
Lower bounds for data structures with space close to
maximum imply circuit lower bounds

Emanuele Viola∗

October 31, 2018

Abstract

Let f : {0, 1}n → {0, 1}m be a function computable by a circuit with unbounded
fan-in, arbitrary gates, w wires and depth d. With a very simple argument we show
that the m-query problem corresponding to f has data structures with space s = n+ r
and time (w/r)d, for any r. As a consequence, in the setting where s is close to m a
slight improvement on the state of existing data-structure lower bounds would solve
long-standing problems in circuit complexity. We also use this connection to obtain a
data structure for error-correcting codes which nearly matches the 2007 lower bound
by Gal and Miltersen. This data structure can also be made dynamic. Finally we give
a problem that requires at least 3 bit probes for m = nO(1) and even s = m/2− 1.

Proving data-structure lower bounds is a fundamental research agenda to which many papers
have been devoted, see for example [Pat11] and the 29 references there. A static data
structure for a function f : {0, 1}n → {0, 1}m is specified by an arbitrary map mapping an
input x ∈ {0, 1}n into s memory bits, and m query algorithms running in time t. Here the
i query algorithm answers query i which is the i output bit of f . The state of time lower
bounds for a given space s can be summarized with the following expression:

log(m/n)/ log(s/n). (1)

Specifically, no explicit function for which a bound better than (1) is known, for any
setting of parameters. This is true even if time is measured in terms of bit probes (that is,
the word size is 1), and the probes are non-adaptive. Note that in such a data structure a
query is simply answered by reading t bits from the s memory bits at fixed locations that
depend only on the query but not on the data. All the data structures in this paper will be
of this simple form, making our results stronger.

On the other hand, for several settings of parameters we can prove lower bounds that
either match or are close to (1) for explicit functions. Specifically, for succinct data structures
using space s = n + r when r = o(n), the expression (1) becomes (n/r) log(m/n). Gal and
Miltersen [GM07], Theorem 4, have proved lower bounds of the form Ω(n/r).

∗Supported by NSF CCF award 1813930. Work partially done while visiting and supported by the Simons
institute.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 186 (2018)

When s = n(1 + Ω(1)), (1) is at best logarithmic. Such logarithmic lower bounds where
obtained for m = n1+Ω(1) by Siegel [Sie04], Theorem 3.1, for computing hash functions. For
several settings of parameters [Sie04] also shows that the bound is tight. The lower bound
was rediscovered in [Lar12]. Their bounds are stated for non-binary, adaptive queries. For
a streamlined exposition of this lower bound and matching upper bound, in the case of
non-adaptive, binary queries see Lecture 18 in [Vio17]. Remarkably, if s = n(1 + Ω(1)) and
m = O(s), or if s = n1+Ω(1) no lower bound is known. Counting arguments (Theorem 8 in
[Mil93]) show the existence of functions requiring polynomial time even for space s = m− 1.

In this paper we show that when m is close to s, say m = O(s) or m = s · poly log s even
a slight improvement over the state of data structure lower bounds implies new circuit lower
bounds. Note that several well-studied problems do indeed have a number m of queries that
is close to n (and so in particular m is close to s). They include representing (1) dense sets
with membership queries, (2) arrays supporting rank/select, (3) well-bracketed expressions
supporting matching brackets, (4) permutations supporting evaluations, (5) texts supporting
accessing symbols and occurrences (access/select), (6) polynomials supporting evaluation,
when the field size is close to the degree, or more generally retrieving symbols in an error-
correcting code. See for example [Pǎt08] for (1)-(3), [Gol09], for (4)-(5), [GM07] for (6).

For problems when m is much larger than n, the question that is most relevant to this
work is whether a data structure exists with space s close to m, say s = m/poly log(m).
When m = s1+ε for a small enough ε our connection still applies, but one would need to
prove polynomial lower bounds to obtain new circuit lower bounds. When say m = s2 we do
not obtain anything. It is an interesting open question to link that setting to circuit lower
bounds.

Circuits with arbitrary gates. A circuit C : {0, 1}n → {0, 1}m with arbitrary gates is a
circuit made of gates with unbounded fan-in, computing arbitrary functions. The complexity
measures of interest here are the number w of wires, and the depth d. These circuits have been
extensively studied, see for example Chapter 13 in the book [Juk12], titled “Circuits with
arbitrary gates.” The best-available lower bounds are proved in [Pud94, Che08b, Che08a].
In the case of depth 2 they are polynomial, but for higher depths they are barely super-linear.

Definition 1. The function λd : N→ N is defined as λ1(n) := b
√
nc, λ2(n) := dlog2 ne and

for d ≥ 3 λd(n) := λ?d−2(n), where f ?(n) is the least number of times we need to iterate the
function f on input n to reach a value ≤ 1. Note λ3(n) = O(log log n) and λ4(n) = O(log? n).

With this notation in hand we can express the best-available lower bounds from [Pud94,
Che08b, Che08a]. They show explicit functions f : {0, 1}n → {0, 1}m for which any depth-d
circuit with w wires satisfies

w ≥ Ωd(m · λd−1(n)). (2)

Those papers only consider the setting m = n, but we note that no lower bound better
than (2) is available form > n, because such a lower bound would immediately imply a bound
better than Ωd(n ·λd−1(n)) for some subset of n output bits. (Write f : {0, 1}n → {0, 1}m as
f = (f1, f2, . . . , fm/n) where each fi : {0, 1}n → {0, 1}n. If every fi is computable in depth d
with w wires then f can be computed in depth d with (m/n)w wires.)

2

Problem 2. Exhibit an explicit function f : {0, 1}n → {0, 1}m that cannot be computed
by circuits of depth d with O(mλd−1(n)) wires, with unbounded fan-in arbitrary gates, for
some d.

We show how to simulate circuits with data structures.

Theorem 3. Suppose the function f : {0, 1}n → {0, 1}m has a circuit of depth d with w
wires, consisting of unbounded fan-in, arbitrary gates. Then f has a data structure with
space s = n+ r and time (w/r)d, for any r.

Proof. Let R be a set of r gates in the circuit with largest fan-in. Note R may include some
of the output gates, but does not include any of the input. Note that any other gate has
fan-in ≤ w/r, for else there are r gates with fan-in > w/r, for a total of > w wires. The data
structure simply stores in memory the input and the values of the gates in R. This takes
space s = n+ r. It remains to show how to answer queries efficiently.

Group the gates of the circuit in d + 1 levels where level 0 contains the n input gates
and level d is the output. We prove by induction on i that for every i = 0, 1, . . . , d, a gate
at level i can be computed by reading (w/r)i bits of the data structure. For i = d this gives
the desired bound.

The base case i = 0 holds as every input gate is stored in the data structure and thus
can be computed by reading (w/r)0 = 1 bit.

Fix i > 0 and a gate g. If g ∈ R then again it can be computed by reading 1 bit.
Otherwise g 6∈ R. Then g has fan-in ≤ w/r. Then we can compute g if we know the values
of its w/r children. By induction each child can be computed by reading (w/r)i−1 bits.
Hence we can compute g by reading (w/r)i bits.

This theorem shows that if for an explicit function f : {0, 1}n → {0, 1}m we have a
data-structure lower bound showing that for space s = n+ r the time t must be

t ≥ (ω(mλd−1(n))/r)d, (3)

for some d, then we have new circuit lower bounds and Problem 2 is solved. We illustrate
this via several settings of parameters.

Setting s = 1.01n and m = 100n. As mentioned earlier in this setting no data structure
lower bound is available: (1) gives nothing. We obtain that even proving, say, a t ≥ log???(n)
lower bound would solve Problem 2. Indeed, pick d = 100 and r = 0.01n. By Inequality (3)
to solve Problem 2 it suffices to prove a lower bound of t ≥ ω(λ99(n))100, which is implied
by t ≥ log???(n).

The succinct setting s = n+r with r = o(n), m = O(n). In this setting the best available
lower bound is t ≥ Ω(n/r), see [GM07], Theorem 4. For say d = 4 and r ≤ n/ log? n, the
right-hand side of (3) is within a polynomial of n/r. Hence for any setting of r the lower
bound in [GM07] is within a polynomial of the best possible that one can obtain without
solving Problem 2. In particular, for polylogarithmic redundancy r = n/ logc(n), we have
lower bounds Ω(logc n), and proving log5c(n) would solve Problem 2. We note that moreover
the data-structure given by Theorem 3 is systematic: the input is copied in n of the n + r
memory bits. Thus the connection to Problem 2 holds even for lower bounds for systematic
data structures.

3

The setting m = n1+ε and s = n(1 + Θ(1)). As mentioned earlier the best lower bound
is Ω(logm). We obtain that proving a data-structure lower bound of the form t ≥ n3ε log4 n
would solve Problem 2. (Pick r = n and d = 3.)

The setting s = n1+Ω(1) and m = s1+ε. Here no data-structure lower bounds are known.
We get that a lower bound of t ≥ s3ε log4 n would solve Problem 2.

Bounded fan-in circuits. We also get a connection with bounded fan-in circuits (over
the usual basis And, Or, Not). Recall that it is not known if every explicit function f :
{0, 1}n → {0, 1}m has circuits of size O(m) and depth O(logm). Using Valiant’s well-known
connection [Val77] (see [Vio09], Chapter 3, for an exposition) we obtain the following.

Theorem 4. Let f : {0, 1}n → {0, 1}m be a function computable by bounded fan-in circuits
with O(m) wires and depth O(logm). Suppose m = O(n). Then f has a data structure with
space n+ o(n) and time no(1).

Proof. Suppose the circuit has w = cm wires and depth d = c logm. It is known [Val77] (see
Lemma 28 in [Vio09]) that we can halve the depth by removing cm/ log d wires. Repeating
this process say log log log n times the depth becomes O(log n)/ log log n = o(log n), and we
have removed o(m) wires. Let R be the set of wires we removed. The data structure consists
of the input and the values of R. Thus the redundancy is |R| = o(n).

It remains to see how to answer queries fast. Because the depth is o(log n), the value at
every output gate depends on at most no(1) wires that were removed, and at most no(1) input
bits. Thus reading the corresponding bits we know the value of the output gate.

In the other uses of Valiant’s result, for depth-3 circuits and matrix rigidity, it is not
important that each gate depends on few bits of R. However it is essential for us. For this
reason it is not clear if the corresponding depth-reduction for Valiant’s series-parallel circuits
[Cal08] yields data structures.

For completeness we discuss briefly lower bounds for dynamic data structures. Here the
best lower bounds are Ω(log1.5 n) [LWY17]. We note that for an important class of problems,
known as decomposable problems, it is known since [Ben79] how to turn a static data structure
with query time t into a data structure that supports queries in time O(t log n) as well as
insertions in time O(log n), see Theorem 7.3.2.5 in the book [Ove83]. Hence a strong lower
bound for such “half-dynamic” data structures would imply a lower bound for static data
structures, and one can apply the above theorems to get a consequence for circuits.

Data structures for error-correcting codes. We can use Theorem 3 to obtain new
data structures for any problem which has efficient circuits. Let f : {0, 1}n → {0, 1}m be
the encoding map of a binary error-correcting code which is asymptotically good, that is
m = O(n) and the minimum distance is Ω(m). Gal and Miltersen show [GM07], Theorem
4, that any data structure for this problem requires time ≥ Ω(n/r) if the space is s = n+ r.
Combining a slight extension of Theorem 3 together with a circuit construction in [GHK+13]
we obtain data structures with time O(n/r) log3 n.

Theorem 5. There exists an asymptotically good, binary code whose encoding map f :
{0, 1}n → {0, 1}m has data structures with space n+ r and time O(n/r) log3 n, for every r.

4

Proof. First note that if in Theorem (3) we start with a circuit where the output gates have
fan-in k, then we can have a data structure with time k(w/r)d−1. The proof is the same as
before, using the bound of k instead of w/r for the output gates. In [GHK+13], Section 6, it
was shown the existence of an asymptotically good code whose encoding map is computable
by depth-2 circuits made of Xor gates and with w = O(n log2 n) wires. Moreover, the fan-in
of the output gates is k = O(log n). The result follows.

We also obtain a dynamic data structure for the encoding map.

Theorem 6. There exists an asymptotically good, binary code whose encoding map f :
{0, 1}n → {0, 1}m has dynamic data structure with space O(n log n) supporting updating an
input bit in time O(log2 n), and computing one bit of the codeword in time O(log n).

Proof. Suppose f has a depth-2 circuit where the output gates have fan-in k and the input
gates have fan-out `. Then this gives a data structure where the memory consists of the
middle layer of gates. To compute one bit of the codeword we simply read the k corre-
sponding bits in the data structure, and to update one message bit we simply update the `
corresponding bits. Essentially this observation already appears in [BL15], except they do
not parameterize it by the fan-in and fan-out, and so do not get a worst-case data structure.

An inspection of the encoding circuits [GHK+13] mentioned in the proof of Theorem (5)
reveals that they also have a good bound on the fan-out ` of the input gates: ` = O(log2m).
This follows because the gates in the middle layer are grouped in O(logm) range detectors.
And each range detector is constructed with a unique-neighbor expander where the degree
in the input nodes is O(logm).

In both data structures, the query algorithms are explicit, but the preprocessing and
updates are not (because the corresponding layer in the circuits in [GHK+13] is not explicit).

A lower bound for large s. As remarked earlier we have no lower bounds when s is
much larger than n. Next we prove a lower bound of t ≥ 3 for any m = nO(1) even for
s = m/2− 1. The lower bound is established for a small-bias generator [NN93]. A function
f : {0, 1}n → {0, 1}m is an ε-biased generator if the xor of any subset of the output bits is
equal to one with probability p such that |p − 1/2| ≤ ε, over a uniform input. There are
explicit constructions with n = O(log n/ε) [NN93, AGHP92].

Theorem 7. Let f : {0, 1}n → {0, 1}m be a o(1)-biased generator. Suppose f has a data
structure with time t = 2. Then s ≥ m/2.

Proof. Suppose by contradiction that s = m/2− 1. By inspection, any function g on 2 bits
is either affine, or else is biased, that is either g−1(1) or g−1(0) contains only one input.

Suppose ≥ m/2 of the queries are answered with affine functions. Then because s < m/2
some linear combination of these affine queries is fixed. This is a contradiction.

Otherwise ≥ m/2 of the queries are answered with biased functions. We claim that there
exists one biased query whose (set of two) probes are covered by the probes of other two
biased queries. To show this we can keep collecting biased queries whose probes are not
covered. We must stop eventually, for s < m/2. Hence assume that the probes of f3 are
covered by those of f1 and f2. By the small-bias property, the distribution of (f1, f2, f3) ∈

5

{0, 1}3 should be close to uniform. But this is not the case, because for some setting of
(f1, f2) the value of f3 is determined.

Problem 8. Exhibit an explicit function f : {0, 1}n → {0, 1}m that does not have a data
structure with space s = n+m/10, and time t = 3.

Acknowledgment. I am grateful to Omri Weinstein for stimulating discussions during his
visit at Northeastern University and at the Simons institute.

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construc-
tions of almost k-wise independent random variables. Random Structures &
Algorithms, 3(3):289–304, 1992.

[Ben79] Jon Louis Bentley. Decomposable searching problems. Inf. Process. Lett.,
8(5):244–251, 1979.

[BL15] Joshua Brody and Kasper Green Larsen. Adapt or die: Polynomial lower bounds
for non-adaptive dynamic data structures. Theory of Computing, 11:471–489,
2015.

[Cal08] Chris Calabro. A lower bound on the size of series-parallel graphs dense in long
paths. Electronic Colloquium on Computational Complexity (ECCC), 15(110),
2008.

[Che08a] Dmitriy Yu. Cherukhin. Lower bounds for boolean circuits with finite depth and
arbitrary gates. Electronic Colloquium on Computational Complexity (ECCC),
15(032), 2008.

[Che08b] Dmitriy Yu. Cherukhin. Lower bounds for depth-2 and depth-3 boolean circuits
with arbitrary gates. In Computer Science - Theory and Applications, Third In-
ternational Computer Science Symposium in Russia, CSR 2008, Moscow, Russia,
June 7-12, 2008, Proceedings, pages 122–133, 2008.

[GHK+13] Anna Gál, Kristoffer Arnsfelt Hansen, Michal Koucký, Pavel Pudlák, and
Emanuele Viola. Tight bounds on computing error-correcting codes by bounded-
depth circuits with arbitrary gates. IEEE Transactions on Information Theory,
59(10):6611–6627, 2013.

[GM07] Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data
structures. Theoretical Computer Science, 379(3):405–417, 2007.

[Gol09] Alexander Golynski. Cell probe lower bounds for succinct data structures. In
20th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 625–634, 2009.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer,
2012.

[Lar12] Kasper Green Larsen. The cell probe complexity of dynamic range counting. In
ACM Symp. on the Theory of Computing (STOC), pages 85–94, 2012.

[LWY17] Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. Crossing the log-
arithmic barrier for dynamic boolean data structure lower bounds. CoRR,
abs/1703.03575, 2017.

6

[Mil93] Peter Bro Miltersen. The bit probe complexity measure revisited. In Symp. on
Theoretical Aspects of Computer Science (STACS), pages 662–671, 1993.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient construc-
tions and applications. SIAM J. on Computing, 22(4):838–856, 1993.

[Ove83] Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of
Lecture Notes in Computer Science. Springer, 1983.

[Pǎt08] Mihai Pǎtraşcu. Succincter. In 49th IEEE Symp. on Foundations of Computer
Science (FOCS). IEEE, 2008.

[Pat11] Mihai Patrascu. Unifying the landscape of cell-probe lower bounds. SIAM J.
Comput., 40(3):827–847, 2011.

[Pud94] Pavel Pudlák. Communication in bounded depth circuits. Combinatorica,
14(2):203–216, 1994.

[Sie04] Alan Siegel. On universal classes of extremely random constant-time hash func-
tions. SIAM J. on Computing, 33(3):505–543, 2004.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In 6th
Symposium on Mathematical Foundations of Computer Science, volume 53 of
Lecture Notes in Computer Science, pages 162–176. Springer, 1977.

[Vio09] Emanuele Viola. On the power of small-depth computation. Foundations and
Trends in Theoretical Computer Science, 5(1):1–72, 2009.

[Vio17] Emanuele Viola. Special topics in complexity theory. Lecture
notes of the class taught at Northeastern University. Available at
http://www.ccs.neu.edu/home/viola/classes/spepf17.html, 2017.

7
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

