
Domain Reduction for Monotonicity Testing:
A o(d) Tester for Boolean Functions in d-Dimensions

Hadley Black∗ Deeparnab Chakrabarty† C. Seshadhri‡

Abstract

We describe a Õ(d5/6)-query monotonicity tester for Boolean functions f : [n]d → {0, 1} on the n-
hypergrid. This is the first o(d) monotonicity tester with query complexity independent of n. Motivated
by this independence of n, we initiate the study of monotonicity testing of measurable Boolean functions
f : Rd → {0, 1} over the continuous domain, where the distance is measured with respect to a product
distribution over Rd. We give a Õ(d5/6)-query monotonicity tester for such functions.

Our main technical result is a domain reduction theorem for monotonicity. For any function f : [n]d →
{0, 1}, let εf be its distance to monotonicity. Consider the restriction f̂ of the function on a random [k]d

sub-hypergrid of the original domain. We show that for k = poly(d/εf), the expected distance of the re-
striction is E[εf̂] = Ω(εf). Previously, such a result was only known for d = 1 (Berman-Raskhodnikova-
Yaroslavtsev, STOC 2014). Our result for testing Boolean functions over [n]d then follows by applying
the d5/6 · poly(1/ε, log n, log d)-query hypergrid tester of Black-Chakrabarty-Seshadhri (SODA 2018).

To obtain the result for testing Boolean functions over Rd, we use standard measure theoretic tools to
reduce monotonicity testing of a measurable function f to monotonicity testing of a discretized version
of f over a hypergrid domain [N]d for large, but finite, N (that may depend on f). The independence of
N in the hypergrid tester is crucial to getting the final tester over Rd.

∗Department of Computer Science, University of California, Los Angeles. Email: hablack@cs.ucla.edu. Part of this
work was done while the author was at University of California, Santa Cruz.
†Department of Computer Science, Dartmouth College. Email: deeparnab@dartmouth.edu. Supported by NSF CCF-

1813053.
‡Department of Computer Science, University of California, Santa Cruz. Email: sesh@ucsc.edu. Supported by NSF

TRIPODS CCF-1740850, CCF-1813165, and ARO Award W911NF191029.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 4 of Report No. 187 (2018)

mailto:hablack@cs.ucla.edu
mailto:deeparnab@dartmouth.edu
mailto:sesh@ucsc.edu

1 Introduction

Monotonicity testing is a fundamental problem in property testing. Let (D,≺) be a partially ordered set
(poset) and let R be a total order. A function f : D → R is monotone if f(x) ≤ f(y) whenever x ≺ y.
The hypercube, {0, 1}d and the hypergrid [n]d have been the most studied posets in monotonicity test-
ing, where ≺ denotes the coordinate-wise partial ordering. The Hamming distance between two func-
tions f and g is dist(f, g) := Prx∼D[f(x) 6= g(x)] where x is drawn uniformly from the domain.
The distance of f to monotonicity, denoted εf , is its distance to the nearest monotone function. That is,
εf := ming∈M dist(f, g), whereM is the set of all monotone functions. A monotonicity tester is a ran-
domized algorithm that makes queries to f and accepts with probability ≥ 2/3 if the function is monotone,
and rejects with probability ≥ 2/3 if εf ≥ ε, where ε ∈ (0, 1) is an input parameter. The challenge is to
determine the minimum query complexity of a monotonicity tester.

One of the earliest results in property testing is the O(d/ε)-query “edge-tester” due to Goldreich et
al. [GGL+00] (see also [Ras99]) for testing monotonicity of Boolean functions over the hypercube, that
is, f : {0, 1}d → {0, 1}. In the last few years, considerable work [CS14a, CST14, CDST15, KMS15,
BB16, CWX17] has improved our understanding of Boolean monotonicity testing on the hypercube do-
main. In particular, Khot, Minzer, and Safra [KMS15] give an Õ(

√
d/ε2) query1, non-adaptive tester, and

Chen, Waingarten, and Xie [CWX17] show that any tester (even adaptive) must make Ω̃(d1/3) queries.
In contrast, for real-valued functions over the hypercube f : {0, 1}d → R, the complexity is known to be
Θ(d/ε) [DGL+99, BBM12, CS13, CS14b], that is, linear in d.

The problem of monotonicity testing Boolean functions f : [n]d → {0, 1} over hypergrids is not as
well understood. Dodis et al. [DGL+99] (with improvements by Berman, Raskhodnikova, and Yaroslavt-
sev [BRY14a], henceforth BRY) give an Õ(d/ε)-query tester. The important feature to note is the indepen-
dence of n. Contrast this, again, with the real-valued case; monotonicity testing of functions f : [n]→ R re-
quires Ω(log n) queries [EKK+00, Fis04]. Recently, the authors [BCS18] describe an Õ(d5/6 log4/3 n ε−4/3)-
query tester. Although the dependence on d is sublinear, there is a dependence on n. The following question
has remained open: Is there a monotonicity tester for functions f : [n]d → {0, 1}, whose query complexity
is independent of n and sublinear in d? One of the main outcomes of this work is an affirmative answer to
this question.

Theorem 1.1. There is a randomized algorithm that, given a parameter ε ∈ (0, 1) and query access to any
Boolean function f : [n]d → {0, 1} defined over the hypergrid, makes Õ(d5/6ε−4/3) non-adaptive queries
to f and (a) always accepts if f is monotone, and (b) rejects with probability > 2/3 if εf > ε.

Continuous Domains. To the best of our knowledge, monotonicity testing has so far been restricted to dis-
crete domains. What can one say about monotonicity testing when the domain is Rd? Indeed, for functions
whose range is R, the aforementioned lower bound of Ω(log n) precludes any such tester (with finite query
complexity) even in one dimension. On the other hand, the independence of n in Theorem 1.1 (and indeed
the results of Dodis et al. [DGL+99] and BRY [BRY14a]) suggests the possibility of a monotonicity tester
for Boolean functions f : Rd → {0, 1}. In this work, we spell out the natural definitions for monotonicity
testing over Rd, and show that o(d)-testers do exist when the distance is with respect to any product measure.

Theorem 1.2 (Informal, Formal version: Theorem 6.3). There is a one-sided, non-adaptive Õ(d5/6ε−4/3)-
query monotonicity tester for measurable Boolean functions f : Rd → {0, 1} with respect to arbitrary
product measures2 µ =

∏
i µi.

1Throughout the paper Õ hides log(d/ε) factors.
2Each µi is described by a non-negative Lebesgue integrable function over R, whose integral over R is 1.

1

To gain perspective, the reader may restrict attention to functions defined over the continuous cube
[0, 1]d, and assume the uniform measure µ on this cube. This is the natural generalization of property testing
on the domains {0, 1}d and [n]d as described above. The only restriction on the function we are testing is
that the set of points where the function takes value 1 (or 0) must be (Lebesgue)-measurable. The distance
between two functions dist(f, g) := Prx∼µ[f(x) 6= g(x)] is the measure of the points at which they differ.
The distance to monotonicity of a function f is infg∈M dist(f, g) where M is the set of all monotone
functions. (In general, we use any measure to define distance. For instance, we can test monotonicity of
functions f : Rd → {0, 1} over the Gaussian measure.)

Note that the result of Theorem 1.2 holds for all measurable functions, with no dependence on sur-
face area or “complexity” of f . This can be contrasted with the recent result of De, Mossel, and Nee-
man [DMN19], who showed that Junta testing of Boolean functions f : Rd → {0, 1} over the Gaussian
measure requires some dependence on the surface area of f .

Given the proof techniques for Theorem 1.1, the proof of Theorem 1.2 follows from standard measure
theoretic methods. Nonetheless, we believe that there is a useful conceptual message in Theorem 1.2. It gives
the natural “limit” of monotonicity testing for hypergrids [n]d, as n → ∞. This result also underscores the
significance of getting testers independent of n (for hypergrids), since it leads to testers for all measurable
functions.

1.1 Domain Reduction

Discrete Hypergrid [n]d. A natural approach to tackle Boolean monotonicity testing over the hypergrid is
to try reducing it to Boolean monotonicity testing over the hypercube. For a function f over [n]d, consider
the restriction f̂ to a random hypercube in this hypergrid. More precisely, for each dimension i ∈ [d], sample
two independent u.a.r. values ai < bi in [n] and let f̂ be the restriction of f on the hypercube formed by the
Cartesian product

∏d
i=1{ai, bi}. If the expectation of εf̂ is Ω(εf), then we obtain a hypergrid tester by first

reducing our domain to a random hypercube and then simply applying the best known monotonicity tester
on the hypercube. However, we show that this does not work. In §8, we describe a function f : [n]d → {0, 1}
such that εf = Ω(1), but the restriction of f on a random hypercube is monotone with probability 1−Θ(1/d)
(see Theorem 8.1).

Nonetheless, one can consider the question of reducing the domain to a [k]d hypergrid, for some pa-
rameter k � n, by sampling k i.i.d. uniform elements of [n] across each dimension. For k independent of
n, can we lower bound the expected distance of the function restricted to a random [k]d hypergrid? BRY
studied this question for the d = 1 case (the line domain), and prove that this is indeed possible [BRY14a].
Our main technical result is a domain reduction theorem for all d, by setting k = poly(d/εf). That is, we
show that if k = Θ((d/εf)7), then the expected distance to monotonicity of f restricted to a random [k]d

hypergrid is Ω(εf).
For a precise statement, let us fix a function f : [n]d → {0, 1}. Construct d random (multi-) sets

T1, . . . , Td ⊆ [n], each formed by taking k i.i.d. uniform samples from [n]. Define T := T1 × · · · × Td and
let fT denote f restricted to T . (We treat duplicate elements of a multi-set as being distinct copies of that
element, which are then treated as immediate neighbors in the total order.)

Theorem 1.3 (Domain Reduction Theorem for Hypergrids). Let f : [n]d → {0, 1} be any function and let
k ∈ Z+ be a positive integer. If T = T1 × · · · × Td is a randomly chosen sub-grid, where for each i ∈ [d],
Ti is a (multi)-set formed by taking k i.i.d. samples from the uniform distribution on [n], then

ET [εfT] ≥ εf −
C · d
k1/7

2

where C > 0 is a universal constant. In particular, if k ≥
(

2Cd
εf

)7
, then ET [εfT] ≥ εf/2.

The construction in §8 shows that such a theorem is impossible for k = o(
√
d), and thus, domain reduction

requires k and d to be polynomially related. We leave figuring out the best dependence on k and d as an
open question. For the d = 1 case, BRY give a much better lower bound of εf − 5

√
εf/k (Theorem 3.1

of [BRY14a]).
Given Theorem 1.3, one can sample a random [k]d hypergrid denoted T and apply the tester in [BCS18]

on fT . The final query complexity is Õ(d5/6) · poly log k. Setting k = poly(d/ε), one gets a purely
sublinear-in-d tester (see §7 for a formal proof). An obvious question is whether the dependence on d can
be brought down to

√
d as in the hypercube case. If one could design a

√
d · poly log n query monotonicity

tester for the domain [n]d, then Theorem 1.3 can be used as a black box to achieve an Õ(
√
d) monotonicity

tester. Note that because the dependence of [BCS18] is poly log k, and in light of the fact that k = poly(d)
is needed for domain reduction to hold (Theorem 8.1), any improvement to Theorem 1.3 would only give a
constant factor improvement to the query complexity of the overall tester.

Continuous Domains. The independence of n in Theorem 1.3 suggests the possibility of a domain reduc-
tion result for Boolean functions defined over Rd. We show that this is indeed true if f : Rd → {0, 1} is
measurable (formal definitions in §6) and defined with respect to a (Lebesgue integrable) product distribu-
tion.

Theorem 1.4 (Domain Reduction Theorem for Rd). Let f : Rd → {0, 1} be any measurable function and
let k ∈ Z+ be a positive integer. Let µ =

∏d
i=1 µi be a (Lebesgue integrable) product distribution such that

the distance to monotonicity of f w.r.t. µ is εf . If T = T1× · · ·×Td is a randomly chosen hypergrid, where
for each i ∈ [d], Ti ⊂ R is formed by taking k i.i.d. samples from µi, then ET [εfT] ≥ εf − C·d

k1/7
, where

C > 0 is a universal constant. In particular, if k ≥
(

2Cd
εf

)7
, then ET [εfT] ≥ εf/2.

The above theorem essentially reduces the continuous domain to a discrete hypergrid [k]d where k is at
most some polynomial of the dimension d. At this point, our result from [BCS18] implies Theorem 1.2; a
formal proof is given in §7.

The main ingredient in the proof of Theorem 1.4 is a discretization lemma (Lemma 6.6). Using standard
measure theory, one can show that for any measurable Boolean function over Rd and any δ > 0, there exists
a large enough natural number N = N(f, δ) with the following property. The domain Rd can be divided
into an Nd sized d-dimensional grid, such that in at least a (1 − δ)-fraction of grid boxes, the function f
has the same value. (In some sense, this is what it means for f to be measurable.) Ignoring the δ-fraction of
“mixed” boxes, the function f can be thought of as a discrete function on [N]d.

The only guarantee on N is that it is finite; as it depends on f , N could be extremely large compared
to d. This is where Theorem 1.3 shows its power. The sampling parameter k is independent of N , and this
establishes Theorem 1.4. We give a detailed proof in §6.2.

We remark here that given the discretization lemma (Lemma 6.6), one can also apply the techniques
of Dodis et al. [DGL+99] and BRY [BRY14a] to get an Õ(d/ε)-query tester. However, as we mentioned
before, we are unaware of an explicit study of monotonicity testing over the continuous domain.

1.2 Related Work

Monotonicity testing has been extensively studied in the past two decades [EKK+00, GGL+00, DGL+99,
LR01, FLN+02, HK03, AC06, HK08, ACCL07, Fis04, SS08, Bha08, BCSM12, FR10, BBM12, RRSW11,

3

BGJ+12, CS13, CS14a, CST14, BRY14a, BRY14b, CDST15, CDJS15, KMS15, BB16, CWX17, BCS18].
We give a short summary of Boolean monotonicity testing over the hypercube. The problem was in-

troduced by Goldreich et al. [GGL+00] (also refer to Raskhodnikova’s thesis [Ras99]), who describe an
O(d/ε)-query tester. The first improvement over that bound was the Õ(d7/8) tester due to Chakrabarty and
Seshadhri [CS14a], achieved via a directed analogue of Margulis’ isoperimetric theorem. Chen-Servedio-
Tan [CST14] improved the analysis to get an Õ(d5/6) bound. A breakthrough result of Khot-Minzer-
Safra [KMS15] gives an Õ(

√
d) tester. All of these testers are non-adaptive and one-sided. Fischer et

al. [FLN+02] prove a (nearly) matching lower bound of Ω(
√
d) for this case. The first polynomial two-

sided lower bound was given in Chen-Servedio-Tan [CST14] and was subsequently improved to Ω(d1/2−δ)
in Chen et al. [CDST15]. The first polynomial lower bound of Ω̃(d1/4) for adaptive testers was given in
Belovs-Blais [BB16] and has since been improved to Ω̃(d1/3) by Chen-Waingarten-Xie [CWX17].

For Boolean monotonicity testing over general hypergrids, Dodis et al. [DGL+99] give a non-adaptive,
one-sided O((d/ε) log2(d/ε))-query tester. This was improved to O((d/ε) log(d/ε)) by Berman, Raskhod-
nikova and Yaroslavtsev [BRY14a]. This paper also proves an Ω(log(1/ε)) separation between adaptive and
non-adaptive monotonicity testers for f : [n]2 → {0, 1} by demonstrating anO(1/ε) adaptive tester (for any
constant d), and an Ω(log(1/ε)/ε) lower bound for non-adaptive monotonicity testers. Previous work by the
authors [BCS18] gives a monotonicity tester with query complexity Õ(d5/6 log4/3 n) via directed isoperi-
metric inequalities for augmented hypergrids.

1.3 Further Remarks

Implication for Other Notions of Distance: Berman, Raskhodnikova, and Yaroslavtsev [BRY14a] intro-
duce the notion of Lp-testing, where f : [n]d → [0, 1] and the distance between functions is measured in
terms of Lp-norms [BRY14a]. They prove (Lemma 2.2 + Fact 1.1, [BRY14a]) that Lp-monotonicity test-
ing can be reduced to (non-adaptive, one-sided) Boolean monotonicity testing. Thus, Theorem 1.1 implies
an Lp-monotonicity tester for functions f : [n]d → [0, 1] which makes o(d) queries. This improves upon
Theorem 1.3 of [BRY14a].

We also believe our main theorem Theorem 1.1 can be used to estimate the distance-to-monotonicity
for functions f : [n]d → {0, 1} in time independent of n. The works of [BRY14a, PRR06] also relate
distance estimation for Boolean functions and tolerant testing over Lp-distances, and our results should
have implications for this. Finally, generalizing Lp-testing to the continuous domain should be possible. We
leave all these interesting directions as future work.

Domain Reduction for Variance: Recent works [CS14a, KMS15, BCS18] have shown that certain isoperi-
metric theorems for the undirected hypercube have directed analogues where the variance is replaced by the
distance to monotonicity. Interestingly, for the case of domain reduction, the variance and distance to mono-
tonicity behave differently. While domain reduction for the distance to monotonicity requires k ≥ Ω(

√
d)

(Theorem 8.1), we show that the expected variance of a restriction of f to a random hypercube (k = 2) is
at least half the variance of f (see Theorem 9.1). This statement may be of independent interest. We were
unable to find a reference to such a statement and provide a proof in §9.

2 Proving the Domain Reduction Theorem 1.3: Overview

The theorem is a direct corollary of the following lemma, applied to each dimension.

4

Lemma 2.1 (Domain Reduction Lemma). Let f : [n] ×
(∏d

i=2[ni]
)
→ {0, 1} be any function over a

rectangular hypergrid for some n, n2, . . . , nd ∈ Z+ and let k ∈ Z+. Choose T to be a (multi-) set formed by
taking k i.i.d. samples from the uniform distribution on [n] and let fT denote f restricted to T×

(∏d
i=2[ni]

)
.

Then ET [εf − εfT] ≤ C
k1/7

where C > 0 is a universal constant.

This lemma is the heart of our results, and in this section we give an overview of its proof. Let us
start with the simple case of d = 1 (the line). Monotonicity testers for the line immediately imply domain
reduction for d = 1 [DGL+99, BRY14a]. A u.a.r. sample of Õ(1/εf) points in [n] contains a monotonicity
violation with large probability (> 9/10, say), and thus the restriction of f to this sample has distance
Ω̃(εf). However, Ω(εf) is weak for what we need since, even if one could generalize this argument to the
setting of Lemma 2.1, we would need to apply it d times to get the full domain reduction (Theorem 1.3). This
would imply a final lower bound of εf/Cd, for some constant C, which has little value towards proving a
sublinear-in-d query tester.

Fortunately, quantitatively stronger domain reduction exists for the line. BRY ([BRY14a], Theorem 3.1)
proves that if one samples Θ(s2/εf) points, then the expected distance of the restricted function is at least
εf (1−1/s). Numerically speaking, this is encouraging news, since we could try to set s = Θ(d) and iterate
this argument d times (over each dimension). Of course, this result for the line alone is not enough to deal
with the structure of general hypergrids, but forms a good sanity check.

Consider the general case of Lemma 2.1. For brevity, we let D := [n] ×
(∏d

i=2[ni]
)

and DT :=

T ×
(∏d

i=2[ni]
)

denote the original and reduced domains, respectively. Note that |DT | = k
n |D|.

The standard handle on the distance to monotonicity is the violation graph of f , arguably first formalized
by Fischer et al. [FLN+02]. The graph has vertex setD and an edge (x, y) iff x ≺ y and f(x) = 1, f(y) = 0.
A theorem of [FLN+02] states that any maximum cardinality matching M in the violation graph satisfies
|M | = εf |D|. Fix such a matching M . For a fixed sample T , we let MT denote a maximum cardinality
matching in the violation graph of fT . To argue about εfT , we want to give a lower bound on the expected
size |MT |. To do so, we give a lower bound the expected number of endpoints ofM that can still be matched
(simultaneously) in the violation graph of fT .

We use the following standard notions of lines and slices in D, with respect to the first dimension. Refer
to Fig. 1 and Fig. 2 for visual examples in two dimensions. In these examples the rows represent the lines
while the columns represent the slices. Below, for x ∈ D, the vector x−1 is used to denote (x2, x3, . . . , xd).

• (Lines in D) L :=
{
`z : z ∈

∏d
i=2[ni]

}
where `z := {x ∈ D : x−1 = z}.

• (Slices in D) S := {Si : i ∈ [n]} where Si := {x ∈ D : x1 = i}.

We partition M into a collection of “local” matchings for each line:

• (Line Decomposition of M) For each ` ∈ L: M (`) := {(x, y) ∈M : x ∈ `}.

We find a large matching in the violation graph of fT by doing a line-by-line analysis. In particular, for
each line ` ∈ L, we define the following matching M (`)

T in the violation graph of fT .

• (The matching M (`)
T) For each ` ∈ L, consider the collection of all maximum cardinality violation

matchings w.r.t. fT on the set of vertices that (a) are matched by M (`), and (b) lie in some slice Si
where i ∈ T . We let M (`)

T denote any such fixed matching.

5

We stress that M (`)
T is not a subset of M (`), but the endpoints of the pairs in M

(`)
T are a subset of

the endpoints of the pairs in M (`). Thus, by the above definition, the union MT := ∪`∈LM
(`)
T is a valid

matching in the violation graph of fT since M (`) and M (`′) have disjoint endpoints for all ` 6= `′ ∈ L. We
will lower bound the size of this matching, |MT |, by giving a lower bound on |M (`)

T | for each line `.
Fix some ` ∈ L. By definition, the lower-endpoints of M (`) all lie on `, and thus are all comparable. Let

M (`) = {(x1, y1), . . . , (xm, ym)} where x1 ≺ · · · ≺ xm and observe that, for any j ∈ [m], x1, . . . , xj ≺
yj , . . . , ym. Since the function is Boolean, every x ∈ {x1, . . . , xj} forms a violation to monotonicity with
every y ∈ {yj , . . . , ym}, and therefore these vertices can be matched in M (`)

T , if their 1-coordinates are
sampled by T .

Since all the xi’s lie on the same line `, their 1-coordinates are distinct. Suppose that the 1-coordinates
of all the yi’s were also distinct and distinct from those of the xi’s too. Under this assumption we can
proceed with our analysis as if all the xi’s and yi’s lie on `, and the analysis becomes identical to the one-
dimensional case. We could thus apply Theorem 3.1 of [BRY14a] to each ` ∈ L to prove Lemma 2.1.
However, the assumption that the yi’s have distinct 1-coordinates is far from the truth. As we explain below,
there are examples where all the yi’s have the same 1-coordinate, thereby lying in the same slice Sa (for
some a ∈ [n]). In this case, with probability (1 − k/n) we would have the size of M (`)

T be 0 (if a /∈ T),

implying that ET
[
|M (`)

T |
]

could be as small as (k/n)2 · |M (`)|. Thus, if there existed a function f such
that a “collision of y’s 1-coordinates” could not be avoided for a large number of lines, then this would
preclude such a line-by-line approach to proving Lemma 2.1. Unfortunately, there are examples of violation
matchings where this happens. Consider Example 1, and the left part of Fig. 2, shown at the end of this
section. For the lowest line, all the corresponding y’s in M (`) have the same 1-coordinate.

Our main insight is that for any f , there always exists a violation matching M where the problem above
does not arise too often. This motivates the key definition of stacks; the stacks are what determine the
“shape” of a matching. Formally, for any ` ∈ L and S ∈ S, the (`, S)-stack is the set of pairs (x, y) ∈ M ,
where x ∈ ` and y ∈ S.

• (Stacks) M (`,S) := {(x, y) ∈M (`) : y ∈ S} = {(x, y) ∈M : x ∈ `, y ∈ S}.

We call |M (`,S)| the “size of the stack (`, S)”. To summarize the above discussion, small stacks are good
news while big stacks are bad news. This is formalized in Lemma 2.3.

If there is a maximum cardinality matching M in the violation graph of f such that all stacks have size
at most 1, then the one-dimensional domain reduction can be directly applied. Unfortunately, this is not
possible. We give an example in Fig. 1 of a function where stacks of size at least 2 are unavoidable3. One
reason for this difficulty may be that there can be various maximum cardinality matchings in the violation
graph that have vastly different stack sizes (shapes); again consider Example 1. Nevertheless, we prove that
there is a matching M such that for every positive integer λ, the total number of pairs belonging to stacks of
size at least λ is at most |D|/poly(λ).

Lemma 2.2 (Stack Bound). There exists a maximum cardinality matching M in the violation graph of f
such that for every λ ∈ Z+, M satisfies

∑
(`,S):|M(`,S)|≥λ |M (`,S)| ≤ 5√

λ
· |D|.

The main creativity to prove this lemma lies in the choice of M . Given a matching, we define the
vector Λ(M) that enumerates all the stack sizes in non-decreasing order. We show that the maximum

3Interestingly, we don’t know of a function where stacks of size strictly larger than 2 can’t be avoided. In fact, we can prove that
for the grid (the d = 2 case) one can always find a maximum cardinality violation matching M where |M (`,S)| ≤ 3 for all (`, S).
The proof is cumbersome and so we exclude it since it is not relevant to our main result.

6

Figure 1: An example of a function f : [n] × [n − 1] → {0, 1} where stacks of size ≥ 2 are unavoidable.
Black (white, resp.) circles represent vertices where f = 1 (f = 0, resp.). First observe that there exists
a perfect violation matching as follows: perfectly match the two blocks of size (n − 1)(n/2 − 1) and then
perfectly match the bottom line of 1’s to the right-most slice of 0’s. Thus, any maximum cardinality violation
matching, M , will match all of the (n − 1) 0’s in the right-most slice. There are only n/2 lines containing
1’s and so by the pigeonhole principle M contains at least n/2− 1 pairs belonging to stacks of size ≥ 2.

cardinality matching M with the lexicographically largest Λ(M) serves our purpose. That is, we choose M
that maximizes the minimum stack size, and then subject to this maximizes the second minimum, and so on.
It may seem counter-intuitive that we want a matching with small stack sizes, and yet our potential function
maximize the minimum. The intuitive explanation is that the sum of the stack sizes is |M |, which is fixed,
and so in a sense maximizing the minimum also balances out the Λ(M) vector. The proof uses a matching
rewiring argument to show that any large stack must be “adjacent” to many moderate size stacks. If two
stacks are appropriately “aligned”, one could change the matching to move points from one stack to the
other. Large stacks cannot be aligned with small stacks, since one could rewire the matching to increase the
potential. But since the function is Boolean one can show that there are many opportunities for rewiring the
violation matching. Thus, there isn’t enough “room” for many large stacks. We then apply some technical
charging arguments to bound the total number of points in large stacks. The full proof is given in §4.

With the stack bound in hand, we need to generalize the one-dimensional argument of BRY (Theorem
3.1 [BRY14a]) to account for bounded stack sizes. Then, we bound |M (`)

T | for all `, and get the final lower
bound on the distance εfT .

Lemma 2.3 (Line Sampling). Suppose that M is a matching in the violation graph of f , such that for some
λ ∈ Z+, |M (`,S)| ≤ λ for all ` ∈ L and S ∈ S. Then, for any ` ∈ L,

ET

[
|M (`)

T |
]
≥ k

n
· |M (`)| − 3λ

√
k ln k.

The proof is a fairly straightforward generalization of the arguments in [BRY14a] for the λ = 1 case.
The idea is to control the size of the maximum cardinality matching M (`)

T by analyzing the discrepancy of a
random subsequence of a sequence of 1s and 0s. For the sake of simplicity, we give a proof that achieves a
weaker dependence on εf than in [BRY14a]. Our proof of Lemma 2.3 is given in §5. We note that BRY give
a stronger lower bound (without the

√
ln k) and also bound the variance for the λ = 1 case. A more careful

generalization of BRY which removes the
√

ln k would yield an improved loss of C/k1/6 instead of C/k1/7

in Lemma 2.1, but we prefer to give the simpler C/k1/7 exposition for the purpose of ease of reading.

7

Example 1 (A Two Dimensional Example). Consider the anti-majority function on two dimensions. More
precisely, let f : [n]2 → {0, 1} be defined as f(x, y) = 1 if x + y ≤ n, and f(x, y) = 0 otherwise. We
describe two maximum cardinality matchings with vastly different stack sizes. The first matchingRmatches
a point (x, y) with x+ y ≤ n to the point (n− y+ 1, n−x+ 1). For an illustration, see the left matching in
Fig. 2 for the case n = 5. Observe that whenever x+ y ≤ n, we have (n− y + 1) + (n− x+ 1) > n. The
second matching B matches a point (x, y) with x+ y ≤ n to the point (x+ y, n− x+ 1). Again, observe
that (x+ y) + (n− x+ 1) > n. For an illustration, see the right blue matching in Fig. 2 for the case n = 5.
Note that the stack sizes for the matching R are large; in particular, they are n− 1, n− 2, . . . , 2, 1 for n− 1
stacks and 0 for the rest. On the other hand, any stack in B is of size ≤ 1.

Figure 2: Accompanying illustration for Example 1 showing two different maximum cardinality violation
matchings for the anti-majority function f : [5]2 → {0, 1} which have very different stack sizes. Black
(white, resp.) circles represent vertices where f = 1 (f = 0, resp.) and connecting lines represent pairs of
the matching. Observe that for the left matching, the bottom line and the right-most slice form a stack of
size 4 while the right matching has stack sizes all ≤ 1.

3 Domain Reduction: Proof of Lemma 2.1

In this section, we use Lemma 2.2 and Lemma 2.3 to prove Lemma 2.1. Recall that D := [n]×
(∏d

i=2[ni]
)

andDT := T ×
(∏d

i=2[ni]
)

denote the original and reduced domains, respectively. Note that |DT | = k
n |D|.

Let M be the matching given by Lemma 2.2 and consider λ =
⌈
25k2/7

⌉
. Clearly, λ ∈ [25k2/7, 26k2/7].

Thus, by Lemma 2.2, we have
∣∣∣⋃(`,S):|M(`,S)|≥26k2/7 M

(`,S)
∣∣∣ ≤ 5√

25k2/7
· |D| = |D|

k1/7
. Let

M̂ := M \

 ⋃
(`,S):|M(`,S)|≥26k2/7

M (`,S)


denote the set of pairs in M which do not belong to stacks larger than 26k2/7; we therefore have

∑
`∈L
|M̂ (`)| = |M̂ | ≥ |M | − |D|

k1/7
. (1)

8

In this proof, our goal is to construct a matching MT in the violation graph of fT whose cardinality is
sufficiently large. We measure ET [|MT |] by summing over all lines in L and applying Lemma 2.3 to each.
Notice that M̂ is a matching in the violation graph of f which satisfies |M̂ (`,S)| ≤ 26k2/7 for all ` ∈ L and
S ∈ S. Thus by Lemma 2.3, for every ` ∈ L,

ET

[
|M (`)

T |
]
≥ k

n
· |M̂ (`)| − 3 · (26k2/7) ·

√
k ln k ≥ k

n
· |M̂ (`)| − 78k5/6 (2)

where we have used
√

ln k < k1/3−2/7. Now, using (1) and (2), we can calculate ET [|MT |]. We use the fact
that {M̂ (`)}`∈L is a partition of M̂ , apply linearity of expectation and use Lemma 2.3 to measure ET [|M (`)

T |]
for each `. Also note that the number of lines is |L| = |D|/n.

ET [|MT |] = ET

[∑
`∈L
|M (`)

T |

]
=
∑
`∈L

ET

[
|M (`)

T |
]
≥
∑
`∈L

(
k

n
· |M̂ (`)| − 78k5/6

)
(by (2))

=

(
k

n
·
∑
`∈L
|M̂ (`)|

)
−
(

78k5/6 · |D|
n

)
≥ k

n
·
(
|M | − |D|

k1/7

)
−
(

78k5/6 · |D|
n

)
(by (1))

=
k

n
·
(
|M | − |D|

k1/7
− 78|D|

k1/6

)
≥ k

n
·
(
|M | − C · |D|

k1/7

)
(3)

for a constant C > 0, since 1
k1/7

dominates 1
k1/6

. (3) gives the expected cardinality of our matching after
sampling. To recover the distance to monotonicity we simply normalize by the size of the domain. Dividing
by |DT | = k

n |D|, we get ET [εfT] ≥ |M ||D| −
C
k1/7

= εf − C
k1/7

. This completes the proof of Lemma 2.1. �

4 Stack Bound: Proof of Lemma 2.2

We are given a Boolean function f : D → {0, 1} where D = [n] ×
(∏d

i=2[ni]
)

is a rectangular hypergrid

for some n, n2, . . . , nd ∈ Z+. Lemma 2.2 asserts there is a maximum cardinality matching M such that∑
(`,S):|M(`,S)|≥λ |M (`,S)| ≤ 5√

λ
· |D| for all λ ∈ Z+.

Given a matching M , we consider the vector (or technically, the list) Λ(M) indexed by stacks (`, S)
with Λ`,S := |M (`,S)|, and list these in non-decreasing order. Consider the maximum cardinality matching
M in the violation graph of f which has the lexicographically largest Λ(M). That is, the minimum entry of
Λ(M) is maximized, and subject to that the second-minimum is maximized and so on. We fix this matching
M and claim that it satisfies

∑
(`,S):|M(`,S)|≥λ |M (`,S)| ≤ 5√

λ
· |D| for all λ ∈ Z+. Note that the inequality

is trivial for λ ≤ 100, since M itself is of size at most εf |D| ≤ 1
2 |D|. Thus, in what follows we prove that

the inequality is true for an arbitrary, fixed λ > 100. We first introduce the following notation.

• (Low Stacks) L := {(`, S) ∈ L × S : |M (`,S)| ≤ λ− 2}.
• (High Stacks) H := {(`, S) ∈ L × S : |M (`,S)| ≥ λ}.

Let V (H) denote the set of vertices matched by
⋃

(`,S)∈HM
(`,S). LetB (for blue) be the set of points in

V (H) with function value 0, and R (for red) be the set of points in V (H) with function value 1. M induces
a perfect matching between B and R, and we wish to prove |B| = |R| ≤ 5√

λ
· |D|. Indeed, define δ to be

such that |B| = δ|D|. In the remainder of the proof, we will show that δ ≤ 5√
λ

.

We make a simple observation that for any fixed line `, there cannot be too many non-low stacks (`, S).

9

Claim 4.1. For any line `, the number of non-low stacks ` participates in is at most n
λ−1 .

Proof. Fix any line ` and consider the set
⋃
S:(`,S)/∈L

{
x1 : ∃(x, y) ∈M (`,S)

}
. That is, the set of 1-coordinates

that are used by some non-low stack involving `. The size of this set can’t be bigger than the length of `,
which is n. Furthermore, each non-low stack contributes at least λ − 1 unique entries to this set. The
uniqueness follows since the union

⋃
S:(`,S)/∈LM

(`,S) is a matching. �

We show that if the number of blue points |B| is large (> 5|D|/
√
λ), then we will find a line participating

in more than n/(λ − 1) non-low stacks. To do so, we need to “find” these non-low stacks. We need some
more notation to proceed. For a vertex z, we let `z (Sz , resp.) denote the unique line (slice, resp.) containing
z. For each blue point y ∈ B, we define the following interval

Iy := {z ∈ `y : z1 ∈ [x1, y1]} ⊆ `y where (x, y) ∈M .

Note that Iy is the interval of `y whose endpoints are given by the projection of (x, y) onto `y. Armed
with this notation, we can find our non-low stacks. Our next claim, which is the heart of the proof and
uses the potential function, shows that for every high stack (`, S), we get a bunch of other “non-low” stacks
participating with the line `. Refer to Fig. 3 for an accompanying illustration of the proof.

Claim 4.2. Given y ∈ B, let x := M−1(y) and suppose (`, S) ∈ H is such that (x, y) ∈M (`,S) (note that
this stack, (`, S), exists by definition of B). Then, for any z ∈ Iy ∩B, (`, Sz) /∈ L.

Proof. The claim is obviously true if z = y, since this implies Sz = S (since y ∈ S) and (`, S) ∈ H by
assumption. Therefore, we may assume z 6= y, and we also assume, for contradiction’s sake, (`, Sz) ∈ L.
Note that x ∈ ` and by definition of Iy, we get x ≺ z ≺ y.

Since z ∈ B, it is matched to some w ∈ R. Note w ≺ z ≺ y. Furthermore, the stack (`w, Sz) ∈ H (by
definition of B). Thus, note that if `w = ` (i.e., w ∈ `), then we’re done and so in what follows we assume
`w 6= `. By assumption of the claim, (`, S) ∈ H . In particular, x,w, z, y ∈ V (H). Now consider the new
matching N which deletes (x, y) and (w, z) and adds (x, z) and (w, y). Note that the cardinality remains
the same, i.e. |N | = |M |.

We now show that Λ(N) is lexicographically bigger than Λ(M). To see this, consider the stacks whose
sizes have changed from M to N . There are four of them (since we swap two pairs), namely the stacks
(`, S), (`w, Sz), (`, Sz), and (`w, S). For brevity’s sake, let us denote their sizes in M as λ1, λ2, λ3, and λ4,
respectively. In N , their sizes are λ1 − 1, λ2 − 1, λ3 + 1, and λ4 + 1. Note that λ3 ≤ λ − 2 and both λ1

and λ2 are ≥ λ. In particular, the “new” size of stack (`, Sz) is still smaller than the “new” sizes of stacks
(`, S) and (`w, Sz). That is, the vector Λ(N), even without the increase in λ4, is lexicographically larger
than Λ(M). Since increasing the smallest coordinate (among some coordinates) increases the lexicographic
order, we get a contradiction to the lexicographic maximality of Λ(M). �

The rest of the proof is a (slightly technical) averaging argument to prove that |B| is small. We introduce
some more notation to carry this through. For a blue point y ∈ B, let βy :=

|Iy∩B|
|Iy | denote the fraction of

blue points in Iy. For α ∈ (0, 1), we say that y ∈ B is α-rich if βy ≥ α. A point x ∈ R is α-rich if its
blue partner y ∈ B (i.e. (x, y) ∈M) is α-rich. We also call the pair (x, y) an α-rich pair. For what follows,
recall that δ ∈ (0, 1) is defined such that |B| = δ|D|.

Claim 4.3. At least δ|D|/2 of the points in B are δ/4-rich.

10

Figure 3: Accompanying illustration for the proof of Claim 4.2. The black connecting arrows represent the
matching, M , while the dashed green arrows represent the new matching, N . The bold orange segment of
`y is the interval Iy.

Proof. Let B(poor) ⊆ B be the points with βy < δ/4. We show |B(poor)| ≤ δ|D|/2 which proves the claim.
To see this, first observeB(poor) ⊆

⋃
y∈B(poor) (Iy ∩B). Now consider the minimal subsetB(poor)

min ⊆ B(poor)

such that
⋃
y∈B(poor)

min

Iy =
⋃
y∈B(poor) Iy. That is, given a collection of intervals, we are picking the minimal

subset covering the same points. Since these are intervals, we get that no point is contained in more than
two intervals Iy among y ∈ B(poor)

min . In particular, this implies

∑
y∈B(poor)

min

|Iy| ≤ 2 ·

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

Iy

∣∣∣∣∣∣∣ . (4)

Therefore,

∣∣∣B(poor)
∣∣∣ ≤

∣∣∣∣∣∣
⋃

y∈B(poor)

(Iy ∩B)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

(Iy ∩B)

∣∣∣∣∣∣∣ ≤
∑

y∈B(poor)
min

|Iy ∩B|

<
δ

4

∑
y∈B(poor)

min

|Iy| ≤
δ

2
·

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

Iy

∣∣∣∣∣∣∣ ≤
δ

2
· |D|.

The first equality follows from the definition of B(poor)
min (taking intersection with B), and the third (strict)

inequality follows from the fact that none of these points are δ/4-rich. The fourth inequality is (4). This
completes the proof. �

A corollary of Claim 4.3 is that there are at least δ|D|/2 red points which are δ/4-rich. In particular, there
must exist some line ` that contains≥ δn/2 red points in it which are δ/4-rich. Let this line be ` and letR` ⊆

11

` be the set of rich red points. LetB` be their partners inM . Let S` =
{
S ∈ S : ∃z ∈ S ∩

(
∪y∈B`Iy ∩B

)}
denote the set of slices containing blue points from the collection of rich intervals, {Iy : y ∈ B`}. By
Claim 4.2, we know that all these stacks are non-low, that is, (`, S) /∈ L for all S ∈ S`. We now lower
bound the cardinality of this set.

Consider the set of blue points in our union of rich intervals fromB`,
⋃
y∈B` Iy∩B. There are precisely

n slices in total, and for a vertex z ∈ D, Sz is the slice indexed by the 1-coordinate of z. Thus, we have
|S`| = |{z1 : z ∈

⋃
y∈B` Iy ∩ B}|. That is, |S`| is exactly the number of unique 1-coordinates among

vertices in
⋃
y∈B` Iy ∩B.

Since we care about the number of unique 1-coordinates, we consider the “projections” of our sets of
interest onto dimension 1. For a set X ⊆ D, let proj1(X) := {x1 : x ∈ X} be the set of 1-coordinates used
by points in X . In particular, note that for y ∈ B, proj1(Iy) := [x1, y1] ⊂ [n], where x := M−1(y) and

observe that |S`| =
∣∣∣⋃y∈B` proj1(Iy ∩B)

∣∣∣. Now, given that each interval from {Iy}y∈B` is a δ
4 -fraction

blue, the following claim says that at least a δ
8 -fraction of the union of intervals consists of blue points with

unique 1-coordinates.

Claim 4.4.
∣∣∣⋃y∈B` proj1(Iy ∩B)

∣∣∣ ≥ δ
8

∣∣∣⋃y∈B` proj1(Iy)
∣∣∣.

Proof. As in the proof of Claim 4.2, let B`
min ⊆ B` be a minimal cardinality subset of B` such that⋃

y∈B`
min

proj1(Iy) =
⋃
y∈B` proj1(Iy). For any y ∈ B, y belongs to at most two intervals from B`

min.

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy ∩B)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

y∈B`
min

proj1(Iy ∩B)

∣∣∣∣∣∣ ≥ 1

2

∑
y∈B`

min

|proj1(Iy ∩B)|

≥ δ

8

∑
y∈B`

min

|proj1(Iy)| ≥
δ

8

∣∣∣∣∣∣
⋃

y∈B`
min

proj1(Iy)

∣∣∣∣∣∣ =
δ

8

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy)

∣∣∣∣∣∣ . �

Now importantly, |proj1(R`)| = |R`| ≥ δ
2 · n since the 1-coordinates of elements of R` are distinct

(since R` is contained on a single line). Moreover, by definition of Iy, proj1(R`) ⊆
⋃
y∈B` proj1(Iy) and

so
∣∣∣⋃y∈B` proj1(Iy)

∣∣∣ ≥ |proj1(R`)| ≥ δ
2 · n. Finally, combining this with Claim 4.4, we get

|S`| =

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy ∩B)

∣∣∣∣∣∣ ≥ δ

8

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy)

∣∣∣∣∣∣ ≥ δ2

16
· n.

Therefore, ` participates in at least δ2

16 · n non-low stacks. Thus, by Claim 4.1, δ2

16 · n ≤
n
λ−1 and so

δ ≤ 4√
λ−1

. Since λ > 100, we conclude that δ ≤ 5√
λ

. This concludes the proof of Lemma 2.2. �

5 Line Sampling: Proof of Lemma 2.3

We recall the lemma for ease of reading. Given a line ` ∈ L, we have definedM (`) := {(x, y) ∈M : x ∈ `}.
Given a stack S, we have defined M (`,S) := {(x, y) ∈ M (`) : y ∈ S}. Given a multi-set T ⊆ [n], recall
M

(`)
T is a maximum cardinality matching of violations (x, y) such that (a) x and y are both matched by

12

M (`), and (b) x1 and y1 both lie in T . Given λ ∈ Z+ such that |M (`,S)| ≤ λ for all ` ∈ L and S ∈ S, the
line sampling lemma (Lemma 2.3) states

ET

[
|M (`)

T |
]
≥ k

n
· |M (`)| − 3λ

√
k ln k. (5)

We note that BRY (Theorem 3.1, [BRY14a]) prove a stronger theorem for the λ = 1 case (that gets an
additive error of Θ(

√
k)). Our proof follows a similar approach.

Consider an arbitrary, fixed line ` ∈ L. We use the matching M (`) to induce weights w+(i), w−(i) on
[n] as follows. Initially w+(i), w−(i) = 0 for all i ∈ [n]. For each (x, y) ∈M (`) if x ∈ Si then we increase
w+(i) by 1, and if y ∈ Sj then we increase w−(j) by 1.

Claim 5.1. We make a few observations.

1. For any i ∈ [n], w+(i) ≤ 1.
2. For any i ∈ [n], w−(i) ≤ λ.
3. For any t ∈ [n],

∑
s≤t(w

−(s)− w+(s)) ≤ 0.

Proof. The first observation follows since the lower endpoints of M (`) all lie on `, and thus have distinct 1-
coordinates. The second observation follows from the assumption that |M (`,S)| ≤ λ for all (`, S) ∈ L × S.
The third observation follows by noting that whenever w−(j) is increased for some j, we also increase
w+(i) for some i < j. �

Define V + := {i : w+(i) > 0} and V − := {j : w−(j) > 0}. Given a multiset T ⊆ [n], denote
V +
T := V + ∩ T and V −T := V − ∩ T . Also, define the bipartite graph GT := (V +

T , V
−
T , ET) where

(i, j) ∈ ET iff i ≤ j. A w-matching A in GT is a subset of edges of ET such that every vertex i ∈ V +
T has

at most w+(i) edges of A incident on it, and every vertex j ∈ V −T has at most w−(j) edges of A incident
on it. Let ν(GT) denote the size of the largest w-matching in GT .

Lemma 5.2. For any multiset T ⊆ [n] and any w-matching A ⊆ ET in GT , we have |M (`)
T | ≥ |A|. In

particular, ET
[
|M (`)

T |
]
≥ ET [ν(GT)].

Proof. Consider any w-matching A ⊆ ET . For any vertex i ∈ V +
T , there are at most w+(i) edges in A

incident on it. Each increase of w+(i) is due to an edge (x, y) ∈ M (`) where x1 = i. Thus, we can charge
each of these edges of A (arbitrarily, but uniquely) to w+(i) different x ∈ `. Similarly, for any vertex
j ∈ V −T , there are at most w−(j) edges in A incident on it. Each increase of w−(j) is due to an edge
(x, y) ∈ M (`) with y1 = j. Thus, we can charge each of these edges of A (arbitrarily, but uniquely) to
w−(j) different y ∈ Sj , the jth slice. Furthermore, any z ∈ ` with z1 ≤ j satisfies z ≺ y. To summarize,
each (i, j) ∈ A can be uniquely charged to an x ∈ ` with x1 = i and y ∈ Sj such that (a) (x, y) forms a
violation, (b) x, y were matched in M (`), and (c) x1, y1 ∈ T . Therefore, |M (`)

T | ≥ |A| since the LHS is the
maximum cardinality matching. �

Lemma 5.3. For any T ⊆ [n], we have

ν(GT) =
∑
j∈T

w−(j)−max
t∈T

∑
s∈T :s≤t

(
w−(s)− w+(s)

)
.

13

Proof. By Hall’s theorem, the maximum w-matching in GT is given by the total weight on the V −T side,

that is,
∑

j∈T w
−(j), minus the total deficit δ(T) := maxS⊆V −T

(∑
s∈S w

−(s)−
∑

s∈ΓT (S)w
+(s)

)
where

for S ⊆ V −T , ΓT (S) ⊆ V +
T is the neighborhood of S in GT . Consider such a maximizer S, and let t be the

largest index present in S. Then note that
∑

s∈ΓT (S)w
+(s) is precisely

∑
s∈T :s≤tw

+(s). Furthermore note
that adding any s ≤ t from V −T won’t increase |ΓT (S)|. Thus, given that the largest index present in S is t,
we get that δ(T) is precisely the summation in the second term of the RHS. δ(T) is maximized by choosing
the t which maximizes the summation. �

Next, we bound the expectation of the RHS in Lemma 5.3. Recall that T := {s1, . . . , sk} is a multiset
where each si is u.a.r. picked from [n]. For the first term, we have

ET

∑
j∈T

w−(j)

 =

k∑
i=1

n∑
j=1

Pr[si = j] · w−(j) =
k

n
·
n∑
j=1

w−(j) =
k

n
· |M (`)|. (6)

The second-last equality follows since si is u.a.r. in [n] and the last equality follows since
∑

j w
−(j)

increases by exactly one for each edge in M (`). Next we upper bound the expectation of the second term.
For a fixed t, define

Zt :=
∑

s∈T :s≤t
(w−(s)− w+(s)) =

k∑
i=1

Xi,t where Xi,t =

{
w−(si)− w+(si) if si ≤ t
0 otherwise

.

Note that the Xi,t’s are i.i.d. random variables with Xi,t ∈ [−1, λ] with probability 1. Thus, applying
Hoeffding’s inequality we get

Pr [Zt > E[Zt] + a] ≤ 2 exp

(
−a2

2kλ2

)
. (7)

Now we use Claim 5.1, part (3) to deduce that

E[Zt] =
k∑
i=1

E[Xi,t] =
k∑
i=1

∑
s≤t

(w−(s)− w+(s)) ·Pr[si = s] ≤ 0

since Pr[si = s] = 1/n. Therefore, the RHS of (7) is an upper-bound on Pr[Zt ≥ a]. In particular,
invoking a := 2λ

√
k ln k and applying a union bound, we get

Pr

[
max
t∈T

Zt > 2λ
√
k ln k

]
= Pr

[
∃t ∈ T : Zt > 2λ

√
k ln k

]
≤ k · e−2 ln k = 1/k

and since maxt∈T Zt is trivially upper-bounded by λk, this implies that

ET

max
t∈T

∑
s∈T :s≤t

(
w−(s)− w+(s)

) ≤ λk ·Pr

[
max
t∈T

Zt > a

]
+ a ≤ λ+ a ≤ 3λ

√
k ln k. (8)

Lemma 2.3 follows from Lemma 5.2, Lemma 5.3, (6), and (8).

14

6 The Continuous Domain

We start with measure theory preliminaries. We refer the reader to Nelson [Nel15] and Stein-Shakarchi [SS05]
for more background. Given two reals a < b, we use (a, b) to denote the open interval, and [a, b] to de-
note the closed interval. Given d closed intervals [ai, bi] for 1 ≤ i ≤ d, we call their Cartesian product∏
i∈[d][ai, bi] a box. Two intervals/boxes are almost disjoint if their interiors are disjoint (they can intersect

only at their boundary). An almost partition of a set S is a collection P of sets that are pairwise almost
disjoint and

⋃
P∈P P = S. A set U is open if for each point x ∈ U , there exists an ε > 0 such that the

sphere centered at x of radius ε is contained in U .
We let µ =

∏
i∈[d] µi be an arbitrary product measure over Rd. That is, each µi is described by a non-

negative Lebesgue integrable function over R, whose total integral is 1 (this is the pdf). Abusing notation,
we use µi([ai, bi]) = Prx∼µi [ai ≤ x ≤ bi] to denote the integral of µi over this interval. Indeed, this
is the probability measure of the interval. The volume of a box B =

∏
i∈[d][ai, bi] is denoted µ(B) =∏

i∈[d] µi([ai, bi]) = Prx∼µ[x ∈ B].
We use the definition of measurability of Chapter 1.1.3 of [SS05]. Technically, this is given with respect

to the standard notion of volume in Rd. Chapter 6, Lemma 1.4 and Chapter 6.3.1 show that the definition is
valid for the notion of volume with respect to µ, as we’ve defined above. The exterior measure µ∗ of any set
E is the infimum of the sum of volumes of a collection of closed boxes that contain E.

Definition 6.1. Given a product measure µ =
∏
i µi over Rd, we say E ⊆ Rd is Lebesgue-measurable with

respect to µ if for any ε > 0, there exists an open set U ⊇ E such that µ∗(U \ E) < ε. If this holds, then
the µ-measure of E is defined as µ(E) := µ∗(E).

Given a function f : Rd → {0, 1}, we will often slightly abuse notation by letting f denote the set it
indicates, i.e. the set in Rd where f evaluates to 1. We say that f is a measurable function w.r.t. µ if this set
is measurable w.r.t. µ. Similarly, we use f to denote the set where f evaluates to 0.

We are now ready to define the notion of distance between two functions. In §6.3, we prove that all
monotone Boolean functions are measurable (Theorem 6.7) with respect to µ. Also, measurability is closed
under basic set operations and thus the following notion of distance to monotonicity is well-defined.

Definition 6.2 (Distance to Monotonicity). Fix a product measure µ on Rd. We define the distance between
two measurable functions f, g : Rd → {0, 1} with respect to µ, as

distµ(f, g) := µ
({
z ∈ Rd : f(z) 6= g(z)

})
= µ (f∆g) . (9)

The distance to monotonicity of f w.r.t. µ is defined as

εf,µ := inf
g∈M

distµ(f, g) = inf
g∈M

µ (f∆g) (10)

whereM denotes the set of monotone Boolean functions over Rd.

We are now equipped to state the formal version of Theorem 1.2, for testing Boolean functions over Rd.

Theorem 6.3. Let µ =
∏d
i=1 µi be a product measure for which we have the ability to take independent

samples from each µi. There is a randomized algorithm which, given a parameter ε > 0 and a measurable
function f : Rd → {0, 1} that can be queried at any x ∈ Rd, makes Õ(d5/6ε−4/3) non-adaptive queries to
f , and (a) always accepts if f is monotone, and (b) rejects with probability > 2/3 if εf,µ > ε.

We give a formal proof of Theorem 6.3 in §7. The proof requires some tools to discretize measurable
sets, which we provide in the next two sections.

15

6.1 Approximating measurable sets by grids

We first start with a lemma about probability measures over R.

Lemma 6.4. Given any probability measure µ over R, and anyN ∈ N, there exists an almost partition of R
into N intervals IN = {I1, . . . , IN} of equal µ-measure. That is, for each j ∈ [N], Prx∼µ[x ∈ Ij] = 1

N .
Furthermore, for any k ∈ N, IkN is a refinement of IN .

Proof. µ is a probability measure, and thus is described by a non-negative Lebesgue-integrable function (it’s
pdf). Chapter 2, Prop 1.12 (ii) of [SS05] states that the Lebesgue integral is continuous and thus it’s CDF,
F (t) := µ({x ∈ R : x ≤ t}), is continuous. Moreover F is non-decreasing with range [0, 1]. Therefore, for
every θ ∈ (0, 1) there is at least one t with F (t) = θ. Thus, let’s define F−1(θ) to be the supremum over
all t satisfying F (t) = θ. Let F−1(0) = −∞ and F−1(1) = +∞. The lemma is proved by the intervals
Ij = [F−1((j − 1)/N), F−1(j/N)] for j ∈ {1, . . . , N}. The refinement is evident by the fact that any
interval in IN can be expressed as an almost partition of intervals from IkN (for k ∈ N). �

Thus, given a product distribution µ =
∏d
i=1 µi and any N ∈ N, we can apply the above lemma to each

of the d coordinates to obtain the set of Nd intervals
{
I(i)
j : i ∈ [d] : j ∈ [N]

}
for which µi

(
I(i)
j

)
= 1/N

for every i ∈ [d], j ∈ [N]. We define

GN :=

{
d∏
i=1

I(i)
zi : z ∈ [N]d

}
and observe that (a) GN is an almost partition of Rd and (b) GkN is a refinement of GN for any k ∈ N.
(Since d is fixed, we will not carry the dependence on d.) We informally refer to GN as a grid. Since GN

is an almost partition, we can define the function boxN : Rd → [N]d as follows. For x ∈ Rd, we define
boxN (x) to be the lexicographically least z ∈ [N]d such that the box

∏d
i=1 I

(i)
zi , of GN , contains x. (Note

that for all but a measure zero set, points in Rd are contained in a unique box of GN .)
In the following lemma, we show that any measurable set can be approximated by a sufficiently fine

grid. In some sense, this is the definition of measurability.

Lemma 6.5. For any measurable set E and any α > 0, there exists N = N(E,α) ∈ N such that there is a
collection B ⊆ GN satisfying µ(E ∆

⋃
B∈BB) ≤ α.

Proof. Chapter 1, Theorem 3.4 (iv) of [SS05] states that for any measurable set E and any ε > 0, there
exists a finite union

⋃m
r=1Br of closed boxes such that µ(E∆

⋃m
r=1Br) ≤ ε. We invoke this theorem with

ε = α/2 to get the collection of boxesB1, . . . , Bm. Note that these boxes may intersect, and might not form
a grid. We build a grid by setting N = d2md/αe and considering GN . The desired collection B ⊆ GN is
the set of boxes in GN contained in

⋃m
r=1Br. Observe that

µ

(
E∆

⋃
B∈B

B

)
≤ µ

(
E∆

m⋃
r=1

Br

)
+ µ

(
m⋃
r=1

Br \
⋃
B∈B

B

)
≤ α/2 +

m∑
r=1

µ

(
Br \

⋃
B∈B

B

)
(11)

by subadditivity of measure. We complete the proof by bounding µ(Br \
⋃
B∈BB) for an arbitrary r ∈ [m].

Let Br :=
∏d
i=1[ai, bi] denote an arbitrary box from {B1, . . . , Bm} and let δi := µi([ai, bi]). Observe

that the interval [ai, bi] contains exactly bδiNc contiguous intervals from the almost partition {I(i)
j : j ∈

16

[N]} of R. Let Ii denote the set of such intervals. Thus, µi([ai, bi] \
⋃
I∈Ii

I) ≤ δi − (1/N) (bδiNc) ≤
δi − (1/N) (δiN − 1) = 1/N . Thus, the total measure of Br we discard is µ(Br \

⋃
B∈BB) ≤

∏
i δi −∏

i(δi − 1/N). This quantity is maximized when the δi’s are maximized; since δi ≤ 1 (each µi is a
probability measure), we get that µ(Br \

⋃
B∈BB) ≤ 1− (1− 1/N)d ≤ d

N .
Finally, plugging this into (11), we get µ(E∆

⋃
B∈BB) ≤ α/2 +m · dN ≤ α, since N ≥ 2md/α. �

We are now ready to prove our main tool, the discretization lemma.

Lemma 6.6 (Discretization Lemma). Given a measurable function f : Rd → {0, 1} and δ > 0, there exists
N := N(f, δ) ∈ N, and a function fdisc : [N]d → {0, 1}, such that Prx∼µ[f(x) 6= fdisc(boxN (x))] ≤ δ.

Proof. By assumption, f and f are measurable sets. By Lemma 6.5, there exists some N1 and a collection
of boxes Z1 ⊆ GN1 such that µ(f∆

⋃
B∈Z1

B) ≤ δ/6. (An analogous statement holds for f , with some
N0 and a collection Z0.) Since Lemma 6.5 also holds for any refinement of the relevant grid, let us set
N = N0N1. Abusing notation, we have two collections Z0,Z1 ⊆ GN such that µ(f∆

⋃
B∈Z1

B) ≤ δ/6

and µ(f∆
⋃
B∈Z0

B) ≤ δ/6.
For convenience, let us treat the boxes in Z0∪Z1 as open, so that all boxes in the collection are disjoint.

Define h : Rd → {0, 1} as follows:

h(x) =


1 if x ∈

⋃
B∈Z1\Z0

B

0 if x ∈
⋃
B∈Z0\Z1

B

0 if x ∈
⋃
B/∈Z0∆Z1

B

.

Since f and f partition Rd, µ(
⋃
B∈Z0∩Z1

B) and µ(
⋃
B/∈Z0∪Z1

B) are both at most µ(f∆
⋃
B∈Z1

B)+

µ(f∆
⋃
B∈Z0

B) ≤ δ/3. Combining these bounds, we have µ(
⋃
B/∈Z0∆Z1

B) ≤ 2δ/3. Thus

distµ(f, h) = Prx∼µ[f(x) 6= h(x)] ≤ µ

 ⋃
B∈Z1\Z0

B ∩ f

+ µ

 ⋃
B∈Z0\Z1

B ∩ f

+ µ

 ⋃
B/∈Z0∆Z1

B


≤ δ/6 + δ/6 + 2δ/3 = δ.

By construction, h is constant in (the interior of) every grid box. Any z ∈ [N]d indexes a (unique) box
in GN (recall the map boxN : Rd → [N]d). Formally, we can define a function fdisc : [N]d → {0, 1} so that
∀x ∈ Rn, fdisc(boxN (x)) = h(x). Thus, Prx∼µ[f(x) 6= fdisc(boxN (x))] = distµ(f, h) ≤ δ. �

6.2 Proof of Theorem 1.4

Proof. Recall that T = T1 × · · · × Td is a randomly chosen hypergrid, where for each i ∈ [d], Ti ⊂ R is
formed by taking k i.i.d. samples from µi. We need to show that

ET [εfT] ≥ εf −
C ′ · d
k1/7

for some universal constant C ′ > 0.
Set δ ≤ k−d · C·d

k1/7
, whereC is the universal constant in Theorem 1.3. Applying Lemma 6.6 to f with this

δ, we know there exists N > 0 and fdisc : [N]d → {0, 1}, such that Prx∼µ[f(x) 6= fdisc(boxN (x))] ≤ δ.

17

Given a random T sampled as described above, define T̂ := {boxN (x) ∈ [N]d : x ∈ T }. Observe that
(a) T̂ is a [k]d sub-hypergrid in [N]d which (b) can be equivalently defined as T̂ = T̂1 × · · · × T̂d where
each T̂i is formed by taking k i.i.d. uniform samples from [N]. This is by construction of the partition
{boxz : z ∈ [N]d} and by definition of boxN (x). Theorem 1.3 and the observations above imply

E
T̂

[
εfdisc

T̂

]
≥ εfdisc −

C · d
k1/7

(12)

where C is some universal constant. Next, we relate εfdisc and εf . Observe that there is a bijection between
T and T̂ (namely, boxN restricted to T). We say fT = fdisc

T̂
if for all x ∈ T , f(x) = fdisc(boxN (x)).

By a union bound over the kd samples,

PrT

[
fT 6= fdisc

T̂

]
= PrT

[
∃x ∈ T : f(x) 6= fdisc(boxN (x))

]
≤ δ · kd ≤ C · d

k1/7
=: δ′

since each x ∈ T has the same distribution as x ∼ µ, and Prx∼µ[f(x) 6= fdisc(boxN (x))] ≤ δ. Thus, we

get ET [εfT] ≥ (1 − δ′)E
T̂

[
εfdisc

T̂

]
− δ′, since in the case fT 6= fdisc

T̂
, the difference in their distance to

monotonicity is at most 1. Substituting in (12), we get

ET [εfT] ≥ (1− δ′) ·
(
εfdisc −

C · d
k1/7

)
− δ′ ≥ εfdisc −

3C · d
k1/7

(13)

by definition of δ′.
Now, let g : [N]d → {0, 1} be any monotone function satisfying d(fdisc, g) = εfdisc . Define the

monotone function f̂(x) = g(boxN (x)) for all x ∈ Rd. Note that εf ≤ dist(f, f̂) ≤ Prx∼µ[f(x) 6=
fdisc(boxN (x))] + dist(fdisc, g) ≤ δ+ εfdisc . This, in turn, implies εfdisc ≥ εf − δ ≥ εf − C·d

k1/7
. Substitut-

ing in (13), we get

ET [εfT] ≥ εf −
4C · d
k1/7

which proves the theorem. �

6.3 Measurability of Monotone Functions

Theorem 6.7. Monotone functions f : Rd → {0, 1} are measurable w.r.t. product measures µ =
∏d
i=1 µi.

Proof. The proof is by induction over the number of dimensions, d. For d = 1, the set f is either [z,∞) or
(z,∞) for some z ∈ R, since f is a monotone function. Any open or closed set is measurable.

Now for the induction. Choose any ε > 0. We will construct an open set O such that µ∗(O \ f) ≤ 8ε.
Consider the first dimension, and the corresponding measure µ1. We use µ−1 for the (d − 1)-dimensional
product measure in the remaining dimensions. (We use µ−1,∗ for the (d−1)-dimensional exterior measure.)
As shown in Lemma 6.4, there is an almost partition of R into N = d1/ε2e closed intervals such that
each interval has µ1-measure at most ε2. Let these intervals be I1, I2, I3, . . . , IN . We will consider the
set of intervals I = {I1 ∪ I2, I2 ∪ I3, . . . , IN−1 ∪ IN} (let us treat these as open intervals). Observe that
∪I∈II = R, and µ1(I) ≤ 2ε2 for all I ∈ I .

For any x ∈ R, let Sx be the subset of f with first coordinate x. We will treat Sx as a subset of
Rd−1 and use {x} × Sx to denote the corresponding subset of Rd. By monotonicity, ∀x < y, Sx ⊆ Sy.
By induction, each set Sx is measurable in Rd−1 and thus there exists an open set Ox ⊆ Rd−1 such that

18

µ−1,∗(Ox \ Sx) ≤ ε. Define the function h : R → [0, 1] such that h(x) is the measure of Sx (in Rd−1).
Crucially, h is monotone because f is monotone.

Call an interval (x, y) jumpy if h(y) > h(x) + ε and let J ⊆ I be the set of jumpy intervals in I . For a
non-jumpy interval I = (x, y) ∈ I \ J , define OI := I × Oy. Note that OI is open and by monotonicity,
OI ⊇

⋃
z∈I({z} × Sz) = {z ∈ f : z1 ∈ I}.

The open set O := (
⋃
J∈J J × Rd−1) ∪ (

⋃
I∈I\J OI) contains (the set) f . It remains to bound

µ∗(O \ f) ≤ µ∗

(⋃
J∈J

J × Rd−1

)
+ µ∗

 ⋃
I∈I\J

OI \ f


≤
∑
J∈J

µ1(J) +
∑
I∈I\J

µ∗(OI \ f) ≤ 2ε2|J |+
∑
I∈I\J

µ∗(OI \ f). (14)

To handle the first term, note that there are at least |J |/2 disjoint intervals in J and each such interval
represents a jump of at least ε in the value of h. Thus, |J |/2 ≤ 1/ε and so |J | ≤ 2/ε.

Now, consider I = (x, y) ∈ I \J . We haveOI = I ×Oy. By monotonicityOI \ f ⊆ OI \ (I ×Sx) =
(I ×Oy) \ (I ×Sx) = I × (Oy \Sx). Since Sy ⊇ Sx, Oy \Sx = (Oy \Sy)∪ (Sy \Sx). By sub-additivity
of exterior measure, µ−1,∗(Oy \ Sx) ≤ µ−1,∗(Oy \ Sy) + µ−1,∗(Sy \ Sx). The former term is at most ε, by
the choice of Oy. Because I is not jumpy, the latter term is h(y)− h(x) ≤ ε. Thus,

∑
I∈I\J

µ∗(OI \ f) ≤
∑
I∈I\J

µ1(I) · (µ−1,∗(Oy \ Sy) + µ−1,∗(Sy \ Sx)) ≤ 2ε
∑
I∈I\J

µ1(I) ≤ 4ε.

All in all, we can upper bound the expression in (14) by 2ε2(2/ε) + 4ε = 8ε. �

7 The Monotonicity Tester

In this section we prove our main monotonicity testing results, Theorem 1.1 and Theorem 1.2 (recall the
formal statement, Theorem 6.3). We use the following theorem of [BCS18] on monotonicity testing for
Boolean functions over [n]d.

Theorem 7.1 (Theorem 1.1 of [BCS18]). There is a randomized algorithm which, given a parameter ε ∈
(0, 1) and a function f : [n]d → {0, 1}, makes O(d5/6 · log3/2 d · (log n + log d)4/3 · ε−4/3) non-adaptive
queries to f and (a) always accepts if f is monotone, and (b) rejects with probability > 2/3 if εf > ε.

We refer to the tester of Theorem 7.1 as the grid-path-tester. Using this result along with our
domain reduction theorems Theorem 1.3 and Theorem 1.4, we design testers for Boolean-valued functions
over [n]d and Rd (refer to Alg. 1). We restrict our attention to the Rd case and prove Theorem 1.2 (that is,
Theorem 6.3); the proof of Theorem 1.1 is analogous (and the corresponding tester is analogous to Alg. 1).
In what follows we let C denote the universal constant from Theorem 1.4 and we define L := dlog(2/ε)e.

Remark 7.2. Our tester (Alg. 1) uses Levin’s work investment strategy (see [Gol17], Section 8.2.4) to
optimize the dependence on ε. We remark that if one only cares about achieving a dependence of poly(1/ε),
then the following simpler tester suffices: invoke Step 4 and Step 5 (with ε` replaced by ε/4) of Alg. 1 16/ε
times. By Markov’s inequality and the fact that ET [εfT] ≥ ε/2, with high probability at least one of the

19

calls to Step 4 will yield a reduced hypergrid T satisfying εfT ≥ ε/4. Step 5 will then reject the restriction
fT , and thus reject f , with high probability. This leads to an ε−7/3 dependence on ε, as opposed to the
ε−4/3 achieved by Alg. 1.

Algorithm 1 Monotonicity Tester for f : Rd → {0, 1}. Inputs: f and ε ∈ (0, 1).

1: for all ` ∈ [L+ 1]:
2: set Q` := d32`2

2`ε
e and ε` := 1/2`.

3: repeat Q` times:
4: Sample T = T1 × · · · × Td as in Theorem 1.4 with k = (2C · dε)7.
5: if grid-path-tester(fT , ε`, k) returns REJECT, then return REJECT.
6: return ACCEPT.

Proof of Theorem 6.3: In Step 4 of Alg. 1 we set k := (2C · dε)7 and sample a hypergrid T =
∏d
i=1 Ti,

where each Ti is formed by k i.i.d. draws from µi. By Theorem 1.4, ET [εfT] ≥ εf − C·d
k1/7

. Thus, if εf > ε,

then ET [εfT] ≥ ε/2. By Claim 7.3 there exists `∗ ∈ [L+ 1] such that PrT [εfT ≥ ε`∗] ≥ 2`
∗
ε

8(`∗)2 ≥ 4/Q`∗ .
Thus when ` is set to `∗ in Alg. 1 at least one of the Q`∗ iterations of Step 4 returns T satisfying εfT ≥ ε`∗
with probability ≥ 1 − (1 − 4/Q`∗)

Q`∗ ≥ 1 − (1/e)4 ≥ 15/16. Thus, if εf > ε, then Alg. 1 rejects with
probability > 15

16 ·
2
3 = 5/8. On the other hand, if f is monotone, then fT is always monotone and so Alg. 1

accepts with probability 1.
We now analyze the query complexity. Let q(ε, n, d) denote the query complexity of grid-path-tester with

parameters ε, n and d. In particular, q(ε, k, d) ≤ Õ(d5/6ε−4/3). Thus, the query complexity of Alg. 1 is

L+1∑
`=1

Q` · q(ε`, k, d) =

L+1∑
`=1

⌈
32`2

2`ε

⌉
· Õ

(
d5/6

2−4`/3

)
= Õ

(
d5/6ε−1

) L+1∑
`=1

`2 · Õ
(

2`/3
)

≤ Õ
(
d5/6ε−1

)
L3Õ

(
2L/3

)
≤ Õ

(
d5/6ε−4/3

)
where in the last step we used the fact that L = Θ(log(1/ε)). �

Claim 7.3. If ET [εfT] ≥ ε/2, then there exists `∗ ∈ [L+ 1] such that Pr
[
εfT ≥ 2−`

∗] ≥ 2`
∗
ε

8(`∗)2 .

Proof. We have
∫ 1

0 Pr [εfT ≥ t] dt = E[εfT] ≥ ε/2 and so
∫ 1
ε/4 Pr [εfT ≥ t] dt ≥ ε/4. Thus,

ε

4
≤
∫ 1

ε/4
Pr [εfT ≥ t] ≤

L∑
`=0

∫ 1/2`

1/2`+1

Pr [εfT ≥ t] dt ≤
L∑
`=0

1

2`+1
Pr
[
εfT ≥ 1/2`+1

]
=

L+1∑
`=1

1

2`
Pr
[
εfT ≥ 1/2`

]
.

(15)

For the sake of contradiction, assume Pr
[
εfT ≥ 1/2`

]
< 2`ε

8`2
for all ` ∈ [L+ 1]. Using (15), we have

ε ≤ 4

L+1∑
`=1

1

2`
Pr
[
εfT ≥ 1/2`

]
<
ε

2

L+1∑
`=1

1

`2
<
ε

2
· π

2

6
< ε.

This is a contradiction. �

20

8 Lower Bound for Domain Reduction

In this section we prove the following lower bound for the number of uniform samples needed for a domain
reduction result to hold for distance to monotonicity. Recall the domain reduction experiment for the hy-
pergrid: given f : [n]d → {0, 1} and an integer k ∈ Z+, we choose T := T1 × · · · × Td where each Ti is
formed by taking k i.i.d. uniform draws from [n] with replacement. We then consider the restriction fT .

Theorem 8.1 (Lower Bound for Domain Reduction). There exists a function f : [n]d → {0, 1} with distance
to monotonicity εf = Ω(1), for which ET [εfT] ≤ O(k2/d). In particular, k = Ω(

√
d) samples in each

dimension is necessary to preserve distance to monotonicity.

8.1 Proof of Theorem 8.1

We define the function Centrist : [0, 1]d → {0, 1}. The continuous domain is just a matter of convenience;
any n that is a multiple of d would suffice. It is easiest to think of d individuals voting for an outcome, where
the ith vote xi is the “strength” of the vote. Based on their vote, an individual is labeled as follows.

• xi ∈ [0, 1− 2/d]: skeptic
• xi ∈ (1− 2/d, 1− 1/d]: supporter
• xi ∈ (1− 1/d, 1]: fanatic

Centrist(x) = 1 iff there exists some individual who is a supporter. The non-monotonicity is created by
fanaticism. If a unique supporter increases her vote to become a fanatic, the function value can decrease.

Claim 8.2. The distance to monotonicity of Centrist is Ω(1).

Proof. It is convenient to talk in terms of probability over the uniform distribution in [0, 1]d. Define the
following events, for i ∈ [d].

• Si: The ith individual is a supporter, and all others are skeptics.
• Fi: The ith individual is a fanatic, and all others are skeptics.

Observe that all these events are disjoint. Also, Pr[Si] = Pr[Fi] = (1/d)(1 − 2/d)d−1 = Ω(1/d).
Note that ∀x ∈ Si, Centrist(x) = 1 and ∀x ∈ Fi, Centrist(x) = 0.

We construct a violation matching M :
⋃
i Si →

⋃
iFi. For x ∈ Si, M(x) = x+ ei/d, where ei is the

unit vector in dimension i. For x ∈ Si, xi ∈ (1− 2/d, 1− 1/d], so M(x)i ∈ (1− 1/d, 1], and M(x) ∈ Fi.
M is a bijection between Si and Fi, and all the Si,Fi sets are disjoint. Thus, M is a violation matching.
Since Pr [

⋃
i Si] = Ω(d · 1/d), the distance to monotonicity is Ω(1). �

Lemma 8.3. Let k ∈ Z+ be any positive integer. If T := T1 × · · · × Td is a randomly chosen hypergrid,
where for each i ∈ [d], Ti is a set formed by taking k i.i.d. samples from the uniform distribution on [0, 1],
then with probability > 1− 4k2/d, CentristT is a monotone function.

Proof. Each Ti consists of k u.a.r. elements in [0, 1]. We can think of each as a sampling of the ith in-
dividual’s vote. For a fixed i, let us upper bound the probability that Ti contains strictly more than one
non-skeptic vote. This probability is

1− (1− 2/d)k − k(1− 2/d)k−1(2/d) = 1− (1− 2/d)k−1(1− 2/d+ 2k/d)

≤ 1−
(

1− 2(k − 1)

d

)(
1 +

2(k − 1)

d

)
≤ 4k2/d2

21

where we have used the bound (1 − x)r ≥ 1 − xr, for any x ∈ [0, 1] and r ≥ 1. By the union bound
over all dimensions, with probability > 1− 4k2/d, all Ti’s contain at most one non-skeptic vote. Consider
CentristT , some x ∈ T , and a dimension i ∈ [d]. If the ith individual increases her vote (from x), there are
three possibilities.

• The vote does not change. Then the function value does not change.
• The vote goes from a skeptic to a supporter. The function value can possibly increase, but not decrease.
• The vote goes from a skeptic to a fanatic. If CentristT (x) = 1, there must exist some j 6= i that is a

supporter. Thus, the function value remains 1 regardless of i’s vote.

In no case does the function value decrease. Thus, CentristT is monotone. �

Theorem 8.1 follows from Claim 8.2 and Lemma 8.3.

9 Domain Reduction for Variance

In this section, we prove that, given f : [n]d → {0, 1}, restricting f to a random hypercube (domain re-
duction with k = 2) suffices to preserve the variance of f . Recall that the variance is defined var(f) :=
E[f2]−E[f]2. In the proof, we will consider f : [n]d → {−1, 1} and so var(f) = 1−E[f]2 = 1− f̂(∅)2.

Theorem 9.1 (Domain Reduction for Variance). Let f : [n]d → {0, 1} be any function. If T := T1×· · ·×Td
is a randomly chosen sub-hypercube, where for each i ∈ [d], Ti is a (multi)-set formed by taking 2 i.i.d.
samples from the uniform distribution on [n], then ET [var(fT)] ≥ var(f)/2.

Proof. We will interpret f as a Boolean function with d log n (Boolean) inputs, so f : {−1, 1}d logn →
{−1, 1}. We will index the inputs in [d log n], where the interval Ii := [(i − 1) log n + 1, i log n] (the ith
block) corresponds to the ith input in the original representation. Henceforth, i will always index a block
(and thereby, an input in the original representation). We use xj to denote the jth input bit.

Let us think of the restriction in Boolean terms. Note that fT : {−1, 1}d → {−1, 1}, and we use y to
denote an input to the restriction. In Boolean terms, Ti picks two u.a.r. log n bit strings, and forces the ith
block of inputs, Ii, to be one of these. The choice between these is decided by yi. Let us think of Ti as
follows. For every j ∈ Ii, it adds it to a set Ri with probability 1/2. All the inputs in Ri will be fixed, while
the inputs in Ii \Ri are alive (but correlated by yi). Then, for every j ∈ Ii, it picks a u.a.r. bit bj . (Call this
string Bi.) This is interpreted as follows. For every j ∈ Ri, xj is fixed to bj . For every j ∈ Ii \Ri, xj is set
to yibj . The randomness of Ti can therefore be represented as independently choosing Ri and Bi.

Consider some non-empty S ⊆ Ii. We have∏
j∈S

xj =
∏

j∈S∩Ri

bj
∏

j∈S\Ri

bjyi = y
|S\Ri|
i

∏
j∈S

bj .

The expected value of the Fourier basis function is (as expected) zero. Recall that S is non-empty and so

ETi

Ey

∏
j∈S

xj

 = ERi,Bi

Ey

y|S\Ri|
i

∏
j∈S

bj

 = ERi

[
Ey
[
y
|S\Ri|
i

]]
· EBi

∏
j∈S

bj

 = 0. (16)

22

If |S \ Ri| is even, then
∏
j∈S xj is independent of y. Then, Ey

[∏
j∈S xj

]2
= 1. If |S \ Ri| is odd, then∏

j∈S xj is linear in yi and Ey
[∏

j∈S xj

]
= 0. Thus,

ETi

Ey

∏
j∈S

xj

2 = PrRi [|S \Ri| is even] = 1/2. (17)

Let us write out the Fourier expansion of f :

f(x) =
∑

S⊆[d logn]

f̂(S) · χS(x) =
∑

S=S1∪...∪Sd
∀i,Si⊆Ii

f̂(S)
∏
i∈[d]

∏
xj∈Si

xj .

Let us write an expression for the square of the zeroth Fourier coefficient of the restriction:

ET

[
f̂T (∅)2

]
= ET

 ∑
S⊆[d logn]

f̂(S)Ey[χS(x)]

2 . (18)

We stress that the choice of x inside the expectations depend on y (or y′) in the manner described before
(16). Expanding the squared sum in (18) and applying linearity of expectation, we get

ET

[
f̂T (∅)2

]
= ET

∑
S

f̂(S)2Ey [χS(x)]2 +
∑

S,T :S 6=T
f̂(S)f̂(T)Ey [χS(x)] Ey [χT (x)]


=

∑
S

f̂(S)2ET

[
Ey[χS(x)]2

]
+

∑
S,T :S 6=T

f̂(S)f̂(T)ET [Ey[χS(x)]Ey[χT (x)]] . (19)

We will write S = Si1 ∪ Si2 · · · ∪ Sik , where all Sir ’s are non-empty. We deal with the first term of (19),
using (17) as follows:

ET

[
Ey[χS(x)]2

]
= ET

Ey

∏
`≤k

∏
j∈Si`

xj

2 =
∏
`≤k

ET

Ey

 ∏
j∈Si`

xj

2 = 1/2k. (20)

The cross terms will be zero, using calculations analogous for (16) (which is not directly used). We write
S = S1 ∪ · · · ∪ Sd, where some of these may be empty. We deal with the second term of (19) as follows:

ET [Ey[χS(x)]Ey[χT (x)]] = ET

Ey

∏
i∈[d]

∏
j∈Si

xj

Ey

∏
i∈[d]

∏
j∈Ti

xj


=

∏
i∈[d]

ERi,Bi

Eyi

y|Si\Ri|
i

∏
j∈Si

bj

Eyi

y|Ti\Ri|
i

∏
j∈Ti

bj


=

∏
i∈[d]

ERi

Eyi
[
y
|Si\Ri|
i

]
Eyi
[
y
|Ti\Ri|
i

]
EBi

 ∏
j∈Si∆Ti

bj

 . (21)

23

There must exist some i such that Si∆Ti 6= ∅. For that i, EBi

[∏
j∈Si∆Ti

bj

]
= 0, and thus for S 6= T ,

ET [Ey[χS(x)]Ey[χT (x)]] = 0. Finally, plugging (20) and (21) into (19) yields

ET

[
f̂T (∅)2

]
≤ f̂(∅)2 +

∑
S 6=∅

f̂(S)2/2 = 1− var(f) + var(f)/2 = 1− var(f)/2.

Recall var(fT) = 1− f̂T (∅)2. Thus, we rearrange to get ET [var(fT)] = ET

[
1− f̂T (∅)2

]
≥ var(f)/2. �

Acknowledgments

We would like to thank the anonymous reviewers who have given constructive comments and pointed us to
relevant material. In particular we would like to thank an anonymous reviewer who suggested the use of
Levin’s work investment strategy in §7.

References

[AC06] Nir Ailon and Bernard Chazelle. Information theory in property testing and monotonicity test-
ing in higher dimension. Information and Computation, 204(11):1704–1717, 2006.

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to a
monotone function. Random Structures Algorithms, 31(3):371–383, 2007.

[BB16] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings, ACM Symposium on Theory of Computing (STOC), 2016.

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311–358, 2012.

[BCS18] Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d) · polylog(n) monotonicity
tester for Boolean functions over the hypergrid [n]d. In Proceedings, ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2018.

[BCSM12] Jop Briët, Sourav Chakraborty, David Garcı́a Soriano, and Ari Matsliah. Monotonicity testing
and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

[BGJ+12] Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyoming Jung, Sofya Raskhodnikova,
and David Woodruff. Lower bounds for local monotonicity reconstruction from transitive-
closure spanners. SIAM Journal on Discrete Mathematics (SIDMA), 26(2):618–646, 2012.

[Bha08] Arnab Bhattacharyya. A note on the distance to monotonicity of boolean functions. Technical
Report 012, Electronic Colloquium on Computational Complexity (ECCC), 2008.

[BRY14a] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Proceedings,
ACM Symposium on Theory of Computing (STOC), 2014.

[BRY14b] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing proper-
ties of functions over hypergrid domains. In Proceedings, IEEE Conference on Computational
Complexity (CCC), 2014.

24

[CDJS15] Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing on
product distributions: Optimal testers for bounded derivative properties. In Proceedings, ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2015.

[CDST15] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) O(n1/2) non-adaptive queries. In Proceedings, ACM Symposium on
Theory of Computing (STOC), 2015.

[CS13] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz test-
ing over hypercubes and hypergrids. In Proceedings, ACM Symposium on Theory of Computing
(STOC), 2013.

[CS14a] Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for Boolean functions
over the hypercube. SIAM Journal on Computing (SICOMP), 45(2):461–472, 2014.

[CS14b] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing
over hypergrids. Theory of Computing, 10:453–464, 2014.

[CST14] Xi Chen, Rocco A. Servedio, and Li-Yang. Tan. New algorithms and lower bounds for
monotonicity testing. In Proceedings, IEEE Symposium on Foundations of Computer Science
(FOCS), 2014.

[CWX17] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand: New lower bounds for test-
ing monotonicity and unateness. In Proceedings, ACM Symposium on Theory of Computing
(STOC), 2017.

[DGL+99] Yevgeny Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. Proceedings, International
Workshop on Randomization and Computation (RANDOM), 1999.

[DMN19] Anindya De, Elchanan Mossel, and Joe Neeman. Is your function low dimensional? In Con-
ference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, pages 979–993,
2019.

[EKK+00] Funda Ergun, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. System Sci., 60(3):717–751, 2000.

[Fis04] Eldar Fischer. On the strength of comparisons in property testing. Information and Computa-
tion, 189(1):107–116, 2004.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, and Ronitt Rubinfeld. Mono-
tonicity testing over general poset domains. Proceedings, ACM Symposium on Theory of Com-
puting (STOC), 2002.

[FR10] Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high dimensions.
ACM Trans. on Algorithms (TALG), 6(3), 2010.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samordinsky. Testing
monotonicity. Combinatorica, 20:301–337, 2000.

[Gol17] Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.

25

[HK03] Shirley Halevy and Eyal Kushilevitz. Distribution-free property testing. Proceedings, Interna-
tional Workshop on Randomization and Computation (RANDOM), 2003.

[HK08] Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random
Structures Algorithms, 33(1):44–67, 2008.

[KMS15] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and Boolean isoperimetric
type theorems. In Proceedings, IEEE Symposium on Foundations of Computer Science (FOCS),
2015.

[LR01] Eric Lehman and Dana Ron. On disjoint chains of subsets. Journal of Combinatorial Theory,
Series A, 94(2):399–404, 2001.

[Nel15] Gail S. Nelson. A user-friendly introduction to Lebesgue measure and integration, volume 78.
American Mathematical Soc., 2015.

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approx-
imation. Journal of Computer and System Sciences, 6(72):1012–1042, 2006.

[Ras99] Sofya Raskhodnikova. Monotonicity testing. Masters Thesis, MIT, 1999.

[RRSW11] Dana Ron, Ronitt Rubinfeld, Muli Safra, and Omri Weinstein. Approximating the Influence
of Monotone Boolean Functions in O(

√
n) Query Complexity. In Proceedings, International

Workshop on Randomization and Computation (RANDOM), 2011.

[SS05] Elias Stein and Rami Shakarchi. Real Analysis: Measure Theory, Integration, and Hilbert
Spaces. Princeton University Press, 2005.

[SS08] Michael E. Saks and C. Seshadhri. Parallel monotonicity reconstruction. In Proceedings, ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2008.

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

