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Abstract. The task of function inversion is central to cryptanalysis:
breaking block ciphers, forging signatures, and cracking password hashes
are all special cases of the function-inversion problem. In 1980, Hellman
showed that it is possible to invert a random function f : [N ] → [N ] in
time T = Õ(N2/3) given only S = Õ(N2/3) bits of precomputed advice
about f . Hellman’s algorithm is the basis for the popular “Rainbow Tables”
technique (Oechslin, 2003), which achieves the same asymptotic cost and
is widely used in practical cryptanalysis.

Is Hellman’s method the best possible algorithm for inverting functions
with preprocessed advice? The best known lower bound, due to Yao (1990),
shows that ST = Ω̃(N), which still admits the possibility of an S = T =

Õ(N1/2) attack. There remains a long-standing and vexing gap between
Hellman’s N2/3 upper bound and Yao’s N1/2 lower bound. Understanding
the feasibility of an S = T = N1/2 algorithm is cryptanalytically relevant
since such an algorithm could perform a key-recovery attack on AES-128
in time 264 using a precomputed table of size 264.

For the past 29 years, there has been no progress either in improving
Hellman’s algorithm or in strengthening Yao’s lower bound. In this work,
we connect function inversion to problems in other areas of theory to
(1) explain why progress may be difficult and (2) explore possible ways
forward.

Our results are as follows:
– We show that any improvement on Yao’s lower bound on function-

inversion algorithms will imply new lower bounds on depth-two
circuits with arbitrary gates. Further, we show that proving strong
lower bounds on non-adaptive function-inversion algorithms would
imply breakthrough circuit lower bounds on linear-size log-depth
circuits.

– We take first steps towards the study of the injective function-
inversion problem, which has manifold cryptographic applications. In
particular, we show that improved algorithms for breaking PRGs with
preprocessing would give improved algorithms for inverting injective
functions with preprocessing.

– Finally, we show that function inversion is closely related to well-
studied problems in communication complexity and data structures.
Through these connections we immediately obtain the best known
algorithms for problems in these domains.
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1 Introduction

A central task in cryptanalysis is that of function inversion. That is, given a
function f : [N ] → [N ] and a point y ∈ [N ], find a value x ∈ [N ] such that
f(x) = y, if one exists. The hardness of function inversion underpins the security
of almost every cryptographic primitive we use in practice: block ciphers, hash
functions, digital signatures, and so on. Understanding the exact complexity of
function inversion is thus critical for assessing the security of our most important
cryptosystems.

We are particularly interested in function-inversion algorithms that only make
black-box use of the function f—or formally, that have only oracle access to
f—since these algorithms invert all functions. A straightforward argument shows
that any black-box inversion algorithm that makes at most T queries to its
f -oracle succeeds with probability at most O(T/N), over the randomness of the
adversary and the random choice of the function. This argument suggests that
an attacker running in o(N) time cannot invert a black-box function on domain
[N ] with good probability.

When the inversion algorithm may use preprocessing, this logic breaks down.
An algorithm with preprocessing runs in two phases: In the preprocessing phase,
the algorithm repeatedly queries f and then outputs an “advice string” about f .
In the subsequent online phase, the algorithm takes as input its preprocessed
advice string and a challenge point y ∈ [N ]. It must then produce a value x ∈ [N ]
such that f(x) = y. When using these algorithms for cryptanalysis, the attacker
typically seeks to jointly minimize the bit-length S of the advice string and the
running time T of the online algorithm. The computation required to construct
the advice string, though usually expensive, can often be amortized over a large
number of online inversions.

A trivial preprocessing algorithm stores a table of f−1 in its entirety as
its advice string using S = Õ(N) bits and can then invert the function on all
points using a single lookup into the table. In contrast, constructing algorithms
that simultaneously achieve sublinear advice and online time S = T = o(N) is
non-trivial.

In a seminal paper, Hellman [48] introduced time-space tradeoffs as a tool
for cryptanalysis and gave a black-box preprocessing algorithm that inverts
a function f : [N ] → [N ] using only S = Õ(N2/3) bits of advice and online
time T = Õ(N2/3), where the algorithm is guaranteed to succeed only on a
constant fraction of functions. (More precisely, the algorithm has a constant
success probability over the uniformly random choice of the function f .) Fiat and
Naor [29, 30] later gave a rigorous analysis of Hellman’s algorithm and extended
it to invert all possible functions, albeit with a slightly worse trade-off of the
form S3T = Õ(N3) for any choice of N3/4 ≤ S ≤ N . Hellman’s trade-off is
the best known today, and his algorithm is a fundamental tool in real-world
cryptanalysis [7, 8, 61,63].

In this work, we investigate the following question:

Is it possible to improve upon Hellman’s time-space trade-off?
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Yao first asked this question in 1990 [79] and proved that any preprocessing
algorithm for function inversion that uses S bits of advice and T online queries
must satisfy ST = Ω̃(N). (Counting only queries—and not online computation—
only strengthens lower bounds in this model.) Notably, this lower bound does not
rule out an algorithm that achieves S = T = Õ(N1/2). In contrast, Hellman’s
algorithm only gives an upper bound of S = T = Õ(N2/3), even for the slightly
easier case of inverting a random function. The question resurfaces in the work
of Fiat and Naor [30], Barkan, Biham, and Shamir [5] (who show that Hellman’s
method is optimal for a certain natural but restricted class of algorithms), De,
Trevisan and Tulsiani [23], and Abusalah et al. [1].

In addition to the problem’s theoretical appeal, determining the best possible
time-space trade-offs for function inversion is relevant to practice, since the differ-
ence between an online attack time of N2/3 and an N1/2 becomes crucial when
dealing with 128-bit block ciphers, such as the ubiquitous AES-128. Hellman’s
algorithm gives the best known preprocessing attack against AES-128, with
S = T ≈ 286. If we could improve Hellman’s algorithm to achieve S = T = N1/2,
matching Yao’s lower bound, we could break AES-128 in time 264 with a data
structure of size 264, albeit after an expensive preprocessing phase. While today’s
S = T = 286 attack is likely far beyond the power of any realistic adversary, an
improved S = T = 264 attack would leave us with an alarmingly narrow security
margin.

Recent work proves new lower bounds on preprocessing algorithms for various
cryptographic problems, using both incompressibility arguments [1, 25,34] and
the newer presampling method [20,67]. While this progress might give hope for an
improved lower bound for function inversion as well, both techniques mysteriously
fail to break the ST = Ω̃(N) barrier.

Non-adaptive algorithms. Another avenue for study is to explore the role
of parallelism or adaptivity in preprocessing algorithms for function inversion.
All non-trivial algorithms for function inversion, including Hellman’s algorithm
and Rainbow-table methods [63], critically use the adaptivity of their queries.
It would be very interesting to construct a highly parallelizable preprocessing
algorithm for function inversion. Such an algorithm would achieve the same
advice and time complexity S = T = Õ(N2/3) as Hellman’s algorithm, but
would make all Õ(N2/3) of its queries to the f -oracle in one non-adaptive batch.
Such a non-adaptive inversion algorithm could speed up function inversion on
cryptanalytic machines with a very large number of parallel processing cores.

We do not even know if there exists a non-adaptive algorithm with S =
T = o(N). Can we find new non-adaptive inversion algorithms, or is adaptivity
necessary for good time-space trade-offs? Proving lower bounds in this more
restricted model could be a stepping stone to improving the general lower bounds
on function inversion.
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1.1 Our results

This work establishes new connections between the function-inversion problem and
well-studied problems in cryptography, complexity theory, and data structures.
These connections are useful in two directions.

First, they shed new light on the function-inversion problem: a connection
to circuit complexity suggests that improving on the known lower bounds for
function-inversion will be difficult. In particular, we show that new lower bounds
for function inversion will imply new circuit lower bounds and could even resolve
complexity-theoretic questions that predate Hellman’s results [68]. Moreover, a
new connection to the problem of breaking PRGs with preprocessing suggests
a new avenue for better inversion algorithms for injective functions. For many
of the cryptanalytic applications, progress on this variant of function inversion
would in fact be sufficient.

Second, these connections, together with classic cryptanalytic algorithms, give
rise to better algorithms for problems in the other areas of theory. For example,
a connection to communication complexity leads to the best known algorithm for
the multiparty pointer-jumping problem, improving upon a twenty-year-old upper
bound [65]. Similarly, a connection to data structures leads to a new upper bound
for the systematic substring-search problem, resolving an open question [31].

We now state our results in detail.

Proving better lower bounds for function-inversion implies new circuit
lower bounds. A major question in circuit complexity, open since the 1970s [68,
69], is to give an explicit family of functions Fn: {0, 1}n → {0, 1}n that cannot
be computed by fan-in-two circuits of size O(n) and depth O(log n). Following
ideas of Brody and Larsen [13], we demonstrate a close connection between this
classic problem in circuit complexity and non-adaptive preprocessing algorithms
for function inversion.

Specifically, we show that proving that every non-adaptive black-box function-
inversion algorithm that uses S = N logN/log logN bits of advice requires at
least T = Ω(N ε) oracle queries, for some constant ε > 0, would give an explicit
family of functions that cannot be computed by linear-size log-depth Boolean
circuits. This, in turn, would resolve a long-standing open problem in circuit
complexity. Though we cannot prove it, we suspect that the above lower bound
holds even for ε = 1.

This connection implies that proving lower bounds against non-adaptive
function-inversion algorithms that use the relatively large amount of advice
S = N logN/log logN should be quite difficult. A much more modest goal would
be to rule out any non-adaptive algorithm using S = T = Õ(N1/2+ε), for some
ε > 0. This would represent only a slight strengthening of Yao’s ST = Ω̃(N)
bound for adaptive algorithms. However, we show that achieving even this far-
more-modest goal would improve the best known lower bound for circuits in
Valiant’s common-bits model [68,69]. This, in turn, would represent substantial
progress towards proving lower bounds against linear-size log-depth circuits.
In particular, since any lower bound against algorithms without a restriction
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on adaptivity would only be more general, improving the ST = Ω̃(N) lower
bound for function inversion would imply new circuit lower bounds in Valiant’s
common-bits model.

We believe that the difficulty of proving such a circuit lower bound suggests
that beating the square-root barrier exhibited by both the compression [35,79]
and presampling [20,67] techniques might prove more difficult than previously
expected.

One-to-one function inversion from PRG distinguishers. Many cryptan-
alytic applications of Hellman tables (cryptanalysis of block ciphers, password
cracking, etc.) only require inverting injective functions. Does there exist a better-
than-Hellman algorithm for inverting injective functions with preprocessing?

One reason to hope for a better algorithm for injective functions is that for
the very special case of permutations, there exists an inversion algorithm with
preprocessing that achieves the improved trade-off ST = Õ(N) (i.e., S = T =
N1/2) [79]. Can we achieve the same trade-off for injective functions?

While we have not been able to answer this question yet, we do open one
possible route to answering it. In particular, we show that the problem of
inverting injective functions with preprocessing has a close connection to the
problem of breaking pseudorandom generators (PRGs) with preprocessing [2,
20,23,25,26]. Specifically, De, Trevisan, and Tulsiani [23] show that black-box
PRG distinguishers with preprocessing can realize the trade-off S = Õ(ε2N), for
T = Õ(1) and for any choice of distinguishing advantage ε.

We show that achieving a more general trade-off of the form ST = Õ(ε2N),
for any constant ε, would imply a better-than-Hellman algorithm for invert-
ing injective functions. Thus, improving the known PRG distinguishers with
preprocessing can improve the known injective inversion algorithms.

New protocols for multiparty pointer jumping. We show that algorithms
for the black-box function-inversion problem are useful in designing new com-
munication protocols for a well-studied problem in communication complexity.
In particular, any black-box preprocessing algorithm for inverting permutations
yields a protocol for the permutation variant of the “k-party pointer-jumping”
problem (MPJpermN,k ) [10, 11, 14, 22, 58, 65, 72] in the number-on-the-forehead model
of communication complexity [16].

Then, by instantiating the permutation-inversion algorithm with a variant
of Hellman’s method, we obtain the best known protocol for MPJpermN,k for k =
ω(logN/log logN) players (this regime is in fact the most consequential for the
original motivation for studying this problem), improving the previous best
upper bound of O(N log logN/logN), by Pudlák et al. [65], to Õ(N/k +

√
N).

We thus make progress on understanding the communication complexity of
multiparty pointer jumping, a problem with significance to ACC0 circuit lower
bounds [6, 49,80].

Beyond the quantitative improvement, our protocol is different from all
previous approaches to the problem and is an unexpected application of a
cryptanalytic algorithm to a communication-complexity problem. While the use
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of a cryptanalytic algorithm in this context appears new, prior work has found
application of results in communication complexity to lower bounds [46] and
constructions [12] in the cryptographic setting.

This connection presents a path forward for proving non-adaptive lower bounds
for permutation inversion. In particular, we show that for every non-adaptive
black-box permutation-inversion algorithm using S bits of advice and T online
queries, it must hold that max{S, T} is at least as large as the communication
complexity of MPJpermN,3 . Any improvement on the lower bound for MPJpermN,3 would
give an improved lower bound for non-adaptive black-box permutation-inversion
algorithms. The best lower bound for MPJpermN,3 is Ω(

√
N) [3,75]. Interestingly, this

matches the best lower-bound for black-box permutation-inversion algorithms,
regardless of their adaptivity.

New time-space trade-off for systematic substring search. Finally, we
show that improved algorithms for function inversion will also imply improved
data structures for the systematic substring-search problem [24, 31,32,42,43]. In
particular, we prove that there is a preprocessing algorithm for the function-
inversion problem using few bits of advice and few online queries if and only if
there is a space- and time-efficient data structure for systematic substring search
in the cell-probe model [77]. In the systematic substring-search problem, we are
given a bitstring of length N (the “text”), and from it we must construct an
S-bit data structure (the “index”). Given a query string, we should be able to
determine whether the query string appears as a substring of the text by reading
the index and by inspecting at most T bits of the original text.

This connection is fruitful in two directions: First, we show that instantiating
this connection with the Fiat-Naor algorithm for function inversion [30] yields
an S3T = Õ(N3) systematic data structure, which is the best known in the
parameter regime S = Õ(Nα) for α < 1. Gál and Miltersen [31] ask whether a
very strong S + T = Ω̃(N) lower bound on this problem is possible. By beating
this hypothetical lower bound, our algorithm answers their open question in the
negative.

Second, Gál and Miltersen prove an ST = Ω̃(N) lower bound for systematic
substring search. Our barrier to proving lower bounds against black-box algo-
rithms for function inversion implies that improving this lower bound would also
imply new lower bounds in Valiant’s circuit model and therefore may be quite
challenging.

1.2 Related work

We now recall a few salient related results on function inversion, and we discuss
additional related work at relevant points throughout the text.

Fiat and Naor [29,30] proved that Hellman’s algorithm [48] achieves a trade-off
of the form S2T = Õ(N2), when the algorithm needs only to invert a random
function with constant probability (i.e., in the cryptanalytically interesting case).
For the worst-case problem of inverting arbitrary functions, Fiat and Naor give
an algorithm that achieves a trade-off of the form S3T = O(N3). De, Trevisan,
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and Tulsiani [23] improve the Fiat-Naor trade-off when the algorithm needs only
to invert the function at a sub-constant fraction of points.

For inverting functions, Yao [79] proved that every algorithm that uses S
bits of advice and makes T online queries must satisfy ST = Ω̃(N) lower bound.
Impagliazzo gives a short alternative proof [50]. Dodis et al. [25], building on
prior work [23,35], extended the lower bound to capture algorithms that invert
only a sub-constant fraction of functions f .

Barkan, Biham, and Shamir [5] show that, for a restricted class of preprocessing
algorithms, a Hellman-style trade-off of the form S2T = Õ(N2) is the best possible.
Their lower bound is powerful enough to capture the known inversion schemes,
including Hellman’s algorithm and Oechslin’s practically efficient “Rainbow tables”
technique [63]. At the same time, this restricted lower bound leaves open the
possibility that an entirely new type of algorithm could subvert their lower bound.

For inverting permutations, Yao [79] observed that a Hellman-style algorithm
can achieve the ST = Õ(N) upper bound and proved a matching lower bound.
Gennaro and Trevisan [35], Wee [73], and De, Trevisan, and Tulsiani [23] extend
this lower bound to handle randomized algorithms and those that succeed with
small probability.

Two recent works [41,54] use the function-inversion algorithm of Fiat and Naor
to obtain new algorithms for the preprocessing version of the 3-SUM problem.

1.3 Preliminaries

Notation. Through this paper, Z≥0 denotes the non-negative integers, and Z>0

denotes the positive integers. For any N ∈ Z>0 we write [N ] = {1, 2, . . . , N}. We
often identify every element x ∈ [N ] with the binary representation of x− 1 in
{0, 1}dlogNe. We use x← 4 to denote assignment and, for a finite set X , we use
x R← X to denote a uniform random draw from X . For a function f : A→ B, we
denote the image of the function as Im(f) = {f(x) | x ∈ A} ⊆ B, and y ∈ B,
we define the preimage set of y as f−1(y) := {x ∈ A | f(x) = y}. All logarithms
are base-two unless stated otherwise. Parameters S and T are always implicit
functions of the parameter N , and to simplify the bounds, we always implicitly
take S = T = Ω(1). The notation Ω̃(·) and Õ(·) hides factors polynomial in
logN .

Definition 1 (Black-box inversion algorithm with preprocessing). Let
N ∈ Z>0. A black-box inversion algorithm with preprocessing for functions on
[N ] is a pair (A0,A1) of oracle algorithms, such that A0 gets oracle access to a
function f : [N ]→ [N ], takes no input, and outputs an advice string stf ∈ {0, 1}∗.
Algorithm A1 gets oracle access to a function f : [N ] → [N ], takes as input a
string stf ∈ {0, 1}∗ and a point y ∈ [N ], and outputs a point x ∈ [N ]. Moreover,
for every x ∈ [N ], it holds that Af1 (Af0 (), f(x)) ∈ f−1(f(x)).

We can define a black-box inversion algorithm for permutations analogously
by restricting the oracle f : [N ]→ [N ] to implement an injective function. In this
case, we will often denote the oracle as π instead of f .
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Definition 2 (Adaptivity). We say that an oracle algorithm is k-round adap-
tive if the algorithm’s oracle queries consist of k sets, such that each set of queries
depends on the advice string, the input, and the replies to the previous rounds
of queries. We call a 1-round adaptive algorithm non-adaptive. Finally, we say
that an algorithm is strongly non-adaptive if it issues a single set of queries that
only depends on the algorithm’s input, but not on the advice string. In all of the
above cases, when referring to the number of queries made by the algorithm, we
account for the sum over all rounds.

Worst case versus average case. The algorithms in Definition 1 are deter-
ministic and successfully invert all functions on all points. It is also interesting
to consider algorithms that invert successfully only with probability ε < 1, over
the random choice of: the function f : [N ] → [N ], the point to invert, and/or
algorithm’s randomness. As most of the results in this paper deal with barriers
for improving lower bounds, restricting ourselves to deterministic algorithms that
always succeed in inverting only makes these results stronger. In any case, assume
that all algorithms we consider halt with probability 1.

Running time versus query complexity. For the purposes of proving lower
bounds, and reductions towards proving lower bounds, it suffices to consider
the query complexity of a preprocessing algorithm’s online phase. Counting only
queries (and not computation time) only strengthens lower bounds proved in this
model. The algorithms we construct can be made to use only Õ(N) preprocessing
time in a suitable RAM model, when they are allowed to fail with small probability.
Furthermore, the running time of our algorithms’ T -query online phase is Õ(T ).

Non-uniformity. Our definition allows for “free” non-uniformity in the param-
eter N . Nevertheless, in a model that only “charges” the online algorithm for
queries to the oracle and ignores the actual running time, non-uniformity makes
little difference since a uniform algorithm can simply search for the optimal choice
of non-uniform advice without increasing its query complexity.

Shared randomness. We allow the preprocessing and online phases to access
a common stream of random bits. Allowing the adversary to access correlated
randomness in both phases only strengthens the lower bounds. Only one of our
upper bounds (Theorem 8) makes use of this correlated randomness.

2 Lower bounds on inversion imply circuit lower bounds

The motivating question of this work is whether Hellman’s S = T = Õ(N2/3)
algorithm for inverting random functions is optimal. In this section, we show
that resolving this question will require proving significant new lower bounds in
Valiant’s “common bits” model of circuits [68]. We also show that proving strong
lower bounds on non-adaptive algorithms for function inversion would imply new
lower bounds against linear-sized logarithmic-depth circuits.

We obtain these connections by observing that the function-inversion problem
is an example of a class of so called “succinct” static data-structure problems [4,
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18, 32, 33, 42, 43, 45, 47, 51, 60, 66]. We show a barrier to proving lower bounds
against systematic data structures, which are a special case of succinct data
structures.

Related work. Brody and Larsen [13] showed that proving certain lower bounds
against linear data structures for dynamic problems would imply strong lower
bounds on the wire complexity of linear depth-two circuits. We follow their general
blueprint, but we instead focus on arbitrary algorithms for solving static data-
structure problems (e.g., function inversion), and our connection is to Valiant’s
common-bits model of circuits, rather than to linear depth-two circuits.

In recent independent work, Viola [71, Theorem 3] shows that lower bounds
against a large class of static data-structures problems imply circuit lower bounds.
In his work, Viola considers an incomparable circuit model that, on the one
hand, admits circuits of depth larger than two, but, on the other hand, restricts
the number of wires connected to the common bits. As a result, Viola’s work
does not seem to apply to the function-inversion problem within the relevant
parameter regime (namely, in the gap between Hellman’s upper bound and Yao’s
lower bound).

In another recent independent work, Dvir, Golovnev, and Weinstein [28]
connect data-structure lower bounds to matrix rigidity and circuit lower bounds.
Their focus is on linear data structures, whereas the function inversion problem,
considered in our work, does not have an apparent linear structure.

Boyle and Naor [9] make a surprising connection between cryptographic
algorithms and circuit lower bounds. They show that proving the non-existence of
certain “offline” oblivious RAM algorithms (ORAMs) [36,40,64] would imply new
lower bounds on the size of Boolean circuits for sorting lists of integers. Larsen
and Nielsen [56] recently skirted this barrier by proving a lower bound against
ORAMs in the “online” setting. Following that, Weiss and Wichs [74] showed that
a variant of the Boyle-Naor barrier still holds against “online read-only” ORAMs.

2.1 Systematic data structures and low-depth circuits

A major open question in circuit complexity is whether there exists an ex-
plicit family of Boolean functions (from n bits to one bit) that cannot be
computed by fan-in-two circuits of size O(n) and depth O(log n). An easier
problem, which is still famously difficult, is to find an explicit family of functions
Fn: {0, 1}n → {0, 1}n with n-bit output—often called Boolean operators—that
cannot be computed by this same class of circuits. Even this question has been
open since the 1970s [53,68,69].

More precisely, we say that a family of Boolean operators {Fn}n∈Z>0 , for
Fn: {0, 1}n → {0, 1}n, is an explicit operator if the decision problem associated
with each bit of the output of Fn is in the complexity class NP.

The main result of this section is that proving a certain type of data-structure
lower bound implies the existence of an explicit Boolean operator on n bits that
cannot be computed by fan-in-two circuits of size O(n) and depth O(log n). We
then show that a lower bound on function-inversion algorithms can be cast as
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Fig. 1: Common-bits circuit with n = 4 inputs, degree d = 2, and width w = 2.

a data-structure lower bound, and therefore a function-inversion lower bound
implies a circuit lower bound.

We now give the necessary background on data-structure problems. A sys-
tematic data structure of size s and query complexity t for an operator Fn is a
pair of algorithms:
– a preprocessing algorithm, which takes as input the data x ∈ {0, 1}n and

outputs a string st ∈ {0, 1}s of length s = o(n), and
– a query algorithm, which takes as input the string st, and an index i ∈ [n],

may probe (read) t bits of the input x, and then outputs the ith bit of Fn(x).
A systematic data structure is non-adaptive if the query algorithm probes a set
of bits of the input data x whose location depends only on the index i and not
on the input data x.

The following theorem is the main result of this section.

Theorem 3. If an explicit operator {Fn}n∈Z>0 has fan-in-two Boolean circuits
of size O(n) and depth O(log n) then, for every ε > 0, then this operator admits a
non-adaptive systematic data structure of size O(n/log log n) and query complexity
O(nε).

To prove this, we first recall Valiant’s common-bits model of circuits [68,69].

Valiant’s common-bits model. A circuit in the common-bits model of width
w and degree d computing a Boolean operator Fn: {0, 1}n → {0, 1}n contains an
input layer, a middle layer, and output layer (Figure 1). The input layer consists
of n input bits x1, . . . , xn ∈ {0, 1}, and the output layer consists of n output
gates. There are w gates in the middle layer of the circuit (the “common bits”);
each input feeds into each of these w middle gates, and the output of each of the
w middle gates feeds into each output gate. Further, each output gate reads from
at most d of the inputs. Unlike in a standard circuit, the gates in the middle
and output layers of the circuit compute arbitrary functions of their inputs. The
output of the circuit is the n-bit string formed at the output gates.

It is immediate that any Boolean operator Fn: {0, 1}n → {0, 1}n has common-
bits circuits of width n and degree 0 or, alternatively, of width 0 and degree
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n. A non-trivial question is: For a given operator Fn and choice of degree (e.g.,
d = n1/3), what is minimal width of a common-bits circuit that computes Fn?

Lemma 4. If there exists a circuit in the common-bits model of width w and
degree d that computes an operator F : {0, 1}n → {0, 1}n, then there exists a
non-adaptive systematic data structure for F of size w and query complexity d.

Proof. Let C be a circuit in the common-bits model as in the statement of the
lemma. The data structure consists of the outputs of the w middle-layer gates in
the circuit C (i.e., the circuit’s common bits). On input i ∈ [n], the algorithm
reads all the input bits connected to the ith output gate of C and computes the
value of the output gate. Since each output gate in the circuit is connected to at
most d input bits, the query complexity of the systematic data structure is at
most d.

Theorem 3 then follows from Lemma 4 and the following result of Valiant:

Theorem 5 (Valiant [68, 69]). If every explicit operator has fan-in-two
Boolean circuits of size O(n) and depth O(log n), then for every constant ε > 0, ev-
ery explicit operator has circuits in the common-bits model of width O(n/log log n)
and degree nε.

Viola [70, Section 3] and Jukna [52, Chapter 13] give detailed proofs of Theorem 5.

2.2 Consequences for function inversion

Observe that every function f : [N ]→ [N ] can be described using O(N logN) bits,
so there is a trivial strongly non-adaptive algorithm that inverts every function
using O(N logN) bits of advice and no queries to the function in the online
phase. We know of no non-adaptive function-inversion algorithm that inverts
with constant probability using o(N logN) bits of advice and o(N) queries. The
following theorem states that ruling out the existence of such a non-adaptive
algorithm is as hard as proving lower bounds against linear-size logarithmic-depth
Boolean circuits.

Theorem 6. If, for some ε > 0, every family of strongly non-adaptive black-
box algorithms for inverting functions f : [N ] → [N ] that uses O(N ε) queries
requires ω(N logN/log logN) bits of advice, then there exists an explicit operator
that cannot be computed by fan-in-two Boolean circuits of size O(n) and depth
O(log n).

The theorem considers a restricted class of inversion algorithms that: (i) may
only use strongly non-adaptive queries (the most restrictive type of query), (ii)
are only allowed, for example, O(N0.0001) queries (very few queries), and (iii)
must invert arbitrary functions with probability one (the most difficult variant of
the inversion problem).

So, even though we may suspect that there are no algorithms for inverting
functions f : [N ]→ [N ] using O(N logN/log logN) bits of advice and O(N0.0001)
non-adaptive queries, proving such an assertion seems very challenging.
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Proof of Theorem 6. Let n = N logN , where N ∈ Z>0 is a power of two. (For all
other values of n, define the inversion operator trivially as the identity mapping.)
We define the inversion operator F inv

n : {0, 1}n → {0, 1}n as follows. Let x ∈ {0, 1}n
be an input to F inv

n , and view x as the concatenation of N blocks of length logN
bits each: x = x1‖x2‖· · · ‖xN . For each i ∈ [N ], let yi ∈ [N ] be the least j ∈ [N ]
such that xj = i, if one such j exists. If no such j exists, set yi = 0. We define
F inv
n (x) = (y1‖y2‖· · · ‖yN ).
Observe that a systematic data structure for F inv

n gives a strongly non-
adaptive preprocessing algorithm that inverts every function f : [N ]→ [N ]. The
preprocessing phase constructs the data structure for operator F inv

n on input
f(1)‖f(2)‖. . . ‖f(N) and outputs this data structure as the advice string.

In the online phase, on input i ∈ [N ], the algorithm uses the data structure
in the advice string and its oracle access to f to compute all logN bits of the
ith output block yi of F inv

n , which is enough to recover some inverse of i under f ,
if it exists.

The theorem now follows from Theorem 3, instantiated with F inv
n . For n of

the form n = N logN , where N > 0 is a power of two, we get that the length of
the advice string is O(N logN/log log(N logN)) = O(N logN/log logN) and the
online query complexity is logN ·O ((N logN)ε) = O(N ε′), for any ε′ > ε.

Theorem 6 suggests the hardness of proving stronger lower bounds for non-
adaptive inversion algorithms, but it applies only to algorithms that use a
relatively long advice string, of length O(N logN/log logN). We might still hope
to improve upon Yao’s ST = Ω̃(N) lower bound for function inversion without
breaking the aforementioned barrier.

The following corollary shows that ruling out function-inversion algorithms
using advice and time S = T = Õ(N1/2+ε), for any ε > 0, would imply the
existence of an explicit operator that cannot be computed by circuits of width
O(n1/2+ε′) and degree O(n1/2+ε′) in the common-bits model, for some ε′ > 0.
As we will discuss, no such lower bound in the common-bits model is known,
so proving the optimality of Hellman’s Õ(N2/3) algorithm, or even showing
that inverting functions with preprocessing is marginally harder than inverting
permutations with preprocessing, would imply an advance in the state of lower
bounds on circuits in the common-bits model.

Corollary 7. If, for some ε > 0, there does not exist a family of strongly non-
adaptive algorithms for inverting functions f : [N ]→ [N ] using O(N1/2+ε) bits of
advice and O(N1/2+ε) queries, then there exists an explicit operator that does not
have circuits in the common-bits model of width O(n1/2+ε′) and degree O(n1/2+ε′),
for every ε′ satisfying 0 < ε′ < ε.

Proof. We prove the contrapositive. Assume that for every ε′ > 0, every explicit
operator has common-bits circuits of width O(n1/2+ε′) and depth O(n1/2+ε′).
Then, as in the proof of Theorem 6, we can apply Lemma 4 to operator
F inv
n to show that, for n = N logN , there exists a strongly non-adaptive pre-

processing algorithm that inverts functions f : [N ] → [N ] using O(n1/2+ε′) =
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O((N logN)1/2+ε′) = O(N1/2+ε′ logN) bits of advice and O(n1/2+ε′ logN) =
O((N logN)1/2+ε′ logN) online queries. Then, for any ε > ε′, the advice usage
and number of online queries is O(N1/2+ε).

Notice that while the hypothesis of Corollary 7 considers a lower bound
against strongly non-adaptive inversion algorithms, this only strengthens the
statement. This is true because proving a lower bound against adaptive inversion
algorithms implies a lower bound against strongly non-adaptive algorithms as
well.

If we instantiate Corollary 7 with ε = 1/6, we find that ruling out function-
inversion algorithms using S = T = o(N2/3), even against the restricted class of
strongly non-adaptive algorithms, would give an explicit operator that does not
have common-bits circuits of width w and degree d satisfying w = d = o(n2/3−δ),
for any δ > 0.

Proving such a lower bound on common-bits circuits is not strong enough to
yield a lower bound against linear-size log-depth circuits via Valiant’s method
(Theorem 5). However, this lower bound would improve the best known lower
bound against circuits in the common-bits model. The best known bound, due
to Pudlák, Rödl, and Sgall, gives d = Ω( nw · log( nw )), for a common-bits circuit of
width w and degree d [65]. In particular, they construct an explicit operator that
does not have common-bits circuits satisfying w = d = Õ(n1/2). By Corollary 7,
ruling out function-inversion algorithms with S = T = Õ(N1/2+ε), for any ε > 0,
would thus improve the best lower bounds on common-bits circuits.

2.3 Consequences for other succinct data-structure problems

Theorem 3 and Lemma 4 together imply that proving strong lower bounds
for any systematic data-structure problem—not only for the function-inversion
problem—will be challenging. To explain how this barrier applies to a completely
different data-structure problem, we recall the systematic variant of the standard
data-structure problem of polynomial evaluation with preprocessing [59]. We give
an informal description of the problem, and the transformation into a formal
systematic data-structure problem (as in Section 2.1) is straightforward.

The problem of polynomial evaluation with preprocessing is parameterized
by an integer N ∈ Z>0 and a finite field F of size Θ(N). The input data is
a polynomial p ∈ F[X] of degree at most N − 1, represented as its vector of
coefficients c̄ = (c0, c1, . . . , cN−1) ∈ FN . The preprocessing algorithm reads this
input (the entire polynomial p) and produces a preprocessed S-bit string st. In
a subsequent online phase, the query algorithm takes as input a point x0 ∈ F,
and must output the evaluation p(x0) ∈ F of the polynomial p at point x0.
To produce its answer, the query algorithm may read the entire preprocessed
string st, query at most T coordinates of the coefficient vector c̄, and perform an
unlimited amount of computation.

For what choices of space usage S and query complexity T does there exist a
systematic data structure for polynomial evaluation with preprocessing?

The two naïve approaches to solving this problem are:
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1. Have the preprocessing algorithm store in the string st the evaluation of the
polynomial p on every point in the field F, using S = Ω(N) space.

2. Have the online-phase algorithm read the entire coefficient vector c̄, using
T = Ω(N) queries, and then evaluate p(x0) =

∑
i cix0 ∈ F directly.

These solutions both have S + T = Ω̃(N).
It seems very difficult to construct an algorithm that simultaneously uses a

data structure of size S = Nδ and query complexity T = Nδ, for some δ < 1. And
yet, the best lower bound we have for this problem, implied by a bound of Gál
and Miltersen [32], is of the form ST = Ω̃(N). A variant of Corollary 7 implies
that proving stronger lower bounds for this problem—or proving any lower bound
better than ST = Ω̃(N) for any systematic or succinct data-structure problem,
for that matter—will also imply new lower bounds in Valiant’s common-bits
model. Proving even a stronger lower bound could, via Theorem 3, imply a lower
bound against linear-size log-depth fan-in-two circuits.

3 Breaking PRGs is as hard as
inverting injective functions

Many cryptanalytic applications of Hellman tables only require inverting injective
functions. That is given a injective function f : [N ]→ [M ] and a point y ∈ [M ],
find a value x ∈ [N ] such that f(x) = y, if one exists.

For example, consider the classic application of Hellman tables to plaintext
attacks on block ciphers: Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher,
where k is the key size and n is the block size. If we define fE : {0, 1}k → {0, 1}n
such that fE(x) = E(x,m0) for some fixed plaintext m0, then an algorithm
with preprocessing for the function fE essentially gives a known-plaintext attack
on the block cipher E. We can (heuristically) expect the resulting function
fE to behave similar to a random function, and therefore be injective only
beyond the birthday bound k ' 2n. However, even for shorter keys, we can
reduce a known-plaintext attack to the problem of inverting an injective function
by considering the encryption of multiple known plaintexts m0,m1,m2. For
example, if k = n, then we expect fE×3 : {0, 1}n → {0, 1}3n, defined as fE×3(x) =
E(x,m0)‖E(x,m1)‖E(x,m2), to have no collisions.

A function-inversion algorithm can invert an injective function f : [N ]→ [M ]
without taking any advantage of the fact that it is injective, so Hellman’s
S2T = Õ(N2) upper bound for function inversion [48] applies in this setting
as well. However, the fact that for the case of random permutations (i.e., an
injective function f : [N ]→ [N ]), Hellman’s algorithm gives a significantly better
upper bound of ST = Õ(N), gives hope that a similar improvement—or at least
some improvement—is possible for injective length-increasing functions.

To the best of our knowledge, the injective variant of the function-inversion
problem has not been studied directly so far, even though it is a special case
with wide cryptanalytic applications. As a first step, we connect the injective
inversion problem to the problem of breaking pseudorandom generators (PRGs)
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with preprocessing [2,20,23,25,26]. In that problem, we model a “black-box” PRG
as an oracle G: [N ]→ [M ], with N < M . A PRG distinguisher with preprocessing
first makes arbitrarily many queries to G and outputs an S-bit advice string. In
the online phase, the distinguisher can then use its advice string, along with T
queries to G, to distinguish whether a given sample y ∈ [M ] has been drawn
from the distribution {G(x) | x R← [N ]} or the distribution {y | y R← [M ]}.

In their work, De, Trevisan, and Tulsiani [23] give a distinguisher with
S = O(ε2N) and T = Õ(1) that achieves a distinguishing advantage ε ≤ 1/

√
N .

They ask whether it is possible to realize the trade-off ST = Õ(ε2N) for other
parameter settings as well. The following theorem shows that a PRG distinguisher
that achieves constant distinguishing advantage at points on this trade-off (e.g.,
ε = 1/100, S = N1/4, and T = N3/4) would imply a better-than-Hellman
algorithm for inverting injective functions.

Theorem 8. Suppose that there is a black-box PRG distinguisher that uses S
bits of advice, makes T online queries to a PRG G: [N ] → [M ], and achieves
distinguishing advantage ε. Then there exists a black-box algorithm that inverts
any injective function f : [N ]→ [M ] using Õ(ε−2S) bits of advice and Õ(ε−2T )
online queries, and that inverts f with probability 1−1/logN (over the algorithm’s
randomness).

Furthermore, if the preprocessing and online phase algorithms have access to
a common random oracle, the online phase also runs in time Õ(T ).

Remark 9 (Relation to Goldreich-Levin). A classic line of results [38,39,57,78]
shows how to use any injective one-way function f : [N ]→ [M ] to construct an
efficient PRG Gf : [N2]→ [2N2] which makes black-box use of f . The proof uses
the Goldreich-Levin theorem [39] to show that any efficient distinguisher for Gf
yields an inversion algorithm for f . (Consult Goldreich’s textbook [37, Section
3.5] for the details.) It is not clear to us whether a non-uniform generalization of
these classic results directly implies Theorem 8. The problem is that the domain
of the PRG Gf has size N2, whereas the domain of the original function f has
size N . Since we are interested in the exact exponent of the advice and time
usage of function-inversion algorithms (i.e., S = N3/4 versus S = N1/2), we
are sensitive to this polynomial expansion in the domain size. For example, say
that we were able to construct a black-box PRG distinguisher that achieves
S = T = Õ(

√
N). Applying the classic reduction directly to Gf would only imply

the existence of an inverter for the function f that uses the trivial advice and
time complexity S = T = Õ(

√
N2) = Õ(N). In contrast, Theorem 8 implies that

an S = T = Õ(
√
N) distinguisher yields an S = T = Õ(

√
N) inverter.

Proof idea for Theorem 8. Given a distinguisher for any length-increasing gener-
ator G: [N ]→ [M ], we construct an inversion algorithm for injective functions
f : [N ]→ [M ] in two steps. First, for each i ∈ [n], we construct a bit-recovery
algorithm Bi that, given f(x), achieves a non-trivial advantage in recovering the
ith bit of x. We then use the algorithms (B1, . . . ,Bn) to construct an inversion
algorithm I that, given f(x), recovers the full preimage x with good probability.
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To give the intuition behind the bit-recovery algorithm Bi: Given a function
f : [N ]→ [M ] to invert, we construct a function Gi: [N ]→ [M ] such that a point
y = f(x) is in the image of Gi if and only if the ith bit of x is 1. Then, we can
apply the PRG distinguisher to Gi and recover the ith bit of y’s preimage.

This simple algorithm does not quite work when the PRG distinguisher has
small distinguishing advantage ε, since the distinguisher may fail on the point
y. To fix this, we give Bi access to two random permutations π: [N ]→ [N ] and
σ: [M ]→ [M ] that allow Bi to essentially randomize the point it gives as input
to the PRG distinguisher.

We then can run Bi many times with different random permutations and
then take the majority vote of the outputs of these runs. This majority vote will
yield the ith bit of the x with high probability. To complete the construction,
we instantiate the permutations π and σ using correlated randomness between
the preprocessing and online algorithms. The full description of the construction
appears in Appendix B.

4 From cryptanalysis to new communication protocols

Communication complexity [55, 76] quantifies the number of bits that a set of
players need to communicate amongst themselves in order to compute a function
on an input that is split between the players. One of the major open problems
in communication complexity is to obtain a non-trivial lower bound for some
problem for a super-poly-logarithmic number of players. Such a bound would
in turn lead to a breakthrough circuit lower bound for the complexity class
ACC0 [6, 49,80].

In this section, we develop connections between the function-inversion prob-
lem and the multiparty pointer-jumping problem in the number-on-the-forehead
(NOF) model of communication complexity [16]. By combining these new connec-
tions with the classic cycle-walking algorithm for permutation inversion, we obtain
the best known NOF protocols for the permutation variant of the pointer-jumping
problem. Since pointer jumping is a candidate hard problem in the k-party NOF
setting, understanding the exact communication complexity of pointer jumping
for a super-poly-logarithmic number of players is an important step towards the
eventual goal of proving circuit lower bounds [10,11,14,22,58,65,72].

4.1 Multiparty pointer-jumping in the NOF model

A classical problem in the NOF model is the pointer-jumping problem. We
describe the permutation variant of the problem, and then discuss the general
case. In the pointer-jumping problem MPJpermN,k , there are k computationally-
unbounded players, denoted P0, P1, . . . , Pk−1, and each has an input “written on
her forehead.” The first player P0 has a point x ∈ [N ] written on her forehead,
the last player Pk−1 has a Boolean mapping β : [N ] → {0, 1} written on her
forehead, and each remaining player Pi, for i = 1, . . . , k − 2, has a permutation
πi : [N ] → [N ] written on her forehead. Each player can see all k − 1 inputs
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except the one written on her own forehead. The goal of the players is to compute
the value β ◦ πk−2 ◦ · · · ◦ π1(x), which loosely corresponds to “following a trail of
pointers” defined by the permutations, starting from x (Figure 2). The players can
communicate by writing messages on a public blackboard. The communication
complexity of a protocol is the total number of bits written on the blackboard
for a worst-case input.

A one-way protocol is a protocol in which each player writes a single message
on the blackboard in the fixed order P0, . . . , Pk−1, and the last player’s message
must be the output. The one-way communication complexity of a function
f , denoted CC1(f), is the minimum communication complexity of all one-way
protocols that successfully compute f . Without the “one-way” restriction, there
are protocols for MPJpermN,k that require only O(logN) bits of communication.

Known bounds. The best upper bound for MPJpermN,k is due to Pudlák et al. [65],
who showed that CC1(MPJpermN,k ) = O(N log logN/logN). More recently, Brody
and Sanchez [14] showed that this upper bound applies to the more general
pointer-jumping problem, in which we replace the permutations π1, . . . , πk−2

with arbitrary functions. In this general case, Wigderson [75] proved an Ω(
√
N)

lower bound for k = 3 players (see also [3]), and Viola and Wigderson [72] proved
an Ω̃(N

1
k−1 ) lower bound for k ≥ 3 players.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

x π1 π2 π3

Fig. 2: A pointer-jumping instance for M̂PJ
perm

k=4,N=5 with π1 = (1 2 4 5 3), π2 = (2 3)(4 5),
π3 = (2 3 4 5) and x = 2. Lemma 11 reduces this instance to inverting the permutation
π−1
1 π−1

2 π−1
3 = (1 3 5 4) on the point x = 2.

4.2 A new communication protocol from permutation inversion

We obtain the best known communication protocol for the permutation variant
of the pointer-jumping game on parameter N for k = ω(logN/log logN) players.
Our result improves the previously best known upper bound of Õ(N) to Õ(N/k+
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√
N). Extending our upper bound to the general multiparty pointer-jumping

problem remains an open problem, which we discuss in Remark 13.
On the lower-bound side, this connection suggests a path to prove lower bounds

against partially adaptive permutation-inversion algorithms, as in Definition 2.
In contrast, the techniques of Section 2 can only prove lower bounds against
strongly non-adaptive algorithms.

In this section, we prove the following new upper bound on CC1(MPJpermN,k ):

Theorem 10. CC1(MPJpermN,k ) ≤ O
(

(N/k +
√
N) logN

)
.

To prove Theorem 10, as we do later in this section, we use the integer-valued
version the pointer-jumping problem, commonly denoted M̂PJ

perm

N,k . In this version,
the last player Pk−1 holds a permutation πk−1 : [N ]→ [N ], instead of a boolean
mapping, so the output of the problem is a value in [N ]. The following technical
lemma, which we prove in Appendix A, shows that the boolean-valued version of
the pointer-jumping problem has communication complexity that is not much
larger than that of the integer-valued pointer-jumping problem.

Lemma 11. CC1(MPJpermN,k ) ≤ CC1(M̂PJ
perm

N,k ) + dlogNe .

Then, our main lemma technical uses an arbitrary permutation-inversion
algorithm with preprocessing to solve the integer-valued problem M̂PJ

perm

N,k :

Lemma 12. If there exists a (k − 2)-round adaptive algorithm for inverting
permutations π : [N ]→ [N ] that uses advice S and time T , then

CC1(M̂PJ
perm

N,k ) ≤ S + T dlogNe .

Proof. Let (A0,A1) be a (k − 2)-round adaptive algorithm for inverting permu-
tations with preprocessing. We give a protocol for M̂PJ

perm

N,k .

– Player P0 runs the preprocessing algorithm A0 on the permutation π−1
1 ◦

· · · ◦ π−1
k−1 and writes the advice string on the blackboard.

– Player P1 runs the online inversion algorithm A1 on the input x (written
on player P0’s forehead) using the advice string that has been written on
the blackboard, to produce the first round of queries q1,1, . . . , q1,t1 . For each
query q1,`, she computes the partial reply p1,` = π−1

2 (. . . (π−1
k−1(q1,`)) . . . ) and

writes it on the blackboard.
– Player Pi, for i ∈ {2, . . . , k − 2}, reads the partial replies pi−1,1, . . . , pi−1,ti−1

written by the previous player, computes the (complete) query replies ri−1,1,
. . . , ri−1,ti−1

by computing ri−1,` = π−1
1 (. . . (π−1

i−1(pi−1,`)) . . . ). Player Pi
then runs (in her head) the first i−1 rounds of the online inversion algorithm
on input x, using the advice string and the replies to the first i− 1 rounds of
queries, all of which, she can compute using the partial replies written on
the blackboard. Player Pi then produces the ith round of queries, on which,
similarly to Player P1, she computes the partial replies and writes them on
the blackboard.
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– Player Pk−1 completes the evaluation of round k − 2 of the queries by
evaluating the remaining permutations π−1

1 ◦ · · · ◦ π−1
k−2 on the partial replies

written by Pk−2. Player Pk−1 then runs in her head all k − 2 rounds of the
online inversion algorithm and writes the output on the blackboard.
By definition, the output y of the algorithm satisfies π−1

1 ◦ · · · ◦ π−1
k−1(y) = x.

Since all πi are permutations, it must hold πk−1 ◦ · · · ◦ π1(x) = y and so y is the
correct output for M̂PJ

perm

N,k .
The communication consists of the advice string written by Player P0 and

a partial reply for each query, giving a total of S + T dlogNe. (The last player
writes the dlogNe-bit output, but does not need to write the response to the
T -th query).

Proof of Theorem 10. To prove Theorem 10, we instantiate Lemma 12 using
Hellman’s cycle-walking algorithm [48], which we recall in Appendix C. The
algorithm inverts permutations using T queries and S bits of advice, for every
choice of S and T such that ST ≥ 2NdlogN + 1e. Furthermore the algorithm
is T -round adaptive. Specifically, for k ≤

√
N + 2, using Hellman’s algorithm

with T = k − 2 and S = d(2N logN)/T e gives a protocol with communication
O((N/k) logN). For k >

√
N + 2, we use Hellman’s algorithm with T =

√
N

and S = 2
√
N(dlogNe + 1) to find that CC1(M̂PJ

perm

N,k ) ≤ O(
√
N logN). Then,

applying Lemma 11 lets us conclude that CC1(MPJpermN,k ) ≤ O(
√
N logN).

Remark 13 (The function case). We might hope to show that a good function-
inversion algorithm, such as that of Fiat and Naor [30], implies a good protocol
for the general multiparty pointer-jumping problem, in which each player i has an
arbitrary function fi (which may not be a permutation) written on her forehead.
We do not know how to prove such a result. The problem is that the reduction of
Lemma 12 requires that the composition f−1

1 ◦f
−1
2 ◦· · ·◦f

−1
k−1 is a function, and this

is not true in the general case. (In contrast, when f1, . . . , fk are all permutations
it holds that f−1

1 ◦ f−1
2 ◦ · · · ◦ f−1

k−1 is a permutation.) Since several upper bounds
for the permutation variant of the pointer-jumping problem [11,22,65] have led
to subsequent upper bounds for the unrestricted case [11,14], there is still hope
to generalize the result.

5 From cryptanalysis to data-structures

In this section, we show how to apply the Fiat-Naor algorithm for function
inversion [30] to obtain the best known data structure for the systematic substring-
search problem [24, 31, 32, 42, 43], in a wide range of parameter regimes. As a
consequence of this connection, we show that the open problem of improving the
known lower bounds on function inversion is equivalent to the open problem in
the data-structure literature of whether it is possible to improve the known lower
bounds for systematic substring search.

In the systematic substring-search problem, we are given a bitstring of length
N (“the text”) and a bitstring of length P � N (“the pattern”). If the pattern
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appears in the text, we must output an index i ∈ [N ] into the text at which the
pattern begins. We take the pattern length to be P = Θ(logN).

An algorithm for systematic substring search is a two-part algorithm A =
(A0,A1). The preprocessing algorithm A0 takes as input only the text, may
perform arbitrary computation on it, and then outputs an S-bit “index” into the
text. The online algorithm A1 takes as input the index and the pattern, queries
T bits of the text, and then outputs the location of pattern in the text, if one
exists.

By applying the Fiat-Naor function inversion algorithm [30], we obtain the
best known algorithm for systematic substring search on texts of length N when
using an index of size O(N ε) bits, for any ε < 1. Gál and Miltersen [32] asked
for a strong lower bound against search algorithms using an O(N/polylogN)-bit
index, and we answer this question by giving an upper bound that beats their
hypothetical lower bound. This connection also gives evidence that finding a
faster algorithm for systematic substring search will require a cryptanalytic
breakthrough.

Known lower bounds. Demaine and López-Ortiz [24] prove that on texts of length
N with pattern length P = Θ(logN), any algorithm that uses an S-bit index and
makes T = o(P 2/logP ) queries in the online phase must satisfy ST = Ω(N logN).
Golynski [42,43] gives a stronger version of this bound that applies even for larger
T = o(

√
N/logN). Gál and Miltersen prove a slightly weaker bound but that

holds for all values of T . They show that for certain pattern lengths P = Θ(logN),
and any choice of T , any algorithm must satisfy ST = Ω(N/logN).1

The main technical result of this section is the following theorem, which we
prove in Appendix D.

Theorem 14. For any integer N ∈ Z>0 and integral constant c > 2, if there is
an algorithm for systematic substring search on texts of length cN · dlogNe with
pattern length c · dlogNe that uses an S-bit index and reads T bits of the text
in its online phase, then there is a black-box algorithm for inverting functions
f : [N ]→ [N ] that uses S bits of advice and makes T online queries.

For any integer N ∈ Z>0, if there is a black-box algorithm for inverting
functions f : [2N ]→ [2N ] that uses S bits of advice and T queries, then, for any
integral constant c > 1, there is an algorithm for systematic substring search on
texts of length N with pattern length c · dlogNe that uses an Õ(S)-bit index and
reads Õ(T ) bits of the text in its online phase.

Remark 15. It is possible to make the preprocessing time Õ(N) by allowing the
algorithm to fail with probability O(1/N) over the randomness of the preprocess-
ing phase. Similarly, the online running time (in addition to the query complexity)
is Õ(T ).
1 Gál and Miltersen in fact prove their lower bound against algorithms that solve the

decision version of the problem, rather than the search version that we describe here.
Using an argument similar to that of Theorem 8, which treats the case of black-box
PRG distinguishers, we can show that these problems are equivalent up to log factors
when we demand constant success probability.
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Proof idea. The full proof appears in Appendix D. In the first part, we must use a
substring-search algorithm to invert a function f : [N ]→ [N ]. The idea, formalized
in Lemma 20, is to construct a text τ of length Θ(N logN) by writing out the
evaluation of f at all points in its domain, in order, with a few extra bits added
as delimiters. To invert a point y ∈ [N ], we use the substring search algorithm
to find the location at which y appears in the text τ . This location immediately
yields a preimage of y under f . Demaine and López-Ortiz [24] use a similar—but
more sophisticated encoding—on the way to proving a data-structure lower bound
for systematic substring search. Their encoding maps a function f : [N ] → [N ]
into a string of length (1+o(1))N logN , while ours maps f into a string of length
3N logN .

In the second part, we must use a function-inversion algorithm to solve
substring search on a text τ of length N with pattern length P = c · dlogNe, for
some constant c > 1. To do so, we define in Lemma 22 a function f ′: [N ]→ [N c]
such that f ′(i) is equal to the length-P substring that starts from the ith bit of
the text τ . Given a pattern string σ = {0, 1}P , finding the inverse of y under f ′
is enough to locate the position of the pattern string σ in the text τ . The only
remaining challenge is that f ′ is length-increasing, rather than length-preserving.
In Lemma 21, we use universal hashing to reduce the problem of inverting length-
increasing functions to the problem of inverting length-preserving functions,
which completes the proof.

We now apply Theorem 14 to construct a new algorithm for systematic
substring search that resolves an open question of Gál and Miltersen. In their
2007 paper, Gál and Miltersen say that “it would be nice to prove a lower bound
of, say, the form,” T < N/polylogN ⇒ S > N/polylogN (using our notation)
for systematic substring search [32]. Goyal and Saks [44] use an elegant argument
to show that the specific technique of Gál and Miltersen cannot prove this lower
bound. As a corollary of Theorem 14, we construct an algorithm for substring
search that beats the hypothetical lower bound.

Corollary 16. For any integral constant c > 1 there is an algorithm for system-
atic substring search on texts of length N with pattern length c · dlogNe, that
uses an S-bit index, reads T bits of the text in its online phase, and achieves the
trade-off S3T = Õ(N3).

Proof. Theorem 14 shows that systematic substring search on strings of length
N with pattern length Θ(logN) reduces to the problem of inverting arbitrary
functions f : [N ] → [N ]. The inversion algorithm of Fiat and Naor [30] inverts
such functions f achieving the desired complexity bounds.

In particular, we get an algorithm that solves systematic substring search using
an index size and time satisfying S = T = Õ(N3/4), for strings of length N
and patterns of length Θ(logN). Furthermore, this connection, along with the
results of Section 2.2, shows that improving on the ST = Ω̃(N) bound of Gál
and Miltersen will require advances in techniques for proving lower bounds on
the power of depth-two circuits.
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6 Discussion and future directions

In this final section, we discuss a few directions for future work.

6.1 Which lower-bound techniques can work?

In Section 2, we showed that improving Yao’s lower bound on function-inversion
algorithms requires new circuit lower bounds in the common-bits model. What
potential approaches do we have to prove such a lower bound?

Function inversion and Yao’s “box problem.” Yao’s “box problem” [62,79]
is a preprocessing problem that is closely related to the function-inversion problem.
In the box problem, we are given oracle access to a function f : [N ] → {0, 1}.
First, we get to look at all of f and write down an S-bit advice string stf . Later
on, we are given our advice string stf and a point x ∈ [N ]. We may then make T
queries to f , provided that we do not query f(x), and we must then output a
value y ∈ {0, 1} such that y = f(x).

The box problem is in some sense the dual of the function-inversion problem:
we are given an f -oracle and we must compute f in the forward direction, rather
than in the inverse direction. The same ST = Ω̃(N) lower bound applies to
both problems [79]. However, in contrast to the inversion problem, for which
we suspect that good parallel (i.e., non-adaptive) algorithms do not exist, the
natural algorithm for the box problem is already non-adaptive and achieves
ST = O(N logN).2

Puzzlingly, the two main techniques for proving time-space lower bounds do
not distinguish between the function-inversion problem and Yao’s box problem.
In particular, the known lower bounds use compression [23, 25, 35, 79] or bit-
fixing [19, 20, 67]. Both techniques essentially look at the information that the
oracle queries and their replies give on the pair (x, f(x)) induced by the challenge,
regardless of whether the actual challenge is x, and the algorithm has to find
f(x) (as in the case of Yao’s box problem), or the challenge is y = f(x), and the
algorithm has to find x = f−1(y) (as in the case of the inversion problem).

Since there is an ST = Õ(N) upper bound for Yao’s box problem, then any
method that proves a lower bound better than ST = Ω(N) for function inversion
must not apply to the box problem. Therefore, a “sanity check” for any improved
lower bound for the function-inversion problem is to verify that the same proof
technique does not apply to Yao’s box problem.

Strong-multiscale-entropy. Drucker [27] shows, at the very least, that im-
proving lower bounds in the common-bits model will require new types of ar-
guments. In particular, Jukna [52, Chapter 13], generalizing earlier arguments
of Cherukhin [17] defined the “strong multiscale entropy” (SME) property of

2 Divide [N ] into disjoint blocks of (at most) T + 1 points each. For each block, store
the sum of the values of the function over all points in the block. In the online phase,
query all the other points in the block given by the challenge point, and use the
stored sum to recover the value of the function over the given challenge point.
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Boolean operators. Jukna proved that an operator on n bits with the SME prop-
erty cannot be computed by common-bits circuits of width o(n1/2) and degree
o(n1/2). (These results are actually phrased in terms of the wire complexity of
depth-two circuits with arbitrary gates, but the implications to the common-bits
model are straightforward.)

Strengthening Jukna’s lower bound on the circuit complexity of SME operators
appeared to be one promising direction for progress on lower bounds. Thwarting
this hope, Drucker constructs an explicit operator with the SME property that
has circuits in the common-bits model of width O(n1/2) and degree O(n1/2).
Thus, SME-type arguments alone are not strong enough to prove that an operator
cannot be computed by circuits of width O(n1/2+ε) and degree O(n1/2+ε) for
ε > 0.

6.2 One-to-one functions

Prompted by the fact that many cryptanalytic applications of function inversion
only require inverting injective function, we initiated in Section 3 the study of
injective function inversion. Though we take the first step by connecting this
problem to the problem of distinguishing PRGs, the basic question remains: is it
easier to invert a random injective function f : [N ]→ [M ], for N �M , than it
is to invert a random length-preserving function f : [N ] → [N ]? A better-than-
Hellman attack against injective functions would be remarkable. Or, can we prove
that inverting injective functions is as hard as inverting random functions?

6.3 Barriers for upper bounds

Is there a barrier to getting an S = T = o(N2/3) algorithm for function inversion?
Barkan, Biham, and Shamir [5] prove a lower bound against a certain restricted
class of Hellman-like algorithms, which suggests that better algorithms must
use new techniques. It would be satisfying to show at least that improving
Hellman’s upper bound would result in a dramatic algorithmic improvement for
a well-studied problem in another domain.
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Table 3: Example of the encoding procedure of Lemma 11. N = 23, and β: [N ] → {0, 1}.
Note that the last column is a permutation over the elements of [N ]. Also note how β
can be recovered from πβ(x) for all x 6= 0.

x β(x) (x|3, x|2, x|1) β(x|3)β(x|2)β(x|1) y = πβ(x)

000 1 (100, 010, 001) 001 100
001 1 (101, 011, 001) 011 101
010 0 (110, 010, 001) 101 000
011 1 (111, 011, 001) 111 011
100 0 (100, 010, 001) 001 010
101 0 (101, 011, 001) 011 001
110 1 (110, 010, 001) 101 100
111 1 (111, 011, 001) 111 111

Towards constructing πβ , consider first the case when N is a power of two.
For N = 2n, consider the following mapping from {0, 1}N to permutations on
{0, 1, . . . , N − 1} = {0, 1}n. On β: {0, 1}n → {0, 1} we construct a permutation
πβ on {0, 1}n as follows: let x ∈ {0, 1}n and let x = xnxn−1 . . . x1 be the binary
representation of x. Set πβ(x) = y = ynyn−1 . . . y1 defined by yi = β(x|i)⊕xi⊕ 1
where x|i= 0 . . . 01xi−1xi−2 . . . x1. The following two properties hold:
– The mapping πβ defined above is a permutation. To see this let x 6= x′ be

two distinct elements in {0, 1}n, and let y = πβ(x) and y′ = πβ(x′). Let
i ∈ [n] be the rightmost bit position on which x and x′ differ. Then xi 6= x′i
but x|i= x′|i. Therefore yi = β(x|i) ⊕ xi ⊕ 1 6= β(x′|i) ⊕ x′i ⊕ 1 = y′i, so
y 6= y′.

– For any x ∈ {0, 1}n such that x = xn . . . x1 6= 0, let i be the leftmost bit
position such that xi = 1. It then holds that β(x) is equal to the ith bit of
πβ(x).

Note that the latter property guarantees that the value of β(x) for every x 6= 0
can be recovered from a single bit of πβ(x).

For N which is not a power of 2, we can view N as a sum
∑`
j=1 2nj of at

most dlogNe powers of 2, and construct a permutation πβ on {0, . . . , N − 1} =
{0, 1}n1 ∪ · · · ∪ {0, 1}n` as a union of permutations on {0, 1}nj . By the properties
above, for all but ` = dlogNe bad points, the value of β can be recovered from
the corresponding value of πβ . Note that the set of bad points depends only on
N and not on β. We give an example of this encoding procedure in Table 3.

Therefore, given a communication protocol for M̂PJ
perm

N,k , we construct a
protocol for MPJpermN,k as follows. Let β ∈ {0, 1}N be the input (on the forehead)
of the last player. Each of the first k − 1 players computes the permutation
πβ from β according to the mapping above. The first player also writes on the
blackboard the value of β evaluated on all of the bad points of πβ . The players
then run the protocol for M̂PJ

perm

N,k on the instance (x, π1, . . . , πk−2, πβ).
The last player computes the output of the original protocol πβ ◦ πk−2 ◦ · · · ◦

π1(x) = πβ(x̂) ∈ {0, 1, . . . , N − 1} where x̂ = πk−2 ◦ · · · ◦ π1(x). If x̂ is not a
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bad point she can recover and output β ◦ πk−2 ◦ · · · ◦ π1(x) = β(x̂) ∈ {0, 1} from
πβ(x̂). Otherwise, if x̂ is a bad point, she outputs the value β(x̂), which the first
player wrote on the blackboard.

The new protocol increases the communication complexity of the original
protocol by dlogNe.

B Proof of Theorem 8

Let (A0,A1) be a distinguisher for any length-increasing generator G: [N ]→ [M ]
with an advantage PRGadv [(A0,A1), G] ≥ ε. We assume that N is power of two,
and let n = logN . (To handle the general case, one can, for instance, extend the
function domain to the next power of two.) We construct an inversion algorithm
for injective functions f : [N ]→ [M ] in two steps.

First, for each i ∈ [n], we construct a bit-recovery algorithm Bi that, given
f(x), achieves a non-trivial advantage in recovering the ith bit of x. We then
use the algorithms (B1, . . . ,Bn) to construct an inversion algorithm I that, given
f(x), recovers the full preimage x with good probability.

For every i ∈ [n], and for every z ∈ {0, 1}n let [z]i→1 denote z with its ith bit
zi set to 1. The bit-recovery algorithm Bi = (Bi0,Bi1), for every i ∈ [n], is given
access to random permutations π and σ and operates as follows:
– Preprocessing.

• Define a function Gi: [N ]→ [M ] such that Gi(x) = π (f ([σ(x)]i→1)) .

• Run the preprocessing phase for the PRG distinguisher on function Gi
to get an advice string stGi

: stGi
← AGi

0 ().

– Online.

• On input y ∈ [M ], run the online phase for the PRG distinguisher
A1(stGi

, π(y)).
• Answer each of A1’s oracle queries to Gi using oracle access to f , σ, and
π.

• Output the bit bi that A1 outputs.

The inversion algorithm I uses the bit-recovery algorithms (B1, . . . ,Bn),
a random oracle O (implemented using correlated randomness between the
preprocessing and online algorithms), and a parameter k, which we choose later,
and operates as follows:
– Preprocessing.

For j ∈ {1, . . . , k}:
• Derive from the random oracle O two random permutations πj and σj

using standard techniques [21].

• For each i ∈ {1, . . . , n}, generate an advice string: stij ← B
f,πj ,σj

i0 ().

Finally, output the nk advice strings {stij}i∈[n],j∈[k].
– Online.

For j ∈ {1, . . . , k}:
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• Derive from the random oracle O the same two random permutations πj
and σj as in the offline phase.

• For each i ∈ {1, . . . , n}, compute a guess of the ith bit of the preimage
of y under f : bij ← B

f,πj ,σj

i1 (stij , y). Since f is injective, there is exactly
one such preimage.

For each i ∈ {1, . . . , n}, let b̂i ∈ {0, 1} be the majority vote of the bits
{bi1, . . . , bik}. Finally, output x̂ = b̂1b̂2 . . . b̂n ∈ {0, 1}n.
We now analyze both algorithms and prove that the resulting inverter succeeds

with probability 1− 1/logN , uses an advice string of length Õ(ε−2S), and makes
(̃ε−2T ) online queries to f and (̃ε−2T ) queries to the random oracle.

Proposition 17. For every injective function f : [N ]→ [M ], every x ∈ [N ], and
every i ∈ [n],

Pr
π,σ

[
Bf,π,σi1

(
Bf,π,σi0 (), f(x)

)
= xi

]
≥ 1/2 + Ω(ε) ,

where xi denotes the ith bit of x.

Proof. Algorithm Bi1, on input y, runs A on the point π(y), thus

Pr
π,σ

[
Bf,π,σi1

(
Bf,π,σi0 (), f(x)

)
= 1
]

= Pr
π,σ

[
AGi

1

(
AGi

0 (), π(f(x))
)

= 1
]
.

Since A distinguishes the output of any length-increasing PRG from random
with advantage ε, we may assume without the loss of generality that

Pr
x R←[N ]

[
AGi

1 (AGi
0 , Gi(x)) = 1

]
≥ 1/2 + Ω(ε) , (1)

and

Pr
y R←[M ]

[
AGi

1 (AGi
0 , y) = 0

]
≥ 1/2 + Ω(ε) . (2)

Consider now each of the two possible values of the bit xi.
If xi = 1, let z = σ−1(x) and note that

π (f(x)) = π (f([x]i→1)) = π (f ([σ(z)]i→1)) = Gi(z) .

Since σ is a random permutation, then z = σ−1(x) is a random point in [N ], and,
since f is injective and π is a random permutation, the PRG Gi = π ◦f ◦ [ ]i→1 ◦σ
is a random two-to-one function. Moreover, since π is independent of σ, then,
even when we condition on z = σ−1(x), Gi is still a uniformly random two-to-one
function. Hence z and Gi are independent, and

Pr
π,σ

[
AGi

1

(
AGi

0 (), π(f(x))
)

= 1
]

= Pr
Gi

z R←[N]

[
AGi

1

(
AGi

0 (), Gi(z)
)

= 1
]
≥ 1/2 + Ω(ε) ,

(3)
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where the inequality follows from (1).

If xi = 0, then x is not in the image of [ ]i→1 ◦σ, and thus π(f(x)) is a random
point in [M ] \ Im(Gi). Similarly to the argument above, we can show that this
point is also independent of Gi, and thus

Pr
π,σ

[
AGi

1

(
AGi

0 (), π(f(x))
)

= 1
]

= Pr
Gi

w R←[M]\Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]
.

The final step is to show that, in the xi = 0 case, even though we run the
PRG distinguisher A on samples from the uniform distribution over [M ] \ Im(Gi)
instead of over [M ], A still achieves good distinguishing advantage.

We can think of the uniform distribution over [M ] as a weighted sum of the
distributions over Im(Gi) and [M ] \ Im(Gi). Moreover, since Gi is a two-to-one
function. Then the weight on Im(Gi) is N/2M and the weight on [M ] \ Im(Gi)
is (M −N/2)/M . Therefore

Pr
Gi

w R←[M]\Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]

= M
M−N/2 · Pr

Gi
w R←[M]

[
AGi

1

(
AGi

0 (), w
)

= 0
]

− N/2
M−N/2 · Pr

Gi
w R←Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]
.

(4)

Since Gi is a two-to-one function, the distributions {w R← Im(Gi)} and {w =
Gi(x) : x R← [N ]} are identical. Substituting the latter for the former in Eq. (4),
we get

Pr
Gi

w R←[M]\Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]

= M
M−N/2 · Pr

Gi
y R←[M]

[
AGi

1

(
AGi

0 (), y
)

= 0
]

− N/2
M−N/2 · Pr

Gi
x R←[N]

[
AGi

1

(
AGi

0 (), Gi(x))
)

= 0
]
.

(5)

Plugging in Inequalities (1) and (2) into Eq. (5), we obtain

Pr
Gi

w R←[M]\Im(Gi)

[
AGi

1

(
AGi

0 (), w
)

= 0
]
≥ M

M−N/2 · (1/2 + Ω(ε))− N/2
M−N/2 · (1/2− Ω(ε))

≥ 1/2 + Ω(ε) .
(6)

The claim follows from (3) and (6).

Proposition 18. For every injective function f : [N ]→ [M ] and every x ∈ [N ],

Pr
O

[
If,O1 (If,O0 (), f(x)) = x

]
≥ 1− 1/logN.
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Proof. Since algorithm B correctly guesses the ith bit of x with probability
1/2 + Ω(ε), we have

Pr
πij ,σij

[bij = xi] ≥ 1/2 + Ω(ε) .

Since the permutations {πj , σj}j∈[k] are sampled independently from the random
oracle, using a standard Chernoff bound we get

Pr
O

[b̂i 6= xi] ≤ e−Ω(ε2k) .

Therefore setting k = O(ε−2 log n) = O(ε−2 log logN) we get

Pr
O

[b̂i 6= xi] ≤ 1/n2 .

Taking the union bound over all i ∈ [n] we get

Pr
O

[x̂ 6= x] ≤ 1/n = 1/dlogNe .

Time and space analysis. If algorithm A uses an advice string of length S
and makes T online queries, then the inverter uses an advice string of length
kn · S = O(ε−2S logN log logN) and makes kn · T = O(ε−2S logN log logN)
online queries to f .

Moreover, constructing a random permutation from a random oracle requires
only a constant number of queries to the random oracle for each evaluation of the
random permutation [21], therefore the number of online queries to the random
oracle is also O(ε−2S logN log logN).

C Background: Cycle walking and Hellman tables

We briefly recall the cycle-walking algorithm for inverting permutations with
preprocessing.

This algorithm, which Yao [79] makes explicit, is implicit in Hellman’s more
general algorithm for inverting random functions with preprocessing [48]. This
cycle-walking algorithm also serves as a building-block for other inversion algo-
rithms [30,63].

Theorem 19 (Hellman [48]). There exists a black-box algorithm for inverting
permutations π: [N ]→ [N ] that, for any S, T ∈ Z>0 satisfying ST ≥ 2NdlogN +
1e, uses T queries and S bits of advice and is T -round adaptive.

Proof. In the preprocessing phase, consider the cycle structure of the permutation
π: [N ]→ [N ] given by the oracle. There are at most N/(T + 1) cycles of length
greater than T . For every such cycle, store a sequence of “checkpoints” in the
order they appear in the cycle, such that every point on the cycle is at a distance
of at most T points on the cycle from the previous checkpoint.
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If the ith cycle has length `i, that cycle requires b`i/T c checkpoints to cover
its first b`i/T c · T points and one checkpoint to cover the remaining `i mod T
points. In the worst case, all cycles have length `i = T + 1, in which case we
have N/(T + 1) cycles with two checkpoints each. This amounts to a total of
2N/(T + 1) ≤ 2N/T checkpoints.

We can therefore store the checkpoints as a list of lists using 2NdlogNe/T
bits. We add one additional bit to each checkpoint (i.e., at most 2N/T bits total)
to indicate whether the checkpoint belongs to the same cycle as the prior one.

In the online phase, given a point y ∈ [N ] as input and the list of checkpoints
as an advice string, take y0 = y and yi+1 = π(yi) iteratively, until either (i) yi = y,
at which point output yi−1 as the preimage of y, or (ii) yi is one of the stored
checkpoints, at which point set yi+1 to be the previous checkpoint in the list on
the same cycle and continue iterating. As each point on the permutation is either
on a cycle of length at most T , or at a distance of at most T from a checkpoint,
the total number of oracle queries in the online phase is at most T .

We can think of this cycle-walking algorithm as dividing each cycle in the
permutation π to at most 2N/T “chains” of length at most T . The online algorithm
then traverses one of those chains by computing iterates of the permutation π.

To see why the cycle-walking algorithm does not apply to general functions:
If we view a general function f : [N ]→ [N ] as a graph Gf on vertices [N ] with
edges {(i, f(i))}i∈[N ], then, because of collisions in the function f , it will almost
never be possible to cover the entire graph Gf with O(N/T ) chains each of length
T .

Hellman’s algorithm [48] gets around this difficulty by creating many reran-
domized versions g1, g2, . . . of f , and covering part of each graph Gg1 , Gg2 , . . .
with chains. By balancing the number of functions gi, the number of chains per
graph, and the length of each chain, Hellman’s algorithm can invert a constant
fraction of points in the image of f . See De, Trevisan, and Tulsiani [23, Section
2.1] for details.

D Proof of Theorem 14

The following lemma proves the first part of Theorem 14.

Lemma 20. For any integral constant c > 2, If there is an algorithm for system-
atic substring search on texts of length cN · dlogNe with pattern length c · dlogNe
that uses an S-bit index and reads T bits of the text in its online phase, then
there is a black-box algorithm for inverting functions f : [N ]→ [N ] that uses S
bits of advice and makes T online queries.

Proof. We prove the lemma for the case when c = 3, but the generalization is
immediate. Given an algorithm (A0,A1) for substring search, we describe the
preprocessing algorithm for function inversion.
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– Preprocessing. Let ` = dlogNe. View f as a function that outputs `-bit
strings. Construct a text τ ∈ {0, 1}3N` by writing out the function table of
f delimited by strings of zeros and ones.

τ = 0` ‖ f(1) ‖ 1` ‖ 0` ‖ f(2) ‖ 1` ‖ · · · ‖ 0` ‖ f(N) ‖ 1` ∈ {0, 1}3N`.

Then, run the preprocessing algorithm A0 on τ and return the S-bit index
stτ it produces.

– Online. We are given a challenge y ∈ [N ] and we must find a value x ∈ [N ]
such that f(x) = y. Write the challenge as a pattern py = 0`‖y‖1` ∈ {0, 1}3`.
Then, run the substring-search algorithm A1(stτ , py).
As the algorithm runs, it makes at most T queries for the bits of τ . If the
query is to the constant part of τ , we can respond with a “0” or “1” without
making any f queries. Otherwise, we can respond to A1’s query by making
a single query to f .
When the algorithm outputs the position i∗ of the substring, we can uniquely
identify the location of the inverse as i∗/3` ∈ [N ].

The claimed efficiency properties follow by construction. We must only show
that the constructed algorithm solves the function-inversion problem.

We say that an position i of a symbol in the text τ is on a “block boundary”
if i = 0 (mod 3`), where we count the bits of τ starting from zero. We now claim
that every substring of the form qy = 0`‖y‖1` in τ must begin on block boundary.

To prove the claim: Towards a contradiction, assume that there exists a
pattern py ∈ {0, 1}3` that is a substring of τ but that does not appear on a block
boundary. There are three cases:
– 0 < i mod 3` < `: In this case, i points to a substring that ends with a “0”,

while qy ends with a “1,” so the strings cannot match.
– ` ≤ i mod 3` < 2`: If this case, i points to a substring whose 2`-th symbol is

a “0,” while qy’s 2`-th character is a “1”, so the strings cannot match.
– 2` ≤ i mod 3` < 3`: In this case, i points to a substring that begins with a

“1”, while qy begins with a “0,” so the strings cannot match.
In all cases, we derive a contradiction, which proves the claim.

If the substring qy appears at position i∗ in τ , then by the claim just proved, it
must be that i∗ (mod 3`) = 0. This implies that the middle ` bits of the substring
of τ beginning at position i∗ must be the value f(i∗/3`). Thus, f(i∗/3`) = y and
the algorithm successfully inverts f .

The following two lemmata together prove the second part of Theorem 14.
We show (roughly) in Lemma 21 that inverting a length-preserving function
f : [2N ] → [2N ] is enough to invert a length-increasing function f : [N ] → [N c].
Then, we show in Lemma 22 that inverting a length-increasing function f : [N ]→
[N c], for constant c > 1 is enough to solve substring search.

Lemma 21. If there is a black-box inversion algorithm for functions f : [2N ]→
[2N ] that uses S bits of advice and makes T online queries, then for any integral
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constant c > 1, there is a a black-box inversion algorithm for functions f : [N ]→
[N c], that uses O(S logN + log2N) bits of advice and makes O(T logN) online
queries.

The idea of the proof of Lemma 21 is that we choose a hash function h: [N c]→
[2N ] from a universal family. Then we use our preprocessing algorithm to invert
the function h ◦ f .

To sketch why this works: Let y = f(x) be the point that we aim to invert.
As long as z = h(y) has a unique preimage under h, then any inverse of h(f(x))
will also be a preimage of y under f . If the point h(y) has multiple preimages
under h, then this is not so.

However, we can just choose many hash functions h1, . . . , hk and run the pre-
processing algorithm on each. Then, as long as there exists an hi ∈ {h1, . . . , hk}
such that hi(y) has a unique preimage under hi, we will be able to invert. By
choosing the number of hash functions k appropriately, we will invert all points
with good probability.

The idea of using “reduction functions” that map a large range into a small
domain in this setting goes back to Hellman [48] and features in the work of Fiat
and Naor [30] and Oechslin’s Rainbow tables [63]. As far as we know, the analysis
and the application to the setting of inverting length-increasing functions are
new.

Proof. Given an algorithm (A0,A1) for inverting a function from [2N ] to [2N ],
we construct an algorithm for inverting a function f : [N ]→ [N c], for any integral
constant c > 1.

Preliminaries. The algorithm makes use of a family H of universal hash
functions mapping [N c] into [2N ]. Using the Carter-Wegman construction [15],
we can evaluate any function h ∈ H in O(logN) time and we can represent an
element h ∈ H using O(logN) bits. We define a “domain-extended” version of
the function f : [N ]→ [N c] that we wish to invert. The domain-extended version
f̂ maps [2N ] to [N c]. We define f̂(x) = f(x) for all x ∈ [N ], and f̂(x) = 1
otherwise.

We first describe the algorithm as using a randomized preprocessing phase.
We then explain how to derandomize it. The algorithm proceeds as follows:
– Preprocessing. Sample k = 2dlogNe functions h1, . . . , hk independently at

random from the universal hash function family H. For every i ∈ {1, . . . , k}:

• Define a function gi: [2N ]→ [2N ] as gi = hi ◦ f̂ .
• Run the preprocessing algorithm A0 on gi to get advice string stgi .

As the algorithm’s advice string, output:

• the strings stg1 , . . . , stgk ,
• the short descriptions of the hash functions h1, . . . , hk, and
• a preimage of 1 under f , if one exists.

– Online. We are given as input a point y ∈ Im(f) ⊂ [N c]. If y = 1, output
the preimage of 1 hardcoded into the advice string.
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Otherwise, for each i ∈ {1, . . . , k}:
• Run the online algorithm xi ← A1(stgi , hi(y)) ∈ [N ]. As A1 runs, it
makes queries to gi. We can reply to each query by making at most a
single query to f and applying hi to the output.

• Use a single query to f to test whether f(xi) = y. If so, return xi as the
preimage of y under f .

If the algorithm has not yet found a preimage of x, output the failure symbol
⊥.
By construction, the algorithm satisfies the claimed bounds on advice and

time complexity. By construction, it also always outputs a preimage of y under
f . To complete the proof, we need only show that the failure probability is as
claimed.

Towards this goal, say that in the online phase our task is to invert a point
y ∈ Im(f). First, observe that the algorithm trivially inverts the point y = 1,
so assume that the input point y 6= 1. Next, notice that if there exists some
function hi ∈ {h1, . . . , hk} such that hi(y) has a unique preimage under f̂ , then
the online algorithm will succeed.

In this case, the algorithm A1(stgi , hi(y)) must output a value x such that
gi(x) = hi(y). But, by definition of gi, this implies that hi(f̂(x)) = hi(y). Since
hi(y) only has a single preimage in the image of f̂ , we know that f̂(x) = y. By
construction of f̂ , whenever y 6= 1, all preimages of y under f̂ are in the range
{1, . . . , N}. Furthermore, for every such preimage x0, f(x0) = f̂(x0). Therefore,
the point x that the algorithm outputs is indeed a preimage of y under f .

Thus, our task now is to prove that, with high probability over the random
choice of the hash functions h1, . . . , hk from the universal family H, for every
point y ∈ Im(f), there exists a hash function hi such that hi(y) has a single
inverse in the image of f̂ .

Consider one such function hi: [N c]→ [2N ]. By definition of universal hashing,
for distinct values y, y′ ∈ [N c], Prhi

[hi(y) = hi(y
′)] ≤ 1/(2N). Therefore, by

the Union Bound, for every y ∈ Im(f), the probability (over the choice of
hi ∈ H) that hi(y) has more than one preimage in Im(f) under hi is at most
(|Im(f)|−1)/(2N) ≤ 1/2.

If we sample k hash functions independently from the family H, then for
every y ∈ Im(f), the probability that for every i ∈ [k] the point hi(y) has more
than one preimage under hi is at most 1/2k. Then the probability that there
exists a point y ∈ Im(f) that does not have a unique preimage under any of the
k functions is, by the Union Bound, at most |Im(f)|·(1/2)k ≤ N · (1/2)k. For
k = 2 logN , this failure probability is at most 1/N .

To get an algorithm that never fails, we can repeat the preprocessing phase
with fresh randomness until we find an advice string that inverts all points.

Lemma 22. Let c > 1 be an integral constant. If there is a black-box algorithm
for inverting length-increasing functions f : [N ]→ [N c] that uses S bits of advice
and makes T online queries, then there is an algorithm for systematic substring
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search on texts of length N with pattern length c · dlogNe that uses an S-bit index
and reads cT dlogNe bits of the text in its online phase.

Proof. Given an algorithm (A0,A1) for inverting length-increasing functions,
we describe the preprocessing algorithm for systematic substring search. Let
` = dlogNe.
– Preprocessing. We are given a text τ ∈ {0, 1}N to preprocess. Define a

function f : [N ]→ [N c] such that the value f(i) is equal to the c` bits of the
text τ beginning at position i. For the extremal values i ≥ N c − c`, set f(i)
to be some special (c`)-bit string that appears nowhere in τ . (Such a string
is guaranteed to exist, since c > 1.)
Run the preprocessing algorithm A0 on f and output the advice string stf it
outputs as the index.

– Online. We are given a pattern p ∈ {0, 1}c` and we must find a value i ∈ [N ]
such that the (c`)-bit substring of τ beginning at position i is equal to s. As
A1 runs, it makes queries to f . We can respond to each query to f using at
most c` queries to the text τ .
To do so, run i← A1(stf , q). If 0 ≤ i < (N − c`) output i. Otherwise output
“⊥.”

The efficiency and correctness properties follow immediately by construction.

We can now assemble the results of this section to prove Theorem 14:

Proof of Theorem 14. Lemma 20 proves the first part of the theorem.
To prove the second part: Lemma 21 then shows that, for any N ∈ Z≥0, if

there is an algorithm for inverting length-preserving functions f : [2N ]→ [2N ] that
uses S bits of advice and makes T online queries, then for any integral constant
c > 1, there is algorithm for inverting length-increasing functions f ′: [N ]→ [N c],
that uses S′ = Õ(S) bits of advice and makes T ′ = Õ(T ) online queries.

Then, Lemma 22 shows that if there is an algorithm that inverts such functions
f ′ that uses S′ bits of advice and that makes T ′ online queries, then there an
algorithm for systematic substring search on texts of length N with pattern
length c · dlogNe that uses an index of size S′ = Õ(S) bits and that makes
Õ(T ′) = Õ(T ) online queries.
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