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Abstract

We give an explicit pseudorandom generator (PRG) for constant-depth read-once formulas

over the basis {∧,∨,¬} with unbounded fan-in. The seed length of our PRG is Õ(log(n/ε)).
Previously, PRGs with near-optimal seed length were known only for the depth-2 case [GMR+12].
For a constant depth d > 2, the best prior PRG is a recent construction by Forbes and Kelley
with seed length Õ(log2 n+ log n log(1/ε)) for the more general model of constant-width read-
once branching programs with arbitrary variable order [FK18]. Our result improves on the
Forbes-Kelley PRG even when d is slightly super-constant.

Our construction follows Ajtai and Wigderson’s approach of iterated pseudorandom restric-
tions [AW89]. We assume by recursion that we already have a PRG for depth-d formulas. To
fool depth-(d + 1) formulas, we use the given PRG, combined with a small-bias distribution
and almost k-wise independence, to sample a pseudorandom restriction. The analysis of Forbes
and Kelley [FK18] shows that our restriction approximately preserves the expectation of the
formula. The crux of our work is showing that after poly(log log n) independent applications of
our pseudorandom restriction, the formula simplifies in the sense that every gate other than the
output has only polylog n remaining children. Finally, as the last step, we use a recent PRG by
Meka, Reingold, and Tal [MRT18] to fool this simpler formula.
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Figure 1: A depth-3 read-once formula on n = 13 bits.

1 Introduction

In complexity theory and algorithm design, randomness is a valuable yet scarce resource. A powerful,
black-box method for reducing the randomness used by a computationally bounded process is to
construct a pseudorandom generator (PRG). A PRG for a class of tests C is an algorithm that
stretches a short truly random seed to a long n-bit string that “fools” C, i.e., any test f ∈ C behaves
the same on the output of the PRG as it does on a truly random string, up to some error ε.

Ideally, one would like to construct explicit unconditional PRGs with short seed length that
fool powerful classes such as general polynomial-time algorithms. Unfortunately, constructing such
general-purpose PRGs requires proving circuit lower bounds that seem to be far beyond the reach
of state of the art techniques.

On the bright side, there has been a lot of success designing PRGs for more restricted classes.
The two most intensely studied classes are read-once small-space algorithms and constant-depth
circuits. In this work, we study constant-depth read-once formulas with unbounded fan-in over the
basis {∧,∨,¬} (Figure 1). We construct an explicit PRG for this class with seed length Õ(log(n/ε)),
which is optimal up to log log factors.

Theorem 1.1. For any positive integers n, d and for any ε > 0, there is an explicit ε-PRG for
depth-d read-once formulas with seed length

log(n/ε) ·O(d log log(n/ε))2d+2.

1.1 Motivation and prior work

Derandomizing small-space algorithms. We are motivated by the L vs. BPL problem –
namely whether every bounded-error probabilistic algorithm can be fully derandomized with only a
constant factor space blowup. The way a log-space algorithm acts on its random bits can be modeled
by a polynomial-width read-once branching program (ROBP). A natural approach to the L vs. BPL
problem is thus coming up with a PRG for such ROBPs with seed length O(log n). Seminal work of
Nisan gave a PRG with seed length O(log2 n) for this model [Nis92]. To this day, no better PRG is
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known even for ROBPs where the width is a large constant, though better generators are known in
special cases [ŠŽ11, De11, KNP11, Ste12, BRRY14, GMR+12, BDVY13, CHHL18, MRT18].

Surprisingly, the study of fooling constant-width ROBPs has so far been closely entangled
with the study of fooling constant-depth read-once formulas. A depth-d read-once formula can be
computed by a width-(d + 1) ROBP, possibly after reordering the inputs [CSV15]. In the other
direction, Gopalan et al. constructed a near-optimal PRG for read-once CNFs, and then used that
PRG to construct a near-optimal hitting set generator for width-3 ROBPs [GMR+12]. Very recently,
following the paradigm of Gopalan et al. [GMR+12], Meka, Reingold, and Tal gave a PRG for
general width-3 ROBPs with near-optimal seed length when ε is constant [MRT18].

Meanwhile, for any constant d, Chen, Steinke and Vadhan constructed a PRG for depth-d
read-once formulas with seed length Õ(logd+1 n) [CSV15].1 They obtained this PRG by proving
new Fourier tail bounds for such formulas. Subsequently, Chattopadhyay et al. proved similar tail
bounds for the stronger class of general width-(d+ 1) ROBPs with arbitrarily ordered inputs; they
used these tail bounds to construct a PRG with similar seed length for that model [CHRT18].

In a recent breakthrough, Forbes and Kelley gave an elegant construction of a PRG for ROBPs
with arbitrarily ordered inputs [FK18]. In the polynomial-width case, their PRG has seed length
O(log3 n). In the constant-width case, their PRG has seed length Õ(log2 n); prior to the present work,
this was also the best PRG for constant-depth read-once formulas. Note that Theorem 1.1 improves
on the Forbes-Kelley PRG [FK18] even for non-constant d, e.g., if d = 0.2 log logn/ log log log n and
ε = 1/ poly(n).

Given the recent trend of connections between PRGs for ROBPs and PRGs for read-once
formulas, we hope that our result will serve as a stepping stone toward optimal PRGs for general
constant-width ROBPs.

Fooling constant-depth circuits. The model we study in this paper (constant-depth read-once
formulas) is the read-once version of AC0. Ajtai and Wigderson were the first to consider the
problem of fooling general AC0 circuits, and in their pioneering work they achieved seed length
O(nγ) for any constant γ > 0 [AW89]. A long line of research has worked on improving this seed
length [Nis91, LN90, LVW93, Baz09, Raz09, Bra09, DETT10, GMR13, TX13, Tal17, HS16, ST18].
Today, for constant error, the best PRG for depth-d AC0 circuits known is Trevisan and Xue’s PRG
with seed length Õ(logd+4 n) [TX13]. When ε is small, the best PRG is a very recent construction
by Servedio and Tan [ST18], which achieves seed length O(logd+C n log(1/ε)) for some unspecified
absolute constant C.

Fooling more general read-once formulas. Bogdanov, Papakonstantinou, and Wan gave the
first PRG for unbounded-depth read-once formulas [BPW11]. Their PRG has seed length (1−Ω(1))n
and fools read-once formulas over the {∧,∨,¬} basis with unbounded fan-in. Their PRG also fools
formulas over an arbitrary basis with fan-in O(n/ log n). For the case that the basis is {∧,∨,¬}
and the fan-in is 2, Impagliazzo, Meka, and Zuckerman gave an improved PRG for unbounded-
depth read-once formulas with seed length O(n0.2342) [IMZ12]. The recent PRG by Forbes and
Kelley [FK18] with seed length O(log3 n) fools unbounded-depth read-once formulas either in the
case that the basis is {∧,∨,¬} and the fan-in is unbounded or the case of arbitrary basis and
constant fan-in.

In another direction, Gavinsky, Lovett, and Srinivasan gave a PRG for constant-depth read-once
formulas over the basis {∧,∨,¬,MODm}, i.e., read-once ACC0 [GLS12]. When the modulus m and

1Note that Nisan’s generator [Nis92] is not guaranteed to fool read-once formulas because of the issue of variable
ordering [BPW11].
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the error ε are constant, their PRG has seed length 2O(d2) · logO(d) n; this result is also subsumed
by the recent work of Forbes and Kelley [FK18]. As a reminder, in the present work, we focus on
constant-depth read-once formulas over the {∧,∨,¬} basis with unbounded fan-in.

Fooling read-k depth-2 formulas. De et al. gave a PRG for read-once CNFs with seed length
O(log n log(1/ε)) [DETT10]. Klivans, Lee, and Wan extended this result to read-k CNFs for any
constant k [KLW10]. As mentioned previously, Gopalan et al. gave a PRG for read-once CNFs with
seed length Õ(log(n/ε)) [GMR+12].

1.2 Overview of our construction and analysis

1.2.1 The Ajtai-Wigderson approach [AW89]

Our PRG follows the paradigm pioneered by Ajtai and Wigderson [AW89] and further developed
by Gopalan et al. [GMR+12]. We begin by briefly explaining this general approach for constructing
PRGs. Ultimately, to fool a test f , we want to pseudorandomly assign values to its inputs in such a
way that f accepts or rejects with approximately the same probability as it would under a truly
random input. As a first step, we pseudorandomly choose a partial assignment to f . Equivalently,
we pseudorandomly choose a restriction X ∈ {0, 1, ?}n, where Xi = ? indicates that the variable Xi

is still unset.
We need our pseudorandom distribution over restrictions to satisfy two key properties. The first

property is that the restriction should approximately preserve the expectation of the function, i.e.,
in expectation over X, the restricted function f |X should have approximately the same bias as f
itself. This feature ensures that after sampling the pseudorandom restriction X, our remaining task
is simply to fool the restricted function f |X .

The second property is that the restriction should simplify f , i.e., with high probability2 over
the pseudorandom restriction X, the restricted function f |X should in some sense be simpler than
f itself. The purpose of this feature is that simplifying f should make it easier to fool, perhaps
using a PRG from prior work. We shall now give a brief exposition of how we achieve these two
properties in our work.

1.2.2 Preserving the expectation using the work of Forbes and Kelley [FK18]

Building on several prior works [RSV13, HLV18, CHRT18], Forbes and Kelley constructed a very
simple pseudorandom distribution over restrictions that approximately preserves the expectation
of any constant-width ROBP [FK18], hence any constant-depth read-once formula. In the Forbes-
Kelley distribution, the locations of the ?-s are chosen almost k-wise independently, and the non-?
coordinates are filled in using a small-bias space. Each coordinate is ? with probability roughly 1

2 ,

and the distribution can be sampled using Õ(log(n/ε)) truly random bits.
In our setting, we will design our restriction in such a way that the distribution of ? locations is

almost k-wise independent and the distribution of bits in the non-? coordinates has small bias, in
addition to other properties we also need. That way, we can simply appeal to the Forbes-Kelley
result [FK18] to argue that the expectation of the formula is preserved under our pseudorandom
restriction.

2In principle, it would actually suffice for f to merely simplify in expectation over X.
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1.2.3 Simplifying the formula given a PRG

The remaining challenge is to ensure that our pseudorandom restriction simplifies constant-depth
read-once formulas. In the work of Forbes and Kelley [FK18], the measure of complexity was simply
the number of remaining unset variables. That is, Forbes and Kelley simply argued that after
applying O(log n) independent pseudorandom restrictions, with high probability, all variables are
set, and hence there is nothing left to fool [FK18].3 This gives them an overall seed length of
Õ(log(n/ε) log n).

In this work, to achieve seed length Õ(log(n/ε)), we use a more sophisticated pseudorandom
restriction and subtler measures of complexity. That way, we can argue that after applying just
poly(log log(n/ε)) independent restrictions, the formula has simplified enough that it can be fooled
by a prior PRG.

Several “pseudorandom switching lemmas” are already known for AC0 [AW89, TX13, GW14,
ST18], but we were not able to use these lemmas for our result. Instead, the starting point for our
approach to simplification is the work of Chen, Steinke, and Vadhan [CSV15]. Chen et al. analyzed
the effect of truly random restrictions on constant-depth read-once formulas [CSV15]. They showed
that with high probability, a truly random restriction dramatically simplifies the formula in the
sense that every node in the restricted formula has very few remaining children4 [CSV15]. Chen
et al. mentioned that they would have liked to show that the same is true under pseudorandom
restrictions – this would have improved the parameters of their main result – but they were not
able to prove such a statement [CSV15].

A key insight in our work is that roughly speaking, the predicate that some node is still alive
after a random restriction X can be computed by another constant-depth read-once formula whose
inputs are the bits encoding X. Therefore, to pseudorandomly sample a restriction X that kills off
each node with approximately the right probability, it suffices to select the bits encoding X using a
PRG for constant-depth read-once formulas. (Gavinsky, Lovett, and Srinivasan used a similar idea
to fool read-once ACC0 [GLS12].)

1.2.4 Obtaining the necessary PRG through recursion

It may strike the reader that we have reached a “chicken or egg” problem: we can simplify formulas
given a PRG for constant-depth read-once formulas, but the whole reason we are interested in
simplifying formulas is to design an improved PRG for constant-depth read-once formulas! We
resolve this difficulty by recursing on the depth of the formula we wish to fool. That is, we
assume we already have a PRG Gd that fools depth-d read-once formulas, and we use Gd to sample
pseudorandom restrictions that simplify depth-(d+ 1) read-once formulas. (This is similar to the
approach of Gavinsky et al. [GLS12].) To make this idea work, we overcome several challenges.

• Whether a single node is still alive after a random restriction is not the simplification condition
we are actually interested in. We are interested in the number of remaining living children
of each node. To address this issue, we consider the condition that a collection of nodes all
remain alive, and we relate this condition to the number of living children using an argument
introduced by Gopalan et al. in the context of fooling read-once CNFs [GMR+12]. This same
argument was also used by Chen et al. in their analysis of truly random restrictions [CSV15].

• To ensure that the Forbes-Kelley analysis [FK18] applies to our scenario, we are forced to
design our pseudorandom restriction so that each coordinate is ? with constant probability.

3Actually, to get the best dependence on ε, Forbes and Kelley stop applying restrictions once the number of
remaining variables drops below O(logn).

4A minor technicality is that this is only true “up to sandwiching.”
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However, in their analysis of truly random restrictions, Chen et al. only showed that formulas
simplify when the ?-probability is 1/ polylog(n/ε). We therefore have no hope of showing
that one application of our pseudorandom restriction simplifies formulas. We overcome this
difficulty using an approach similar to the method of conditional probabilities. We show that
after applying our pseudorandom restriction, the formula is likely to simplify under additional
truly random restrictions where the cumulative ?-probability is 1/ polylog(n/ε). Therefore,
after applying O(log log(n/ε)) independent pseudorandom restrictions, the formula simplifies.

• For a collection of nodes that form subformulas of depth d′, we are only able to test the
predicate that they are all still alive by a formula of depth d′ + 1.5 Therefore, we can only
apply Gd when d′ ≤ d − 1. Correspondingly, we are only able to show that after applying
poly(log log(n/ε)) independent pseudorandom restrictions, every gate other than the root in
a depth-(d + 1) formula has at most polylog(n/ε) living children.6 Fortunately, the latter
condition is strong enough that the restricted formula is fooled by a recent PRG by Meka,
Reingold, and Tal [MRT18]. We use the MRT PRG [MRT18] as the last step in our PRG.

2 Preliminaries

2.1 Pseudorandomness primitives

Let Un denote the uniform distribution over {0, 1}n. Suppose C is a class of functions f : {0, 1}n → R
and G is a distribution over {0, 1}n. We say that G ε-fools C if for every f ∈ C,

|E[f(G)]− E[f(Un)]| ≤ ε.

As two special cases, a δ-biased distribution is one that δ-fools parity functions, and a γ-almost
k-wise independent distribution is one that γ-fools Boolean k-juntas [NN93, AGHP92]. An ε-PRG
for C is a function G : {0, 1}s → {0, 1}n such that G(Us) ε-fools C. As a shorthand, we will write
E[f ] to denote E[f(Un)].

2.2 Read-once formulas

A formula on {0, 1}n is a rooted tree in which each internal node (“gate”) is labeled either ∧ or ∨
and each leaf is labeled with a constant (0 or 1), a variable xi, or its negation ¬xi, where i ∈ [n].
Gates may have arbitrary fan-in. The formula computes a function φ : {0, 1}n → {0, 1} in the
natural way. The depth of the formula is the length of the longest path from the output gate to a
leaf. The formula is read-once if each variable xi appears at most once. We make no assumptions
about the order in which the variables appear. A layered formula as one in which the gates are
arranged in alternating layers of ∧ and ∨ gates. Any read-once formula can be simulated by a
layered read-once formula of the same depth.

2.3 Random restrictions

A restriction is a string x ∈ {0, 1, ?}n. We define an associative composition operation on {0, 1, ?}n
by

(x ◦ x′)i =

{
xi if xi 6= ?

x′i if xi = ?.

5Actually, we don’t even quite show that. See Claim 5.6 for the precise statement.
6Again, this is only true up to sandwiching.
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Conceptually, x ◦ x′ corresponds to first restricting according to x and then further restricting
according to x′. As a special case, if x′ ∈ {0, 1}n, then x ◦ x′ ∈ {0, 1}n is the string obtained by
using x′ to “fill in the ? positions” of x. If f : {0, 1}n → {0, 1} is a function and x is a restriction,
we define the restricted function (f |x) : {0, 1}n → {0, 1} by

(f |x)(x′) = f(x ◦ x′).
We define Rn to be the distribution over X ∈ {0, 1, ?}n in which the coordinates are independent,
Pr[Xi = ?] = 1/2, and Pr[Xi = 0] = Pr[Xi = 1] = 1/4. In general, if H is a distribution
over {0, 1, ?}n and s is a nonnegative integer, we define H◦s to be the distribution over X ∈
{0, 1, ?}n obtained by drawing s independent samples X1, X2, . . . , Xs ∼ H and composing them,
X = X1 ◦X2 ◦ · · · ◦Xs. For example, R◦sn is a random restriction where each coordinate is ? with
probability 2−s and the non-? positions are uniform random bits.

A restriction can be specified by two n-bit strings as follows. Define Res: {0, 1}n × {0, 1}n →
{0, 1, ?}n by

Res(y, z) =

{
? if yi = 1

zi if yi = 0.

In words, y indicates which positions have ?, and z specifies the bits in the non-? positions. Observe
that Res(U2n) ∼ Rn.

3 Our PRG Construction

The construction of our generator is by induction on the depth of the read-once formula we wish to
fool. For the base case of depth-2 formulas, we use the PRG by Gopalan et al. for read-once CNFs
and DNFs [GMR+12]. For the inductive step, let d ≥ 2 be arbitrary, let Gd be a random variable
over {0, 1}n that α-fools depth-d read-once formulas, and let ε > 0 be arbitrary. We will show how
to ε-fool depth-(d+ 1) read-once formulas, assuming α is sufficiently small.

Step 1: XORing with small-bias and almost k-wise independence. Let G′d be an inde-
pendent copy of Gd. Sample T from a γ-almost k-wise independent distribution over {0, 1}n, and
sample D from a δ-biased distribution over {0, 1}n, where the parameters γ, k, δ will be specified
later. Define

Gd = (Gd ⊕ T,G′d ⊕D) ∈ {0, 1}n × {0, 1}n.

Step 2: Assigning most the inputs using Gd. Define a pseudorandom restriction Hd ∈
{0, 1, ?}n by

Hd = Res(Gd).

Since Res(U2n) ∼ Rn, each coordinate of Hd is ? with probability roughly 1/2. For a parameter

s = O((d log log(n/ε)) · log log n),

we will restrict according to H◦sd , i.e., we will compose s independent copies of the restriction Hd.

Step 3: Assigning remaining inputs using the MRT PRG [MRT18]. We rely on a PRG
by Meka, Reingold, and Tal for XORs of short ROBPs [MRT18]; we will discuss this in more detail
in Section 7. Sample GMRT ∈ {0, 1}n using this PRG. Our final PRG for depth-(d+ 1) read-once
formulas is defined by

Gd+1 = H◦sd ◦GMRT,

i.e., we use GMRT to assign bits to all remaining ?-positions after restricting according to H◦sd .
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4 Pseudorandom Restrictions Preserve Expectation

Toward proving the correctness of our PRG, in this section, we will show that restricting a depth-
(d+ 1) read-once formula using the distribution Hd approximately preserves the expectation of the
formula.

The following lemma proved by Forbes and Kelley shows that bounded-width ROBPs behave
nicely under pseudorandom restrictions that are defined by small biased distributions and almost k-
wise independence. In the lemma, L(n,w; k) is defined to be the maximum of

∑k
i=1

∑
S⊆[n],|S|=k |f̂(S)|

over all width-w ROBPs f , where f̂(S) denotes the Fourier coefficient of f at S.

Lemma 4.1 (Lemma 7.2 from [FK18], rephrased). Let T and D be independent random variables
over {0, 1}n, which are sampled respectively from a γ-almost k-wise independent distribution and a
δ-biased distribution. Let f : {0, 1}n → {0, 1} be a width-w arbitrarily-ordered ROBP. Then,∣∣∣∣∣∣ E

U∼Un

[f(U)]− E
T,D
V∼Un

[
f |Res(T,D)(V )

]∣∣∣∣∣∣ ≤
(
√
δ · L(n,w; k) +

(
1

2

)k/2
+
√
γ

)
· nw.

Ultimately, we are interested in fooling formulas over the basis {∧,∨,¬}, but for the analysis, it
will be helpful to consider NAND formulas, i.e., formulas in which each internal node is a NAND
gate instead of an ∧ gate or an ∨ gate. In Section 8, we will explain why it suffices to reason about
NAND formulas.

Recall from Section 3 that Gd = (Gd ⊕ T,G′d ⊕D), where Gd and G′d are independent random
variables over {0, 1}n that α-fool depth-d read-once formulas, T is sampled from a γ-almost k-wise
independent distribution over {0, 1}n, and D is sampled from a δ-biased distribution over {0, 1}n.
We will use the following simple application of the above lemma to our pseudorandom restriction
Hd = Res(Gd). Looking ahead, we will eventually choose ε0 = ε/ poly(log log(n/ε)).

Lemma 4.2. There exist constants c1, c2, c3 > 0, such that for all positive integers n, d, for every
ε0 > 0, if we set

k = c1 log(nd/ε0), δ = ε0 ·
(

c2

log n

)−k(d+2)

and γ =
c3ε0

nd
,

then Hd as defined above satisfies the following. For every depth-(d+ 1) read-once NAND formula
φ : {0, 1}n → {0, 1}, ∣∣∣∣ E

U∼Un

[φ(U)]− E
Hd,V∼Un

[φ|Hd
(V )]

∣∣∣∣ ≤ ε0.

Proof. We start by noting that Gd ⊕ T and G′d ⊕D are independent, Gd ⊕ T is γ-almost k-wise
independent, and G′d ⊕ D is δ-biased. This is due to the fact that linear tests and k-juntas are
closed under shifts.

The lemma is then an immediate corollary of Lemma 4.1, because every depth-(d+ 1) read-once
NAND formula can be computed by a width d + 2 read-once branching program [CSV15], and
L(n, d+ 2; k) is bounded by O(log n)k(d+2) [CHRT18]. Thus∣∣∣∣ E

U∼Un

[φ(U)]− E
Hd,V∼Un

[φ|Hd
(V )]

∣∣∣∣ ≤
(
√
δ ·O(log n)k(d+2) +

(
1

2

)k/2
+
√
γ

)
· n(d+ 2),

and it is easy to check that there are constants c1, c2, c3 such that the right hand side is bounded by
ε0 for a choice of δ, γ, k as in the statement of the lemma.
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We get the following corollary about repeated applications of Hd immediately since depth-(d+ 1)
read-once formulas are closed under restrictions.

Corollary 4.3. Let φ be a depth-(d+ 1) read-once NAND formula over n variables. Let δ, k, γ be
as in Lemma 4.2. Then, for every integer t ≥ 1,∣∣∣∣∣ E

U∼Un

[φ(U)]− E
H◦td ,V∼Un

[
φ|H◦td (V )

]∣∣∣∣∣ ≤ ε0t.

5 Pseudorandom Restrictions Simplify Read-Once Formulas

In this section, we derandomize the analysis of Chen et al. [CSV15] and show that our pseudorandom
restriction generator H◦td simplifies depth-(d+ 1) formulas, as we discussed in Section 1.2. We first
introduce our progress measure.

Definition 5.1. Given a read-once NAND formula φ, we let ∆(φ) be the maximum fan-in of any
gate in φ that is not the root.

Our goal is to show that when X is sampled from H◦td then a read-once formula φ is simplified
in the sense that ∆(φ|X) is roughly

√
∆(φ), with high probability. We will show that t =

O(d log log(n/ε)) is sufficient. Our analysis will closely follow the analysis by Chen et al. [CSV15]
for truly random restrictions.

5.1 Truly random restrictions simplify depth-(d− 1) formulas

Chen, Steinke and Vadhan proved that biased read-once formulas collapse to a constant after
a random restriction, with high probability [CSV15]. Looking ahead, we will eventually set
θ = (ε/n)O(1).

Lemma 5.2 ([CSV15], Lemma A.3). Let ϕ be a depth-d read-once NAND formula over n variables
such that either E[¬ϕ] ≤ ρ or E[ϕ] ≤ ρ for some ρ ≤ 1

2 . Then, for every θ ∈ (0, 2
n) and p ≤

1
(9 log(2·4dn/θ))d it holds that

Pr
X∼R◦dlog p−1e

n

[ϕ|X is not a constant] ≤ 2p · ρ · (9 log(2 · 4dn/θ))d + θ.

To make use of Lemma 5.2, we shall now define a related, intermediate progress measure in
addition to ∆. As outlined in Section 1.2, this second progress measure will help us deal with the
fact that the parameter p in Lemma 5.2 is only 1/polylog n whereas each coordinate in Hd is ? with
probability roughly 1/2.

Definition 5.3. Let Φ be a set of formulas over n variables. For an integer t ≥ 1, we define

failt(Φ) = Pr
X∼R◦tn

[∀φ ∈ Φ, φ|X 6≡ 1].

We use Lemma 5.2 to prove:

Lemma 5.4. Let Φ = {φ1, . . . , φk} be a set of read-once NAND formulas over n variables, each
of depth d ≤ log n and over disjoint subsets of n variables. Further, assume that for every i ∈ [k],
E[¬φi] ≤ ρ for some ρ ≤ 1

2 . Then, there exists a constant c such that for every θ ∈ (0, 2
n) and

integer t ≥ cd log log(n/θ),
failt(Φ) ≤ (2ρ+ θ)k.
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Proof. Consider some φ ∈ Φ and let t be the smallest integer such that

2−t ≤ 1

2(9 log(2 · 4dn/θ))d
,

and indeed t = c (d log log(n/θ) + d log d) for some universal constant c. By Lemma 5.2,

Pr
X∼R◦tn

[φ|X is not a constant] ≤ ρ+ θ.

Now,
Pr

X∼R◦tn
[φ|X ≡ 0] ≤ E[¬φ] ≤ ρ,

so by the union bound
Pr

X∼R◦tn
[φ|X 6≡ 1] ≤ 2ρ+ θ.

The lemma follows by the fact that each formula in Φ is over distinct variables and the coordinates
of R◦tn are independent.

5.2 Hd simplifies depth-(d− 1) formulas

Ultimately, we are interested in the simplification of depth-(d + 1) formulas with respect to the
∆(·) measure of progress. However, in this subsection, our goal is to prove that with respect to the
failt(·) measure of progress, our pseudorandom restriction Hd simplifies depth-(d− 1) formulas just
as well as a truly random restriction up to an additive error.

Lemma 5.5. Let Φ = {φ1, . . . , φk} be a set of read-once NAND formulas over n variables, each of
depth d− 1 and over disjoint subsets of n variables. Then, for every integer t ≥ 1,

E
X∼Hd

[failt−1 (Φ|X)] ≤ failt(Φ) + 2α,

where α is the error of the PRG for depth-d read-once formulas underlying Hd.

Proof. Fix some restriction v ∈ {0, 1, ?}n. Think of v as the composition of t − 1 truly random
restrictions that will be applied in the future. Let Tv : {0, 1}2n → {0, 1} be the predicate indicating
that with respect to v, the given initial restriction does a poor job of simplifying Φ. That is,

Tv(y, z) = 1⇐⇒ ∀φ ∈ Φ, φ|Res(y,z)◦v 6≡ 1.

Claim 5.6. For every d ≥ 2, Tv can be computed by a depth-d read-once formula.

Proof. We will prove, by induction on d, that for every φ ∈ Φ,

1. The test φ|Res(y,z)◦v 6≡ 1 can be computed by a depth-d read-once formula with an ∧ gate on
top.

2. The test φ|Res(y,z)◦v 6≡ 0 can be computed by a depth-d read-once formula with an ∨ gate on
top.

The claim will then follow, as the “∀φ ∈ Φ” part is simply an ∧ over formulas with a top ∧ gate
and thus the two top layers can be collapsed to a single layer.
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For d = 2, φ is of depth-1 and so is simply a NAND of variables or their negation, say of the
literals `1, . . . , `m. Now,

NAND(`1, . . . , `m) 6≡ 1⇐⇒
∧
i∈[m]

(`i 6≡ 0),

and
NAND(`1, . . . , `m) 6≡ 0⇐⇒

∨
i∈[m]

(`i 6≡ 1).

For each b ∈ {0, 1}, let us express the condition `i 6≡ b in terms of the inputs y and z to Tv.

• If `i is a variable xi, then

xi 6≡ b⇐⇒ ((yi = 1) ∧ (vi 6≡ b)) ∨ ((yi = 0) ∧ (zi = b)).

Now, v is fixed, so either vi 6≡ b is the constant 0, in which case the formula amounts to
(yi = 0)∧(zi = b), or it is the constant 1, in which case the formula amounts to (yi = 1)∨(zi = b).
Either way, this is a depth-1 read-once formula in terms of the inputs y and z to Tv.

• If `i is the negation ¬xi of some variable, then

¬xi 6≡ b⇐⇒ ((yi = 1) ∧ (vi 6≡ b)) ∨ ((yi = 0) ∧ (zi = b))

Again, by the same reasoning, the above is a depth-1 read-once formula, where the top gate is
determined by the value of vi 6≡ b.

Thus, the predicate NAND(`1, . . . , `m) 6≡ 1 can be tested by a depth-2 formula where the top gate
is an ∧, and the predicate NAND(`1, . . . , `m) 6≡ 0 can be tested by a depth-2 formula where the top
gate is an ∨.

Assume the claim holds for some d ≥ 2 and let φ = NAND(ϕ1, . . . , ϕm) be a read-once formula
of depth d, so each ϕi is a depth-(d− 1) read-once formula. We already mentioned that

NAND(ϕ1, . . . , ϕm) 6≡ 1⇐⇒
∧
i∈[m]

(ϕi 6≡ 0).

By the induction’s hypothesis, the predicate ϕi|Res(y,z)◦v 6≡ 0 can be tested by a depth-d read-once
formula with a top ∨ gate, so overall we get a depth-(d+ 1) read-once formula with a top ∧ gate.
Similarly,

NAND(ϕ1, . . . , ϕm) 6≡ 0⇐⇒
∨
i∈[m]

(ϕi 6≡ 1).

Again, by our assumption, the predicate ϕi|Res(y,z)◦v 6≡ 1 can be tested by a depth-d read-once
formula with a top ∧ gate, so overall we get a depth-(d+1) read-once formula with a top ∨ gate.

Recall from Section 3 the distribution

Gd = (Gd ⊕ T,G′d ⊕D).

We shall later show:

Claim 5.7. Gd (2α)-fools depth-d read-once formulas over {0, 1}2n.

11



With the above claim in mind, and Claim 5.6, we are now ready to proceed with proving the
lemma. We get that:

Pr
X∼Hd

[∀φ ∈ Φ, φ|X◦v 6≡ 1] = Pr
X∼Hd

[Tv(X) = 1] ≤ Pr
(Y,Z)∼U2n

[Tv(Y, Z) = 1] + 2α.

A uniform (Y,Z) corresponds to a truly random restriction, so

Pr
X∼Hd

[∀φ ∈ Φ, φ|X◦v 6≡ 1] ≤ Pr
X∼Rn

[∀φ ∈ Φ, φ|X◦v 6≡ 1] + 2α.

As the above is true for every restriction v, obviously

E
V∼R◦(t−1)

n

[
Pr

X∼Hd

[∀φ ∈ Φ, φ|X◦V 6≡ 1]

]
≤ E

V∼R◦(t−1)
n

[
Pr

X∼Rn

[∀φ ∈ Φ, φ|X◦V 6≡ 1]

]
+ 2α,

so

E
X∼Hd

[
Pr

V∼R◦(t−1)
n

[∀φ ∈ Φ, φ|X◦V 6≡ 1]

]
≤ Pr

X∼R◦tn
[∀φ ∈ Φ, φ|X 6≡ 1] + 2α,

which amounts to what we wanted to prove. All that is left is to prove Claim 5.7.

Proof of Claim 5.7. We start by noting that since the class of depth-d read-once formulas is closed
under shifts, Gd ⊕ T and G′d ⊕D both α-fool depth-d read-once formulas.

We will next use the fact that the class of depth-d read-once formulas is closed under restrictions.
Suppose φ : {0, 1}n × {0, 1}n → {0, 1} is a depth-d read-once formula. We have∣∣∣∣∣ E

U,V∼Un

[φ(U, V )]− E
(X,Y )∼Gd

[φ(X,Y )]

∣∣∣∣∣ ≤∣∣∣∣ E
V∼Un

[
E

U∼Un

[φ(U, V )]− E
X∼Gd⊕T

[φ(X,V )]

]∣∣∣∣+

∣∣∣∣∣ E
X∼Gd⊕T

[
E

V∼Un

[φ(X,V )]− E
Y∼G′d⊕D

[φ(X,Y )]

]∣∣∣∣∣ ≤
E

V∼Un

∣∣∣∣ E
U∼Un

[φ(U, V )]− E
X∼Gd⊕T

[φ(X,V )]

∣∣∣∣+ E
X∼Gd⊕T

∣∣∣∣∣ E
V∼Un

[φ(X,V )]− E
Y∼G′d⊕D

[φ(X,Y )]

∣∣∣∣∣ ≤ 2α,

where we used the fact that Gd ⊕ T and G′d ⊕D are independent and α-fool the read-once formulas
φ(·, v) and φ(x, ·) respectively.

Iterating Hd for t times, we get:

Lemma 5.8. Let Φ = {φ1, . . . , φk} be a set of read-once NAND formulas over n variables, each of
depth d− 1 and over disjoint subsets of n variables. Then, for every integer t ≥ 1,

Pr
X∼H◦td

[∀φ ∈ Φ,Φ|X 6≡ 1] ≤ failt(Φ) + 2tα,

where α is the error of the PRG for depth-d read-once formulas underlying Hd.
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Proof. We prove the lemma by induction on t. The case of t = 0 is trivial. Now, assume that

Pr
X∼H◦(t−1)

d

[∀φ ∈ Φ,Φ|X 6≡ 1] ≤ failt−1(Φ) + 2(t− 1)α.

Thus,

Pr
X∼H◦td

[∀φ ∈ Φ,Φ|X 6≡ 1] = E
X1∼Hd

[
Pr

X2∼H◦(t−1)
d

[∀φ ∈ Φ,Φ|X1◦X2 6≡ 1]

]

= E
X1∼Hd

[
Pr

X2∼H◦(t−1)
d

[∀φ ∈ Φ, (Φ|X1) |X2 6≡ 1]

]
≤ E

X1∼Hd

[failt−1 (Φ|X1)] + 2(t− 1)α

≤ failt(Φ) + 2tα.

The third transition used the induction’s hypothesis and the last one is due to Lemma 5.8.

Combining Lemma 5.8 with Lemma 5.4 we immediately get the following corollary.

Corollary 5.9. Let Φ = {φ1, . . . , φk} be a set of NAND read-once formulas over n variables, each
of depth d − 1 and over disjoint subsets of n variables. Further, assume that d ≤ log n and that
for every i ∈ [k], E[¬φi] ≤ ρ for some ρ ≤ 1

2 . Then, there exists a constant c such that for every
θ ∈ (0, 2

n) and integer t ≥ cd log log(n/θ),

Pr
X∼H◦td

[∀φ ∈ Φ,Φ|X 6≡ 1] ≤ (2ρ+ θ)k + 2tα,

where α is the error of the PRG for depth-d read-once formulas underlying Hd.

5.3 H◦td simplifies depth-(d + 1) formulas

We are now ready to prove our main result for this section.

Lemma 5.10. Let φ be a depth-(d+ 1) read-once NAND formula over n variables where d ≤ log n.
Let ε0 > 0 and let c be the constant guaranteed by Corollary 5.9. Further assume that θ ∈ (0, 2

n)
is such that for every gate ψ in φ, possibly excluding the root, E[¬ψ] ≥ θ. Then, for every integer

t ≥ cd log log(n/θ) and every α ≤ ε20
8(dn)2

√
n log2(1/θ)t

,

Pr
X∼H◦td

[
∆(φ|X) ≤ 10

√
∆(φ) log2(1/θ)

]
≥ 1− ε0,

where the PRG for depth-d read-once formulas underlying Hd is instantiated with error α.

Note that we assume here that every gate in φ has a non-negligible probability of rejecting,
which may not always be the case. Following Chen et al. [CSV15], in Section 6 we will get rid of
that assumption by a sandwiching argument. The proof of Lemma 5.10 is based on an argument
introduced by Gopalan et al. [GMR+12], later also used by Chen et al. [CSV15].

Proof. Let ψ be any gate in φ other than the root, so ψ is a depth-d read-once NAND formula. We
shall partition its children Ψ according to their rejection probability. Namely, for every integer
0 ≤ i ≤ log(1/θ)− 1 define

Ψi =
{
ϕ ∈ Ψ : 2iθ ≤ E[¬ϕ] < 2i+1θ

}
.
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Note that if E[¬ϕ] = 1 then ψ is fixed to 1 so we can simply ignore it.
Let us fix some 0 ≤ i ≤ log(1/θ)− 1 and consider the set of formulas Ψi. In hindsight, set the

parameters
M = 5e ln(1/θ)

√
∆(φ)

and

k =

⌈
2

log ∆(φ)
log

(
2dn log(1/θ)

ε0

)⌉
.

Write Ψi = {ϕ1, . . . , ϕw}. For every j ∈ [w], let Yj be the indicator for the event that ϕj is not
identically 1 after a pseudorandom restriction, namely ϕj |X 6≡ 1. We wish to bound

Pr

∑
j∈[w]

Yj ≥M

 ,
where the probability is taken over X ∼ H◦td . Let

Sk(x1, . . . , xw) =
∑

I⊆[w],|I|=k

∏
i∈I

xi

be the k-th elementary symmetric polynomial. Note that if
∑

j∈[w] Yj ≥M then Sk(Y1, . . . , Yw) is

at least
(
M
k

)
, and so

Pr

∑
j∈[w]

Yj ≥M

 ≤ 1(
M
k

) E[Sk(Y1, . . . , Yw)]

≤
(
k

M

)k ∑
I⊆[w],|I|=k

Pr [∀j ∈ I, Yj = 1] .

We know that E[¬ϕ] ≤ 2i+1θ and ϕ is a depth-(d− 1) NAND formula, so by Corollary 5.9 we
get

Pr

∑
j∈[w]

Yj ≥M

 ≤ ( k

M

)k (w
k

)(
(2 · 2i+1θ + θ)k + 2tα

)
. (1)

Now,

Claim 5.11. It holds that w ≤ ln(1/θ)
2iθ

.

Proof. On the one hand, ∏
ϕ∈Ψ

E[ϕ] = E[¬ψ] ≥ θ.

On the other hand, ∏
ϕ∈Ψ

E[ϕ] ≤
∏
ϕ∈Ψi

E[ϕ] ≤ (1− 2iθ)w ≤ e−2iwθ.

Combining the two gives the desired bound.
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Plugging in the above bound to Equation (1), we get

Pr

∑
j∈[w]

Yj ≥M

 ≤ ( k

M

)k (we
k

)k (
(2 · 2i+1θ + θ)k + 2tα

)

≤
(
ew · (2i+2θ + θ)

M

)k
+ 2

(we
M

)k
tα

≤
(

5e ln(1/θ)

M

)k
+ 2

(
∆(φ)e

M

)k
tα,

where for the second summand we only used the trivial fact that w ≤ ∆(φ).
Plugging in M , we achieve

Pr

∑
j∈[w]

Yj ≥M

 ≤ 1

∆(φ)k/2
+ 2(∆(φ))k/2 · tα. (2)

As k ≥ 2
log ∆(φ) log

(
2dn log(1/θ)

ε0

)
we have that the first summand of Equation (2) is at most ε0

2dn log(1/θ) .

Also, the bound on α implies

2dn log(1/θ)

ε0
≤ ε0

4dn log(1/θ)tα
· 1√

∆(φ)

so

k ≤ 2

log ∆(φ)
log

(
2dn log(1/θ)

ε0

)
+ 1 ≤ 2

log ∆(φ)
log

(
ε0

4dn log(1/θ)tα

)
and the second summand of Equation (2) is at most ε0

2dn log(1/θ) as well. Thus,

Pr

∑
j∈[w]

Yj ≥M

 ≤ ε0

dn log(1/θ)
.

Define Ei =
∑

j∈[w] Yj . By union-bounding over Ψ0, . . . ,Ψlog(1/θ)−1 we get that

Pr

log(1/θ)−1∑
i=0

Ei ≥M log(1/θ)

 ≤ log(1/θ)−1∑
i=0

Pr [Ei] ≤
ε0

dn
.

Another union bound over all possible ψ-s (at most dn of them) gives us the desired bound.

6 Ensuring Noticeable Chance of Rejecting

In Section 5, we showed that H◦t simplifies formulas with high probability under the assumption
that every gate rejects with noticeable probability. In this section, following Chen, Steinke, and
Vadhan [CSV15], we will use a sandwiching argument to handle gates with negligible probability of
rejecting. Our starting point is a helpful lemma implicit in the work of Chen et al. [CSV15]:

Lemma 6.1 ([CSV15]). Suppose φ is a depth-d read-once NAND formula over n variables and

let ε0 > 0. Define θ =
ε20

4n2 . Then, there exist read-once NAND formulas `φ, uφ with the following
properties.
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1. `φ ≤ φ ≤ uφ and E[uφ − `φ] ≤ ε0.

2. The underlying tree structure of `φ is a subgraph of the underlying tree structure of φ, and the
underlying tree structure of uφ is a subgraph of the underlying tree structure of φ.

3. Every non-constant gate ψ in either `φ or uφ satisfies E[ψ] ≥ θ and E[¬ψ] ≥ θ.

Since Chen, Steinke, and Vadhan did not state Lemma 6.1 exactly as we have stated it here, for
completeness, we include a proof of Lemma 6.1 in Appendix A.

The sandwiching formulas in Lemma 6.1 satisfy the hypothesis of Lemma 5.10, so after restricting
according to H◦t, they simplify in the sense that ∆ goes down by roughly a square root. We would
like to apply H◦t again to simplify the formulas even further. Unfortunately, after the first application
of H◦t, the restricted formulas might no longer satisfy the hypothesis of Lemma 5.10. Therefore,
before applying H◦t the second time, we must apply Lemma 6.1 again. We will continue in this
manner, alternately applying H◦t to simplify and applying Lemma 6.1 to eliminate gates with
negligible probability of rejecting. In this way, we will prove the following lemma.

Lemma 6.2. Suppose φ is a depth-(d+1) read-once NAND formula over n variables where d ≤ log n
and let ε0 > 0. Assume the parameters α, k, δ, γ underlying Hd satisfy the hypotheses of Lemma 5.10
and Lemma 4.2. Let θ be the value in Lemma 6.1, let t be as in Lemma 5.10 and set r = d3 log log ne.

Sample independent restrictions X1, . . . , Xr ∼ H◦td . For any such vector of restrictions ~X, there
exist depth-(d+ 1) read-once NAND formulas `φ, ~X , uφ, ~X with the following properties.

1. (Bounding.) For every sample ~X,

`φ, ~X ≤ φ|X1◦···◦Xr ≤ uφ, ~X .

2. (Sandwiching.) For U ∼ Un independent of ~X,

E
~X,U

[
uφ, ~X(U)− `φ, ~X(U)

]
≤ 3sε0.

3. (Simplicity.) Let ∆0 = 404 log8(2n/ε0). Then,

Pr
~X

[
∆
(
`φ, ~X

)
≤ ∆0 and ∆

(
uφ, ~X

)
≤ ∆0

]
≥ 1− 2rε0.

Toward proving Lemma 6.2, fix a depth-(d + 1) read-once NAND formula φ, define X0 = ?n,

and define `
(0)
~X

= u
(0)
~X

= φ. Then, for i < r, inductively define

`
(i+1)
~X

= `
(`

(i)
~X
|Xi

)
.

That is, `
(i+1)
~X

is the lower sandwiching formula when Lemma 6.1 is applied to `
(i)
~X

∣∣
Xi

. Similarly,
define

u
(i+1)
~X

= u
(u

(i)
~X
|Xi

)
,

i.e., u
(i+1)
~X

is the upper sandwiching formula when Lemma 6.1 is applied to u
(i)
~X

∣∣
Xi

. Finally, define

`φ, ~X = `
(r)
~X

∣∣
Xr

uφ, ~X = u
(r)
~X

∣∣
Xr
.
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Proof of Item 1 of Lemma 6.2. We show by induction on i that `
(i)
~X

∣∣
Xi
≤ φ|X1◦···◦Xi ≤ u

(i)
~X

∣∣
Xi

. In
the base case i = 0, this is trivial. For the inductive step, we have

`
(i+1)
~X

∣∣
Xi+1

≤
(
`
(i)
φ

∣∣
Xi

)
|Xi+1 By Item 1 of Lemma 6.1

≤ (φ|X1◦···◦Xi)|Xi+1 By the induction’s hypothesis

= φ|X1◦···◦Xi+1 .

A completely analogous argument works for the upper bound as well.

Proof of Item 2 of Lemma 6.2. We show by induction on i that

E
~X,U

[
u

(i)
~X

∣∣
Xi

(U)− `(i)~X
∣∣
Xi

(U)
]
≤ (2t+ 2)iε0. (3)

In the base case i = 0, the statement is trivial. For the inductive step, we have

E
~X,U

[
u

(i+1)
~X

∣∣
Xi+1

(U)− `(i+1)
~X

∣∣
Xi+1

(U)
]

≤ E
~X,U

[
u

(i+1)
~X

(U)− `(i+1)
~X

(U)
]

+ 2tε0 By Corollary 4.3

≤ E
~X,U

[
u

(i)
~x

∣∣
Xi

(U) + `
(i)
~X

∣∣
Xi

(U)
]

+ (2t+ 2)ε0 By Item 1 of Lemma 6.1

≤ (2t+ 2)(i− 1)ε0 + (2t+ 2)ε0. By the induction’s hypothesis

Finally, Item 2 of Lemma 6.2 follows from Equation (3) by plugging-in i = r and as s = rt.

Proof of Item 3 of Lemma 6.2. By construction, for every i ≥ 1, the formula `
(i)
~X

and the formula

u
(i)
~X

both have the property that every gate ψ satisfies E[¬ψ] ≥ θ, where

θ =
ε2

0

4n2
.

Furthermore, as the restrictions are independent, Xi is independent of
(
`
(i)
~X
, u

(i)
~X

)
. Therefore, by

Lemma 5.10,

Pr
~X

[
∆
(
`
(i)
~X

∣∣
Xi

)
> 10

√
∆
(
`
(i)
~X

)
· log2(1/θ)

]
≤ ε0,

and

Pr
~X

[
∆
(
u

(i)
~X
|Xi

)
> 10

√
∆
(
u

(i)
~X

)
· log2(1/θ)

]
≤ ε0.

By the union bound, we may assume that none of these bad events occur and accumulate an error
of 2ε0 for every restriction. Based on this assumption, we now show by induction on i that

∆
(
`
(i)
~X

∣∣
Xi

)
≤ max

{
104 log8(1/θ), n(3/4)i

}
, (4)

and
∆
(
u

(i)
~X

∣∣
Xi

)
≤ max

{
104 log8(1/θ), n(3/4)i

}
. (5)
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The base case i = 0 follows from the trivial bound ∆(φ) ≤ n. Now the inductive step. We have

∆
(
`
(i+1)
~X

∣∣
Xi+1

)
≤ 10

√
∆
(
`
(i+1)
~X

)
· log2(1/θ) By our assumption

≤ 10

√
∆
(
`
(i)
~X

∣∣
xi

)
· log2(1/θ) By Item 2 of Lemma 6.1

≤ 10
√

max
{

104 log8(1/θ), n(3/4)i
}
· log2(1/θ) By the induction’s hypothesis

Now we have two cases. First, suppose n(3/4)i ≤ 104 log8(1/θ). Then the bound becomes

∆
(
`
(i+1)
~X

)
≤ 10

√
104 log8(1/θ) · log2(1/θ)

= 103 log6(1/θ)

≤ 104 log8(1/θ),

completing the proof of Equation (4) in this case. Now, suppose instead that 104 log8(1/θ) < n(3/4)i .
Then the bound becomes

∆
(
`
(i+1)
~X

)
≤ 10

√
n(3/4)i · log2(1/θ)

≤
√
n(3/4)i · (n(3/4)i)1/4

= n(3/4)i+1
,

once again completing the proof of Equation (4). The proof of Equation (5) is completely analogous
and we omit it. Item 3 of Lemma 6.2 follows because by our choice of r, n(3/4)r ≤ 2, and by the
definition of θ,

104 log8(1/θ) = 404 log8(2n/ε0).

7 Fooling Formulas when ∆ is Small

Recall from Section 3 that our pseudorandom distribution for depth-(d+ 1) read-once formulas is

H◦sd ◦GMRT.

So far, we have shown that up to sandwiching, applying H◦sd substantially simplifies the formula
with high probability while approximately preserving its expectation (Lemma 6.2). It remains to
show that GMRT fools these simpler formulas. Meka, Reingold, and Tal studied the problem of
fooling XORs of short ROBPs and achieved the following parameters.

Theorem 7.1 ([MRT18]). For any positive integers n, w, b and any ε0 > 0 there is an explicit
PRG that ε0-fools all functions f : {0, 1}n → {±1} of the form

f(x) =

m∏
i=1

gi(x),

where g1, . . . , gm : {0, 1}n → {±1} are defined over disjoint variable sets of size at most b and each
gi can be computed by an arbitrarily ordered width-w ROBP. The seed length of the PRG is

log(n/ε0) ·O(log b+ log log(n/ε0))2w+2.
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It immediately follows that we can fool constant-depth read-once formulas when ∆ is small with
the following parameters.

Corollary 7.2. For any integers n, d, ∆0 and any ε0 > 0, there is an explicit distribution GMRT

that ε0-fools depth-d read-once NAND formulas φ satisfying ∆(φ) ≤ ∆0 that can be sampled using

log(n/ε0) ·O(d log ∆0 + log log(n/ε0))2d+2

truly random bits.

Proof. Write φ = NAND(ϕ1, . . . , ϕm). Then ¬φ = ∧mi=1ϕi. Applying the Fourier expansion of the
m-input ∧ function gives

¬φ =
∑
S⊆[m]

(−1)|S|

2m
·
∏
i∈S

(−1)ϕi .

Since
∑

S

∣∣∣ (−1)|S|

2m

∣∣∣ = 1, it suffices to fool each function
∏
i∈S(−1)ϕi separately.

Since ∆(φ) ≤ ∆0, each ϕi depends on at most ∆d−1
0 variables. Since φ is read-once, the ϕi-s

depend on disjoint sets of variables. Since each ϕi is a depth-(d − 1) read-once NAND formula,
it can be computed by a width-d ROBP under some ordering of the variables [CSV15]. Applying
Theorem 7.1 completes the proof, since fooling φ is equivalent to fooling ¬φ.

8 Putting Everything Together: Proof of Theorem 1.1

To prove the correctness of our PRG, we first need to justify the fact that our analysis has so far
focused on NAND formulas whereas our main result governs formulas over the {∧,∨,¬} basis.

Lemma 8.1. For any layered read-once formula φ, either φ or ¬φ can be computed by a read-once
NAND formula with the same underlying tree structure as φ.

Proof. We proceed by induction on the depth d of φ to show that if the output gate of φ is ∨, then
φ can be computed by a read-once NAND formula with the same underlying tree structure as φ. In
the base case d = 1, we have φ = ∨mi=1`i, where each `i is a literal. Then we can also write

φ = NAND(¬`1, . . . ,¬`m).

Now, for the inductive step, assume φ = ∨mi=1ϕi, where each ϕi is a depth-d read-once formula with
output gate ∧. Then once again,

φ = NAND(¬ϕ1, . . . ,¬ϕm).

By moving ¬ gates downward, ¬ϕi can be converted to a depth-d read-once formula with output
gate ∨ without altering its underlying tree structure. Applying the induction’s hypothesis completes
the proof. Finally, the lemma follows, because if the output gate of φ is ∧, then ¬φ can be computed
by a read-once formula with the same underlying tree structure with output gate ∨.

Conversely, any read-once NAND formula can be straightforwardly simulated by a layered
read-once formula with the same underlying tree structure. We are now ready to complete the
analysis of our PRG.

Proof of Theorem 1.1. Recall that our PRG is Gd+1 = H◦sd ◦GMRT.
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Parameters. Assume d ≤ log log(n/ε). (Otherwise, Theorem 1.1 follows already from the work
of Forbes and Kelley [FK18].) Let c be the constant from Lemma 5.4. Let r = d3 log log ne, and
define

ε0 =
ε

10r · cd log log(n/ε)
.

Let θ =
ε20

4n2 . Let t = cddlog log(n/θ)e (without loss of generality, take c to be an integer), and let
s = tr. Let α = ε4/n3; this is small enough to satisfy the hypothesis of Lemma 5.10. Let k, δ, γ be
the values required by Lemma 4.2.

Correctness. Let φ be a depth-(d+ 1) read-once formula. We can straightforwardly make φ a
layered read-once formula without changing its depth. Since fooling φ is equivalent to fooling ¬φ,
by Lemma 8.1, we may assume that φ is a depth-(d+ 1) read-once NAND formula. Since s = tr, we
can write H◦sd = (H◦td )◦r. Consider drawing independent samples X1, . . . , Xr ∼ H◦td . Let `φ, ~X , uφ, ~X
be the formulas guaranteed to us by Lemma 6.2. For brevity, let G = GMRT, and let U ∼ Un be
independent of G and H◦sd . Let E be the high-probability event of Item 3 of Lemma 6.2, so whether

E occurs depends only on ~X. Then,

E
Gd+1

[φ(Gd+1)] = E
~X

[
E
G

[φ|X1◦···◦Xr(G)]

]
≤ E

~X

[
E
G

[uφ, ~X(G)]

]
By Item 1 of Lemma 6.2

≤ E
~X

[
E
G

[uφ, ~X(G)

∣∣∣∣ E]+ Pr
~X

[¬E]

≤ E
~X

[
E
U

[uφ, ~X(U) + ε0

∣∣∣∣ E]+ Pr
~X

[¬E] By Corollary 7.2

≤ E
~X

[
E
U

[uφ, ~X(U) + ε0

]
+ 2 Pr

~X
[¬E]

≤ E
~X,U

[uφ, ~X(U)] + (1 + 2r)ε0 By Item 3 of Lemma 6.2

≤ E
~X,U

[φ|X1◦···◦Xr(U)] + (1 + 2r + 3s)ε0 By Item 2 of Lemma 6.2

≤ E[φ] + (1 + 2r + 4s)ε0 By Corollary 4.3.

A completely analogous argument handles the lower bound. To complete the proof of correctness,
we verify that with our choice of parameters, the error is bounded by ε:

(1 + 2r + 4s)ε0 ≤ 5sε0 ≤
1 + log log(n/θ)

2 log log(n/ε)
· ε ≤ ε.

Seed length. Let q(n, d, ε) denote the seed length of our ε-PRG for depth-d read-once formulas.
We will prove by induction on d that

q(n, d, ε) ≤ log(n/ε) · (Cd log log(n/ε))2d+2, (6)

where C is an absolute constant to be specified later.
In the base case d = 2, our PRG is just the PRG by Gopalan et al. [GMR+12], which has seed

length C1 log(n/ε)(log log(n/ε))3 for some absolute constant C1. Since 2d+ 2 > 3, we can ensure
that Equation (6) holds by choosing C > C1.
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Now, for the inductive step, fix d ≥ 2 and consider Gd+1. We can divide the seed length of Gd+1

into three components.

• (The inductive seed length.) To sample from H◦sd , we must draw 2s independent samples from
Gd. The number of truly random bits required for this process is bounded by 2s · q(n, d, α).
There is an absolute constant C2 so that s ≤ (C2d log log(n/ε))2. By induction and our choice
of α = ε4/n3, the number of truly random bits for this component, q1, is bounded by

q1 ≤ 8 log(n/ε) · (Cd)2d+2 · (2 + log log(n/ε))2d+2 · s.

To handle the additive 2 term in the middle, we can bound

(2 + log log(n/ε))2d+2 = (log log(n/ε))2d+2 ·
(

1 +
2

log log(n/ε)

)2d+2

≤ (log log(n/ε))2d+2 · exp

(
4d+ 4

log log(n/ε)

)
≤ e8,

since we assumed d ≤ log log(n/ε). Therefore,

q1 ≤ 8 · e8 · log(n/ε) · (Cd log log(n/ε))2d+2 · (C2d log log(n/ε))2

≤ 1

3
log(n/ε) · (C(d+ 1) log log(n/ε))2(d+1)+2

as long as we choose C > C2.

• (The seed length for D and T .) To sample from H◦sd , we must also draw 2s independent
samples from D and T . Using standard constructions [NN93, AGHP92], the number of truly
random bits required for this process, q2, is 2s ·O(k+ log(n/δ) + log(1/γ)). For some absolute
constant C3, by our choices of k, δ, γ, this is bounded by

q2 ≤ C3d
2 log(n/ε) log log(n/ε) log log n

≤ 1

3
log(n/ε) · (C(d+ 1) log log(n/ε))2(d+1)+2,

provided C > C3.

• (The seed length for the MRT generator.) Because of our choices for the parameters ε0 and
∆0, there is an absolute constant C4 such that in the construction of Gd+1, the seed length q3

of the distribution GMRT from Corollary 7.2 satisfies

q3 ≤ log(n/ε) · (C4(d+ 1) log log(n/ε))2(d+1)+2.

Choosing C > C4 ensures

q3 ≤
1

3
log(n/ε) · (C(d+ 1) log log(n/ε))2(d+1)+2.

Summing up q1, q2, q3 completes the proof of Equation (6).

Explicitness. Our PRG construction combines explicit PRGs in a straightforward way, so it is
explicit as well.
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of almost k-wise independent random variables. Random Structures & Algorithms,
3(3):289–304, 1992.

[AW89] Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant
depth circuits. Advances in Computing Research, 5(199-222):1, 1989.

[Baz09] Louay M. J. Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM J.
Comput., 38(6):2220–2272, 2009.

[BDVY13] Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness
for width-2 branching programs. Theory of Computing, 9:283–292, 2013.

[BPW11] Andrej Bogdanov, Periklis A Papakonstaninou, and Andrew Wan. Pseudorandomness for
read-once formulas. In Proceedings of the 52nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2011), pages 240–246. IEEE, 2011.

[Bra09] Mark Braverman. Poly-logarithmic independence fools AC0 circuits. In Proceedings of
the 24th Annual IEEE Conference on Computational Complexity (CCC 2009), pages
3–8. IEEE, 2009.

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators
for regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014.

[CHHL18] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudo-
random generators from polarizing random walks. In Proceedings of the 33rd Annual
Computational Complexity Conference (CCC 2018), volume 102 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 1, 21. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2018.

[CHRT18] Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved
pseudorandomness for unordered branching programs through local monotonicity. In
Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC 2018),
pages 363–375, New York, NY, USA, 2018. ACM.

[CSV15] Sitan Chen, Thomas Steinke, and Salil Vadhan. Pseudorandomness for read-once,
constant-depth circuits. arXiv preprint arXiv:1504.04675, 2015.

[De11] Anindya De. Pseudorandomness for permutation and regular branching programs.
In Proceedings of the 26th Annual IEEE 26th Annual Conference on Computational
Complexity (CCC 2011), pages 221–231. IEEE, 2011.

22



[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudoran-
dom generators for depth 2 circuits. In Approximation, randomization, and combinatorial
optimization, volume 6302 of Lecture Notes in Comput. Sci., pages 504–517. Springer,
Berlin, 2010.

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In Proceedings of the 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2018). IEEE, 2018.

[GLS12] Dmitry Gavinsky, Shachar Lovett, and Srikanth Srinivasan. Pseudorandom generators for
read-once ACC0. In Proceedings of the 27th Annual IEEE Conference on Computational
Complexity (CCC 2012), pages 287–297, 2012.

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan.
Better pseudorandom generators from milder pseudorandom restrictions. In Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS
2012), pages 120–129. IEEE, 2012.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster
deterministic counting algorithm. Comput. Complexity, 22(2):275–310, 2013.

[GW14] Oded Goldreich and Avi Widgerson. On derandomizing algorithms that err extremely
rarely. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing
(STOC 2014), pages 109–118. ACM, New York, 2014.

[HLV18] Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise
fools products. SIAM J. Comput., 47(2):493–523, 2018.

[HS16] Prahladh Harsha and Srikanth Srinivasan. On polynomial approximations to AC0.
arXiv preprint arXiv:1604.08121, 2016.

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from
shrinkage. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2012), pages 111–119. IEEE, 2012.

[KLW10] Adam R. Klivans, Homin Lee, and Andrew Wan. Mansour’s conjecture is true for
random dnf formulas. In Proceedings of the 23rd Annual Conference on Learning Theory
(COLT 2010), 2010.
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A Proof of Lemma 6.1

In this section, we give the proof of Lemma 6.1. We emphasize that this argument was already
given by Chen, Steinke, and Vadhan [CSV15]; we are only reproducing it here to verify the exact
parameters of Lemma 6.1.

Proof of Lemma 6.1. We proceed by induction on size(φ), i.e., the number of NAND gates, to prove
the lemma with the modified bound E[uφ− `φ] ≤ n

√
θ+size(φ)θ. In the base case size(φ) = 0, if φ is

non-constant, it is a single literal, which has expectation 1
2 , so we can simply take `φ = uφ = φ. Now

for the inductive step, suppose φ = NAND(φ1, . . . , φm). Let ni be the number of inputs to φi, so∑
i ni = n (recall φ is read-once). By induction, for each i ∈ [m], there exist formulas `φi ≤ φi ≤ uφi

with the following properties.

• E[uφi − `φi ] ≤ ni
√
θ + size(φi)θ.
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• Each of uφi and `φi has an underlying tree structure that is a subgraph of the underlying tree
structure of φi.

• Every non-constant gate ψ in either `φi or uφi satisfies E[ψ] ≥ θ and E[¬ψ] ≥ θ.

We consider two cases. For the first case, suppose E[¬φ] ≥ θ. In this case, define

`φ = NAND(uφ1 , . . . , uφm)

uφ =

{
NAND(`φ1 , . . . , `φm) if that gives E[¬uφ] ≥ θ
1 otherwise.

Because NAND is anti-monotone, `φ ≤ φ ≤ uφ. In the first case of the definition of uφ, by the union
bound, we have

E[uφ − `φ] ≤
m∑
i=1

(ni
√
θ + size(φi)θ) = n

√
θ + (size(φ)− 1)θ

as desired. In the second case of the definition of uφ, the error only increases by at most θ, which is
still within the bound of n

√
θ + size(φ)θ. Finally, we must verify that every non-constant gate ψ in

these formulas satisfies E[ψ] ≥ θ and E[¬ψ] ≥ θ. For gates other than the output gate, this is true
by induction, so let us verify that it holds for the output gates. We have E[¬`φ] ≥ E[¬φ] ≥ θ. On
the other hand, if `φ is non-constant, then some child uφi is non-constant, hence E[`φ] ≥ E[¬uφi ] ≥ θ.
Similarly, by construction, if uφ is non-constant, then E[¬uφ] ≥ θ and E[uφ] ≥ E[¬`φi ] ≥ θ.

Now, for the second case, suppose E[¬φ] < θ. In this case, define˜̀
φ = NAND(uφ1 , . . . , uφm)

uφ = 1.

As before, ˜̀φ ≤ φ ≤ uφ, and if ˜̀φ is non-constant, then E[˜̀φ] ≥ E[¬uφi ] ≥ θ. Furthermore,

E[uφ − ˜̀φ] ≤ n
√
θ + size(φ)θ. So if E[¬˜̀φ] ≥ θ, we can just set `φ = ˜̀

φ and we’re done. Assume,

therefore, that E[¬˜̀φ] < θ.
In this case, we divide into two subcases. First, suppose that for some i, we have E[uφi ] ≤

√
θ.

Then we define `φ = NAND(uφi). Clearly, we still have `φ ≤ φ. Furthermore,

E[uφ − `φ] = E[¬`φ] = E[uφi ] ≤
√
θ.

For the second and final subcase, suppose that for every i, E[uφi ] >
√
θ. In this case, since∏m

i=1 E[uφi ] = E[¬˜̀φ] < θ, there must be some j such that

θ ≤
j∏
i=1

E[uφi ] ≤
√
θ.

Therefore, define
`φ = NAND(uφ1 , . . . , uφj ).

That way, `φ ≤ φ ≤ uφ, and E[¬`φ] ≥ θ, and

E[uφ − `φ] = E[¬`φ] ≤
√
θ.

That completes the induction. To get the parameters claimed in the lemma statement, just observe
that size(φ) ≤ n and n

√
θ + nθ < ε.
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