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Abstract

Testing monotonicity of Boolean functions over the hypergrid, f : [n]d → {0, 1}, is a classic problem
in property testing. When the range is real-valued, there are Θ(d log n)-query testers and this is tight. In
contrast, the Boolean range qualitatively differs in two ways:

- Independence of n: There are testers with query complexity independent of n [Dodis et al. (RAN-
DOM 1999); Berman et al. (STOC 2014)], with linear dependence on d.

- Sublinear in d: For the n = 2 hypercube case, there are testers with o(d) query complexity
[Chakrabarty, Seshadhri (STOC 2013); Khot et al. (FOCS 2015)].

It was open whether one could obtain both properties simultaneously. This paper answers this ques-
tion in the affirmative. We describe a Õ(d5/6)-query monotonicity tester for f : [n]d → {0, 1}.

Our main technical result is a domain reduction theorem for monotonicity. For any function f ,
let εf be its distance to monotonicity. Consider the restriction f̂ of the function on a random [k]d

sub-hypergrid of the original domain. We show that for k = poly(d/ε), the expected distance of the
restriction E[εf̂ ] = Ω(εf ). Therefore, for monotonicity testing in d dimensions, we can restrict to testing
over [n]d, where n = poly(d/ε). Our result follows by applying the d5/6 · poly(1/ε, log n, log d)-query
hypergrid tester of Black-Chakrabarty-Seshadhri (SODA 2018).
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1 Introduction

Monotonicity testing over hypergrid domains is a fundamental problem in property testing. Consider the
hypergrid [n]d, where ≺ denotes the coordinate-wise partial ordering. Let R be a total order. A function
f : [n]d → R is monotone if f(x) ≤ f(y) for any x ≺ y. The distance of a function f to monotonicity is
the Hamming distance to the nearest monotone function, that is, εf := ming∈M d(f, g), where d(f, g) =
n−d · |{x ∈ [n]d : f(x) 6= g(x)}|, and M is the set of all monotone functions. A monotonicity tester
is a randomized algorithm that makes queries to f and accepts with probability ≥ 2/3 if the function is
monotone, and rejects with probability ≥ 2/3 if εf ≥ ε, where ε ∈ (0, 1) is an input parameter. The
challenge is to determine the minimum query complexity of a monotonicity tester.

One of the earliest results in property testing is the O(d/ε)-query “edge-tester” due to Goldreich et
al. [GGL+00] (see also [Ras99]) for testing monotonicity of Boolean functions over the hypercube, that is,
f : {0, 1}d → {0, 1}. In the last few years, considerable work [CS14a, CST14, CDST15, KMS15, BB16,
CWX17] has improved our understanding of Boolean monotonicity testing in the hypercube domain. In
particular, Khot, Minzer, and Safra [KMS15] gave a Õ(

√
d/ε2) query1 tester, and Chen, Waingarten, and

Xie [CWX17] show that any such tester must make Ω̃(d1/3) queries. In contrast, for real-valued functions
over the hypercube f : {0, 1}d → R, the complexity is known to be Θ(d/ε) [BBM12, CS13, CS14b]. We
give more details of previous work in §1.4.

In this paper, we investigate monotonicity testing for Boolean functions over the d-dimensional, n-
hypergrid, f : [n]d → {0, 1}. Dodis et al. [DGL+99] (with improvements by Berman, Raskhodnikova, and
Yaroslavtsev [BRY14a]) gave a Õ(d/ε)-query tester. The important feature to note is the independence on n.
Again, contrast this with the real-valued case; monotonicity testing of one-dimensional functions f : [n]→
R requires Ω(log n) queries [EKK+00, Fis04]. Recently, Black, Chakrabarty, and Seshadhri [BCS18] gave
a Õ(d5/6 log4/3 n ε−4/3)-query tester. Although the dependence on dwas sublinear, there was a dependence
on n. The following question remained open:

Is there a monotonicity tester for functions f : [n]d → {0, 1}, whose query complexity is
independent of n and sublinear in d?

The main outcome of this paper is an affirmative answer to this question.

Theorem 1.1 (Informal). There is a one-sided, non-adaptive Õ(d5/6ε−7/3)-query monotonicity tester for
Boolean functions f : [n]d → {0, 1}.

1.1 Domain Reduction

A natural approach, at least in hindsight, to tackle Boolean monotonicity testing over the hypergrid is to try
reducing it to Boolean monotonicity testing over the hypercube. For a function f over [n]d, consider the
restriction f̂ to a random hypercube in this hypergrid. More precisely, for each dimension i ∈ [d], sample
two independent u.a.r values ai < bi in [n] and let f̂ be the restriction of f on the hypercube formed by the
Cartesian product

∏d
i=1{ai, bi}. If the expectation of ε

f̂
is Ω(εf ), then we obtain a hypergrid tester by first

reducing our domain to a random hypercube and then simply applying the best known monotonicity tester
on the hypercube. However, we show that this does not work. In §5, we describe a function f : [n]d → {0, 1}
such that εf = Ω(1), but the restriction of f on a random hypercube is monotone with probability 1−Θ(1/d)
(see Theorem 5.1).

1Throughout the paper Õ hides log(d/ε) factors.
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Nonetheless, one can consider the question of reducing the domain to a [k]d hypergrid, for some param-
eter k � n. For each i ∈ [d], consider sampling a subset Ti ⊂ [n] by taking k i.i.d. uniform samples from
[n]. Let T =

∏d
i=1 Ti and fT be the restriction of f to T . For k independent of n, can we lower bound

ET [εfT ]? We refer to this as the problem of domain reduction with k samples. Our main technical result is
a domain reduction theorem with k = poly(d/εf ).

Theorem 1.2 (Informal). The expected distance to monotonicity of f restricted to a random [k]d hypergrid
with k = Θ((d/εf )7), is Ω(εf ).

The construction of §5 actually shows that such a theorem is impossible for k = o(
√
d), and thus, domain

reduction requires k to be polynomial in d.
We can invoke [BCS18] to prove Theorem 1.1. Sample a random [k]d hypergrid denoted T and apply

the tester of [BCS18] on fT . The final query complexity is Õ(d5/6) · poly log k. Setting k = poly(d/ε),
one gets a purely sublinear-in-d tester (see §1.5 for a formal proof).

An obvious question is whether the dependence on d can be brought down to
√
d as in the hypercube

case. Theorem 1.2 allows us to assume that n = poly(d). Therefore if one could design a
√
d · poly log n

query monotonicity tester for the domain [n]d, then Theorem 1.2 can be used as a black box to achieve an
Õ(
√
d) monotonicity tester.

Implication for Other Notions of Distance: Berman, Raskhodnikova, and Yaroslavtsev [BRY14a] intro-
duce the notion of Lp testing, where f : [n]d → [0, 1] and the distance between functions is measured in
terms of Lp-norms. They prove that monotonicity testing with Lp distances can be reduced to (non-adaptive,
one-sided) Boolean monotonicity testing. Thus, Theorem 1.1 implies an Lp-tester for monotonicity over hy-
pergrids, with the same query complexity.

Previous work has also considered distance under product distributions [HK08, CDJS15]. Let D be a
product distribution over [n]d, and define d(f, g) = Prx∼D[f(x) 6= g(x)]. Chakrabarty et al. [CDJS15]
observed that monotonicity testing of f : [n]d → R over product distributions can be reduced to mono-
tonicity testing of f : [N ]d → R over the uniform distribution (standard distance). Here, N is potentially
much larger than n, and depends on the probabilities in D. By this observation, for the Boolean range case
R = {0, 1}, the query complexity of Theorem 1.1 holds for distances measured according to any prod-
uct distribution. Note that the independence of n is necessary in the reduction to get a query complexity
independent of the distribution D.
Domain Reduction for Variance: Recent works [CS14a, KMS15, BCS18] have shown that certain isoperi-
metric theorems for the undirected hypercube have directed analogues where the variance is replaced by the
distance to monotonicity. Interestingly, for the case of domain reduction, the variance and distance to mono-
tonicity behave differently. While domain reduction for the distance to monotonicity requires k ≥

√
d

(Theorem 5.1), we show that the expected variance of a restriction of f to a random hypercube (k = 2) is
at least half the variance of f (see Theorem A.1). This statement may be of independent interest. We were
unable to find a reference to such a statement and provide a proof in §A.

1.2 The Formal Result

Fix a function f : [n]d → {0, 1}. We construct d random (multi-) sets T1, . . . , Td ⊆ [n], each formed by
taking k i.i.d. uniform samples from [n] with replacement. We define T := T1× · · · ×Td and let fT denote
f restricted to T . We treat duplicate elements of a multi-set as being distinct copies of that element, which
are then treated as immediate neighbors in the total order. The function value of fT is the same on these
distinct copies. In our applications k � n and so we can assume that Ti contains a duplicate with negligible
probability. Nonetheless, sampling with replacement allows for no conditions on k.
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Theorem 1.3 (Domain Reduction Theorem). Let f : [n]d → {0, 1} be any function and let k ∈ Z+. If
T = T1 × · · · × Td is a randomly chosen sub-grid, where for each i ∈ [d], Ti is a (multi)-set formed by
taking k i.i.d. samples from the uniform distribution on [n], then

ET [εfT ] ≥ εf −
C · d
k1/7

where C > 0 is a universal constant.

In particular, k = O((d/εf )7) samples in each dimension is sufficient to preserve the distance to mono-
tonicity. The theorem is a direct corollary of the following lemma, applied to each dimension. This lemma
is the heart of our result and we give an overview of its proof in §1.3.

Lemma 1.4 (Domain Reduction Lemma). Let f : [n] ×
(∏d

i=2[ni]
)
→ {0, 1} be any function over a

rectangular hypergrid for some n, n2, . . . , nd ∈ Z+ and let k ∈ Z+. Choose T to be a (multi-) set formed by
taking k i.i.d. samples from the uniform distribution on [n] and let fT denote f restricted to T×

(∏d
i=2[ni]

)
.

Then ET [εf − εfT ] ≤ C
k1/7

where C > 0 is a universal constant.

1.3 Proving the Domain Reduction Lemma : Overview

Let us start with the simple case of d = 1 (the line). Monotonicity testers for the line immediately imply
domain reduction for d = 1 [DGL+99, BRY14a]. A u.a.r sample of Õ(1/εf ) points in [n] contains a
monotonicity violation with high probability, and thus the restriction of f to the sample has distance Ω(εf ).
We note that these arguments typically get a lower bound of εf/2. Therefore, even if we could generalize
this argument to the setting of Lemma 1.4, we would need to apply it d times to get the full domain reduction
(Theorem 1.3). That would imply a final lower bound of εf/2d, which has little value towards proving a
sublinear-in-d bound.

Indeed, the first baby step towards Lemma 1.4 is to get a stronger domain reduction just for the line. We
prove that if one samples Θ(d2/ε2

f ) points, then the expected distance of the restricted function is at least
εf (1 − 1/d). Numerically speaking, this is encouraging news, since we could at least hope to iterate this
argument d times. Of course, this result for the line alone is not enough to deal with the structure of general
hypergrids, but forms a part of our final proof.

Let us go to the general case of Lemma 1.4. For brevity, we let D := [n] ×
(∏d

i=2[ni]
)

and DT :=

T ×
(∏d

i=2[ni]
)

denote the original and reduced domains, respectively. Note that |DT | = k
n |D|.

The violation graph of f has vertex set D and an edge (x, y) iff x ≺ y and f(x) = 1, f(y) = 0. A
theorem of [FLN+02] states that any maximum cardinality matching in M in the violation graph satisfies
|M | = εf |D|. Fix such a matching M . For a fixed sample T , we let MT denote a maximum cardinality
matching in the violation graph of fT . To argue about εfT , we need to to lower bound the expected size
|MT |. To do so, we lower bound the expected number of endpoints of M that can still be matched in the
violation graph of fT .

We use the following standard notions of lines and slices inD, with respect to the first dimension. Below,
for x ∈ D, the vector x−1 is used to denote (x2, x3, . . . , xd).

• (Lines in D) L :=
{
`z : z ∈

∏d
i=2[ni]

}
where `z := {x ∈ D : x−1 = z}.

• (Slices in D) S := {Si : i ∈ [n]} where Si := {x ∈ D : x1 = i}.
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We partition M into a collection of “local” matchings for each line:

• (Line Decomposition of M ) For each ` ∈ L: M (`) := {(x, y) ∈M : x ∈ `}.

We find a large matching in the violation graph of fT by doing a line-by-line analysis. In particular, we
define the following matching M (`)

T .

• (The matching M (`)
T ) For each ` ∈ L, let M (`)

T be any maximum cardinality violation matching with
respect to fT on the set of vertices that (a) are matched by M (`), and (b) lie in some slice Si where
i ∈ T .

We stress that M (`)
T is not a subset of M (`); the endpoints of the pairs in M

(`)
T are a subset of the

endpoints of the pairs in M (`), but the actual pairs can be different. The above definition implies that the
union of M (`)

T over all ` ∈ L is a valid matching MT in the violation graph of fT and that M (`)
T ∩M

(`′)
T = ∅

for all ` 6= `′ ∈ L. We will lower bound the size of this matching, MT .
Fix some ` ∈ L and notice that by definition, the lower-endpoints of M (`) all lie on `, and thus are all

comparable. Thus, let M (`) = {(x1, y1), . . . , (xm, ym)} where x1 ≺ · · · ≺ xm and observe this implies
that, for any j ∈ [m], x1, . . . , xj ≺ yj , . . . , ym. Combining this with the fact that the function is Boolean, we
see that any x ∈ {x1, . . . , xj} forms a violation to monotonicity with any y ∈ {yj , . . . , ym}, and therefore
these vertices can be matched in M (`)

T , if their 1-coordinates are sampled by T .
Since all the xi’s lie on the same line `, their 1-coordinates are distinct. Suppose that the 1-coordinates of

all the yi’s were also distinct and distinct from those of the xi’s too. Under this assumption we can project all
the violations onto `, and the analysis becomes identical to the one-dimensional case. As alluded to above,
the one-dimensional case can be handled without much difficulty (Lemma 1.6). However, the assumption
that the yi’s have distinct 1-coordinates is problematic. For instance, it could also be the case that all the
yi’s have the same 1-coordinate. That is, they all lie in the same slice Sa, for some a ∈ [n]. In this case,
with probability (1 − k/n) we would have the size of M (`)

T be 0 (if a /∈ T ), which in turn implies that

ET

[
|M (`)

T |
]

could be as small as (k/n)2 · |M (`)|. This would disprove the lemma if such a “collision of y’s
1-coordinates” happened all the time. Unfortunately, there are examples of violation matchings where this
happens. Consider Example 1, and the left part of Fig. 1. For the lowest line, all the corresponding yi’s in
M (`) have the same coordinate. Indeed, this example is extremely pathological for our approach.

The only hope is to discover a different violation matching that does not have such a problem. Indeed,
our main insight is that there always exists a violation matching M where the problem above does not arise
(too often). This motivates the key definition of stacks; the stacks are what determine the “shape” of a
matching. Formally, for any ` ∈ L and S ∈ S, the (`, S)-stack is the set of pairs (x, y) ∈ M , where x ∈ `
and y ∈ S.

• (Stacks) M (`,S) := {(x, y) ∈M (`) : y ∈ S} = {(x, y) ∈M : x ∈ `, y ∈ S}.

Often, we will use the notation “size of a stack (`, S)” to denote |M (`,S)|. To summarize the above
discussion, small stacks are good news while big stacks are bad news. This is formalized in Lemma 1.6.

Intuitively, if there is a maximum cardinality matching M in the violation graph of f such that all stacks
had size at most 1, then the one-dimensional argument can be directly applied (Lemma 1.6 would be enough
to prove Lemma 1.4). Even if their sizes were at most a constant, this would suffice as well. Unfortunately,
we do not know if this is possible. One reason for this difficulty may be that there can be various maximum
cardinality matchings in the violation graph that have vastly different stack sizes (shape of the matching);

4



again consider Example 1. Nevertheless, we can show that for any λ ≥ 2, there is a matching M where the
total number of vertices participating in stacks of size at least λ is at most |D|/poly(λ).

Lemma 1.5 (Stack Bound). For any integer λ ≥ 2, there exists a maximum cardinality matching M in the
violation graph of f , where

∑
(`,S):|M(`,S)|≥λ |M (`,S)| ≤ 6√

λ
· |D|.

The main creativity to prove this lemma lies in the choice of M . Given a matching, we define the vector
Λ(M) which enumerates all the stack sizes in non-decreasing order. We show that the maximum cardinality
matchingM which has the lexicographically largest Λ(M) suffices. That is, we chooseM which maximizes
the minimum stack size, and then subject to this maximizes the second minimum, and so on. It may seem a
bit counter-intuitive that we want a matching with small stack sizes, and yet our potential function wishes to
maximize the minimum. The explanation is that the sum of the stack sizes is |M |, which is fixed, and so in a
sense maximizing the minimum also balances out the Λ(M) vector. Of course, this is purely at an intuition
level. The proof uses a matching rewiring argument to show that any large stack must be “adjacent” to many
moderate size stacks. Essentially, if two stacks are appropriately aligned, one could change the matching
to move points from one stack to the other. If a large stack was thus aligned with a small stack, one could
rewire to get a lexicographically larger Λ(·) vector. Thus, large stacks can only potentially rewire with other
large stacks. But since the function is Boolean one can show that there are many opportunities for rewiring
the violation matching. One can then apply some technical charging arguments to bound the total number
of points in large stacks. The full proof can be found in §3.

With the stack bound in hand, we need to generalize the one-dimensional argument to account for
bounded stack sizes. This is precisely what the following lemma achieves. Thus, we can bound |M (`)

T | for
all `, and get the final lower bound on the distance εfT .

Lemma 1.6 (Line Sampling). Suppose that M is a matching in the violation graph of f such that for
λ ∈ Z+, |M (`,S)| ≤ λ for all ` ∈ L and S ∈ S. Then, for any ` ∈ L,

ET

[
|M (`)

T |
]
≥ k

n
· |M (`)| − 3λ

√
k ln k.

Note that in the one dimensional case, we have only one line ` and each slice is a singleton. Thus, any
stack has at most one point and so we can set λ = 1. Therefore, setting k = ω

(
1
ε2

ln(1/ε)
)

we get that the
function restricted to this random set has expected distance to monotonicity εf (1− o(1)). To see this, note
that εf = |M |/n = |M (`)|/n and εfT ≥ |MT |/k = |M (`)

T |/k.
The proof technique is a careful generalization of the argument that we alluded to in the beginning of

this section, which shows that Õ(1/ε) random points contain a violation with high probability. We show
that one can control the size of the maximum matching M (`)

T by analyzing the discrepancy of a random
subsequence of a sequence of 1s and 0s.

Example 1 (A Two Dimensional Example). Consider the anti-majority function on two dimensions. More
precisely, f : [n]2 → {0, 1} defined as f(x, y) = 1 if x + y ≤ n, and f(x, y) = 0 otherwise. We describe
two maximum cardinality matchings with vastly different stack sizes. The first matching R matches a point
(x, y) with x + y ≤ n to the point (n − y + 1, n − x + 1). For an illustration, see the left red matching in
Fig. 1 for the case n = 5. Observe that whenever x+ y ≤ n, we have (n− y + 1) + (n− x+ 1) > n. The
second matching B matches a point (x, y) with x+ y ≤ n to the point (x+ y, n− x+ 1). Again, observe
that (x+ y) + (n− x+ 1) > n. For an illustration, see the right blue matching in Fig. 1 for the case n = 5.
Note that the stack sizes for the matching R are large; in particular, they are n− 1, n− 2, . . . , 2, 1 for n− 1
stacks and 0 for the rest. On the other hand, any stack in B is of size ≤ 1.
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Figure 1: Accompanying illustration for Example 1 showing two different maximum cardinality violation
matchings for the anti-majority function f : [5]2 → {0, 1} which have very different stack sizes. Black
(white, resp.) circles represent vertices where f = 1 (f = 0, resp.) and connecting lines represent pairs of
the matching. Observe that for the left matching, the bottom line and the right-most slice form a stack of
size 4 while the right matching has stack sizes all ≤ 1.

1.4 Related Work

Monotonicity testing has been extensively studied in the past two decades [EKK+00, GGL+00, DGL+99,
LR01, FLN+02, HK03, AC06, HK08, ACCL07, Fis04, SS06, Bha08, BCSM12, FR10, BBM12, RRSW11,
BGJ+12, CS13, CS14a, CST14, BRY14a, BRY14b, CDST15, CDJS15, KMS15, BB16, CWX17].

We give a short summary of Boolean monotonicity testing over the hypercube. The problem was in-
troduced by Goldreich et al [GGL+00] (refer to Raskhodnikova’s thesis [Ras99]), with an O(d/ε)-query
tester. The first improvement over that bound was the Õ(d7/8) tester of Chakrabarty and Seshadhri [CS14a],
achieved via a directed analogue of Margulis’ isoperimetric theorem. Chen-Servedio-Tan improved the
analysis to get an Õ(d5/6) bound [CST14]. A breakthrough result of Khot-Minzer-Safra gave an Õ(

√
d)

tester [KMS15]. All these testers are non-adaptive and one-sided. Fischer et al. had proved a (nearly) match-
ing lower bound of Ω(

√
d) for this case [FLN+02]. The first polynomial two-sided lower bound was given

by Chen-Servedio-Tan, subsequently improved to Ω(d1/2−δ) by Chen et al. [CDST15]. The first polynomial
lower bound of Ω̃(d1/4) for adaptive testers was given recently by Belovs-Blais [BB16], and was improved
to Ω̃(d1/3) by Chen-Waingarten-Xie [CWX17].

For Boolean monotonicity testing over general hypergrids, Dodis et al. gave a non-adaptive, one-
sided O((d/ε) log2(d/ε))-query tester [DGL+99]. This was improved to O((d/ε) log(d/ε)) by Berman-
Raskhodnikova-Yaroslavtsev [BRY14a]. They also prove an Ω(log(1/ε)) separation between adaptive and
non-adaptive monotonicity testers for f : [n]2 → {0, 1}. They show an O(1/ε) adaptive tester (for any
constant d), and an Ω(log(1/ε)/ε) lower bound for non-adaptive monotonicity testers. Previous work by
the authors give a monotonicity tester with query complexity Õ(d5/6 log n) via directed isoperimetric in-
equalities for augmented hypergrids [BCS18].

1.5 The Monotonicity Tester: Proof of Theorem 1.1

We use the following theorem of [BCS18] on monotonicity testing for Boolean functions on [n]d.

Theorem 1.7 (Theorem 1.1 of [BCS18]). Given a function f : [n]d → {0, 1} and a parameter ε ∈ (0, 1),
there is a randomized algorithm that makes O

(
d5/6 · log3/2 d · (log n+ log d)4/3 · ε−4/3

)
non-adaptive
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queries and (a) returns YES with probability 1 if the function is monotone, and (b) returns NO with proba-
bility > 2/3 if the function is ε-far from being monotone.

We refer to the tester of Theorem 1.7 as the grid-path-tester. Using this result along with our do-
main reduction theorem (Theorem 1.3), we design the following improved tester. Let C denote the universal
constant from Theorem 1.3.

Algorithm 1 Improved Monotonicity Tester for f : [n]d → {0, 1} (f, ε, n)

1: if n ≤ (2C · dε )7: return grid-path-tester(f, ε, n).
2: else:
3: repeat 256/ε times:
4: Sample T = T1 × · · · × Td as in Theorem 1.3 with k = (2C · dε )7.
5: if grid-path-tester(fT , ε/4, k) returns NO, then return NO.
6: return YES.

Proof of Theorem 1.1: The result is a corollary of Theorem 1.3 and Theorem 1.7. If n ≤
(
2C · dε

)7
, then

the tester of Theorem 1.7 (grid-path-tester(f, ε, n)) already achieves the stated guarantees. On the
other hand if n >

(
2C · dε

)7
, then we set k :=

(
2C · dε

)7
and sample a sub-hypergrid T := T1 × · · · × Td,

where each Ti is formed by taking k i.i.d. draws from the uniform distribution on [n]. By Theorem 1.3,
ET [εfT ] ≥ ε− C·d

k1/7
= ε/2. Thus, by Markov’s inequality, PrT (εfT ≥ ε/4) ≥ ε/4. Thus, at least one of

the iterations of Step 4 in Alg. 1 returns T satisfying εfT ≥ ε/4 with probability ≥ 1 − (1 − ε/4)256/ε =

1−
(
(1− ε/4)4/ε

)4 ≥ 1− (1/e)4 ≥ 15/16.
Thus, if f is ε-far from monotone, then Alg. 1 returns NO with probability ≥ 15

16 ·
2
3 = 5/8. On

the other hand, if f is monotone, then Alg. 1 clearly returns YES. For the query complexity, Alg. 1 runs
grid-path-tester at most 256/ε times with parameters ε/4 and k =

(
2C · dε

)7
. Thus, substituting

these values in place of ε and n in the query complexity of Theorem 1.7 and multiplying by 256/ε completes
the proof of Theorem 1.1. �

2 Domain Reduction: Proof of Lemma 1.4

In this section, we use Lemma 1.5 and Lemma 1.6 to prove Lemma 1.4. Recall that D := [n]×
(∏d

i=2[ni]
)

andDT := T ×
(∏d

i=2[ni]
)

denote the original and reduced domains, respectively. Note that |DT | = k
n |D|.

Let M be the matching given by Lemma 1.5 with λ :=
⌈
36k2/7

⌉
.

By Lemma 1.5, we have
∣∣∣⋃(`,S):|M(`,S)|≥40k2/7 M

(`,S)
∣∣∣ ≤ 6√

λ
· |D| < |D|

k1/7
. Let

M̂ := M \

 ⋃
(`,S):|M(`,S)|≥40k2/7

M (`,S)


denote the set of pairs in M which do not belong to stacks larger than 40k2/7; we therefore have

∑
`∈L
|M̂ (`)| = |M̂ | ≥ |M | − |D|

k1/7
. (1)
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In this proof, our goal is to construct a matching MT in the violation graph of fT whose cardinality is
sufficiently large. We measure ET [|MT |] by summing over all lines in L and applying Lemma 1.6 to each.
Notice that M̂ is a matching in the violation graph of f which satisfies |M̂ (`,S)| ≤ 40k2/7 for all ` ∈ L and
S ∈ S. Thus by Lemma 1.6, for any ` ∈ L,

ET

[
|M (`)

T |
]
≥ k

n
· |M̂ (`)| − 3 · (40k2/7) ·

√
k ln k ≥ k

n
· |M̂ (`)| − 120k5/6 (2)

where we have used
√

ln k < k1/3−2/7. Now, using (1) and (2), we can calculate ET [|MT |]. We use the fact
that {M̂ (`)}`∈L is a partition of M̂ , apply linearity of expectation and use Lemma 1.6 to measure ET [|M (`)

T |]
for each `. Also note that the number of lines is |L| = |D|/n.

ET [|MT |] = ET

[∑
`∈L
|M (`)

T |

]
=
∑
`∈L

ET

[
|M (`)

T |
]
≥
∑
`∈L

(
k

n
· |M̂ (`)| − 120k5/6

)
(by (2))

=

(
k

n
·
∑
`∈L
|M̂ (`)|

)
−
(

120k5/6 · |D|
n

)
≥ k

n
·
(
|M | − |D|

k1/7

)
−
(

120k5/6 · |D|
n

)
(by (1))

=
k

n
·
(
|M | − |D|

k1/7
− 120|D|

k1/6

)
≥ k

n
·
(
|M | − C · |D|

k1/7

)
(3)

for a constant C > 0, since 1
k1/7

dominates 1
k1/6

. (3) gives the expected cardinality of our matching after
sampling. To recover the distance to monotonicity we simply normalize by the size of the domain. Dividing
by |DT | = k

n |D|, we get ET [εfT ] ≥ |M ||D| −
C
k1/7

= εf − C
k1/7

. This completes the proof of Lemma 1.4. �

3 Stack Bound: Proof of Lemma 1.5

We are given a positive integer λ ≥ 2 and a Boolean function f : D → {0, 1} whereD = [n]×
(∏d

i=2[ni]
)

is a rectangular hypergrid for some n, n2, . . . , nd ∈ Z+. Lemma 1.5 asserts there is a maximum cardinality
matching M such that

∑
(`,S):|M(`,S)|≥λ |M (`,S)| ≤ 6√

λ
· |D|.

Given a matching M , we consider the vector (or technically, list) Λ(M) indexed by stacks (`, S) with
Λ`,S := |M (`,S)|, and list these in non-decreasing order. Consider the maximum cardinality matching M
in the violation graph of f which has the lexicographically largest Λ(M). That is, the minimum entry of
Λ(M) is maximized, and subject to that the second-minimum is maximized and so on. We claim that this
matching serves as the matching we want. To prove this, we henceforth fix this matching M and introduce
the following notation.

• (Low Stacks) L := {(`, S) ∈ L × S : |M (`,S)| ≤ λ− 2}.
• (High Stacks) H := {(`, S) ∈ L × S : |M (`,S)| ≥ λ}.

Let V (H) denote the set of vertices matched by
⋃

(`,S)∈HM
(`,S). LetB (for blue) be the set of points in

V (H) with function value 0, and R (for red) be the set of points in V (H) with function value 1. M induces
a perfect matching between B and R, and we wish to prove |B| = |R| ≤ 6√

λ
· |D|. Indeed, define δ to be

such that |B| = δ|D|. In the remainder of the proof, we will prove that δ < 6√
λ

.

We make a simple observation that for any fixed line `, the number of stacks (`, S) which are non-low
cannot be “too many”.
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Claim 3.1. For any line `, the number of non-low stacks ` participates in is at most n
λ−1 .

Proof. Fix any line ` and consider the set
⋃
S:(`,S)/∈L

{
x1 : ∃(x, y) ∈M (`,S)

}
. That is, the set of 1-coordinates

that are used by some non-low stack involving `. The size of this set can’t be bigger than the length of `,
which is n. Furthermore, each non-low stack contributes at least λ − 1 unique entries to this set. The
uniqueness follows since the union

⋃
S:(`,S)/∈LM

(`,S) is a matching. �

We show that if the number of blue points |B| is large (> 6|D|/
√
λ), then we will find a line participating

in more than n/(λ − 1) non-low stacks. To do so, we need to “find” these non-low stacks. We need some
more notation to proceed. For a vertex z, we let `z (Sz , resp.) denote the unique line (slice, resp.) containing
z. For each blue point y ∈ B, we define the following interval

Iy := {z ∈ `y : z1 ∈ [x1, y1]} where (x, y) ∈M

Armed with this notation, we can find our non-low stacks. Our next claim, which is the heart of the proof
and uses the potential function, shows that for every high stack (`, S), we get a bunch of other “non-low”
stacks participating with the line `.

Claim 3.2. Given y ∈ B, let x := M−1(y) and suppose (`, S) ∈ H is such that (x, y) ∈M (`,S) (note that
this stack, (`, S), exists by definition of B). Then, for any z ∈ Iy ∩B, (`, Sz) /∈ L.

Proof. The claim is obviously true if z = y, since this implies Sz = S (since y ∈ S) and (`, S) ∈ H by
assumption. Therefore, we may assume z 6= y, and we also assume, for contradiction’s sake, (`, Sz) ∈ L.
Note that x ∈ ` and by definition of Iy, we get x ≺ z ≺ y.

Since z ∈ B, it is matched to some w ∈ R. Note w ≺ z ≺ y. Furthermore, the stack (`w, Sz) ∈ H (by
definition of B). By assumption of the claim, (`, S) ∈ H . In particular, x,w, z, y ∈ V (H). Now consider
the new matching N which deletes (x, y) and (w, z) and adds (x, z) and (w, y). Note that the cardinality of
M remains the same.

We now show that Λ(N) is lexicographically bigger than Λ(M). To see this, consider the stacks whose
sizes have changed from M to N . There are four of them (since we swap two pairs), namely the stacks
(`, S), (`w, Sz), (`, Sz), and (`w, S). For brevity’s sake, let us denote their sizes in M as λ1, λ2, λ3, and λ4,
respectively. In N , their sizes become λ1− 1, λ2− 1, λ3 + 1, and λ4 + 1. Note that λ3 ≤ λ− 2 and both λ1

and λ2 are ≥ λ. In particular, the “new” size of stack (`, Sz) is still smaller than the “new” sizes of stacks
(`, S) and (`w, Sz). That is, the vector Λ(N), even without the increase in λ4, is lexicographically larger
than Λ(M). Since increasing the smallest coordinate (among some coordinates) increases the lexicographic
order, we get a contradiction to the lexicographic maximality of Λ(M). �

The rest of the proof is a (slightly technical) averaging argument to prove that |B| is small. We introduce
some more notation to carry this through. For a blue point y ∈ B, let ρy :=

|Iy∩B|
|Iy | denote the fraction of

blue points in Iy. For α ∈ (0, 1), we say that y ∈ B is α-rich if ρy ≥ α. A point x ∈ R is α-rich if its blue
partner y ∈ B (i.e. (x, y) ∈M ) is α-rich. We also call the pair (x, y) an α-rich pair.

Claim 3.3. If |B| = δ|D|, then at least δ|D|/2 of these points are δ/4-rich.

Proof. Let B(poor) ⊆ B be the points with ρy < δ/4. We show |B(poor)| ≤ δ|D|/2 which would prove
the claim. To see this, first observe B(poor) ⊆

⋃
y∈B(poor) (Iy ∩B). Now consider the minimal subset

B
(poor)
min ⊆ B(poor) such that

⋃
y∈B(poor)

min

Iy =
⋃
y∈B(poor) Iy. That is, given a collection of intervals we are
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picking the minimal subset covering the same points. Since these are intervals, we get that no point is
contained in more than two intervals Iy among y ∈ B(poor)

min . In particular, this implies

∑
y∈B(poor)

min

|Iy| ≤ 2 ·

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

Iy

∣∣∣∣∣∣∣ (4)

Therefore,

∣∣∣B(poor)
∣∣∣ ≤

∣∣∣∣∣∣
⋃

y∈B(poor)

(Iy ∩B)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

(Iy ∩B)

∣∣∣∣∣∣∣ ≤
∑

y∈B(poor)
min

|Iy ∩B|

<
δ

4

∑
y∈B(poor)

min

|Iy| ≤
δ

2
·

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

Iy

∣∣∣∣∣∣∣ ≤
δ

2
· |D|

The first equality follows from the definition of B(poor)
min (taking intersection with B), and the third (strict)

inequality follows from the fact that none of these points are δ/4-rich. The fourth inequality is (4). This
completes the proof. �

A corollary of Claim 3.3 is that there are at least δ|D|/2 red points which are δ/4-rich. In particular, there
must exist some line ` that contains≥ δn/2 red points in it which are δ/4-rich. Let this line be ` and letR` ⊆
` be the set of rich red points. LetB` be their partners inM . Let S` =

{
S ∈ S : ∃z ∈ S ∩

(
∪y∈B`Iy ∩B

)}
denote the set of slices containing blue points from the collection of rich intervals, {Iy : y ∈ B`}. By
Claim 3.2, we know that all these stacks are non-low, that is, (`, S) /∈ L for all S ∈ S`. We now lower
bound the cardinality of this set.

Consider the set of blue points in our union of rich intervals fromB`,
⋃
y∈B` Iy∩B. There are precisely

n slices in total, and for a vertex z ∈ D, Sz is the slice indexed by the 1-coordinate of z. Thus, we have
|S`| = |{z1 : z ∈

⋃
y∈B` Iy ∩ B}|. That is, |S`| is exactly the number of unique 1-coordinates among

vertices in
⋃
y∈B` Iy ∩B.

Since we care about the number of unique 1-coordinates, we consider the “projections” of our sets of
interest onto dimension 1. For a set X ⊆ D, let proj1(X) := {x1 : x ∈ X} be the set of 1-coordinates used
by points in X . In particular, note that for y ∈ B, proj1(Iy) := [x1, y1] ⊂ [n], where x := M−1(y) and

observe that |S`| =
∣∣∣⋃y∈B` proj1(Iy ∩B)

∣∣∣. Now, given that each interval from {Iy}y∈B` is a δ
4 -fraction

blue, the following claim says that at least a δ
8 -fraction of the union of intervals consists of blue points with

unique 1-coordinates.

Claim 3.4.
∣∣∣⋃y∈B` proj1(Iy ∩B)

∣∣∣ ≥ δ
8

∣∣∣⋃y∈B` proj1(Iy)
∣∣∣

Proof. As in the proof of Claim 3.2, let B`
min ⊆ B` be a minimal cardinality subset of B` such that⋃

y∈B`
min

proj1(Iy) =
⋃
y∈B` proj1(Iy). For any y ∈ B, y belongs to at most two intervals from B`

min.
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∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy ∩B)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

y∈B`
min

proj1(Iy ∩B)

∣∣∣∣∣∣ ≥ 1

2

∑
y∈B`

min

|proj1(Iy ∩B)|

≥ δ

8

∑
y∈B`

min

|proj1(Iy)| ≥
δ

8

∣∣∣∣∣∣
⋃

y∈B`
min

proj1(Iy)

∣∣∣∣∣∣ =
δ

8

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy)

∣∣∣∣∣∣ . �

Now importantly, |proj1(R`)| = |R`| ≥ δ
2 · n since the 1-coordinates of elements of R` are distinct

(since R` is contained on a single line). Moreover, by definition of Iy, proj1(R`) ⊆
⋃
y∈B` proj1(Iy) and

so
∣∣∣⋃y∈B` proj1(Iy)

∣∣∣ ≥ |proj1(R`)| ≥ δ
2 · n. Finally, combining this with Claim 3.4, we get

|S`| =

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy ∩B)

∣∣∣∣∣∣ ≥ δ

8

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy)

∣∣∣∣∣∣ ≥ δ2

16
· n

Therefore, ` participates in at least δ
2

16 · n non-low stacks. Thus, using Claim 3.1, if δ2

16 · n >
n
λ−1 ⇐⇒

δ > 4√
λ−1

, then we have a contradiction. Since λ ≥ 2, we conclude that δ < 6/
√
λ. This concludes the

proof of Lemma 1.5. �

4 Line Sampling: Proof of Lemma 1.6

We recall the lemma for ease of reading. Given a line ` ∈ L, we have definedM (`) := {(x, y) ∈M : x ∈ `}.
Given a stack S, we have defined M (`,S) := {(x, y) ∈ M (`) : y ∈ S}. Given a multi-set T ⊆ [n], recall
M

(`)
T is the maximum cardinality matching of violations (x, y) such that (a) x and y are both matched by

M (`), and (b) x1 and y1 both lie in T . Given λ ∈ Z+ such that |M (`,S)| ≤ λ for all ` ∈ L and S ∈ S, the
line sampling lemma (Lemma 1.6) states

ET

[
|M (`)

T |
]
≥ k

n
· |M (`)| − 3λ

√
k ln k. (5)

Consider an arbitrary, fixed line ` ∈ L. We use the matching M (`) to induce weights w+(i), w−(i)
on [n] as follows. Initially w+(i), w−(i) = 0 for all i ∈ [n]. For each (x, y) ∈ M (`) if x ∈ Si then we
increase w+(i) by 1, and if y ∈ Sj then we increase w−(j) by 1. We let V + := {i : w+(i) > 0} and
V − := {j : w−(j) > 0}.

Claim 4.1. We make a few observations.

1. For any i ∈ [n], w+(i) ≤ 1.
2. For any i ∈ [n], w−(i) ≤ λ.
3. For any t ∈ [n],

∑
s≤t(w

−(s)− w+(s)) ≤ 0.

Proof. The first observation follows since the lower endpoints of M (`) all lie on `, and thus have distinct 1-
coordinates. The second observation follows from the assumption that |M (`,S)| ≤ λ for all (`, S) ∈ L × S.
The third observation follows by noting that whenever w−(j) is increased for some j, we also increase
w+(i) for some i < j. �
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Given a multiset T ⊆ [n], denote V +
T := V + ∩ T and V −T := V − ∩ T . Also, define the bipartite graph

GT := (V +
T , V

−
T , ET ) where (i, j) ∈ ET iff i ≤ j. A w-matching A in GT is a subset of edges of ET such

that every vertex i ∈ V +
T has at most w+(i) edges of A incident on it, and every vertex j ∈ V −T has at most

w−(j) edges of A incident on it. Let ν(GT ) denote the size of the largest w-matching in GT .

Lemma 4.2. For any multiset T ⊆ [n] and any w-matching A ⊆ ET in GT , we have |M (`)
T | ≥ |A|. In

particular, ET
[
|M (`)

T |
]
≥ ET [ν(GT )].

Proof. Consider any w-matching A ⊆ ET . For any vertex i ∈ V +
T , there are at most w+(i) edges in A

incident on it. Each increase of w+(i) is due to an edge (x, y) ∈ M (`) where x1 = i. Thus, we can charge
each of these edges of A (arbitrarily, but uniquely) to w+(i) different x ∈ `. Similarly, for any vertex
j ∈ V −T , there are at most w−(j) edges in A incident on it. Each increase of w−(j) is due to an edge
(x, y) ∈ M (`) with y1 = j. Thus, we can charge each of these edges of A (arbitrarily, but uniquely) to
w−(j) different y ∈ Sj , the jth slice. Furthermore, any z ∈ ` with z1 ≤ j satisfies z ≺ y. In sum, each
(i, j) ∈ A can be uniquely charged to an x ∈ ` with x1 = i and y ∈ Sj such that (a) (x, y) forms a violation,
(b) x, y were matched in M (`), and (c) x1, y1 ∈ T . Therefore, |M (`)

T | ≥ |A| since the LHS is the maximum
cardinality matching. �

Lemma 4.3. For any T ⊆ [n], we have

ν(GT ) =
∑
j∈T

w−(j)−max
t∈T

∑
s∈T :s≤t

(
w−(s)− w+(s)

)
Proof. By Hall’s theorem, the maximum w-matching in GT is given by the total weight on the V −T side,

that is,
∑

j∈T w
−(j), minus the total deficit δ(T ) := maxS⊆V −T

(∑
s∈S w

−(s)−
∑

s∈ΓT (S)w
+(s)

)
where

for S ⊆ V −T , ΓT (S) ⊆ V +
T is the neighborhood of S in GT . Consider such a maximizer S, and let t be the

largest index present in S. Then note that
∑

s∈ΓT (S)w
+(s) is precisely

∑
s∈T :s≤tw

+(s). Furthermore note
that adding any s ≤ t from V −T won’t increase |ΓT (S)|. Thus, given that the largest index present in S is t,
we get that δ(T ) is precisely the summation in the second term of the RHS. δ(T ) is maximized by choosing
the t which maximizes the summation. �

Next, we bound the expectation of the RHS in Lemma 4.3. Recall that T := {s1, . . . , sk} is a multiset
where each si is u.a.r. picked from [n]. For the first term, we have

ET

∑
j∈T

w−(j)

 =
k∑
i=1

n∑
j=1

Pr[si = j] · w−(j) =
k

n
·
n∑
j=1

w−(j) =
k

n
· |M (`)|. (6)

The second-last equality follows since si is u.a.r in [n] and the last equality follows since
∑

j w
−(j) in-

creases by exactly one for each edge in M (`). Next we upper bound the expectation of the second term. For
a fixed t, define

Zt :=
∑

s∈T :s≤t
(w−(s)− w+(s)) =

k∑
i=1

Xi,t where Xi,t =

{
w−(si)− w+(si) if si ≤ t
0 otherwise

Note that the Xi,t’s are i.i.d random variables with Xi,t ∈ [−1, λ] with probability 1. Thus, applying
Hoeffding’s inequality we get
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Pr [Zt > E[Zt] + a] ≤ 2 exp

(
−a2

2kλ2

)
Now we use Claim 4.1, part (3) to deduce that

E[Zt] =
k∑
i=1

E[Xi,t] =
k∑
i=1

∑
s≤t

(w−(s)− w+(s)) ·Pr[si = s] ≤ 0

since Pr[si = s] = 1/n. Therefore, the RHS of the Hoeffding bound is an upper-bound on Pr[Zt ≥ a]. In
particular, invoking a := 2λ

√
k ln k and applying a union bound, we get

Pr

[
max
t∈T

Zt > 2λ
√
k ln k

]
= Pr

[
∃t ∈ T : Zt > 2λ

√
k ln k

]
≤ k · e−2 ln k = 1/k (7)

and since maxt∈T Zt is trivially upper-bounded by λk, this implies that

ET

max
t∈T

∑
s∈T :s≤t

w−(s)− w+(s)

 ≤ λk ·Pr

[
max
t∈T

Zt > a

]
+ a ≤ λ+ a ≤ 3λ

√
k ln k. (8)

Lemma 1.6 follows from Lemma 4.2, Lemma 4.3, (6), and (8).

5 Lower Bound for Domain Reduction

In this section we prove the following lower bound for the number of samples needed for a domain reduction
result to hold for distance to monotonicity. Recall the domain reduction experiment: given f : [n]d → {0, 1}
and an integer k ∈ Z+, we choose T := T1× · · ·×Td where for each i ∈ [d], Ti is formed by taking k i.i.d.
uniform draws from [n]. We then consider the restriction fT .

Theorem 5.1 (Lower Bound for Domain Reduction). There exists a function f : [n]d → {0, 1}with distance
to monotonicity εf = Ω(1), for which ET [εfT ] ≤ O(k2/d).

In particular, the above theorem implies that k = Ω(
√
d) samples in each dimension is necessary to

preserve distance to monotonicity.

5.1 Proof of Theorem 5.1

We define the function Centrist : [0, 1]d → {0, 1}. The continuous domain is just a matter of convenience;
any n that is a multiple of d would suffice. It is easiest to think of d individuals voting for an outcome, where
the ith vote xi is the “strength” of the vote. Based on their vote, an individual is labeled as follows.

• xi ∈ [0, 1− 2/d]: skeptic
• xi ∈ (1− 2/d, 1− 1/d]: supporter
• xi ∈ (1− 1/d, 1]: fanatic

Centrist(x) = 1 iff there exists some individual who is a supporter. The non-monotonicity is created by
fanaticism. If a unique supporter increases her vote to become a fanatic, the function value can decrease.
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Claim 5.2. The distance to monotonicity of Centrist is Ω(1).

Proof. It is convenient to talk in terms of probability over the uniform distribution in [0, 1]d. Define the
following events, for i ∈ [d].

• Si: The ith individual is a supporter, and all others are skeptics.
• Fi: The ith individual is a fanatic, and all others are skeptics.

Observe that all these events are disjoint. Also, Pr[Si] = Pr[Fi] = (1/d)(1 − 2/d)d−1 = Ω(1/d).
Note that ∀x ∈ Si, Centrist(x) = 1 and ∀x ∈ Fi, Centrist(x) = 0.

We construct a violation matching M :
⋃
i Si →

⋃
iFi. For x ∈ Si, M(x) = x+ ei/d, where ei is the

unit vector in dimension i. For x ∈ Si, xi ∈ (1− 2/d, 1− 1/d], so M(x)i ∈ (1− 1/d, 1], and M(x) ∈ Fi.
M is a bijection between Si and Fi, and all the Si,Fi sets are disjoint. Thus, M is a violation matching.
Since Pr [

⋃
i Si] = Ω(d · 1/d), the distance to monotonicity is Ω(1). �

Lemma 5.3. Let k ∈ Z+ be any positive integer. If T := T1 × · · · × Td is a randomly chosen hypergrid,
where for each i ∈ [d], Ti is a set formed by taking k i.i.d. samples from the uniform distribution on [0, 1],
then with probability > 1− 4k2/d, CentristT is a monotone function.

Proof. Each Ti consists of k u.a.r. elements in [0, 1]. We can think of each as a sampling of the ith in-
dividual’s vote. For a fixed i, let us upper bound the probability that Ti contains strictly more than one
non-skeptic vote. This probability is

1− (1− 2/d)k − k(1− 2/d)k−1(2/d) = 1− (1− 2/d)k−1(1− 2/d+ 2k/d)

≤ 1−
(

1− 2(k − 1)

d

)(
1 +

2(k − 1)

d

)
≤ 4k2/d2

where we have used the bound (1 − x)r ≥ 1 − xr, for any x ∈ [0, 1] and r ≥ 1. By the union bound
over all dimensions, with probability > 1− 4k2/d, all Ti’s contain at most one non-skeptic vote. Consider
CentristT , some x ∈ T , and a dimension i ∈ [d]. If the ith individual increases her vote (from x), there are
three possibilities.

• The vote does not change. Then the function value does not change.
• The vote goes from a skeptic to a supporter. The function value can possibly increase, but not decrease.
• The vote goes from a skeptic to a fanatic. If CentristT (x) = 1, there must exist some j 6= i that is a

supporter. Thus, the function value remains 1 regardless of i’s vote.

In no case does the function value decrease. Thus, CentristT is monotone. �

Theorem 5.1 follows from Claim 5.2 and Lemma 5.3.
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A Domain Reduction for Variance

In this section, we prove that, given f : [n]d → {0, 1}, restricting f to a random hypercube (domain
reduction with k = 2) suffices to preserve the variance of f .
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Theorem A.1 (Domain Reduction for Variance). Let f : [n]d → {0, 1} be any function. If T := T1×· · ·×Td
is a randomly chosen sub-hypercube, where for each i ∈ [d], Ti is a (multi)-set formed by taking 2 i.i.d.
samples from the uniform distribution on [n], then ET [var(fT )] ≥ var(f)/2.

Proof. We will interpret f as a Boolean function with d log n (Boolean) inputs, so f : {−1, 1}d logn →
{−1, 1}. We will index the inputs in [d log n], where the interval Ii := [(i − 1) log n + 1, i log n] (the ith
block) corresponds to the ith input in the original representation. Henceforth, i will always index a block
(and thereby, an input in the original representation). We use xj to denote the jth input bit.

Let us think of the restriction in Boolean terms. Note that fT : {−1, 1}d → {−1, 1}, and we use y to
denote an input to the restriction. In Boolean terms, Ti picks two u.a.r log n bit strings, and forces the ith
block of inputs, Ii, to be one of these. The choice between these is decided by yi. Let us think of Ti as
follows. For every j ∈ Ii, it adds it to a set Ri with probability 1/2. All the inputs in Ri will be fixed, while
the inputs in Ii \ Ri are alive (but correlated by yi). Then, for every j ∈ Ii, it picks a u.a.r bit bj . (Call this
string Bi.) This is interpreted as follows. For every j ∈ Ri, xj is fixed to bj . For every j ∈ Ii \Ri, xj is set
to yibj . The randomness of Ti can therefore be represented as independently choosing Ri and Bi.

Consider some non-empty S ⊆ Ii.∏
j∈S

xj =
∏

j∈S∩Ri

bj
∏

j∈S\Ri

bjyi = y
|S\Ri|
i

∏
j∈S

bj (9)

The expected value of the Fourier basis function is (as expected) zero. Recall that S is non-empty.

ETi

Ey

∏
j∈S

xj

 = ERi,Bi

Ey

y|S\Ri|
i

∏
j∈S

bj

 = ERi

[
Ey
[
y
|S\Ri|
i

]]
· EBi

∏
j∈S

bj

 = 0 (10)

If |S \ Ri| is even, then
∏
j∈S xj is independent of y. Then, Ey

[∏
j∈S xj

]2
= 1. If |S \ Ri| is odd, then∏

j∈S xj is linear in yi and Ey
[∏

j∈S xj

]
= 0.

ETi

Ey

∏
j∈S

xj

2 = PrRi [|S \Ri| is even] = 1/2 (11)

Let us write out the Fourier expansion of f .

f(x) =
∑

S∈[d logn]

f̂S · χS(x) =
∑

S=S1∪...∪Sd
∀i,Si⊆Ii

f̂(S)
∏
i∈[d]

∏
xj∈Si

xj

Let us write an expression for the square of the zeroth Fourier coefficient of the restriction.

ET

[
f̂T (∅)2

]
= ET

 ∑
S∈[d logn]

f̂SEy[χS(x)]

2
We stress that the choice of x inside the expectations depend on y (or y′) in the manner described before
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(10).

ET

[
f̂T (∅)2

]
= ET

∑
S

f̂2
SEy [χS(x)]2 +

∑
S,T :S 6=T

f̂S f̂TEy [χS(x)] Ey [χT (x)]

 (12)

=
∑
S

f̂2
SET

[
Ey[χS(x)]2

]
+

∑
S,T :S 6=T

f̂S f̂TET [Ey[χS(x)]Ey[χT (x)]] (13)

We will write S = Si1 ∪Si2 · · · ∪Sik , where all Sirs are non-empty. We deal with the first term, using (11).

ET

[
Ey[χS(x)]2

]
= ET

Ey

∏
`≤k

∏
j∈Si`

xj

2 =
∏
`≤k

ET

Ey

 ∏
j∈Si`

xj

2 = 1/2k

The cross terms will be zero, using calculations analogous for (10) (which is not directly used). We write
S = S1 ∪ · · · ∪ Sd, where some of these may be empty.

ET [Ey[χS(x)]Ey[χT (x)]] = ET

Ey

∏
i∈[d]

∏
j∈Si

xj

Ey

∏
i∈[d]

∏
j∈Ti

xj


=

∏
i∈[d]

ERi,Bi

Eyi

y|Si\Ri|
i

∏
j∈Si

bj

Eyi

y|Ti\Ri|
i

∏
j∈Ti

bj


=

∏
i∈[d]

ERi

Eyi
[
y
|Si\Ri|
i

]
Eyi
[
y
|Ti\Ri|
i

]
EBi

 ∏
j∈Si∆Ti

bj


There must exist some i such that Si∆Ti 6= ∅. For that i, EBi

[∏
j∈Si∆Ti

bj

]
= 0, and thus for S 6= T ,

ET [Ey[χS(x)]Ey[χT (x)]] = 0. Plugging these bounds in,

ET

[
f̂T (∅)2

]
≤ f̂(∅)2 +

∑
S 6=∅

f̂(S)2/2 = 1− var(f) + var(f)/2 = 1− var(f)/2

We rearrange to get ET [var(f)] = ET

[
1− f̂T (∅)2

]
≥ var(f)/2. �
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