
On the Testability of Graph Partition Properties

Yonatan Nakar
∗

Dana Ron
†

Abstract

In this work we study the testability of a family of graph partition properties that gener-
alizes a family previously studied by Goldreich, Goldwasser, and Ron (Journal of the ACM,

1998 ). While the family studied by Goldreich et al. includes a variety of natural properties,
such as k-colorability and containing a large cut, it does not include other properties, such
as split graphs, and more generally (p, q)-colorable graphs, that should clearly be regarded
as graph partition properties. The generalization we consider better captures the idea of
partition properties by allowing to impose constraints on the edge-densities within and be-
tween parts (relative to the sizes of the parts). We denote the family studied in this work
by GPP.

We �rst show that all properties in GPP have a testing algorithm whose query complexity
is polynomial in 1/ε, where ε is the given proximity parameter (and there is no dependence
on the size of the graph). As the testing algorithm has two-sided error, we next address
the question of which properties in GPP can be tested with one-sided error and query
complexity polynomial in 1/ε. We answer this question by establishing a characterization
result. Namely, we de�ne a subfamily GPP0,1 of GPP and show that every property P ∈
GPP0,1 is testable by a one-sided error algorithm that has query complexity poly(1/ε) and
that if P ∈ GPP\GPP0,1 then it cannot have a one-sided error testing algorithm whose
query complexity is independent of the input graph's size.

∗Tel Aviv University, yonatannakar@mail.tau.ac.il.
†Tel Aviv University, danaron@tau.ac.il.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 185 (2018)



Contents

1 Introduction 1

1.1 A Two-Sided Error Tester for properties in GPP . . . . . . . . . . . . . . . . . . 3
1.2 A One-Sided Error Tester for Properties in GPP0,1 . . . . . . . . . . . . . . . . . 4
1.3 Easily Testable Graph Partition Properties Must be in GPP0,1 . . . . . . . . . . 5
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 A One-Sided Error Tester for GPP0,1 7

2.1 The Algorithm and its Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Partial partitions and their extensions . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The tree of partial partitions . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 With high probability, every partition of S has a violation . . . . . . . . . 10

3 A Two-Sided Error Tester for GPP 12

3.1 The Class GPPNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 The Characterizing Vector and Structural Equivalence . . . . . . . . . . . . . . . 12
3.3 Satisfying Interval Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Feasible and Compatible Interval Vectors . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 The Two-Sided Error Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.1 Splitting the intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2 Running AbsTester on the interval vectors . . . . . . . . . . . . . . . . . . 15

3.6 Analysis of the Two-Sided Error Tester . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6.1 If G is a YES instance, we accept with high probability . . . . . . . . . . 15
3.6.2 If G is far from satisfying the property, we reject with high probability . . 15

4 Easily Testable Graph Partition Properties Must be in GPP0,1 16

4.1 t-Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Easily Testable Graph Partition Properties are Homogeneous . . . . . . . . . . . 17
4.3 No Constraints on the Sizes of Parts . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Case 1' implies Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Case 2' implies Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Wrapping Things Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 References 27

A Appendix: The Quadratic Program 28

B Appendix: Proofs of Auxiliary Claims 28

B.1 Proof of Claim 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
B.2 Proof of Claim 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
B.3 Proof of Claim 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.4 Proof of Claim 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
B.5 Proof of Claim 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.6 Proof of Claim 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
B.7 Proof of Claim 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



1 Introduction

In graph property testing, the goal is to decide whether a graph satis�es a prespeci�ed property
P or is far from satisfying P . To this end, the testing algorithm is given query access to the
adjacency matrix of the input graph so that the algorithm can check whether there is an edge
between any given pair of vertices.1 A graph G over n vertices is said to be ε-far from satisfying
P if it is necessary to add or delete more than εn2 edges in order to turn G into a graph satisfying
P . A tester for a graph property P is a randomized algorithm, which given query access to the
graph, distinguishes with high constant probability between the case where G satis�es P and
the case where G is ε-far from satisfying P . The tester should make the distinction between the
two cases by observing a very small portion of the input graph. In other words, the tester must
have sublinear query complexity.

We focus on properties that can be tested with no dependence on n. In particular, the
query complexity of the testers we consider depends only on the proximity parameter ε, and the
decisions of the testers do not depend on n as well. We call such graph properties input-size
oblivious testable. Alon et al. [3] presented a complete characterization of input-size oblivious
testable graph properties. Independently, Borgs et al. [10] obtained an analytic characterization
of such properties through the theory of graph limits. However, while the query complexity of
the tester emerging from the characterization of Alon et al. does not depend on the graph size,
it could be super-polynomial in 1

ε . For example, the property of being triangle-free is input-size
oblivious testable, but the query complexity of the best known tester for triangle-freeness is a
tower function of 1

ε [11]. Further, there exists a super-polynomial lower bound on the query
complexity of testing triangle-freeness [1, 7]. Naturally, we strive to design testers with query
complexity that is polynomial in 1

ε .
In this paper we consider a family of graph partition properties. This family of proper-

ties, which will be de�ned shortly, generalizes a family of graph partition properties that was
introduced by Goldreich, Goldwasser, and Ron [13]. Examples of properties covered by their
framework include bipartiteness, k-colorability, and the property of having a cut of at least βn2

edges for some β ∈ [0, 1]. Their framework, while fairly general, lacks an ingredient that is
necessary for specifying many natural graph partition properties such as split graphs (or more
generally (p, q)-colorable graphs), probe complete graphs, and bisplit graphs.2

Given a graph G = (V,E), a partition (V1, ..., Vk) of V , and a pair of parts Vi, Vj (possibly
i = j) we denote by eG (Vi, Vj) the number of edges in G between the part Vi and part Vj (if
i = j, then the notation refers to the number of edges within the part). Following the de�nitions
in [13], the notation eG (Vi, Vj) counts each edge twice (both (u, v) and (v, u)) and when i = j
we also allow self-loops. That is, eG (Vi, Vj) counts the number of ones in the adjacency matrix
representing the graph G. Also, we denote by eG (Vi, Vj) the number of nonedges between the
two parts.

Each property in the family of Graph Partition Properties considered in this work, is de�ned
by an integer parameter k and O(k2) additional parameters in [0, 1]. Informally, a graph has the
property if its vertices can be partitioned into k subsets such that the sizes of the subsets and
the number of edges between pairs of subsets and within the subsets obey the constraints de�ned
by the parameters of the property. Formally, a Graph Partition Property P is parameterized by
an integer k denoting the number of parts and by the following parameters in the interval [0, 1]:

1 Here we refer to what is known as the Dense Graph Model or the Adjacency Matrix Model [13].
2 A graph is a split graph if it can be partitioned into an independent set and a clique. A graph is (p, q)-colorable

if it can be partitioned into p cliques and q independent sets. A graph is probe-complete if it can be partitioned
into an independent set and a clique such that every vertex in the independent set is adjacent to every vertex
in the clique. A graph is bisplit if it can be partitioned into an independent set and a bi-clique.

1



1. Bounds on each part's size: for each 1 ≤ i ≤ k we have ρLi , ρ
U
i s.t. part Vi must satisfy

ρLi n ≤ |Vi| ≤ ρUi n.

2. Absolute bounds on the number of edges within each part: for each 1 ≤ i ≤ k we have
ρLii, ρ

U
ii s.t. part Vi must satisfy ρ

L
iin

2 ≤ eG (Vi, Vi) ≤ ρUiin2.

3. Absolute bounds on the number of edges between each pair of parts: for each pair 1 ≤
i, j ≤ k we have ρLij , ρUij s.t. the pair of parts Vi, Vj must satisfy ρLijn2 ≤ eG (Vi, Vj) ≤ ρUijn2.

4. Relative bounds on the number of edges within each part: for each 1 ≤ i ≤ k we have
αLii, α

U
ii s.t. part Vi must satisfy α

L
ii |Vi|

2 ≤ eG (Vi, Vi) ≤ αUii |Vi|
2.

5. Relative bounds on the number of edges between each pair of parts: for each pair 1 ≤ i, j ≤
k we have αLij , α

U
ij s.t. the pair of parts Vi, Vj must satisfy 2αLij |Vi| · |Vj | ≤ eG (Vi, Vj) ≤

2αUij |Vi| · |Vj |.

The original graph partition framework that was introduced in [13] includes only Items 1�3.
The absence of relative edge bounds makes the original framework weaker than the general
framework we consider in this paper. In particular, using the original framework, one cannot
express the notion of parts being cliques or the notion of a pair of parts being fully connected
to each other. More generally, our framework enhances the expressive power of the original
framework by adding the notion of edge densities,3 a notion that does not exist in the original
framework. We denote the class of graph partition properties (as de�ned above) by GPP. We
denote the class of graph partition properties that have no relative bounds on the number of
edges (the one introduced in [13]) by GPPNR (NR stands for Non-Relative).

We say that a graph property is poly
(

1
ε

)
-testable if it is input-size oblivious testable and

the tester's query complexity is polynomial in 1
ε . All the properties in the class GPPNR are

poly
(

1
ε

)
-testable [13]. In this work, we �rst show how to use the algorithm presented in [13]

as a subroutine to devise a tester for all the partition properties covered by our generalized
framework, thus obtaining the following theorem:

Theorem 1. Every property P ∈ GPP is poly
(

1
ε

)
-testable.

While the query complexity of the tester implied by 1 is a polynomial function of 1
ε as desired,

it has the disadvantage of having two-sided error (just like the algorithm described in [13]). A
tester has one-sided error if, whenever a graph G satis�es P , the tester determines this with
probability 1. Clearly, a one-sided error tester is preferable to a two-sided error tester because a
one-sided error tester is capable of providing a witness demonstrating that the property is not
satis�ed by the input graph. Combining the two desired features of polynomial dependence on
1
ε and having one-sided error leads to the de�nition of easily testable graph properties (as de�ned
in e.g. [8, 4, 12]).

De�nition 1. A graph property P is easily-testable if P is poly
(

1
ε

)
-testable and the tester has

one-sided error.

An example of an easily testable graph partition property is the property of being k-colorable
[13, 5]. In this paper we address the question of characterizing the easily testable graph partition
properties. We show that every graph partition property belonging to a restricted subset of
GPP, which we denote by GPP0,1 (and formally de�ne below), is easily testable, and every
graph partition property P /∈ GPP0,1 is not easily testable. That is, while Theorem 1 implies

3 From now on, when using the term edge density, we refer to the fraction of edges between the parts (or within
the part) relative to the number of vertex pairs between the parts (or within the part).

2



that every graph partition property P is poly
(

1
ε

)
-testable, only those properties in GPP0,1 are

poly
(

1
ε

)
-testable with one-sided error. An analogous result was established for the class GPPNR

by Goldreich and Trevisan [14]. However, as the class GPP is more general, the class GPP0,1

contains properties that are not covered by the class GPPNR. We build on some techniques
used in [14] to establish our characterization, but our characterization does not result from [14]
and we rely on di�erent ideas to arrive at it.

The class GPP0,1 is a subclass of GPP for which the following holds. For every property
P ∈ GPP0,1, there are no absolute bounds on the number of edges between or within parts. If
P has a constraint on the edge density between a pair of parts, or within a part, the constraint
must be either that the edge density is exactly 0 or that the edge density is exactly 1. In
addition, P does not constrain the sizes of the parts. Formally, P is parameterized by an integer
k denoting the number of parts and by a function dP : [k]× [k]→ {0, 1,⊥} denoting the relative
edge density that P imposes on parts i and j:

dP (i, j) =


1 if every vertex in part i should be connected to every vertex of part j

0 if there are no edges between part i and part j

⊥ if any number of edges between part i and j is allowed

Possibly, i = j in which case it is the edge density within a single part. That is, if dP (i, i) is
0 or 1 then P forces part i to be an independent set or a clique respectively. It is clear from the
de�nition that there are graph partition properties P ∈ GPP0,1 that are not part of the class
GPPNR (split graphs for instance).

The main result of our paper is a characterization of the easily testable graph partition
properties.

Theorem 2. A graph property P ∈ GPP is easily testable if and only if P ∈ GPP0,1.

Recall that a property is easily testable if it is testable by a one-sided error input-size oblivious
tester whose query complexity is polynomial in 1

ε . If we remove the requirement that the
dependence on 1

ε is polynomial, then the property is said to be strongly testable. Alon and
Shapira [9] de�ne the notion of a property being semi-hereditary (which is a certain relaxation
of being hereditary), and show that a graph property P is strongly testable if and only if P
is semi-hereditary. Since the properties in GPP0,1 are clearly hereditary, and therefore semi-
hereditary, the condition of Alon and Shapira implies that they are strongly testable. However,
this is not enough to prove the �if� part of Theorem 2, because being strongly testable does not
mean that the tester's query complexity is poly

(
1
ε

)
.

Therefore, to prove the �if� direction we give a poly
(

1
ε

)
one-sided error testing algorithm

for the property. An alternative proof to the �if� direction follows from [6]. We've chosen to
include our direct and self-contained proof because we believe our proof may be used to derive
generalizations to the claim, and thus potentially capture other graph properties that don't fall
under our speci�c de�nition. As for the �only if'' direction, we could use [9] to get that if a
property P in GPP is easily testable (and hence strongly testable), then it is semi-hereditary.
We would then need to prove that if P ∈ GPP is semi-hereditary, then P ∈ GPP0,1. Establishing
this claim would be essentially the same as our direct proof that if a property P in GPP is easily
testable, then P ∈ GPP0,1, and would be based on the same proof ingredients.

We next give a brief summary of each of our results.

1.1 A Two-Sided Error Tester for properties in GPP

In order to prove the existence of a (two-sided error) poly
(

1
ε

)
-testing algorithm for GPP we show

how to reduce the problem of testing properties in GPP to testing properties in GPPNR. Recall

3



GPP

GPPNR

Hereditery

GPP0,1

Semi-
Hereditery

Figure 1.1: Inclusion relations among the graph partition properties

that the di�erence between properties in GPP and properties in GPPNR is that the former
include edge density constraints (that are relative to the sizes of the parts), while the latter in-
clude only absolute constraints on the sizes of the parts and the number of edges between/within
them. We next give the high-level idea of the reduction.

Given a property P ∈ GPP, we de�ne a collection of properties in GPPNR, by discretizing

P and replacing the edge-density constraints with absolute constraints on the number of edges.
We then run the testing algorithm of [13], denoted A, on G and each property in the constructed
collection, with distance parameter ε

2 . If A accepts for at least one of these properties, then we
accept, and otherwise we reject. The de�nition of the collection is such that if G satis�es P , then
G satis�es at least one of the properties in the collection, so that our algorithm accepts with
high constant probability. In order to show that if G is ε-far from P , then G is ε

2 -far from every

property in the collection, we prove the contrapositive statement. That is, if for at least one of
the properties P ′ in the collection, G is ε

2 -close to P ′, then G is ε
2 -close to P . While the �rst

part of the analysis (regarding G that satis�es P ) is fairly immediate, the second part (regarding
G that is ε

2 -far from P ) requires a more subtle analysis. Essentially, we need to show how to
��x� G (remove/add edges), so as to obtain a graph that satis�es P . This requires showing the
existence of a partition (V1, . . . , Vk) that obeys all the constraints de�ned by P , while closeness
to P ′ only ensures the existence of a partition (V ′1 , . . . , V

′
k) that �almost� satis�es P ′.

1.2 A One-Sided Error Tester for Properties in GPP0,1

The tester samples Θ
(
k log(k)
ε2

)
vertices uniformly and independently at random, checks whether

or not the induced subgraph satis�es P and answers accordingly.4 Since all the graph partition
properties in GPP0,1 are hereditary, it clearly holds that if a graph G satis�es P , then every
induced subgraph ofG also does. Hence, ifG ∈ P , the suggested tester accepts with a probability
of 1.

The heart of the proof is in showing that if G is ε-far from satisfying P , where P ∈ GPP0,1,
then with high constant probability, the subgraph induced by the sample does not satisfy P .
In other words, we would like to show that with high constant probability over the choice of
the sample S, every partition (S1, . . . , Sk) of the sample violates at least one of the constraints
de�ned by the property P . That is, there is a pair (u, v), where u ∈ Si and v ∈ Sj such that
either (u, v) ∈ E while dP (i, j) = 0, or (u, v) /∈ E while dP (i, j) = 1. Such a partition is said to
be invalid . In order to prove this claim we extend the analysis of Alon and Krivelevich [5] for
testing k-colorability. We next give a high-level description of the analysis.

4 If the tested graph partition property is NP -hard to decide, then the running time is super-polynomial in the
sample size, which is unavoidable assuming P 6= NP .

4



Given the sample S, we construct a k-ary tree. Each node in the tree corresponds to a
partial partition of the sample. That is, a partition of a subset of the sample. In particular, each
internal node corresponds to a valid partition (where the root corresponds to a trivial partition
of the empty set). If an internal node corresponds to a partition (S′1, . . . , S

′
k) of a subset S′ of

the sample, then its children correspond to all partitions of S′ ∪ {u} that extend the partition
(S′1, . . . , S

′
k) for some sample point u ∈ S \S′. That is, partitions of the form (S′1, . . . , S

′
i−1, S

′
i ∪

{u}, S′i+1, . . . , S
′
k). Observe that if we obtain a tree for which all leaves correspond to invalid

partitions (i.e., that violates some constraint of P ), then there is no valid partition of S.
Consider a node x in the tree, corresponding to a partition (S′1, . . . , S

′
k) of S

′ ⊂ S. For each
vertex v /∈ S′, let 0 ≤ ax(v) ≤ k be the number of parts in the partition to which u can be added
so that the resulting partition is valid, and let ax be the sum of ax(v) taken over all v /∈ S′.
Observe that for the root of the tree, r (which corresponds to S′ = ∅), ar = k · n, and if y is a
child of x, then ay ≤ ax. If the partition corresponding to y is invalid, then ay = 0. We show
that with high constant probability over the choice of the sample, we can construct a tree for
which the following holds. For every path in the tree, the value of ax decreases in a relatively
signi�cant manner when comparing each node to its children. This allows us to show that we
can obtain a tree in which all partitions corresponding to the leaves are invalid.

1.3 Easily Testable Graph Partition Properties Must be in GPP0,1

Our proof that if a property P ∈ GPP is easily testable, then P must be in GPP0,1 is the most
technically involved part of this work. The proof consists of several steps, and we next give a
high-level outline of these steps. We note that the proof uses the fact that easy testability implies
strong testability. That is, we rely on the existence of a one-sided error tester for the property
that is oblivious of the size of the graph, but we do not rely on the tester having complexity
poly

(
1
ε

)
.

Recall that properties in GPP0,1 are de�ned by the following types of constraints over graph
partitions. First, for each part, either the edge density within the part is unconstrained, or it is
constrained in an extreme manner. The latter means that no edges are allowed within the part,
or that there must be all possible edges. We say in such a case that the part is homogeneous.
Similarly, for each pair of parts, either there is no constraint on the edge density between the
parts, or it is extreme (no edges, or all edges). Here too we say in the latter case that the
pair is homogeneous. Finally, as opposed to GPP, there are no constraints on the sizes of the
parts. Observe that the trivial property, that is, the property that contains all graphs, belongs
to GPP0,1 (since it can be de�ned by a single part with no edge-density constraints).

In what follows, for a property P ∈ GPP and a graph G = (V,E) satisfying P , a partition
(V1, . . . , Vk) of V is said to be a witness partition with respect to P , if in G, (V1, . . . , Vk) satis�es
the constraints imposed by P . We say in such a case that the pair (G, (V1, . . . , Vk)) satis�es P .
We �rst prove that if P is easily testable, then either it is trivial, or for every graph G satisfying
P and witness partition (V1, . . . , Vk), all parts are homogeneous. This is established by showing
that if there exists a graph G in P with a witness partition that has some non-homogeneous
part, then the premise that P is easily testable implies that P is trivial. The proof uses a type
of �multiplying� operation on the graph G. Once we have only homogeneous parts, we can also
establish the homogeneity of pairs (among those that are constrained in terms of edge-density).
At this point it remains to show that there can be no size constraints on the parts.

To this end we prove a dichotomy claim. Let P ′ be the same property as P except that there
are no size constraints. The claim is that either P = P ′ or P ′ is in a certain sense far from P .
We then show that the second case cannot hold if P is easily testable. In order to prove the
dichotomy claim, we de�ne a certain mathematical program, that, roughly speaking, is related

5



to modi�cations of graph-partition pairs that satisfy P ′ to graph-partition pairs that satisfy P
(by ��xing� the size constraints). In particular, the existence of a feasible solution corresponds
to P = P ′. On the other hand, if there is no feasible solution, then we show that P ′ is far from
P . This proof involves a probabilistic construction of a graph that satis�es P but is su�ciently
far from satisfying P ′.

1.4 Related Work

Easily testable graph properties. Besides the class of graph partition properties, there are
several results characterizing the set of easily testable graph properties among other classes. Alon
[1] proved that the property of being H-free is easily testable if and only if H is bipartite. Alon
and Shapira [8] proved that for any graph H besides P2, P3, P4, C4 and their complements, the
property of being induced H-free is not easily testable. It was also shown in [8, 4] that induced
H-freeness is easily-testable for P2, P3, P4 and their complements, and the case of C4 (and its
complement) is the only one that remains open. In addition, the graph properties perfectness
and comparability were shown to be not easily testable [4]. Gishboliner and Shapira [12] recently
made signi�cant progress by providing su�cient and necessary conditions for guaranteeing that
a hereditary graph property is easily testable, implying all the positive and negative results
mentioned above. It is worth noting, however, that their criteria do not apply to many properties
in GPP0,1 (for example, (p, q)-colorability), that are shown to be easily testable in our work.

Testing properties in GPPNR with one sided error. As mentioned previously, Goldre-
ich and Trevisan [14] studied the one-sided error testability of GPPNR. They showed that
every strongly testable property in GPPNR belongs to a class of properties that generalizes k-
colorability. Each property P in this class is de�ned by a set of pairs AP = {(i, j) |0 ≤ i, j ≤ k},
where the property P is the set of k-colorable graphs with the additional constraint that if
(i, j) ∈ AP , then there are no edges between the vertices with color i and the vertices with color
j. In addition, the property of being a clique and the property containing all graphs are both
stongly testable graph properties in GPPNR.

We build on [14]'s technique of multiplying a graph-partition pair to derive the fact that all
the easily testable properties in GPP only have homogeneous constraints on the edge density
within and between parts. The idea of �nding assignments to variables corresponding to moving
vertices between parts also appears in [14], but they did not have to optimize over a mathematical
program, and the assignments they de�ned could be used straightforwardly to establish the
equivalence between a property and its relaxation. One of the main ideas used in [14] to derive
the characterization was showing that strongly testable properties in GPPNR are closed under
removal of edges (except for the property of being a clique), and they rely on this fact heavily
when deriving the implication regarding the assignments they de�ne and when performing the
multiplication. We could not use this idea as it does not hold in our case, because the existence
of relative edge bounds in GPP enables easily testable properties to have lower bounds on the
number of edges between or within parts. This is basically the main reason why the set of easily
testable properties in GPP has a richer structure than in GPPNR. This is why we had to use
notions that do not appear in their analysis such as weak and strong violations of assignments
and rely on the probabilistic method to establish our result.

1.5 Organization

In Section 1.2 we give and analyze the one-sided error tester for properties in GPP0,1 (which
proves the �if� direction of Theorem 2). In Section 3 we prove Theorem 1, providing a two-sided
error tester for all the properties in GPP. Then, in Section 4, we prove the result regarding the

6



�only if� direction of Theorem 2, that all the easily testable properties in GPP are in GPP0,1.
We've chosen to omit the proofs of some claims in places we believe that the details of the proof
are not essential to the reader's understanding. For completeness, all the omitted proofs are
given in Appendix B.

2 A One-Sided Error Tester for GPP0,1

In this section we assume P is in GPP0,1 as de�ned in the introduction. We describe a one-
sided error tester for property P with query complexity poly

(
1
ε

)
and thus show that P is easily

testable.

2.1 The Algorithm and its Analysis

The tester is very simple:

One-sided error tester for P ∈ GGP0,1

• Sample 36k log(k)
ε2

vertices uniformly, independently and at random.

• If the subgraph induced by the selected vertices satis�es P then accept, other-
wise reject.

Since all the properties in GGP0,1 are hereditary, it clearly holds that if a graph G satis�es
P , then every induced subgraph of G also does. Hence, if G ∈ P , then the above tester accepts
with probability 1. From this point on we focus on the case that G is ε-far from satisfying P .

Let G = (V,E) be a graph over n vertices such that G is ε-far from satisfying P . We �rst
introduce several notions that we use in our proof that the tester rejects G with high constant
probability and then provide the proof itself.

2.1.1 Partial partitions and their extensions

A partial partition of V is a partition of a subset of the vertices into k parts. Formally,

De�nition 2. A partial partition of V into k parts is a function π : V → [k]∪{⊥}. For a vertex

v ∈ V , we say that π assigns v to part i if π(v) = i. If π(v) = ⊥, then we say that v is not

assigned by π.

Given a partial partition π we denote by Vπ the set of vertices assigned by π. That is,

Vπ = {v ∈ V : π(v) 6= ⊥} . (2.1)

We also say in that case that π is complete with respect to Vπ. Note that a partial partition
is not necessarily strictly partial. That is, a partial partition that assigns all the vertices of G
(i.e., that is complete with respect to V ) is simply a partition.

Recall that d : [k]× [k]→ {0, 1,⊥} denotes the function de�ning the constraints of P .

De�nition 3. Given a partial partition π we say that a pair of vertices {u, v} where u, v ∈ Vπ
is a violating pair with respect to π and P if any of the following two cases holds:

- (u, v) ∈ E and dP (π(u), π(v)) = 0
- (u, v) /∈ E and dP (π(u), π(v)) = 1
We say that a partial partition π is valid with respect to P if there are no violating pairs with

respect to π and P .

7



Let π be a valid partial partition of V .

De�nition 4. For each vertex v /∈ Vπ we let Aπ(v) denote the set of indices of parts to which

v can be assigned without introducing a violating pair (given that the vertices in Vπ are assigned

according to π). Namely,

Aπ(v) = {i ∈ [k] | dP (i, π(u)) 6= 0, ∀u ∈ Vπ ∩ Γ(v)} ∪ {i ∈ [k]| dP (i, π(u)) 6= 1, ∀u ∈ Vπ\Γ(v)} .

We can extend π by creating a new partition π′ that agrees with π on all the vertices
belonging to Vπ and also assigning the vertex v to some part i ∈ Aπ(v).

De�nition 5. We say that a partial partition π′ is a v-extension of π for v /∈ Vπ if π′ is obtained
from π by assigning each vertex u ∈ Vπ to π(u) and in addition assigning v to a part i ∈ [k].

If π′ is the v-extension of π in which π′(v) = i, then we say that we extend π by v → i to
obtain π′. We also say that π′ is the v → i extension of π.

We say that the v → i extension of π is valid with respect to P if i ∈ Aπ(v). Otherwise, we
say that the v → i extension is an invalid v-extension of π.

Clearly, for every vertex v /∈ Vπ, the number of v-extensions of π is k and the number of
valid v-extensions of π is |Aπ(v)|.

De�nition 6. We let |Aπ| denote the total number of valid single-vertex extensions to the partial

partition π. Formally,

|Aπ| =
∑
v/∈S

|Aπ(v)| (2.2)

Intuitively, |Aπ| measures how much freedom we have in assigning more vertices given that
the set of vertices in Vπ have to be assigned according to π.

In addition, given a vertex v /∈ Vπ, we de�ne the price of the v → i extension of π where
i ∈ Aπ(v) as the amount of freedom lost by the extension. Formally,

De�nition 7. For v /∈ Vπ and i ∈ Aπ(v), the price of extending π by v → i, denoted by

∆π (v → i), is de�ned as follows:

∆π (v → i) = |Aπ| − |Aπv→i | (2.3)

We de�ne the price of extending π by v, denoted ∆π(v), as the lowest price that can possibly

be paid by doing so. Namely,

∆π(v) = min
i∈Aπ(v)

{∆π (v → i)} (2.4)

If Aπ(v) = ∅ then ∆π(v) is unde�ned.

The interpretation of the price ∆π (v → i) is that if we extend π by v → i we lose ∆π (v → i)
single-vertex extensions in the next extension round. That is, the partial partition π induces
∆π (v → i) more valid single-vertex extensions than the v → i extension of π. Clearly, ∆π (v → i)
is non-negative.

Recall that all the de�nitions above assume that π is a valid partial partition with respect
to P .

8



2.1.2 The tree of partial partitions

Let S be a sample of s vertices from the graph G, selected uniformly and independently (so that
the same vertex may be selected more than once). We consider some arbitrary but �xed order
over the s vertices in S. In this section we use S to de�ne a k-ary tree TS in which every node
x in the tree is labeled by a particular partial partition πx. The partial partition of a node is
not necessarily valid with respect to P . Before giving the formal de�nition of TS we present a
general high level description of what the tree looks like.

Let x be a node in the tree. As aforesaid, the node x is labeled by a partial partition πx. The
partial partition πx only assigns vertices of S (that is, Vπx ⊆ S). If πx is invalid with respect to
P , then x has no children. For each internal node x, each child of x is labeled by a single-vertex
extension of πx where all the children are extended by the same vertex vx. That is, each child
of the node x is labeled by a partition that agrees with πx on all the vertices assigned by πx and
in the addition, the ith child partition assigns vx to part i ∈ [k]. We refer to vx as the branching
vertex of the node x.

Now we formally de�ne the tree TS using structural induction.

1. As the basis of the structural induction we construct the root of TS . The root of TS is
labeled by the the empty partial partition π∅ = (∅, . . . , ∅) that does not assign any vertex.

2. Each step of the induction corresponds to a particular vertex in S. That is, to construct
TS we iterate over the vertices of S (according to the aforementioned �xed order) and
extend the tree according to the instructions below.

3. Let v ∈ S be the vertex considered in the current step. We use the following rules to
extend the leaves of the tree built so far. For each leaf x where πx is valid with respect to
P (we do not extend leaves labeled by invalid partial partitions):

(a) If v ∈ Vπx or Aπx(v) 6= ∅ and ∆πx(v) < 1
2εn, then we do nothing with x.

(b) Otherwise (v /∈ Vπx and either Aπx(v) = ∅ or ∆πx(v) ≥ 1
2εn), we add the k children

corresponding to the possible v-extensions of πx, where child i is labeled by the v → i
extension of πx. In that case, the branching vertex vx = v.

Observe that, by construction, every internal node of TS is labeled by a partial partition that is
valid with respect to P . We next establish some additional properties of the tree TS .

Claim 3. Let G be a graph and let S be any (ordered) sample of the vertices of G. The depth

of TS is at most 2k
ε .

Proof. Consider a path from the root of TS to any leaf. Let x and y be a pair of consecutive
nodes in the path such that x is the parent of y. Suppose y is not the last node on the path
(that is, y is not a leaf). Hence, both πx and πy are valid partial partitions. By the de�nition
of TS , the partial partition πy is a vx-extension of πx such that

∆πx(vx) ≥ 1

2
εn . (2.5)

Hence,

|Aπx | −
∣∣Aπy ∣∣ ≥ 1

2
εn . (2.6)

Therefore, in every step in which a pre�x of the path is extended, the value of |Aπx | decreases
by at least 1

2εn. Since |Aπx | is non-negative (as it is the size of a set), the total number of nodes in

9



the path is bounded from above by
|Aπ∅ |
1
2
εn

where π∅ is the partition of the root. Since
∣∣Aπ∅∣∣ = kn

(as
∣∣Aπ∅(v)

∣∣ = k for every vertex v, the length of the path is at most nk
1
2
εn

= 2k
ε . This holds for

any path and therefore the depth of TS is at most 2k
ε .

De�nition 8. Given a complete partition φ of S, we de�ne the path corresponding to φ in the

tree TS, denoted path(TS , φ), as the following sequence of nodes. The �rst node in the sequence

path(TS , φ) is the root of TS. Suppose we constructed a non-empty pre�x of path(TS , φ), where
the last node in the pre�x is x. If x is not a leaf of TS, then the next node in the path is the child

of x labeled by the vx → φ(vx) extension of πx. If x is a leaf, then x is the last node of the path.

Claim 4. Let G be a graph and let S be an (ordered) sample of the vertices of G. If each leaf of

TS is labeled by an invalid partition with respect to P , then every partition of S is invalid with

respect to P .

Proof. Let φ be a complete partition of S, and let x be the leaf at the end of path(TS , φ). By the
premise of the claim, x is labeled by an invalid partial partition. By De�nition 8, φ(v) = πx(v)
for every v ∈ Vπx . Hence, every violating pair with respect to πx and P also serves as a violating
pair with respect to φ and P . Therefore, since πx is invalid with respect to P , so is φ.

2.1.3 With high probability, every partition of S has a violation

Recall that we are working under the premise that the graph G is ε-far from P .

Claim 5. Let G be a graph that is ε-far from P and let φ be a partial partition of V that is

valid with respect to P . There are at least 1
2εn vertices v /∈ Vφ satisfying either Aφ(v) = ∅ or

∆φ(v) ≥ 1
2εn.

Proof. Assume, contrary to the claim, that the number of vertices v /∈ Vφ satisfying either
Aφ(v) = ∅ or ∆φ(v) ≥ 1

2εn is less than 1
2εn. We next construct a complete partition φ′ of V that

has at most εn2 violating pairs with respect to the constraints imposed by P , in contradiction
to G being ε-far from P .

The partition φ′ agrees with φ on Vφ. For each vertex v /∈ Vφ, if Aφ(v) = ∅, then we assign v
to an arbitrary part. Otherwise (Aφ(v) 6= ∅), we assign v to the part i ∈ Aφ(v) that minimizes
∆φ (v → i). That is, we choose the part i satisfying ∆φ (v → i) = ∆φ(v). We next bound from
above the number of violating vertex-pairs with respect to φ′ and P .

First, let v be a vertex satisfying Aφ(v) 6= ∅ and ∆φ(v) < 1
2εn. Suppose φ

′(v) = i. The price
of assigning v to part i equals the maximum number of violating pairs v could be involved in.
That is, the vertex v is involved in at most ∆φ (v → i) violating pairs. By the de�nition of φ′,
the choice of i ensures that:

∆φ (v → i) = ∆φ(v) <
1

2
εn . (2.7)

Hence, v is involved in at most 1
2εn violating pairs. The number of vertices satisfying the

condition Aφ(v) 6= ∅ and ∆φ(v) < 1
2εn is at most n and therefore, these vertices contribute at

most 1
2εn

2 violating pairs to φ′.
Let v be a vertex that does not satisfy the above condition. That is, either Aφ(v) = ∅ or

∆φ(v) ≥ 1
2εn. Recall we assume that the number of these vertices is at most 1

2εn. Each such
vertex is involved in at most n violating pairs. Hence, the set of the vertices that do not satisfy
the condition contribute at most 1

2εn
2 violating pairs to φ′.

It follows that the total number of violating pairs with respect to φ′ and P is bounded from
above by 2 · 1

2εn
2 = εn2.

10



The next claim concludes the analysis of the tester.

Claim 6. Let G be a graph that is ε-far from P . If S is a sample of 36k log(k)
ε2

vertices that are

selected uniformly, independently at random, then with a probability of at least 2
3 over the choice

of S, all the leaves of TS are labeled by an invalid partition with respect to P .

Proof. By construction, every internal node of TS has exactly k children and by Claim 3 the
depth of TS is at most 2k

ε . Therefore, TS can be embedded in the complete k-ary tree of depth
2k
ε . We denote that tree by Tk, 2k

ε
. The number of nodes in Tk, 2k

ε
is:

2k
ε∑
i=0

ki ≤ k
2k
ε

+1 (2.8)

Recall that during the construction of TS , in each step we have a partial tree and we consider
the next vertex selected in the sample. For each leaf x in the current partial tree, let Ex denote
the event that x is extended in the current step. That is, Ex is the event that the next selected
vertex v is such that v /∈ Vπx and either Aπx(v) = ∅ or ∆πx(v) ≥ 1

2εn. By Claim 5, Pr[Ex] ≥ ε
2 .

By the de�nition of TS , the occurrence of the event Ex for a leaf x results in extending x by k
children.

Let x be a node in Tk, 2k
ε
. If after 36k log(k)

ε2
rounds (of selecting random vertices), x is a leaf

of TS , then the total number of times the event has occurred for nodes on the path from the
root to x equals the depth of x. Since in each round, Pr[Ex] is at least ε

2 , the probability that x

does not become a �dead-end� of TS (that is, πx is valid) after 36k log(k)
ε2

steps is bounded from

above by the probability that the Binomial random variable X ∼ B
(

36k log(k)
ε2

, ε2

)
is less than

2k
ε .

Pr

[
x is not a dead-end after 36

k log (k)

ε2
steps

]
≤ Pr

[
X <

2k

ε

]
. (2.9)

By Cherno�'s inequality,

Pr

[
X <

2k

ε

]
≤ exp

(
−
(
E [X]− 2k

ε

)2
2E [X]

)
. (2.10)

Since X is a Binomial random variable, its expectation is:

E [X] = 36
k log (k)

ε2
· ε

2
=

18k log (k)

ε
. (2.11)

Combining Equations (2.10) and (2.11) we obtain:

Pr

[
X <

2k

ε

]
≤ exp

−
(

18k log(k)
ε − 2k

ε

)2

24k log(k)
ε

 ≤ exp

−
(

16k log(k)
ε

)2

24k log(k)
ε

 ≤ k− 3k
ε . (2.12)

Hence, by the union bound over all at most k
2k
ε

+1 nodes of Tk, 2k
ε
:

Pr [Not all leaves are dead-ends] ≤ k
2k
ε

+1 · k−
3k
ε =

k

k
k
ε

≤ 1

3
, (2.13)

and the claim follows.

11



The size of our sample S is 36k log(k)
ε2

. Therefore, with a probability of at least 2
3 , all the

leaves of TS are labeled by invalid partitions with respect to P , and by Claim 4, S cannot be
validly partitioned. Hence, the probability that our tester rejects is at least 2

3 .

3 A Two-Sided Error Tester for GPP

3.1 The Class GPPNR
The class GPPNR is the set of graph partition properties with no relative edge bounds. The
family of these problems has a two-sided tester whose query complexity is polynomial in the
proximity parameter [13]. The tester can be repeated several times to boost the probability of
its correctness. We denote the tester for GPPNR by AbsTester and set its correctness probability

to at least
(

2
3

) 1
t where t =

(
8k
ε

)k (8k2

ε

)k2
. We show how we can test properties in the generalized

class GPP, by invoking AbsTester several times. In order to describe the algorithm we �rst have
to de�ne the notion of a characterizing vector and the concept of structural equivalence.

3.2 The Characterizing Vector and Structural Equivalence

De�nition 9. Given an n-vertex graph G and a partition (V1, ..., Vk) we de�ne the characterizing
vector ~σ as follows. The vector can be indexed by either a single index 1 ≤ i ≤ k or by a pair

i, j s.t. i ≤ j and 1 ≤ i, j ≤ k.
~σi = |Vi|

n

~σij =
e(Vi,Vj)
n2

We note that while a graph and a partition can be characterized by a unique vector, a given
vector can characterize a variety of graph-partition pairs.

De�nition 10. We say that two graph-partition pairs are structurally equivalent if they're char-

acterized by the same vector.

We note that the structural equivalence is an equivalence relation of the graph-partition
pairs.

Lemma 1 (The Structural Equivalence Lemma). Let G∗ be a graph satisfying a GPP property

P and let (V ∗1 , ..., V
∗
k ) be a witness partition. That is, a partition of V [G] satisfying all the

constraints speci�ed by P . Denote by ~σ∗ the characterizing vector of (G∗, (V ∗1 , ..., V
∗
k )). Let

(G, (V1, ..., Vk)) be a graph-partition pair whose characterizing vector is also ~σ∗. Then G satis�es

P as well.

The correctness of The Structural Equivalence Lemma is directly derived from the way struc-
tural equivalence is de�ned.

3.3 Satisfying Interval Vectors

We de�ne an interval vector ~ρ in a similar manner to how we de�ned a characterizing vector of
a graph except that each element of ~ρ is an interval. That is, an interval vector ~ρ can be indexed
by either a single index 1 ≤ i ≤ k or by a pair i, j s.t i ≤ j and 1 ≤ i, j ≤ k.

1. ~ρi =
[
~ρLi , ~ρ

U
i

]
is an interval representing a constraint saying ~ρLi n ≤ |Vi| ≤ ~ρUi n.

2. ~ρij =
[
~ρLij , ~ρ

U
ij

]
is an interval representing a constraint saying ~ρLijn

2 ≤ e (Vi, Vj) ≤ ~ρUijn
2.

12



Given a graph-partition pair (G, (V1, ..., Vk)) we can compute the corresponding characterizing
vector ~σ. We say that ~σ satis�es an interval vector ~ρ if every element of ~σ resides in the
corresponding interval of ~ρ, denoted ~σ ∈ ~ρ. Clearly, a graph G− (V,E) satis�es the constraints
induced by an interval vector ~ρ if and only if there exists a a partition of V such that the
characterizing vector ~σ of the graph-partition pair satis�es ~ρ. Every interval vector ~ρ corresponds
to a property in GPPNR denoted GPPNR (~ρ).

We can split an interval vector ~ρ into two interval vectors, ~a and ~b, where ~a is the part
of ~ρ representing all the size constraints and ~b is the part of ~ρ representing the edge density
constraints. We say that ~σ ∈ ~a if ~σ satis�es the constraints in ~a and we say that ~σ ∈ ~b if ~σ
satis�es the constraints in ~b.

3.4 Feasible and Compatible Interval Vectors

Clearly, not every interval vector attains a satisfying graph-partition pair. We say that such
interval vectors are not feasible. Formally,

De�nition 11. An interval vector ~ρ is feasible if there exists an n-vertex graph G = (V,E) and
a partition (V1, ..., Vk) of V s.t. the characterizing vector of (G, (V1, ..., Vk)) satis�es ~ρ.

A feasible interval vector ~ρ is compatible with a property P in GPPNR if there exists an
n-vertex graph G satisfying P and a partition (V1, ..., Vk) of V s.t. the characterizing vector of
(G, (V1, ..., Vk)) satis�es ~ρ.

Given an interval vector ~ρ we can determine whether it is both feasible and compatible with
P by checking if the feasible region de�ned by a speci�c set of quadratic constraints is empty. In
particular, the vector ~ρ is feasible and compatible with P if and only if some quadratic program
is feasible. The program is de�ned over the following set of k + k2 real decision variables:
{xi}ki=1 ∪{yij}(i,j)∈[k]×[k] . The variables {xi}

k
i=1 correspond to sizes of parts (relative to n) and

the variables {yij}(i,j)∈[k]×[k] correspond to number of edges between parts (or within a part for

i = j) relative to n2. To simplify the description of the program we assume that each entry
of the vector ~ρ holds an interval that is contained in the corresponding interval speci�ed by
P . That is, we denote by

[
ρLi , ρ

U
i

]
an interval interval in the vector ~ρ and assume that the

constraint imposed by P on the size of part i is an interval that contains any point belonging to[
ρLi , ρ

U
i

]
. We assume the same for the ρij entries of the interval vector. Hence, in the following

description of the program, the entries
[
ρLi , ρ

U
i

]
and

[
ρLij , ρ

U
ij

]
are entries of the interval vector

~ρ, and the entries
[
αLij , α

U
ij

]
come from the description of the property P . The full quadratic

program is de�ned speci�ed in Appendix A. We can simplify the program de�ned in Appendix
A and eliminate the variables {yij}(i,j)∈[k]×[k] by expressing the constraints on those variables

in terms of {xi}ki=1. That is, the program has a feasible solution if and only if the following one
does.

k∑
i=1

xi = 1 (3.1)

∀i ∈ [k] : ρLi ≤ xi ≤ ρUi (3.2)

∀i ∈ [k] : max
{
αLii, ρ

L
ii

}
≤ x2

i ≤ min
{
αUii , ρ

U
ii

}
(3.3)

∀i 6= j ∈ [k]× [k] : max
{

2αLij , 2ρ
L
ij

}
≤ xi · xj ≤ min

{
2αUij , 2ρ

U
ij

}
(3.4)

13



The problem of deciding whether the above program has a feasible solution is equivalent
to deciding if it belongs to a set known as The Existential Theory of the Reals. This decision
is decidable in time exponential in k [15, 16]. Hence, given an interval vector we can decide
whether or not it is both feasible and compatible with the property P .

3.5 The Two-Sided Error Tester

We denote the parameters of the original problem by k,
{
ρ̃Li , ρ̃

U
i , ρ̃

L
ij , ρ̃

U
ij , α̃

L
ij , α̃

U
ij

}
1≤i,j≤k

and

reserve the Tilde-free symbols for the sequence of sub-problems to be de�ned soon. The �rst
stage of the algorithm is to generate interval vectors on which we're going to test the input
graph using the AbsTester. We compute the set of such interval vectors by splitting the intervals
de�ning the property P.

3.5.1 Splitting the intervals

We describe a process in which we split the property's intervals into smaller sub-intervals. The
algorithm is going to combine those sub-intervals into interval vectors corresponding to easily
solvable sub-problems: ones without relative formulations.

1. Size Intervals: For every part i we take the interval
[
ρ̃Li , ρ̃

U
i

]
and split it into non-

overlapping sub-intervals, each of size ε′ = 1
8k ε (the size of the last sub-interval is allowed

to be smaller). We denote the set of the sub-intervals by Ai.

2. Edge Density Intervals: Let
∏k
i=1Ai be the Cartesian product of the k sets of intervals.

That is, a vector ~ρ ∈
∏k
i=1Ai holds k intervals, one for each part, each of size at most ε′.

The cardinality of
∏k
i=1Ai is at most

(
1
ε′

)k
. Let ~a =

([
ρL1 , ρ

U
1

]
, ...,

[
ρLk , ρ

U
k

])
∈
∏k
i=1Ai.

For every 1 ≤ i, j ≤ k where i < j we de�ne:

ρLij = max
{
ρ̃Lij , α̃

L
ij · ρLi · ρLj

}
(3.5)

ρUij = min
{
ρ̃Uij , α̃

U
ij · ρUi · ρUj

}
(3.6)

For i = j:

ρUii = min
{
ρUii , α̃

U
ii ·
(
ρUi
)2}

(3.7)

ρLii = max
{
ρLii, α̃

L
ii ·
(
ρLi
)2}

(3.8)

Now we take the interval
[
ρLij , ρ

U
ij

]
and split it into non-overlapping sub-intervals, each of

size ε′′ = 1
8k2
ε (again, the size of the last sub-interval is allowed to be smaller). We denote the

set of the sub-intervals by B~aij .

For every vector ~a ∈
∏k
i=1Ai we iterate over the vectors

~b ∈
∏
i≤j B

~a
ij and combine ~a and ~b

into a single interval vector ~ρ in such a way that:

~ρi = ~ai (3.9)

~ρij = ~bij (3.10)

For every vector ~a ∈
∏k
i=1Ai the number of interval vectors we have is at most

(
1
ε′′

)k2
.

Hence, the total number of interval vectors we consider is at most
(

1
ε′

)k · ( 1
ε′′

)k2
. We only

consider feasible vectors that are compatible with the original problem.

14



3.5.2 Running AbsTester on the interval vectors

For each feasible compatible interval vector ~ρ we run AbsTester on ~ρ with proximity parameter
1
2ε. If any of them accepts, we accept too. If they all reject, so do we.

3.6 Analysis of the Two-Sided Error Tester

We have to show that the algorithm outputs the right answer with high probability. That is,
we have to show that if a graph G satis�es P then the tester accepts with high probability and
that if G is far from satisfying P then the tester rejects with high probability.

3.6.1 If G is a YES instance, we accept with high probability

Let G be a YES instance and let (V1, ..., Vk) be a witness partition of V [G]. That is, (V1, ..., Vk)
satis�es the constraints of the original problem. Let ~σ be the characterizing vector of (G, (V1, ..., Vk)).
For every part 1 ≤ i ≤ k:

~σi ∈
[
ρ̃Li , ρ̃

U
i

]
(3.11)

Therefore, there exists an interval
[
ρLi , ρ

U
i

]
∈ Ai s.t.:

~σi ∈
[
ρLi , ρ

U
i

]
(3.12)

Hence, there exists ~a ∈
∏k
i=1Ai s.t.

~σ ∈ ~a (3.13)

Claim 7. There exists ~b ∈
∏
i≤j B

~a
ij s.t. ~σ ∈ ~b.

The proof of Claim 7 is given in Appendix B.1. It follows that there exists a valid interval
vector ~ρ such that ~σ ∈ ~ρ and therefore G will be accepted in the ~ρ iteration with high probability
(as AbsTester is a 2-sided error tester for the property).

3.6.2 If G is far from satisfying the property, we reject with high probability

Suppose G is ε-far from satisfying P . We show that G is 1
2ε-far from GPPNR (~ρ) for every

feasible compatible interval vector ~ρ (among the ones we've constructed).
Suppose for the sake of contradiction that G is not 1

2ε-far from GPPNR (~ρ) for some feasible
~ρ. We show how by modifying at most εn2 vertex pairs we make G satisfy the original property.

First we make 1
2εn

2 edge modi�cations to make G satisfy GPPNR (~ρ). Denote by G′ the
graph resulting from G by applying the above edge modi�cations. Let (V ′1 , ..., V

′
k) be a witness

partition demonstrating G′ satis�es GPPNR (~ρ).
Since ~ρ is feasible there exists a graph G∗ ∈ P and a witness partition (V ∗1 , ..., V

∗
k ) satisfying

the constraints induced by GPPNR (~ρ). Let ~σ∗ be the characterizing vector of (G∗, (V ∗1 , ..., V
∗
k )).

We show how to modify (G′, (V ′1 , ..., V
′
k)) in such a way that they'll be characterized by the

vector ~σ∗. We do this in four steps.

1. We move vertices between the various parts in (V ′1 , ..., V
′
k) so that for every 1 ≤ i ≤ k

the number of vertices in Vi becomes ~σ∗i n. We choose a sequence of movements which
is minimal in the sense that it involves the smallest possible number of vertices being
assigned to a new part. We denote the obtained partition by (V1, ..., Vk).

15



2. We remove all the edges from every vertex we've moved in the previous step. Since both
(G′, (V ′1 , ..., V

′
k)) and (G∗, (V ∗1 , ...V

∗
k )) satisfy the constraints induced by ~ρ, for every i we

have ||V ′i | − |V ∗i || ≤ ε′n. Therefore the procedure of moving the vertices so that our graph
agrees with G∗ on each part's size requires moving less than kε′n vertices. Hence, the cost
of the current step (number of edge modi�cations) is at most kε′n2 .

3. For every i, j s.t i ≤ j if e′ (Vi, Vj) > ~σ∗ijn
2 we remove edges between Vi and Vj until

we have exactly ~σ∗ijn
2 edges between the two parts. Since both (G′, (V ′1 , ..., V

′
k)) and

(G∗, (V ∗1 , ...V
∗
k )) satisfy the constraints induced by ~ρ, for every such i, j we have e (Vi, Vj)−

e∗
(
V ∗i , V

∗
j

)
≤ ε′′n2. Therefore the cost of the current step (number of edge modi�cations)

is at most k2ε′′n2 .

4. For every i, j s.t i ≤ j if e′ (Vi, Vj) < σ∗ijn
2 we add edges between Vi and Vj until we have

exactly σ∗ijn
2 edges between the two parts. The cost of the step in the worst case involves

both making up for the edges we've removed in step 2 (by adding them all) and then

adding at most e∗
(
V ∗i , V

∗
j

)
− e (Vi, Vj) ≤ ε′′n2 edges to narrow the gap. Thus, the total

cost of this step is at most kε′n2 + k2ε′′n2.

Clearly, the graph resulting from applying the above four steps together with the partition
(V1, ..., Vk) are characterized by the vector ~σ∗. Since G∗ satis�es P the structural equivalence
lemma implies that the resulting graph satis�es P. The number of edge modi�cations we had
to make in order to make G′ satisfy P is at most:

kε′n2 + k2ε′′n2 + kε′n2 + k2ε′′n2 = 2kε′n2 + 2k2ε′′n2

=

(
2k

8k
ε+

2k2

8k2
ε

)
n2 =

1

2
εn2

Together with the (at most) 1
2εn

2 edge modi�cations we've made in order to transform G
into G′ we get a total of less than εn2 edge modi�cations for making G satisfying the original
property P . This contradicts G being ε-far from satisfying the property. Hence, we conclude
that G must be 1

2ε-far from satisfying GPPNR (~ρ) for every feasible ~ρ.
Let Pr [Reject] be the probability of our algorithm rejecting G when G is ε-far from sat-

isfying P. Remember we set AbsTester to succeed with probability at least
(

2
3

) 1
t where t =(

8k
ε

)k (8k2

ε

)k2
. We observe t is an upper bound on the number of interval vectors ~ρ we consider.

Pr [REJECT ] ≥

((
2

3

) 1
t

)t
=

2

3
(3.14)

4 Easily Testable Graph Partition Properties Must be in GPP0,1

As discussed in Section 2, all the graph partition properties in GPP0,1 are easily testable. In this
section we provide the proof for the claim that if a graph partition property is easily testable,
then P ∈ GPP0,1. We �rst de�ne the concept of a t-multiplier, which is used several times
throughout the proof. In what follows, given a graph G = (V,E) and a set of vertices U ⊆ V
we denote by G [U ] the subgraph induced by U .

16



4.1 t-Multipliers

De�nition 12. Let G = (V,E) be a graph over n vertices and let (V1, ..., Vk) be a partition of

V . For an integer t we say that a graph-partition pair (G′, (V ′1 , ..., V
′
k) where G′ = (V ′, E′) is a

t-multiplier of (G, (V1, ..., Vk)), if the following holds.

Vertices: |V ′| = t · n.
Partition: For each 1 ≤ i ≤ k, |V ′i | = t · |Vi|.
Within Edges: Suppose G [Vi] has αii |Vi|2 edges. Then G′ [V ′i ] has αiit

2 |Vi|2 edges.

Between Edges: Suppose G has 2αij |Vi| · |Vj | edges between Vi and Vj. Then G′ has 2αij ·
t2 |Vi| · |Vj | edges between V ′i and V ′j .

Recall that given a graph G = (V,E) and a partition (V1, ..., Vk) of V that satis�es the
constraints imposed by property P in GPP, we say that (V1, ..., Vk) is a witness partition to the
fact that G satis�es P . In short, we say that the graph-partition pair (G, (V1, ..., Vk)) satis�es

P . We prove the following claim regarding t-multipliers.

Claim 8. If (G, (V1, ..., Vk)) is a graph-partition pair satisfying P and (G′, (V ′1 , ..., V
′
k)) is a

t-multiplier of (G, (V1, ..., Vk)), then the pair (G′, (V ′1 , ..., V
′
k)) also satis�es P .

The proof of Claim 8 is given in Appendix B.2.

4.2 Easily Testable Graph Partition Properties are Homogeneous

Let P be a graph partition property. We note that even if there are no explicit bounds on a
part's size or on the edge density within a part or between a pair of parts, such constraints
may be implicitly induced by the combination of other constraints. This leads to the following
de�nition.

De�nition 13. Given an integer 1 ≤ i ≤ k, we say that P has no constraints on the edge density

within part i if for every graph-partition pair (G, (V1, ..., Vk)) satisfying P , any graph G
′, obtained

from G by performing arbitrary vertex-pair modi�cations within G [Vi], satis�es P and (V1, ..., Vk)
serves as a witness partition. Otherwise, we say that P constrains the edge density within part

i. Similarly, given a pair of integers (i, j) ∈ [k] × [k], we say that P has no constraints on the

edge density between the parts (i, j) if for every graph-partition pair (G, (V1, ..., Vk)) satisfying

P , any graph G′, obtained from G by performing arbitrary vertex-pair modi�cations between Vi
and Vj in G, satis�es P and (V1, ..., Vk) serves as a witness partition. Otherwise, we say that P
constrains the edge density between parts (i, j).

We say that a graph is homogeneous if it is either an independent set or a clique. We can
classify the properties in GPP into two sets, corresponding to the following complementary two
cases.

• Case (a): There exists a graph-partition pair (G, (V1, ..., Vk)) satisfying P and an integer
1 ≤ i ≤ k such that G[Vi] is heterogeneous.

• Case (b): For every graph-partition pair (G, (V1, ..., Vk)) that satis�es P it holds that
G[Vi] is homogeneous for every 1 ≤ i ≤ k.

We note that Case (b) in fact implies a stronger statement. If Case (b) holds, then not only
every part is homogeneous, but rather the following holds: For each 1 ≤ i ≤ k, either for every
graph-partition pair (G, (V1, ..., Vk)) satisfying the property, G [Vi] is an independent set, or for
every graph-partition pair (G, (V1, ..., Vk)) satisfying the property, G [Vi] is a clique. The reason
is that otherwise it can be shown that Case (a) holds, but Case (a) cannot hold if Case (b) does.
We next establish the following implication of Case (a).

17



Claim 9. Let P be an easily testable graph partition property for which Case (a) holds. Then

for every proximity parameter ε, every graph is ε-close to satisfying P .

Proof. Since Case (a) holds, there exists a graph-partition pair (G, (V1, ..., Vk)) satisfying P and
an integer 1 ≤ i ≤ k such that G[Vi] is non-homogeneous. Suppose by way of contradiction
that there exists a one-sided error tester for P that is input-size oblivious. Denote the tester
by T . By [2, 14], we can assume without loss of generality that the algorithm T makes its
decision based on an inspection of the subgraph induced by a random sample of sε vertices
chosen independently and uniformly at random, where sε is a function of ε and is independent
of n.

By Claim 8, for every (G′, (V ′1 , ..., V
′
k)) that is an sε-multiplier of (G, (V1, ..., Vk)), we have

that G′ satis�es P (with the witness partition (V ′1 , ..., V
′
k)). Therefore, T must accept each such

G′ with probability 1. We next show that for every graph H over at most sε vertices, there exists
at least one such graph G′ for which G′[V ′i ] contains H as an induced subgraph. The claim will
then follow since the tester must accept given any induced subgraph that it observes, implying
that it accepts all graphs with probability 1.

Let |Vi| = ni and let v1
i , . . . , v

sεni
i denote the vertices in V ′i . Observe that since G [Vi] has at

least one edge and at least one non-edge, for every (G′, (V ′1 , ..., V
′
k)) that is an sε-multiplier of

(G, (V1, ..., Vk)), it holds that G
′ [V ′i ] has m′i ≥ s2

ε edges and (t · ni)2 −m′i ≥ s2
ε non-edges. Let

H be some �xed graph over s ≤ sε vertices with mH edges (and s2 − mH non-edges). Since
mH ≤ s2

ε ≤ m′i and s2−mH ≤ s2
ε ≤ (t · ni)2−m′i, the de�nition of an sε-multiplier allows to let

the subgraph of G′[V ′i ] induced by the vertices v1
i , . . . , v

s
i be H.

That is, the tester T accepts every graph with probability 1, and hence, for every ε, every
graph is ε-close to satisfying P .

We emphasize that Claim 9 holds for every graph and not only for su�ciently large graphs.
It follows that if P is an easily testable graph partition property that satis�es Case (a) then
P is in fact the trivial graph partition property that contains all graphs. This property clearly
belongs to GPP0,1. Hence, from now on we can assume that Case (b) holds. In other words, we
consider properties P ∈ GPP for which every graph satisfying P can only be validly partitioned
in such a way that every part of the partition is homogeneous. That is, if G is a graph satisfying
P and (V1, ..., Vk) is a witness partition, then for every pair (i, j) ∈ [k] × [k], the subgraph
G [Vi ∪ Vj ] is either a split graph, or a bipartite graph or a cobipartite graph. We can use this
fact together with an application of an appropriate multiplier to establish the following claim.

Claim 10. Let P be an easily testable property in GPP. If there exists a graph-partition pair

(G, (V1, ..., Vk)) that satis�es P such that the edge density between a pair of parts is neither 0

nor 1, then P has no constraints on the edge density between the two parts.

Proof. Let Vi and Vj be a pair of parts having an edge density αij where 0 < αij < 1. That is,

eG (Vi, Vj) = 2αij |Vi| · |Vj |. Let (G′, (V ′1 , ..., V
′
k)) be an s2

2αij(1−αij) -multiplier of (G, (V1, ..., Vk)).

Since (G′, (V ′1 , ..., V
′
k)) is a multiplier of a graph-partition pair satisfying P , then T must accept

G′ with probability 1. We �rst show that both the number of edges and the number of nonedges
between V ′i and V ′j in G′ is at least s2.

eG′
(
V ′i , V

′
j

)
= 2αij

s2

2αij (1− αij)
|Vi| |Vj | ≥ 2αij

s2

2αij
= s2 (4.1)

ēij = (1− 2αij)
s2

αij (1− 2αij)
|Vi| |Vj | ≥ (1− 2αij)

s2

(1− 2αij)
= s2 (4.2)

18



Assume without loss of generality that G [Vi] is a clique and G [Vj ] is an independent set (the
proof is similar for the case of two cliques or two independent sets). Let H be an s-vertex split
graph with clique size s1 and independent set size s2. We obtain a graph G′H satisfying P by
modifying G′ as follows: we choose s1 vertices from Vi and s2 vertices from Vj . Then we modify
the subgraph induced by the chosen s = s1 + s2 vertices so that it becomes H. We don't have

to modify edges in G′ [V ′i ] or G′
[
V ′j

]
as they already have all or none of the edges respectively.

That is, G′ [V ′i ] is a clique of the right size and G′
[
V ′j

]
is an independent set of the right size.

Therefore, in order to perform the modi�cation we had to make at most 2s1 · s2 < 2s2 vertex
pair modi�cations in the subgraph induced by the s vertices. Since the number of edges between
V ′i and V

′
j is at least 2s2 and the number of nonedges is also at least s2 we can make up for the

modi�cation by adding an edge for every deletion and deleting an edge for every addition in such
a way that the subgraph induced by the s vertices becomes H and the total number of edges
between V ′i and V ′j in is maintained. The procedure clearly results in a graph satisfying P that
has H as an induced subgraph. This implies that the one-sided tester must accept upon seeing
any split graph as the induced subgraph it happens to sample. Hence, the property cannot have
any restrictions on the edge density between part i and part j. The argument works similarly
if we assume both parts are independent sets (in which case we replace the induced split graph
with an induced bipartite graph) or both parts are cliques (in which case we replace the induced
split graph with an induced co-bipartite graph).

Claim 11. For every split graph H of size s there exists a graph G′H satisfying P on the same

set of vertices as G′ where (V ′1 , ..., V
′
k) serves as a witness partition and H is an induced subgraph

of G′H .

Proof. Let H be an s-vertex split graph with clique size s1 and independent set size s2. We
obtain a graph G′H satisfying P by modifying G′ as follows: we choose s1 vertices from Vi and
s2 vertices from Vj . Then we modify the subgraph induced by the chosen s = s1 + s2 vertices

so that it becomes H. We don't have to modify edges in G′ [V ′i ] or G′
[
V ′j

]
as they already have

all or none of the edges respectively. That is, G′ [V ′i ] is a clique of the right size and G′
[
V ′j

]
is

an independent set of the right size. Therefore, in order to perform the modi�cation we had to
make at most 2s1 · s2 < 2s2 vertex pair modi�cations in the subgraph induced by the s vertices.
Since the number of edges between V ′i and V ′j is at least 2s2 and the number of nonedges is

also at least s2 we can make up for the modi�cation by adding an edge for every deletion and
deleting an edge for every addition in such a way that the subgraph induced by the s vertices
becomes H and the total number of edges between V ′i and V ′j in is maintained. The procedure
clearly results in a graph satisfying P that has H as an induced subgraph.

In this subsection we showed that if a graph partition property P is easily testable and P
constrains the edge density within a particular part, then the part must be homogeneous. (To
be precise, P either forces the part to be an independent set or it forces it to be a clique.)
Similarly, if P constrains the edge density between a pair of parts then it either forces the edge
density within the pair to be 0 or it forces it to be 1. We call such properties homogeneous

graph partition properties. That is, a homogeneous graph partition property is de�ned similarly
to a property in GPP0,1 except that unlike GPP0,1, a homogeneous graph partition property
possibly has size constraints on the parts. In the next subsection we show that if such a property
is easily testable, then it has no size constraints.

19



4.3 No Constraints on the Sizes of Parts

Suppose P is a homogeneous property in GPP that possibly has size constraints in its speci�-
cation and is easily testable. We show that if this is the case, then there exists an equivalent
formulation of P , which we denote by P ′, where P ′ has no size constraints. Namely, we show
that the simple relaxation of P whose speci�cation contains the same homogeneity constraints
as those speci�ed by P but excludes its size constraints, serves as an equivalent property (under
the assumption that P is easily testable). From now on, given a graph partition property P , we
denote the relaxation of P (obtained by deleting the size constraints) by P ′.

In order to obtain the above we prove a dichotomy of properties. In particular, we show that
every homogeneous graph partition property P falls into one of two disjoint categories. The �rst
category contains all those properties P for which the removal of their size constraints leaves
them unchanged. That is, all the properties satisfying P = P ′. The second category contains
the properties P for which there exists an ε > 0 such that P is ε-far from P ′. That is, there are
in�nitely many graphs in P ′ that are ε-far from P .

Lemma 2 (The Dichotomy of Properties). Every homogeneous property P in the class GPP
satis�es one of the following:

1. P = P ′.
2. There exists ε > 0 such that for every n0 there exists a graph G′ ∈ P ′ of size n > n0 where

G′ is ε-far from P .

The implication of the dichotomy of properties is that a homogeneous graph partition prop-
erty P with size constraints cannot be close to its relaxation P ′. Either P is equivalent to P ′ or
P is far from P ′ (for an appropriate distance measure). We are going to prove that if the latter
case holds then P is not easily-testable. To do so we use the following auxiliary claim.

Claim 12. Let P be any graph partition property. Suppose that for every 1 ≤ i ≤ k there exists

a size vector ~ρ where ρi 6= 0 and ~ρ satis�es the size constraints induced by P . Then there exists

a size vector ~ρ∗ that satis�es the size constraints induced by P and for every 1 ≤ i ≤ k it holds

that ρ∗i 6= 0.

The proof of Claim 12 is given in Appendix B.3. We use Claim 12 to prove that if Case 2 in
the dichotomy of properties holds then P is not easily testable.

Claim 13. Suppose there exists ε > 0 such that for every n0 there exists a graph G′ ∈ P ′ of size
n > n0 where G′ is ε-far from P . Then P is not easily testable.

Proof. Suppose by way of contradiction that P is easily testable. We set the proximity parameter
to ε, the constant whose existence is assumed by the claim. We can also assume that the tester
T is the canonical tester which accepts if and only if a random induced subgraph has a certain
property (not necessarily P ). That is, the tester chooses uniformly at random a set of vertices
and operates by querying all the vertex pairs involving these vertices. We denote by s the
number of vertices the tester selects (its sample size). The query complexity of the tester for P
doesn't depend on the size of the input graph, but is a function of the proximity parameter ε
and the parameters de�ning P . Hence, the value of the sample size s doesn't grow with n.

Consider the set of size vectors that are valid with respect to P (the vectors satisfying the
size constraints induced by P ). We can assume that for every coordinate i there exists a valid
size vector ~ρ in which ρi 6= 0 because the existence of a coordinate i in which ρi is always
null implies that P could be reformulated as a partition property with k − 1 parts without the
parameters referring to part i. Hence, by the previous claim, there exists a size vector ~ρ∗ that
is valid with respect to P and for every coordinate i, ρ∗i > 0. We set n0 in such a way that
ρ∗in0 ≥ s for every coordinate i.

20



Let G′ = (V ′, E′) be a graph of size n > n0 that satis�es P ′ and is ε-far from P . Let
(V1, ..., Vk) be a witness partition to the fact that G′ satis�es P ′. We show that for every set of
vertices S ⊆ V ′ of size s there exists a graph G ∈ P such that G′ [S] is isomorphic to an induced
subgraph of G.

Let S ⊆ V ′ be a set of vertices such that |S| = s. For every 1 ≤ i ≤ k we denote Si = S ∩Vi.
We construct a graph G∗ of size n. We set the vertices of G∗ as V ∗ = {1, ..., n}. We partition

V ∗ into k parts (V ∗1 , ..., V
∗
k ) by assigning every vertex to one of the parts arbitrarily in such a

way that |V ∗i | = ρ∗in for every 1 ≤ i ≤ k. In order to set the edges of G∗ we create a mapping
from S to a subset of the vertices in G∗ as follows. For every 1 ≤ i ≤ k and for every u ∈ Si we
arbitrarily assign a distinct vertex v ∈ V ∗i . The number of vertices in V ∗i is su�cient to construct
the mapping because |Si| ≤ |S| ≤ ρ∗in = |V ∗i |. We denote the mapping by f . Particularly, if
v ∈ V ∗i is assigned by the mapping to u ∈ Si we denote f (u) = v or equivalently f−1 (v) = u.
For every 1 ≤ i ≤ k we denote by S∗i the set of vertices in V ∗i that participate in the mapping.
That is,

S∗i = {v ∈ V ∗i |∃u ∈ Vi : f (u) = v} (4.3)

Additionally, we denote by S∗ all the vertices in V ∗ that participate in the mapping. That
is,

S∗ =
k⋃
i=1

S∗i (4.4)

Clearly, |S∗i | = |Si| for every 1 ≤ i ≤ k and therefore |S∗| = |S| = s. With the mapping f at
hand, we de�ne E∗, the set of edges in G∗. Let v1, v2 ∈ V ∗ be a pair of vertices.

Case 1. There exists a pair of vertices u1, u2 ∈ S such that u1 ∈ Si, u2 ∈ Sj and f (v1) =
u1, f (v2) = v2. In this case, (v1, v2) ∈ E∗ if and only if (u1, u2) ∈ E′.

Case 2. At least one of v1 or v2 is not assigned by f . Suppose v1 ∈ V ∗i , v2 ∈ V ∗j . In this case,
(v1, v2) ∈ E∗ if and only if dP (i, j) = 1.

Clearly, the mapping f serves as an isomorphism from G′ [S] to G∗ [S∗] because a vertex u1 ∈ S
is connected to another vertex u2 ∈ S if and only if f (u1) is connected to f (u2). We prove that
G∗ satis�es P by showing that (V ∗1 , ..., V

∗
k ) serves as a witness partition. The size constraints are

clearly satis�ed since the de�nition of the partition explicitly indicates that for every 1 ≤ i ≤ k,
|Vi| = ρ∗in where ~ρ∗ is a valid size vector with respect to P . Consider a pair of vertices v1, v2 ∈ V ∗
such that v1 ∈ V ∗i and v2 ∈ V ∗j . Assume without loss of generality that dP (i, j) = 0. We have
to prove that v1 is disconnected from v2 in G∗ (if dP (i, j) = 1 we would've had to prove
that v1 is connected to v2 and the proof is similar to the one we detail next). If either v1 or
v2 (or both) is not assigned by f then by Case 2 of the de�nition of E∗ it holds that v1 is
disconnected from v2 because dP (i, j) 6= 1. Suppose both v1 and v2 are assigned by f and let
u1 = f−1 (v1) , u2 = f−1 (v2). Since f maps a vertex u to V ∗i only if u ∈ Vi then u1 ∈ Vi and
similarly u2 ∈ Vj . Therefore, as (V1, ..., Vk) serves as a witness to G′ ∈ P ′ and dP (i, j) = 0
it holds that (u1, u2) /∈ E′. Therefore, from Case 1 of the de�nition of E∗, it must hold that
(v1, v2) /∈ E∗. This concludes the proof that G∗ satis�es P .

We've shown that every induced s-sized subgraph of G′ is isomorphic to an induced subgraph
of a graph in P . Since T must accept with probability 1 upon seeing an induced s-sized subgraph
of a graph belonging to P , it must also accept G′ with probability 1. However, since G′ is far
from P , this is a contradiction to T being a one-sided error tester for P . Therefore, P is not
easily testable.

21



Combining Claim 13 with the dichotomy of properties establishes the result we were aiming
for: If a graph partition property P enforces size constraints (that cannot be ignored without
changing the property) then P is not easily testable. It still remains to prove that the dichotomy

of properties indeed holds. In order to do so, we �rst de�ne the notion of a property's set of
assignments. Then we show the existence of another dichotomy, the trivial dichotomy, which, as
we prove below, implies the dichotomy of properties de�ned above.

De�nition 14. Given a property P in GPP we de�ne a set of variables X = {xij | (i, j) ∈ [k]× [k]}.
An assignment ϕ is a function from X to [0, 1].

We interpret an assignment ϕ as a transformation from a size vector ~ρ that violates the size
constraints of P to a size vector that satis�es the size constraints. In particular, we interpret
ϕ (xij) as the fraction of vertices (relative to n) that should be transferred from part i to part j
(or stay in part i if i = j) in order to satisfy the size constraints imposed by P . Naturally, we
restrict our attention to assignments that are valid sizewise as de�ned below.

De�nition 15. Given a property P in GPP and a size vector ~ρ we say that an assignment ϕ
is valid sizewise if:

∀i′ ∈ [k] :
k∑
i=1

ϕ (xi′i) = ρi′ (4.5)

∀i ∈ [k] : ρLi ≤
k∑

i′=1

ϕ (xi′i) ≤ ρUi (4.6)

The �rst requirement of being valid sizewise can be interpreted as the number of vertices

being transferred from part i′ equals the number of vertices assigned to part i′ in the �rst place.
The second requirement can be interpreted as the number of vertices being transferred to part i
satis�es the size constraints imposed by the property P .

Clearly, applying the transformation induced by a sizewise valid assignment ϕ to a graph
G′ ∈ P ′ results in a graph G that satis�es the size constraints imposed by P . However, the
assignment being valid sizewise doesn't necessarily induce a transformation resulting in a graph
that satis�es the edge constraints. This leads to the de�nition of a violation in an assignment.

De�nition 16. Given a homogeneous property P in GPP and an assignment ϕ we say that a

pair of variables
{
xi′i, xj′j

}
constitutes a violation in the assignment ϕ with respect to P if:

ϕ (xi′i) 6= 0, ϕ
(
xj′j
)
6= 0 (4.7)

dP (i, j) 6= ⊥ (4.8)

dP
(
i′, j′

)
6= dP (i, j) (4.9)

De�nition 17. If dP (i′, j′) = ⊥, then we say that the violation is weak. Otherwise, we say the

violation is strong.

22



The situation stated in De�nition 16 is considered to be a violation of the edge constraints
because it can be interpreted as vertices being transferred to a pair of parts whose edge density
di�ers from that of the pair of parts those vertices originated from. Before describing the trivial

dichotomy we have one more de�nition regarding violations.

De�nition 18. Given a violation
{
xi′i, xj′j

}
of an assignment ϕ we de�ne the violation's size

as min
{
xi′i, xj′j

}
. We call a violation of size at least δ a δ-violation.

The following claim describes the trivial dichotomy.

Proposition 1 (The Trivial Dichotomy). Let P be a homogeneous graph partition property.

Exactly one of the following holds:

1'. For every size vector ~ρ there exists a sizewise valid assignment ϕ which is free of violations

with respect to P .
2'. There exists a size vector ~ρ for which every sizewise valid assignment ϕ contains a

violation with respect to P .

The trivial dichotomy (Proposition 1) trivially holds as the second case is the complement
of the �rst. In order to prove that the trivial dichotomy implies the dichotomy of properties

(Claim 2) we have to prove that Case 1' in the trivial dichotomy implies Case 1 in the dichotomy

of properties and that Case 2' in the trivial dichotomy implies Case 2 in the dichotomy of

properties.

4.3.1 Case 1' implies Case 1

Suppose Case 1' holds. Let G′ be a graph satisfying P ′ over n vertices and let (U1, ..., Uk) be a
witness partition. We have to show that G′ ∈ P .

Let ~ρ be the size vector induced by (U1, ..., Uk). That is, ~ρ =
(
|U1|
n , ..., |Uk|n

)
. Let ϕ be the

assignment whose existence is promised by Case 1'.
For every 1 ≤ i′ ≤ k we partition Ui′ into disjoint sets Vi′1, ..., Vi′k in such a way that

|Vi′i| = ϕ (xi′i)n. The choice of the vertices to be put in each part is arbitrary. For every
1 ≤ i′ ≤ k it is possible to partition Ui′ in such a way since the number of vertices in Ui′ equals
the number of vertices in

⋃k
i=1 Vi′i because ϕ is valid sizewise:

|Ui′ | = ρi′n = n
k∑
i=1

ϕ (xi′i) =
k∑
i=1

ϕ (xi′i) (4.10)

We use the partition de�ned above to devise a witness partition (V1, ..., Vk) for G
′ ∈ P :

∀i ∈ [k] : Vi =
k⋃

i′=1

Vi′i (4.11)

Claim 14. The partition (V1, ..., Vk) serves as a witness partition for G′ ∈ P .

The proof of Claim 14 is given in Appendix B.4. The graph G′ satis�es property P and
hence Case 1' implies Case 1.

4.3.2 Case 2' implies Case 2

Let ~ρ be a size vector for which every assignment ϕ that is valid sizewise contains a violation.
We de�ne a set of decision variables Y :

Y =
{
yi′i|1 ≤ i ≤ k, 1 ≤ i′ ≤ k

}
(4.12)

23



De�nition 19. We say that a pair of decision variables yi′i, yj′j ∈ Y are in potential con�ict if

dP (i, j) 6= ⊥ and dP (i′, j′) 6= dP (i, j).

That is, yi′i is in potential con�ict with yj′j if the pair
{
xi′i, xj′j

}
constitutes a violation

with respect to P in an assignment ϕ which assigns ϕ (xi′i) > 0 and ϕ
(
xj′j
)
> 0.

We de�ne a mathematical program on the set of decision variables Y . The objective of the
program is to minimize the function

max
(yi′i,yj′j)∈Y

{
min

{
yi′i, yj′j

}}
(4.13)

The feasible region is de�ned by the following linear constraints:

∀i′ ∈ [k] :

k∑
i=1

yi′i = ρi′ (4.14)

∀i ∈ [k] : ρLi ≤
k∑

i′=1

yi′i ≤ ρUi (4.15)

∀
(
i′, i
)
∈ [k] : 0 ≤ yi′i ≤ 1 (4.16)

There is a one to one correspondence between feasible solutions to the program and sizewise
valid assignments. This is because the feasibility constraints in fact force ~y to be valid sizewise
with respect to P . Hence, given an assignment ϕ that is valid sizewise we can obtain a feasible
solution ~y by assigning yi′i = ϕ (xi′i). Similarly, given a feasible solution ~y we can obtain a
sizewise valid assignment ϕ by assigning ϕ (xi′i) = yi′i. Moreover, the correspondence between
assignments and feasible solutions has the property that an assignment is free of violations if
and only if the corresponding feasible solution attains a value of 0 to the objective function. The
reason is simple: A pair

{
xi′i, xj′j

}
constitutes a violation if and only if yi′i is in con�ict with

yj′j and min
{
ϕ (xi′i) , ϕ

(
xj′j
)}

> 0.
The feasibility constraints of the program de�ne a compact set (the set de�ned by the con-

straints is both closed and bounded, and therefore compact). Also, the objective function is
continuous as it is de�ned as a composition of continuous functions (the max function is contin-
uous and so is the min function). Hence, according to the Extreme Value Theorem, the objective
function must have both a maximum and a minimum on the set. That is, there exists a feasible
solution ~y (and a corresponding assignment ϕ) that minimizes max(yi′i,yj′j)∈Y

{
min

{
yi′i, yj′j

}}
.

Denote by δ the value of the objective function under that solution. Since we've assumed that
every sizewise valid assignment ϕ contains a violation, there is no feasible solution attaining an
objective function value of 0. In other words δ > 0. Therefore, every sizewise valid assignment
contains a violation of size at least δ.

Let ε = 1
16δ

2. We have to show that for every n0 there exists a graph of size n > n0

which is ε-far from P . We �rst show the existence of such a graph under the assumption that
every assignment contains a strong δ-violation. Then we show that even if we only have weak
δ-violations in some of the assignments there still exists a graph G′ ∈ P ′ which is ε-far from P .

Handling strong violations

We suppose for now that every sizewise valid assignment ϕ contains a strong δ-violation. We
construct a graph G′ ∈ P ′ of size n and prove that G′ is ε-far from P .

Let G′ = (V ′, E′). We set V ′ = {1, ..., n}. We arbitrarily partition V ′ into k disjoint sets
U1, ..., Uk in such a way that the number of vertices in Ui is ρin. Clearly,

24



V ′ =

k⋃
i=1

Ui (4.17)

Now we de�ne the set of edges E′. For every pair of vertices u, v in V ′ where u ∈ Ui′ , v ∈ Vj′
(possibly i′ = j′) we connect u and v if and only if dP (i′, j′) = 1. By this construction, G′ ∈ P ′.

We are going to prove that G′ is ε-far from P . Let G ∈ P be a graph obtained from G′ by
any number of vertex-pair modi�cations. We show that the number of modi�cations must be at
least εn2.

Since G ∈ P , it possesses witness partitions. Let (V1, ..., Vk) be one of those witness partitions
demonstrating G ∈ P . We use this witness partition to construct an assignment ϕ. For every
(i′, i) ∈ [k]× [k] we de�ne:

ϕ (xi′i) =
|Ui′ ∩ Vi|

n
(4.18)

Claim 15. The assignment ϕ is valid sizewise with respect to ~ρ and P .

The proof of Claim 15 is given in Appendix B.5. Recall that we assume that every assignment
that is valid sizewise with respect to P and ~ρ contains a strong δ-violation. Hence, the assignment
ϕ de�ned above contains such a violation which we denote by

{
xi′i, xj′j

}
. That is,

ϕ (xi′i) ≥ δ, ϕ
(
xj′j
)
≥ δ (4.19)

and also

dP (i, j) 6= ⊥, dP
(
i′, j′

)
6= ⊥, dP (i, j) 6= dP

(
i′, j′

)
(4.20)

We assume without loss of generality that dP (i, j) = 0 and dP (i′, j′) = 1. Since ϕ (xi′i) ≥ δ
and ϕ

(
xj′j
)
≥ δ we have

|Ui′ ∩ Vi| ≥ δn and
∣∣Uj′ ∩ Vj∣∣ ≥ δn (4.21)

Since dP (i′, j′) = 1, in the graph G′, every vertex in Ui′ is connected to every vertex in Vj′ .

Claim 16. eG′ (Vi, Vj) ≥ 1
4δ

2n

The proof of Claim 16 is given in Appendix B.6.
We've seen that if dP (i, j) = 0 then eG′ (Vi, Vj) ≥ 1

4δ
2n2. Similarly, if dP (i, j) = 1 then

eG′ (Vi, Vj) ≥ 1
4δ

2n2. Therefore, in order for (V1, ..., Vk) to become a witness partition for
belonging to P , at least 1

4δ
2n2 vertex-pairs must be modi�ed. That is, G′ is 1

4δ
2-far from P . In

particular, G′ is also ε-far from P .
We've seen that if there exists a size vector ~ρ such that every sizewise valid assignment ϕ

contains a strong violation with respect to P then for every n0 there exists a graph G′ ∈ P ′

which is ε-far from P . Now we have to prove that this is the case even if every sizewise valid
assignment contains a δ-violation that is not necessarily strong.

Handling Weak Violations

We construct a random graph G′ = (V ′, E′) of size n and prove that with positive probability
G′ is ε-far from every n-size graph G ∈ P .

We de�ne V ′ = {1, ..., n}. We arbitrarily partition V ′ into k disjoint sets U1, ..., Uk in such
a way that the number of vertices in Ui is ρin.

We next de�ne E′. For each pair of vertices u ∈ Ui, v ∈ Uj :

25



• If dP (i, j) = 0 we do not connect u and v.

• If dP (i, j) = 1 we do connect u and v.

• If dP (i, j) = ⊥ we connect u and v with probability 1
2 .

For every 1 ≤ i ≤ k where dP (i, j) = ⊥ we de�ne the event Ei as follows:

For every set A ⊆ Ui of size |A| ≥ δn it holds that eG′ (A,A) ≥ εn2 and eG′ (A,A) ≥
εn2. We denote the eG′ (A,A) sub-event by E1

i and the eG′ (A,A) sub-event by E0
i .

That is, Ei = E0
i ∩ E1

i .

For every (i, j) ∈ [k]× [k] where dP (i, j) = ⊥ we de�ne the event Eij as follows (possibly i = j):

For every pair of disjoint sets (A,B) ⊆ Ui×Uj where |A| ≥ δn and |B| ≥ δn it holds
that eG′ (A,B) ≥ εn2 and eG′ (A,B) ≥ εn2. As before, we denote the two sub-events
by E0

ij and E1
ij so that Eij = E0

ij ∩ E1
ij .

Observe that in the above de�nition the requirement that the sets A and B are disjoint is
redundant if i6=j but should be stated explicitly if i = j.

De�nition 20. We denote by E the conjunction of all the events de�ned above. That is,

E =

(
k⋂
i=1

Ei

)
∩

 ⋂
(i,j)∈[k]2

Eij

 (4.22)

Claim 17. Pr [E ] > 0

The proof of Claim 17 is given in Appendix B.7.
Claim 17 implies the existence of a graph G∗ ∈ P ′ for which E holds. Let G ∈ P be a

graph of size n and let (V1, ..., Vk) be a witness partition for G ∈ P . We de�ne the assignment

ϕ as done before (ϕ (xi′i) =
|Ui′∩Vi|

n ). As shown above, ϕ is valid sizewise. Hence, ϕ contains a
δ-violation

{
xi′i, xj′j

}
. If the violation is strong, we're done (by adapting the same analysis as

before). Suppose the violation is weak. That is,

dP
(
i′, j′

)
= ⊥, dP (i, j) 6= ⊥ (4.23)

As before, ϕ (xi′i) ≥ δ and ϕ
(
xj′j
)
≥ δ imply that

|Ui′ ∩ Vi| ≥ δn and
∣∣Uj′ ∩ Vj∣∣ ≥ δn (4.24)

Let A = Ui′ ∩ Vi and B = Uj′ ∩ Vj . Clearly, A ⊆ Ui′ , B ⊆ Uj′ , |A| ≥ δn, |B| ≥ δn.
The event Ei′j′ holds and so do Ei′ and Ej′ . That is,

eG′ (A,B) ≥ εn2 and eG′ (A,B) ≥ εn2 (4.25)

Therefore,

eG′ (Vi, Vj) ≥ εn2 and eG′ (Vi, Vj) ≥ εn2 (4.26)

However, since dP (i, j) 6= ⊥, the number of vertex-pair modi�cations required in order to
obtain G from G′ is at least εn2. In other words, the graph G′, although in P ′, is ε-far from
every graph G ∈ P .

That is to say, easily-testable homogeneous graph partition properties cannot have size con-
straints, and if they do then these size constraints are in fact redundant.

26



4.4 Wrapping Things Up

In Section 4.2 we've shown that if a graph partition property is easily-testable then it must be
homogeneous. In Section 4.3 we've shown that if a homogeneous graph partition property is
easily-testable then it has no size constraints. Hence, by combining the results of Sections 4.2
and 4.3 we obtain the following: If a graph partition property P is then P ∈ GPP0,1. This
proves the �only if� direction of Theorem 2.

5 References

[1] Noga Alon. Testing subgraphs in large graphs. Random Structures & Algorithms, 21(3-
4):359�370, 2002.

[2] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. E�cient testing of large
graphs. Combinatorica, 20(4):451�476, 2000.

[3] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characteriza-
tion of the testable graph properties: it's all about regularity. SIAM Journal on Computing,
39(1):143�167, 2009.

[4] Noga Alon and Jacob Fox. Easily testable graph properties. Combinatorics, Probability

and Computing, 24(4):646�657, 2015.

[5] Noga Alon and Michael Krivelevich. Testing k-colorability. SIAM Journal on Discrete

Mathematics, 15(2):211�227, 2002.

[6] Noga Alon and Asaf Shapira. Testing satis�ability. Journal of Algorithms, 47(2):87�103,
2003.

[7] Noga Alon and Asaf Shapira. Testing subgraphs in directed graphs. Journal of Computer

and System Sciences, 69(3):354�382, 2004.

[8] Noga Alon and Asaf Shapira. A characterization of easily testable induced subgraphs.
Combinatorics, Probability and Computing, 15(6):791�805, 2006.

[9] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties testable
with one-sided error. SIAM Journal on Computing, 37(6):1703�1727, 2008.

[10] Christian Borgs, Jennifer Chayes, László Lovász, Vera T Sós, Balázs Szegedy, and Katalin
Vesztergombi. Graph limits and parameter testing. In Proceedings of the thirty-eighth

annual ACM symposium on Theory of computing, pages 261�270. ACM, 2006.

[11] David Conlon and Jacob Fox. Graph removal lemmas. Surveys in combinatorics, 1(2):3,
2013.

[12] Lior Gishboliner and Asaf Shapira. Removal lemmas with polynomial bounds. pages 510�
522, 2017.

[13] Oded Goldreich, Sha� Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653�750, 1998.

[14] Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties.
Random Structures & Algorithms, 23(1):23�57, 2003.

27



[15] James Renegar. On the computational complexity and geometry of the �rst-order theory
of the reals. part i: Introduction. preliminaries. the geometry of semi-algebraic sets. the
decision problem for the existential theory of the reals. Journal of symbolic computation,
13(3):255�299, 1992.

[16] James Renegar. On the computational complexity and geometry of the �rst-order theory
of the reals. part ii: The general decision problem. preliminaries for quanti�er elimination.
Journal of Symbolic Computation, 13(3):301�327, 1992.

A Appendix: The Quadratic Program

The quadratic program is de�ned by the following set of constraints:

k∑
i=1

xi = 1 (A.1)

∀i ∈ [k] : ρLi ≤ xi ≤ ρUi (A.2)

∀i ∈ [k] : yii ≤ x2
i (A.3)

∀ (i, j) ∈ [k]× [k] : yij ≤ 2xi · xj (A.4)

∀i ∈ [k] : ρLii ≤ yii ≤ ρUii (A.5)

∀i 6= j ∈ [k]× [k] : 2ρLij ≤ yij ≤ 2ρUij (A.6)

∀i ∈ [k] : αLii ≤ yii ≤ αUii (A.7)

∀i 6= j ∈ [k]× [k] : 2αLij ≤ yij ≤ 2αUij (A.8)

B Appendix: Proofs of Auxiliary Claims

B.1 Proof of Claim 7

For every pair of parts 1 ≤ i, j ≤ k s.t. i 6= j we have:

e (Vi, Vj) ∈
[
ρ̃Lijn

2, ρ̃Uijn
2
]
∩
[
α̃Lij |Vi| |Vj | , α̃Uij |Vi| |Vj |

]
⊆
[
ρ̃Lijn

2, ρ̃Uijn
2
]
∩
[
α̃Lijρ

L
i ρ

L
j n

2, α̃Uijρ
U
i ρ

U
j n

2
]

Hence,

~σij ∈
[
ρ̃Lij , ρ̃

U
ij

]
∩
[
α̃Lijρ

L
i ρ

L
j , α̃

U
ijρ

U
i ρ

U
j

]
=
[
max

{
ρ̃Lij , α̃

L
ij · ρLi · ρLj

}
,min

{
ρ̃Uij , α̃

U
ij · ρUi · ρUj

}]
If i = j:

28



e (Vi) ∈
[
ρ̃Liin

2, ρ̃Uiin
2
]
∩
[
α̃Lii |Vi|

2 n2, α̃Uii |Vi|
2 n2

]
⊆
[
ρ̃Liin

2, ρ̃Uiin
2
]
∩
[
α̃Lii
(
ρLi
)2
n2, α̃Uii

(
ρUi
)2
n2
]

Hence,

~σij ∈
[
ρ̃Lii, ρ̃

U
ii

]
∩
[
α̃Lii
(
ρLi
)2
, α̃Uii

(
ρUi
)2]

=
[
max

{
ρLii, α̃

L
ii

(
ρLi
)2}

,min
{
ρUii , α̃

U
ii

(
ρUi
)2}]

Therefore, there exists ~b ∈
∏
i≤j B

~a
ij s.t. ~σ ∈ ~b.

B.2 Proof of Claim 8

We show that (G′, (V ′1 , ..., V
′
k)) satis�es all of P's constraints.

Size constraints: Denote by ρi the relative size of Vi in (G, (V1, ..., Vk)). That is, |Vi| = ρin.∣∣V ′i ∣∣ = t |Vi| = tρin = ρin
′2 (B.1)

Between constraints: For every 1 ≤ i, j ≤ k where i 6= j we denote by αij the relative
relative edge density of the pair (Vi, Vj) in (G, (V1, ..., Vk)) and we denote by ρij the absolute
edge density of the pair. That is,

eG (Vi, Vj) = 2αij |Vi| · |Vj | = ρijn
2

In (G′, (V ′1 , ..., V
′
k)) we have

eG′
(
V ′i , V

′
j

)
= 2αijt

2 |Vi| · |Vj | = 2αij
∣∣V ′i ∣∣ · ∣∣V ′j ∣∣

That is, the relative edge density of
(
V ′i , V

′
j

)
in (G′, (V ′1 , ..., V

′
k)) is also αij .

As for the absolute edge densities in (G′, (V ′1 , ..., V
′
k)),

eG′
(
V ′i , V

′
j

)
= 2αijt

2 |Vi| · |Vj | = e (Vi, Vj) · t2 = ρijn
2t2 = ρijn

′2

That is, the absolute edge density of
(
V ′i , V

′
j

)
in (G′, (V ′1 , ..., V

′
k)) is also ρij .

Within constraints: For every 1 ≤ i ≤ k where we denote by αii the relative relative edge
density of Vi in (G, (V1, ..., Vk)) and we denote by ρii the absolute edge density of the Vi. That
is,

eG (Vi, Vi) = αii |Vi|2 = ρiin
2

In (G′, (V ′1 , ..., V
′
k)) we have

eG′
(
V ′i , V

′
i

)
= αiit

2 |Vi|2 = 2αij
∣∣V ′i ∣∣ · ∣∣V ′j ∣∣

That is, the relative edge density of
(
V ′i , V

′
j

)
in (G′, (V ′1 , ..., V

′
k)) is also αij .

As for the absolute edge densities in (G′, (V ′1 , ..., V
′
k)),

eG′
(
V ′i , V

′
j

)
= αijt

2 |Vi| · |Vj | = e (Vi, Vj) · t2 = ρijn
2t2 = ρijn

′2

That is, the absolute edge density of
(
V ′i , V

′
j

)
in (G′, (V ′1 , ..., V

′
k)) is also ρij .

All the relative sizes and the edge densities are the same for both the original graph-partition
pair and its t-multiplier and therefore if the original pair satis�es P then so is its multiplier.

29



B.3 Proof of Claim 12

Let ~ρ = (ρ1, ..., ρk) be a size vector satisfying the size constraints induced by P . If ~ρ is null-free
(that is, ρi 6= 0 for every 1 ≤ i ≤ k) then we're done. Suppose there are ` > 0 nulls in ~ρ. We
claim that there exists a coordinate j where 1 ≤ j ≤ k such that ρj is strictly greater than ρLj .

Suppose by way of contradiction that this is not the case. That is, for every 1 ≤ j ≤ k, ρj = ρLj .

If this is the case, then for every size vector ~ρ′ that satis�es the size constraints but di�ers from
~ρ it holds that ρ′j ≥ ρj for every 1 ≤ j ≤ k and there exists j∗ such that ρ′j∗ > ρj∗ . Hence, if ~ρ′

satis�es the size constraints and di�ers from ~ρ then

k∑
i=1

ρ′i >

k∑
i=1

ρi = 1 (B.2)

But the sum of the coordinates of a size vector must equal exactly 1. Hence, either there
exists a coordinate in ~ρ strictly greater than its lower bound or ~ρ is the only size vector satisfying
the size constraints. However, ~ρ cannot be the only such vector because ~ρ contains nulls, and
we've assumed that for every i there exists a valid size vector whose ith coordinate is not null.
Therefore we can assume there exists a coordinate in ~ρ whose value is strictly greater than the
lower bound imposed on it by P . We denote this coordinate by j. That is,

ρj > ρLj (B.3)

We use the existence of this coordinate to construct a size vector ~ρ∗ that is null-free:

ρ∗i =


ρj −∆ if i = j
∆
` if ρi = 0

ρi otherwise

(B.4)

where

∆ = min

{
min
i:ρi=0

{
ρUi
}
,
ρj − ρLj

2

}
(B.5)

We have to prove that ~ρ∗ is a valid size vector that satis�es the size constraints imposed by
P and that it is free of nulls. That is, we need to prove that ~ρ∗ admits three properties:

1.
∑k

i=1 ρ
∗
i = 1

2. for every i, ρLi ≤ ρ∗i ≤ ρUi
3. for every i, ρ∗i > 0

We begin by proving
∑k

i=1 ρ
∗
i = 1.

k∑
i=1

ρ∗i = ρ∗j +
∑
i:ρi=0

ρ∗i +
∑

i:ρi 6=0,i 6=j
ρ∗i

= ρj −∆ + ` · ∆

`
+

∑
i:ρi 6=0,i 6=j

ρi

= ρj +
∑
i:i 6=j

ρi =

k∑
i=1

ρi

= 1

Now we prove that for every i, ρLi ≤ ρ∗i ≤ ρUi . There are three cases:

30



• Case 1: i = j. In this case,

ρ∗i = ρ∗j = ρj −∆ < ρj ≤ ρUj (B.6)

and

ρ∗i = ρ∗j = ρj −∆ ≥ ρj −
ρj − ρLj

2
=
ρj + ρLj

2
≥

2ρLj
2

= ρLj (B.7)

• Case 2: ρi = 0. In this case,

ρ∗i =
∆

`
≤ ρUi

`
≤ ρUi (B.8)

and

ρ∗i =
∆

`
≥ 0 = ρi = ρLi (B.9)

• Case 3: ρi 6= 0 and i 6= j. In this case,

ρ∗i = ρi ∈
[
ρLi , ρ

U
i

]
(B.10)

This concludes the three cases. Now we prove that for every i, ρ∗i > 0. Again, there are
three cases.

• Case 1: i = j. In this case,

ρ∗i = ρ∗j = ρj −∆ ≥ ρj −
ρj − ρLj

2
=
ρj + ρLj

2
> 0 (B.11)

• Case 2: ρi = 0. In this case,

ρ∗i =
∆

`
> 0 (B.12)

• Case 3: ρi 6= 0 and i 6= j. In this case,

ρ∗i = ρi > 0 (B.13)

In conclusion, the vector ~ρ∗ admits the three properties. The claim follows.

B.4 Proof of Claim 14

We prove that (V1, ..., Vk) indeed serves as a witness partition for G′ ∈ P . In order to do so
we demonstrate that (V1, ..., Vk) satis�es both the size constraints imposed by P and the edge
density constraints.

Claim 18. The partition (V1, ..., Vk) satis�es the size constraints imposed by P .

31



Proof. For every 1 ≤ i ≤ k:

|Vi| =

∣∣∣∣∣
k⋃

i′=1

Vi′i

∣∣∣∣∣ =

k∑
i′=1

|Vi′i| =
k∑

i′=1

ϕ (xi′i)n = n ·
k∑

i′=1

ϕ (xi′i) (B.14)

The second equality holds since the sets {Vi′i}ki′=1 are disjoint. The third equality results
directly from the de�nition of Vi′i.

Since the assignment ϕ is valid sizewise we have:

ρLi n ≤
k∑

i′=1

ϕ (xi′i) ≤ ρUi n (B.15)

Hence, ρLi n ≤ |Vi| ≤ ρUi n as required.

Claim 19. The partition (V1, ..., Vk) satis�es the edge density constraints imposed by P .

Proof. We have to show that for every 1 ≤ i ≤ k, if dP (i, j) = 0 then eG (Vi, Vj) = 0 and
that if dP (i, j) = 1 then eG (Vi, Vj) = 0. Let Vi, Vj be a pair of parts in (V1, ..., Vk) (possibly
i = j). Assume without loss of generality that dP (i, j) = 0. Suppose by way of contradiction
that eG (Vi, Vj) 6= 0. That is, there are two vertices u ∈ Vi, v ∈ Vj such that (u, v) ∈ E′. Since
u ∈ Vi there exists 1 ≤ i′ ≤ k for which u ∈ Vi′i. Similarly, since v ∈ Vj there exists 1 ≤ j′ ≤ k

for which v ∈ Vj′j . Hence, ϕ (xi′i) =
|Vi′i|
n > 0 and ϕ

(
xj′j
)

=
|Vj′j|
n > 0.

We show that
{
xi′i, xj′j

}
serves as a violation of ϕ with respect to P , in contradiction to the

assumption that ϕ is free of violations.
From the de�nition of Vi′i and Vj′j we have that Vi′i ⊆ Ui′ and Vj′j ⊆ Uj′ . This, together

with the fact that u ∈ Vi′i and v ∈ Vj′j , implies

u ∈ Ui′ and v ∈ Uj′

That is, G′ contains an edge connecting a vertex in Ui′ to a vertex in Uj′ . Since (U1, ..., Uk)
serves as a witness partition for G′ ∈ P ′ and there are edges between Ui′ and Uj′ , it must hold
that dP ′ (i

′, j′) 6= 0. Since P doesn't di�er from P ′ in the edge density constraints, dP (i′, j′) 6= 0.
Hence, we found a pair of variables xi′i, xj′j where ϕ (xi′i) 6= 0, ϕ

(
xj′j
)
6= 0 in the assignment

ϕ such that:
1. dP (i, j) 6= ⊥ (as we've assumed dP (i, j) = 0)
2. dP (i′, j′) 6= P (i, j) (as we've shown dP (i′, j′) 6= 0)
Therefore, the pair

{
xi′i, xj′j

}
serves as a violation in the assignment ϕ with respect to P , in

contradiction to ϕ being free of violations. Hence, if dP (i, j) = 0 then eG (Vi, Vj) = 0. Similarly,
if dP (i, j) = 1 then eG (Vi, Vj) = 0.

We've shown that the partition (V1, ..., Vk) satis�es both the size constraints and the edge
density constraints imposed by P . Hence, (V1, ..., Vk) serves as a witness partition for G′ ∈ P .

B.5 Proof of Claim 15

1. For every 1 ≤ i′ ≤ k

n ·
k∑
i=1

ϕ (xi′i) =
k∑
i=1

|Ui′ ∩ Vi| =

∣∣∣∣∣
k⋃
i=1

(Ui′ ∩ Vi)

∣∣∣∣∣ = |Ui′ | = ρi′n (B.16)

That is,
∑k

i=1 ϕ (xi′i) = ρi′

32



2. For every 1 ≤ i ≤ k

n ·
k∑

i′=1

ϕ (xi′i) =

k∑
i′=1

|Ui′ ∩ Vi| =

∣∣∣∣∣
k⋃

i′=1

(Ui′ ∩ Vi)

∣∣∣∣∣ = |Vi| (B.17)

The partition (V1, ..., Vk) serves as a witness partition to G ∈ P and therefore satis�es the
size constraints. That is, for every i ∈ [k], ρLi n ≤ |Vi| ≤ ρUi n. Therefore,

ρLi ≤
k∑

i′=1

ϕ (xi′i) ≤ ρUi (B.18)

Items 1 and 2 imply that ϕ is valid sizewise.

B.6 Proof of Claim 16

We �rst prove the claim for the case where i = j and i′ = j′. In this case G′ [Ui′ ] is a clique
(because dP (i′, i′) = 1). Since Ui′ ∩ Vi ⊆ Ui′ then so is G′ [Ui′ ∩ Vi]. Since |Ui′ ∩ Vi| ≥ δn there
are at least

(
δn
2

)
≥ 1

4δ
2n2 edges in the clique G′ [Ui′ ∩ Vi]. Additionally, Ui′ ∩Vi ⊆ Vi. Therefore,

the number of edges in G′ [Vi] is also at least 1
4δ

2n2. Hence if i = j and i′ = j′ then:

eG′ (Vi, Vj) = eG′ (Vi, Vi) ≥
1

4
δ2n2 (B.19)

Now suppose this is not the case. That is, either i 6= j or i′ 6= j′ (or both). In the graph G′,
every vertex in Ui′ is connected to every vertex in Uj′ (because dP (i′, j′) = 1). Therefore, in G′,
every vertex in Ui′ ∩ Vi is connected to every vertex in Uj′ ∩ Vj . The set Ui′ ∩ Vi is disjoint from
the set Uj′ ∩ Vj because either i 6= j or i′ 6= j′. Hence,

eG′
(
Ui′ ∩ Vi, Uj′ ∩ Vj

)
= |Ui′ ∩ Vi| ·

∣∣Uj′ ∩ Vj∣∣ ≥ δ2n2 (B.20)

Therefore,

eG′ (Vi, Vj) ≥ δ2n2 ≥ 1

4
δ2n2 (B.21)

The claim follows.

B.7 Proof of Claim 17

To prove Claim 17 we �rst prove the following two claims.

Claim 20. For every i ∈ [k], Pr
[
E1
i

]
≤ e−n

(
δ2

64
n−2

)
and Pr

(
E0
i

)
≤ e−n

(
δ2

64
n−2

)
.

Proof. We prove Pr
[
E1
i

]
≤ e−n

(
δ2

64
n−2

)
in detail as the proof of the bound of Pr

[
E0
i

]
is similar.

Let A ⊆ Ui be a set of at least δn vertices. We bound from above the probability that the
number of edges in G′ [A] is at most εn2. In order to obtain that upper bound we consider a set
A′ ⊆ A of size exactly δn. Since every edge in G′ [A′] is also in G′ [A],

Pr
[
eG′ (A,A) < εn2

]
≤ Pr

[
eG′
(
A′, A′

)
< εn2

]
(B.22)

Therefore, we proceed by �nding an upper bound on Pr
[
eG′ (A

′, A′) < εn2
]
.

For every pair of vertices u, v ∈ A′ we de�ne an indicator random variable χuv as follows.

33



χuv =

{
0 (u, v) /∈ E [G′]

1 (u, v) ∈ E [G′]

We de�ne a random variable χ as the sum of the indicators.

χ =
∑
u,v∈A′

χuv (B.23)

Clearly, eG′ (A
′, A′) = χ. Hence, we have to bound from above the probability that χ < εn2.

Since εn2 ≤ 1
2 ·

1
2 ·
(
δn
2

)
,

Pr
[
χ < εn2

]
≤ Pr

[
χ <

1

2
· 1

2
·
(
δn

2

)]
(B.24)

To bound the probability from above by applying Cherno�'s bound, we �rst �nd the expec-
tation of χ using the linearity of expectation:

E [χ] =
∑
u,v∈A′

χuv =
∑
u,v∈A

1

2
=

1

2
·
(
δn

2

)
(B.25)

We apply Cherno�'s bound:

Pr

[
χ <

1

2
· 1

2
·
(
δn

2

)]
= Pr

[
χ <

1

2
E [χ]

]
≤ e−( 1

2)
2·E[χ]

2 = e−
1
16
·(δn2 ) ≤ e−

1
64
δ2n2

(B.26)

Hence,

Pr
[
eG′ (A,A) < εn2

]
≤ e−

1
64
δ2n2

(B.27)

The number of ways to choose a subset A of size at least δn from Ui is at most 2n. Therefore,
by applying the union bound, the probability that there exists a set A ⊆ Ui of size at least δn
in which the number of edges is less than εn2 is at most 2n · e−

1
64
δ2n2

.
That is,

Pr
[
E1
i

]
≤ 2n · e−

1
64
δ2n2 ≤ e2n · e−

1
64
δ2n2 ≤ e−n

(
δ2

64
n−2

)
(B.28)

Similarly, Pr
[
E0
i

]
≤ e−n

(
δ2

64
n−2

)
. The claim follows.

Claim 21. For every i ∈ [k], Pr
[
E1
ij

]
≤ e−n

(
δ2

64
n−2

)
and Pr

[
E0
ij

]
≤ e−n

(
δ2

64
n−2

)
.

Proof. As in the proof of the previous claim, we only prove Pr
[
E1
ij

]
≤ e

−n
(
δ2

64
n−2

)
, because

proving the bound on Pr
[
E0
i

]
is very similar. Let (A,B) ⊆ Ui × Uj be two disjoint sets, each

of size at least δn. We explicitly require the two subsets to be disjoint because if i = j then an
arbitrary pair of subsets are not necessarily disjoint. We bound from above the probability that
the number of edges between A and B in the graph G′ is at most εn2. In order to obtain that
upper bound we consider a pair of subsets (A′, B′) ⊆ A×B where |A′| = |B′| = δn. Clearly,

Pr
[
eG′ (A,B) < εn2

]
≤ Pr

[
eG′
(
A′, B′

)
< εn2

]
(B.29)

34



As in the previous proof, we de�ne a random variable χuv for every pair of vertices (u, v) ∈
A′ ×B′ indicating whether or not there exists an edge between u and v. We de�ne the random
variable χ as the sum of the indicators. That is, eG′ (A

′, B′) = χ. Hence, we have to bound from
above the probability that χ < εn2. Again, in order to apply Cherno�'s bound, we compute the
expectation of χ.

E [χ] =
∑

(u,v)∈A′×B′
χuv =

∑
u,v∈A

1

2
=

1

2
· δ2n2 (B.30)

We apply Cherno�'s bound:

Pr
[
χ < εn2

]
≤ Pr

[
χ <

1

2
E [χ]

]
≤ e−( 1

2)
2·E[χ]

2 = e−
1
16
·δ2n2 ≤ e−

1
64
δ2n2

(B.31)

Hence,

Pr
[
eG′ (A,A) < εn2

]
≤ e−

1
64
δ2n2

(B.32)

The number of ways to choose a pair of disjoint subsets (A,B) each of size at least δn from
Ui × Uj is at most 2n · 2n = 4n (in fact, if i = j then the number of ways is at most 3n < 4n).
Therefore, by applying the union bound, the probability that there exists a pair of subsets
(A,B) ⊆ Ui×Uj where each subset is of size at least δn and the number of edges between them

is less than εn2 is at most 4n · e−
1
64
δ2n2

.
That is,

Pr
[
E1
ij

]
≤ 4n · e−

1
64
δ2n2 ≤ e2n · e−

1
64
δ2n2 ≤ e−n

(
δ2

64
n−2

)
(B.33)

Similarly, Pr
[
E0
ij

]
≤ e−n

(
δ2

64
n−2

)
. The claim follows.

Now we can prove claim 17. That is, we prove that Pr [E ] > 0.

Proof of Claim 17. We use the union bound to bound from above the probability of the event
E .

For every i where dP (i, i) = ⊥:

Pr
[
Ei
]
≤ 2 · Pr

[
E0
i

]
≤ 2 · e−n

(
δ2

64
n−2

)
(B.34)

For every i, j where dP (i, j) = ⊥:

Pr
[
Eij
]
≤ 2 · Pr

(
E0
ij

)
≤ 2 · e−n

(
δ2

64
n−2

)
(B.35)

The number of events Ei is at most k and the number of events Eij is at most k2. Hence the
number of events we use in the union bound is at most k + k2 ≤ 2k2

Pr
[
E
]

= 2k2 · 2 · e−n
(
δ2

64
n−2

)
= 4k2 · e−n

(
δ2

64
n−2

)
< 1 (B.36)

where the last inequality holds since we can choose n to be su�ciently large.
Hence, Pr [E ] > 0

35

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


