts of length N with pattern length c · dlogNe that uses an index of size S′ = Õ(S) bits
and that makes Õ(T ′) = Õ(T) online queries.

G Breaking PRGs with preprocessing

De, Trevisan, and Tulsiani [DTT10] introduced the problem of breaking pseudorandom generators
(PRGs) with preprocessing. In that problem, we are given oracle access to a function G : [N]→ [M],
for N < M , that we think of as a “black-box” PRG.

We can then define a black-box PRG distinguisher with preprocessing (A0,A1) as follows: In
the preprocessing phase, the algorithm A0 may make arbitrarily many queries to G and then must
output an S-bit advice string stG. In the online phase, the algorithm A1 takes as input (1) the
advice string stG and (2) a point y ∈ [M], and it must distinguish whether y has been drawn from
the distribution {G(x) | x←R [N]} or the distribution {y | y ←R [M]}. More formally, we define the
distinguishing advantage of a PRG distinguisher with preprocessing (A0,A1) with respect to G as
follows:

PRGadv
[
(A0,A1), G

]
:=

∣∣∣∣ Pr
x←R [N]

[
AG1

(
AG0 (), G(x)

)
= 1
]
− Pr

y←R [M]

[
AG1

(
AG0 (), y

)
= 1
]∣∣∣∣ .

23

De, Trevisan, and Tulsiani [DTT10] and Dodis, Guo, and Katz [DGK17] prove that algorithms
that achieve PRG distinguishing advantage ε, must satisfy ST = Ω̃(ε2N), while the lower bound for
inverting functions with probability ε is ST = Ω̃(εN).

For what range of these parameters can we achieve the PRG lower bound? For sub-constant
advantage ε ≤ 1/

√
N , De, Trevisan, and Tulsiani give a black-box PRG distinguisher with preprocess-

ing that satisfies S = Õ(ε2N) and T = Õ(1). They ask whether there are other distinguishers that
match the lower bound. The following theorem shows that devising, for example, an S = T = Õ(

√
N)

black-box PRG distinguisher with constant distinguishing advantage ε would imply a very powerful
(i.e., better than Hellman) algorithm for inverting one-to-one functions:

Theorem 11 (restated formally). Suppose that there is a black-box PRG distinguisher that uses S bits
of advice, makes T online queries to a PRG G : [N]→ [M], and achieves distinguishing advantage ε.
Then there exists a black-box algorithm that inverts any one-to-one function f : [N] → [M] using
Õ(ε−2S) bits advice, Õ(ε−2T) online queries, and a random oracle, and that inverts f with probability
1− 1/ logN (over the choice of the random oracle). Furthermore, the online phase of the inversion
algorithm makes Õ(ε−2T) queries to the random oracle.

Proof. In the following discussion, assume that N is power of two, and let n = logN . (To handle
the general case, one can, for instance, extend the function domain to the next power of two.) For
every i ∈ [n], and for every z ∈ {0, 1}n let [z]i→1 denote z with its ith bit zi set to 1.

Let (A0,A1) be a distinguisher for any length-increasing generator G : [N] → [M] such that
PRGadv [(A0,A1), G] ≥ ε. We construct an inversion algorithm for one-to-one functions f : [N]→ [M]
in two steps. First, for each i ∈ [n], we construct a bit-recovery algorithm Bi that, given f(x),
achieves a non-trivial advantage in recovering the ith bit of x. We then use the algorithms (B1, . . . ,Bn)
to construct an inversion algorithm I that, given f(x), recovers the full preimage x with good
probability.

To give the intuition behind the bit-recovery algorithm Bi: Given a function f : [N]→ [M] to
invert, we construct a function Gi : [N]→ [M] such that a point y = f(x) is in the image of Gi if
and only if the ith bit of x is 1. Then, we can apply the PRG distinguisher to Gi recover the ith bit
of y’s preimage.

This simple algorithm does not quite work when the PRG distinguisher has small distinguishing
advantage ε, since the distinguisher may fail on the point y. To fix this, we give Bi access to two
random permutations π : [N]→ [N] and σ : [M]→ [M] that allow Bi to essentially randomize the
point it gives as input to the PRG distinguisher.

We then can run Bi many times with different random permutations and then take the majority
vote of the outputs of these runs. This majority vote will yield the ith bit of the x with high
probability. To complete the construction, we instantiate the permutations π and σ using a random
oracle.

We now give the construction of the bit-recovery algorithm Bi, for every i ∈ [n]. Given access to
random permutations π and σ, the algorithm Bi = (Bi0,Bi1) operates as follows:

• Preprocessing.

– Define a function Gi : [N]→ [M] such that Gi(x) = π (f ([σ(x)]i→1)) .

– Run the preprocessing phase for the PRG distinguisher on function Gi to get an advice
string stGi : stGi ← A

Gi
0 ().

• Online.

– On input y ∈ [M], run the online phase for the PRG distinguisher A1(stGi , π(y)).

24

– Answer each of A1’s oracle queries to Gi using oracle access to f , σ, and π.
– Output the bit bi that A1 outputs.

Claim 19. For every one-to-one function f : [N]→ [M], every x ∈ [N], and every i ∈ [n],

Pr
π,σ

[
Bf,π,σi1

(
Bf,π,σi0 (), f(x)

)
= xi

]
≥ 1/2 + Ω(ε) ,

where xi denotes the ith bit of x.

Proof. Algorithm Bi1, on input y, runs A on the point π(y), thus

Pr
π,σ

[
Bf,π,σi1

(
Bf,π,σi0 (), f(x)

)
= 1
]

= Pr
π,σ

[
AGi

1

(
AGi

0 (), π(f(x))
)

= 1
]
.

Since A distinguishes the output of any length-increasing PRG from random with advantage ε,
we may assume without the loss of generality that

Pr
x←R [N]

[
AGi

1 (AGi
0 , Gi(x)) = 1

]
≥ 1/2 + Ω(ε) , (1)

and

Pr
y←R [M]

[
AGi

1 (AGi
0 , y) = 0

]
≥ 1/2 + Ω(ε) . (2)

Consider now each of the two possible values of the bit xi.
If xi = 1, let z = σ−1(x) and note that π (f(x)) = π (f([x]i→1)) = π (f ([σ(z)]i→1)) = Gi(z).

Since σ is a random permutation, then z = σ−1(x) is a random point in [N], and, since f is one-to-one
and π is a random permutation, the PRG Gi = π ◦ f ◦ []i→1 ◦ σ is a random two-to-one function.
Moreover, since π is independent of σ, then, even when we condition on z = σ−1(x), Gi is still a
uniformly random two-to-one function. Hence z and Gi are independent, and

Pr
π,σ

[
AGi

1

(
AGi

0 (), π(f(x))
)

= 1
]

= Pr
Gi

z←R [N]

[
AGi

1

(
AGi

0 (), Gi(z)
)

= 1
]
≥ 1/2 + Ω(ε) , (3)

where the inequality follows from (1).

If xi = 0, then x is not in the image of []i→1 ◦ σ, and thus π(f(x)) is a random point in
[M] \ Im(Gi). Similarly to the argument above, we can show that this point is also independent of
Gi, and thus

Pr
π,σ

[
AGi

1

(
AGi

0 (), π(f(x))
)

= 1
]

= Pr
Gi

w←R [M]\Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]
.

The final step is to show that, in the xi = 0 case, even though we run the PRG distinguisher A
on samples from the uniform distribution over [M] \ Im(Gi) instead of over [M], A still achieves
good distinguishing advantage.

We can think of the uniform distribution over [M] as a weighted sum of the distributions over
Im(Gi) and [M] \ Im(Gi). Moreover, since Gi is a two-to-one function. Then the weight on Im(Gi)
is N/2M and the weight on [M] \ Im(Gi) is (M −N/2)/M . Therefore

Pr
Gi

w←R [M]\Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]

= M
M−N/2 · Pr

Gi
w←R [M]

[
AGi

1

(
AGi

0 (), w
)

= 0
]

− N/2
M−N/2 · Pr

Gi
w←R Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]
.

(4)

25

Since Gi is a two-to-one function, the the distributions {w ←R Im(Gi)} and {w = Gi(x) : x←R [N]}
are identical. Substituting the latter for the former in Eq. (4), we get

Pr
Gi

w←R [M]\Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]

= M
M−N/2 · Pr

Gi
y←R [M]

[
AGi

1

(
AGi

0 (), y
)

= 0
]

− N/2
M−N/2 · Pr

Gi
x←R [N]

[
AGi

1

(
AGi

0 (), Gi(x))
)

= 0
]
.

(5)

Plugging in Inequalities (1) and (2) into Eq. (5), we obtain

Pr
Gi

w←R [M]\Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]
≥ M

M−N/2 · (1/2 + Ω(ε))− N/2
M−N/2 · (1/2− Ω(ε)) ≥ 1/2 + Ω(ε) .

(6)

The claim follows from (3) and (6).

We can now use the algorithms (B1, . . . ,Bn) to construct an inversion algorithm I, that makes
use of a random oracle O. The inverter uses a parameter k, which we choose later, and operates as
follows:

• Preprocessing.
For j ∈ {1, . . . , k}:
– Derive from the random oracle O two random permutations πj and σj using standard

techniques [CPS08].

– For each i ∈ {1, . . . , n}, generate an advice string: stij ← B
f,πj ,σj
i0 ().

Finally, output the nk advice strings {stij}i∈[n],j∈[k].
• Online.

For j ∈ {1, . . . , k}:
– Derive from the random oracle O two random permutations πj and σj .
– For each i ∈ {1, . . . , n}, compute a guess of the ith bit of the preimage of y under f :
bij ← B

f,πj ,σj
i1 (stij , y). Since f is one-to-one, there is exactly one such preimage.

– Let b̂i ∈ {0, 1} be the majority vote of the bits {b1j , . . . , bnj}.
Finally, output x̂ = b̂1b̂2 . . . b̂n ∈ {0, 1}n.

Claim 20. For every one-to-one function f : [N]→ [M] and every x ∈ [N],

Pr
O

[
If,O1 (If,O0 (), f(x)) = x

]
≥ 1− 1/ logN.

Proof. Since algorithm B correctly guesses the ith bit of x with probability 1/2 + Ω(ε), we have

Pr
πij ,σij

[bij = xi] ≥ 1/2 + Ω(ε) .

Since the permutations {πj , σj}j∈[k] are sampled independently from the random oracle, using a
standard Chernoff bound we get

Pr
O

[b̂i 6= xi] ≤ e−Ω(ε2k) .

Therefore setting k = O(ε−2 log n) = O(ε−2 log logN) we get

Pr
O

[b̂i 6= xi] ≤ 1/n2 .

26

Taking the union bound over all i ∈ [n] we get

Pr
O

[x̂ 6= x] ≤ 1/n = 1/dlogNe .

The resulting inverter succeeds with probability 1− 1/ logN . Furthermore if algorithm A uses
an advice string of length S and makes T online queries, then the inverter uses an advice string of
length kn · S = O(ε−2S logN log logN) and makes kn · T = O(ε−2S logN log logN) online queries
to f .

Moreover, constructing a random permutation from a random oracle requires only a constant
number of queries to the random oracle for each evaluation of the random permutation [CPS08],
therefore the number of online queries to the random oracle is also O(ε−2S logN log logN).

The last proof can also be adapted to the setting in which the given distinguisher only inverts a
random PRG. Moreover, as a random function f : [N]→ [M] with M > Ω(N2) is one-to-one with
high probability, a similar argument shows that a distinguisher for random PRGs can also be used
to invert random functions whose co-domain is sufficiently larger than their domain.

References

[AACKPR17] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and
Leonid Reyzin. “Beyond Hellman’s Time-Memory Trade-Offs with Applications to
Proofs of Space”. In: ASIACRYPT 2017. doi: 10.1007/978-3-319-70697-9_13.
Available at Cryptology ePrint Archive, Report 2017/893.

[BHK01] László Babai, Thomas P. Hayes, and Peter G. Kimmel. “The Cost of the Missing Bit:
Communication Complexity with Help”. In: Combinatorica 21.4 (2001), pp. 455–488.
doi: 10.1007/s004930100009.

[BHMS11] Jérémy Barbay, Meng He, J. Ian Munro, and Srinivasa Rao Satti. “Succinct Indexes
for Strings, Binary Relations and Multilabeled Trees”. In: ACM Transactions on
Algorithms 7.4 (2011), 52:1–52:27. doi: 10.1145/2000807.2000820.

[BBS06] Elad Barkan, Eli Biham, and Adi Shamir. “Rigorous Bounds on Cryptanalytic
Time/Memory Tradeoffs”. In: CRYPTO 2006. doi: 10.1007/11818175_1.

[BT94] Richard Beigel and Jun Tarui. “On ACC”. In: Computational Complexity 4 (1994),
pp. 350–366. doi: 10.1007/BF01263423.

[BS00] Alex Biryukov and Adi Shamir. “Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers”. In: ASIACRYPT 2000. doi: 10.1007/3-540-44448-3_1.

[BSW00] Alex Biryukov, Adi Shamir, and David A. Wagner. “Real Time Cryptanalysis of
A5/1 on a PC”. In: FSE 2000. doi: 10.1007/3-540-44706-7_1.

[BN16] Elette Boyle and Moni Naor. “Is There an Oblivious RAM Lower Bound?” In:
ITCS 2016. doi: 10.1145/2840728.2840761. Available at Electronic Colloquium on
Computational Complexity, Report 2015/146.

[Bro09] Joshua Brody. “The Maximum Communication Complexity of Multi-party Pointer
Jumping”. In: CCC 2009. doi: 10 .1109/CCC.2009.30. Available at Electronic
Colloquium on Computational Complexity, Report 2009/017.

[BC08] Joshua Brody and Amit Chakrabarti. “Sublinear Communication Protocols for
Multi-party Pointer Jumping and a Related Lower Bound”. In: STACS 2008. doi:
10.4230/LIPIcs.STACS.2008.1341. arXiv: 0802.2843.

27

https://doi.org/10.1007/978-3-319-70697-9_13
https://eprint.iacr.org/2017/893
https://doi.org/10.1007/s004930100009
https://doi.org/10.1145/2000807.2000820
https://doi.org/10.1007/11818175_1
https://doi.org/10.1007/BF01263423
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1145/2840728.2840761
https://eccc.weizmann.ac.il/report/2015/146
https://doi.org/10.1109/CCC.2009.30
https://eccc.weizmann.ac.il/report/2009/017
https://doi.org/10.4230/LIPIcs.STACS.2008.1341
https://arxiv.org/abs/0802.2843

[BL15] Joshua Brody and Kasper Green Larsen. “Adapt or Die: Polynomial Lower Bounds
for Non-Adaptive Dynamic Data Structures”. In: Theory of Computing 11.19 (2015),
pp. 471–489. doi: 10.4086/toc.2015.v011a019.

[BS15] Joshua Brody and Mario Sanchez. “Dependent Random Graphs and Multi-Party
Pointer Jumping”. In: APPROX/RANDOM 2015. doi: 10.4230/LIPIcs.APPROX-
RANDOM.2015.606.

[CW79] Larry Carter and Mark N. Wegman. “Universal Classes of Hash Functions”. In:
Journal of Computer and System Sciences 18.2 (1979), pp. 143–154. doi: 10.1016/
0022-0000(79)90044-8.

[CFL83] Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. “Multi-Party Protocols”.
In: STOC 1983. doi: 10.1145/800061.808737.

[CEEP16] Arkadev Chattopadhyay, Jeff Edmonds, Faith Ellen, and Toniann Pitassi. “Upper
and Lower Bounds on the Power of Advice”. In: SIAM Journal on Computing 45.4
(2016), pp. 1412–1432. doi: 10.1137/15M1031862.

[Che11] Dmitriy Yu. Cherukhin. “Lower bounds for the complexity of Boolean circuits of
finite depth with arbitrary elements”. In: Discrete Mathematics and Applications 23.4
(2011), pp. 39–47. doi: 10.1515/dma.2011.031. Available at Electronic Colloquium
on Computational Complexity, Report 2008/032.

[CM96] David R. Clark and J. Ian Munro. “Efficient Suffix Trees on Secondary Storage”. In:
SODA 1996.

[CDG18] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. “Non-Uniform Bounds in the
Random-Permutation, Ideal-Cipher, and Generic-Group Models”. In: CRYPTO 2018.
doi: 10.1007/978-3-319-96884-1_23. Available at Cryptology ePrint Archive, Report
2018/226.

[CDGS18] Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John P. Steinberger. “Random
Oracles and Non-uniformity”. In: EUROCRYPT 2018. doi: 10.1007/978-3-319-
78381-9_9. Available at Cryptology ePrint Archive, Report 2017/937.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. “The Random Oracle
Model and the Ideal Cipher Model Are Equivalent”. In: CRYPTO 2008. doi: 10.1007/
978-3-540-85174-5_1. Available at Cryptology ePrint Archive, Report 2008/246.

[DJS98] Carsten Damm, Stasys Jukna, and Jiří Sgall. “Some Bounds on Multiparty Commu-
nication Complexity of Pointer Jumping”. In: Computational Complexity 7.2 (1998),
pp. 109–127. doi: 10.1007/PL00001595.

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. “Time Space Tradeoffs for Attacks
against One-Way Functions and PRGs”. In: CRYPTO 2010. doi: 10.1007/978-3-
642-14623-7_35. Available at Electronic Colloquium on Computational Complexity,
Report 2009/113.

[DLO03] Erik D. Demaine and Alejandro López-Ortiz. “A linear lower bound on index size for
text retrieval”. In: Journal of Algorithms 48.1 (2003), pp. 2–15. doi: 10.1016/S0196-
6774(03)00043-9.

[DGK17] Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. “Fixing Cracks in the Concrete:
Random Oracles with Auxiliary Input, Revisited”. In: EUROCRYPT 2017. doi:
10.1007/978-3-319-56614-6_16.

28

https://doi.org/10.4086/toc.2015.v011a019
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.606
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.606
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1145/800061.808737
https://doi.org/10.1137/15M1031862
https://doi.org/10.1515/dma.2011.031
https://eccc.weizmann.ac.il/report/2008/032
https://doi.org/10.1007/978-3-319-96884-1_23
https://eprint.iacr.org/2018/226
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78381-9_9
https://eprint.iacr.org/2017/937
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://eprint.iacr.org/2008/246
https://doi.org/10.1007/PL00001595
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-642-14623-7_35
https://eccc.weizmann.ac.il/report/2009/113
https://doi.org/10.1016/S0196-6774(03)00043-9
https://doi.org/10.1016/S0196-6774(03)00043-9
https://doi.org/10.1007/978-3-319-56614-6_16

[Dru12] Andrew Drucker. “Limitations of Lower-Bound Methods for the Wire Complexity
of Boolean Operators”. In: CCC 2012. doi: 10.1109/CCC.2012.39. Available at
Electronic Colloquium on Computational Complexity, Report 2011/125.

[FN91] Amos Fiat and Moni Naor. “Rigorous Time/Space Tradeoffs for Inverting Functions”.
In: STOC 1991. doi: 10.1145/103418.103473.

[FN99] Amos Fiat and Moni Naor. “Rigorous Time/Space Trade-Offs for Inverting Func-
tions”. In: SIAM Journal on Computing 29.3 (1999), pp. 790–803. doi: 10.1137/
S0097539795280512.

[GM03] Anna Gál and Peter Bro Miltersen. “The cell probe complexity of succinct data
structures”. In: ICALP 2003. doi: 10.1007/3-540-45061-0_28.

[GM07] Anna Gál and Peter Bro Miltersen. “The cell probe complexity of succinct data
structures”. In: Theoretical Computer Science 379.3 (2007), pp. 405–417. doi: 10.
1016/j.tcs.2007.02.047.

[GRR06] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. “Succinct Ordinal Trees
with Level-Ancestor Queries”. In: ACM Transactions on Algorithms 2.4 (2006),
pp. 510–534. doi: 10.1145/1198513.1198516.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. “Bounds on the
Efficiency of Generic Cryptographic Constructions”. In: SIAM Journal on Computing
35.1 (2005), pp. 217–246. doi: 10.1137/S0097539704443276.

[GT00] Rosario Gennaro and Luca Trevisan. “Lower Bounds on the Efficiency of Generic
Cryptographic Constructions”. In: FOCS 2000. doi: 10.1109/SFCS.2000.892119.
Available at Cryptology ePrint Archive, Report 2000/017.

[Gol87] Oded Goldreich. “Towards a Theory of Software Protection and Simulation by
Oblivious RAMs”. In: STOC 1987. doi: 10.1145/28395.28416.

[GO96] Oded Goldreich and Rafail Ostrovsky. “Software Protection and Simulation on
Oblivious RAMs”. In: Journal of the ACM 43.3 (1996), pp. 431–473. doi: 10.1145/
233551.233553.

[Gol07] Alexander Golynski. Stronger lower bounds for text searching and polynomial evalua-
tion. Tech. rep. CS-2007-25. University of Waterloo, Cheriton School of Computer
Science, 2007. url: https://cs.uwaterloo.ca/research/tr/2007/CS-2007-25.pdf.

[Gol09] Alexander Golynski. “Cell Probe Lower Bounds For Succinct Data Structures”. In:
SODA 2009. doi: 10.1137/1.9781611973068.69.

[GS05] Navin Goyal and Michael Saks. “A Parallel Search Game”. In: Random Structures &
Algorithms 27.2 (2005), pp. 227–234. doi: 10.1002/rsa.20068.

[GOR10] Roberto Grossi, Alessio Orlandi, and Rajeev Raman. “Optimal Trade-Offs for Succinct
String Indexes”. In: ICALP 2010. doi: 10.1007/978-3-642-14165-2_57. arXiv:
1006.5354.

[HMS12] Meng He, J. Ian Munro, and Srinivasa Rao Satti. “Succinct ordinal trees based on
tree covering”. In: ACM Transactions on Algorithms 8.4 (2012), 42:1–42:32. doi:
10.1145/2344422.2344432.

[Hel80] Martin Hellman. “A Cryptanalytic Time-Memory Trade-Off”. In: IEEE Transactions
on Information Theory 26.4 (1980), pp. 401–406. doi: 10.1109/TIT.1980.1056220.

29

https://doi.org/10.1109/CCC.2012.39
https://eccc.weizmann.ac.il/report/2011/125
https://doi.org/10.1145/103418.103473
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.1007/3-540-45061-0_28
https://doi.org/10.1016/j.tcs.2007.02.047
https://doi.org/10.1016/j.tcs.2007.02.047
https://doi.org/10.1145/1198513.1198516
https://doi.org/10.1137/S0097539704443276
https://doi.org/10.1109/SFCS.2000.892119
https://eprint.iacr.org/2000/017
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://cs.uwaterloo.ca/research/tr/2007/CS-2007-25.pdf
https://doi.org/10.1137/1.9781611973068.69
https://doi.org/10.1002/rsa.20068
https://doi.org/10.1007/978-3-642-14165-2_57
https://arxiv.org/abs/1006.5354
https://doi.org/10.1145/2344422.2344432
https://doi.org/10.1109/TIT.1980.1056220

[HG91] Johan Håstad and Mikael Goldmann. “On the Power of Small-Depth Threshold
Circuits”. In: Computational Complexity 1 (1991), pp. 113–129. doi: 10 . 1007/
BF01272517.

[Jac89] Guy Jacobson. “Space-efficient Static Trees and Graphs”. In: FOCS 1989. doi:
10.1109/SFCS.1989.63533.

[Juk12] Stasys Jukna. In: Boolean Function Complexity. Advances and Frontiers. Algorithms
and Combinatorics 27. 2012. doi: 10.1007/978-3-642-24508-4.

[JS11] Stasys Jukna and Georg Schnitger. “Min-rank conjecture for log-depth circuits”.
In: Journal of Computer and System Sciences 77.6 (2011), pp. 1023–1038. doi:
10.1016/j.jcss.2009.09.003. arXiv: 1005.1009.

[LN18] Kasper Green Larsen and Jesper Buus Nielsen. “Yes, There is an Oblivious RAM
Lower Bound!” In: CRYPTO 2018. doi: 10.1007/978-3-319-96881-0_18. Available
at Cryptology ePrint Archive, Report 2018/423.

[Lia14] Hongyu Liang. “Optimal Collapsing Protocol for Multiparty Pointer Jumping”. In:
Theory of Computing Systems 54.1 (2014), pp. 13–23. doi: 10.1007/s00224-013-9476-
x.

[Mil95] Peter Bro Miltersen. “On the cell probe complexity of polynomial evaluation”. In:
Theoretical Computer Science 143.1 (1995), pp. 167–174. doi: 10.1016/0304-3975(95)
80032-5.

[MRRR12] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. “Succinct
representations of permutations and functions”. In: Theoretical Computer Science
438 (2012), pp. 74–88. doi: 10.1016/j.tcs.2012.03.005.

[NS05] Arvind Narayanan and Vitaly Shmatikov. “Fast dictionary attacks on passwords
using time-space tradeoff”. In: CCS 2005. doi: 10.1145/1102120.1102168.

[NABT15] Aran Nayebi, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. “Quantum
Lower Bound for Inverting a Permutation with Advice”. In: Quantum Information &
Computation 15.11-12 (2015), pp. 901–913. arXiv: 1408.3193.

[Oec03] Philippe Oechslin. “Making a Faster Cryptanalytic Time-Memory Trade-Off”. In:
CRYPTO 2003. doi: 10.1007/978-3-540-45146-4_36.

[Ost90] Rafail Ostrovsky. “Efficient Computation on Oblivious RAMs”. In: STOC 1990. doi:
10.1145/100216.100289.

[Păt10] Mihai Pătraşcu. “Towards polynomial lower bounds for dynamic problems”. In: STOC
2010. doi: 10.1145/1806689.1806772.

[PRS97] Pavel Pudlák, Vojtech Rödl, and Jiří Sgall. “Boolean circuits, tensor ranks, and
communication complexity”. In: SIAM Journal on Computing 26.3 (1997), pp. 605–
633. doi: 10.1137/S0097539794264809.

[SG06] Kunihiko Sadakane and Roberto Grossi. “Squeezing succinct data structures into
entropy bounds”. In: SODA 2006. doi: 10.1145/1109557.1109693.

[Unr07] Dominique Unruh. “Random Oracles and Auxiliary Input”. In: CRYPTO 2007. doi:
10.1007/978-3-540-74143-5_12. Available at Cryptology ePrint Archive, Report
2007/168.

[Val77] Leslie G. Valiant. “Graph-theoretic arguments in low-level complexity”. In: MFCS
1977. doi: 10.1007/3-540-08353-7_135.

30

https://doi.org/10.1007/BF01272517
https://doi.org/10.1007/BF01272517
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1016/j.jcss.2009.09.003
https://arxiv.org/abs/1005.1009
https://doi.org/10.1007/978-3-319-96881-0_18
https://eprint.iacr.org/2018/423
https://doi.org/10.1007/s00224-013-9476-x
https://doi.org/10.1007/s00224-013-9476-x
https://doi.org/10.1016/0304-3975(95)80032-5
https://doi.org/10.1016/0304-3975(95)80032-5
https://doi.org/10.1016/j.tcs.2012.03.005
https://doi.org/10.1145/1102120.1102168
https://arxiv.org/abs/1408.3193
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1145/100216.100289
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1137/S0097539794264809
https://doi.org/10.1145/1109557.1109693
https://doi.org/10.1007/978-3-540-74143-5_12
https://eprint.iacr.org/2007/168
https://doi.org/10.1007/3-540-08353-7_135

[Val92] Leslie G. Valiant. “Why is Boolean Complexity Theory Difficult”. In: Boolean Function
Complexity. London Mathematical Society Lecture Note Series 169. 1992, pp. 84–94.
doi: 10.1017/cbo9780511526633.008.

[Vio09] Emanuele Viola. “On the Power of Small-Depth Computation”. In: Foundations
and Trends in Theoretical Computer Science 5.1 (2009), pp. 1–72. doi: 10.1561/
0400000033.

[VW09] Emanuele Viola and Avi Wigderson. “One-way multiparty communication lower
bound for pointer jumping with applications”. In: Combinatorica 29.6 (2009), pp. 719–
743. doi: 10.1007/s00493-009-2667-z.

[Wee05] Hoeteck Wee. “On Obfuscating Point Functions”. In: STOC 2005. doi: 10.1145/
1060590.1060669. Available at Cryptology ePrint Archive, Report 2005/001.

[WW18] Mor Weiss and Daniel Wichs. Is there an Oblivious RAM Lower Bound for Online
Reads? Cryptology ePrint Archive, Report 2018/619. 2018.

[Wig96] Avi Wigderson. unpublished. 1996.

[Yao81] Andrew Chi-Chih Yao. “Should Tables Be Sorted?” In: Journal of the ACM 28.3
(1981), pp. 615–628. doi: 10.1145/322261.322274.

[Yao90a] Andrew Chi-Chih Yao. “Coherent Functions and Program Checkers (Extended
Abstract)”. In: STOC 1990. doi: 10.1145/100216.100226.

[Yao90b] Andrew Chi-Chih Yao. “On ACC and Threshold Circuits”. In: FOCS 1990. doi:
10.1109/FSCS.1990.89583.

31
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1017/cbo9780511526633.008
https://doi.org/10.1561/0400000033
https://doi.org/10.1561/0400000033
https://doi.org/10.1007/s00493-009-2667-z
https://doi.org/10.1145/1060590.1060669
https://doi.org/10.1145/1060590.1060669
https://eprint.iacr.org/2005/001
https://ia.cr/2018/619
https://doi.org/10.1145/322261.322274
https://doi.org/10.1145/100216.100226
https://doi.org/10.1109/FSCS.1990.89583

