
DNF sparsification beyond sunflowers

Shachar Lovett∗

University of California, San Diego
slovett@ucsd.edu

Jiapeng Zhang†

University of California, San Diego
jpeng.zhang@gmail.com

October 31, 2018

Abstract

There are two natural complexity measures associated with DNFs: their size, which is the
number of clauses; and their width, which is the maximal number of variables in a clause. It is a
folklore result that DNFs of small size can be approximated by DNFs of small width (logarithmic
in the size). The other direction is much less clear.

Gopalan, Meka and Reingold [Computational Complexity 2013] showed that the other di-
rection – DNF sparsification – holds as well. Any DNF of width w can be approximated to
within error ε by a DNF of size (w log(1/ε))O(w). Our main interest in this work is the depen-
dence on the width w. The same dependence of ww appears in several other open problems
in combinatorics and complexity, such as the Erdős-Rado sunflower conjecture and Mansour’s
conjecture. In fact, there are deep connections between these three problems. Our main result is
DNF compression with an improved dependence on the width, which overcomes the ww barrier.
Concretely, we show that any DNF of width w can be approximated to within error ε by a DNF
of size (1/ε)O(w).

The proof centers around a new object which we call the DNF index function. Given a DNF,
the DNF index function outputs for an input the first clause that satisfies it (if one exists). Our
proof has two parts: a combinatorial part, where we exhibit a switching lemma for the DNF
index function; and an analytic part, where we use the switching lemma to bound the noise
sensitivity of the DNF index function, and then use it to obtain our DNF compression result.

1 Introduction

Any boolean function f : {0, 1}n → {0, 1} can be represented as a CNF or as a DNF. Functions
which can represented as small CNFs or DNFs are central in computational complexity theory, and
have been widely studied. We focus on DNFs in this paper, but our results translate to CNFs as
well.

Let f be boolean function expressed as a DNF. There are two natural complexity measures
associates with it: the numbers of clauses, called size and denoted s(f); and the maximal number
of variables in a clause, called width and denoted w(f). It is a folklore result that DNFs of small size
can be approximated by DNFs of small width; concretely, DNFs of size s can be ε-approximated
by DNFs of width w = O(log(s/ε)). Gopalan, Meka and Reingold [GMR13] studied the reverse
problem of DNF sparsification: can DNFs of small width be approximated by DNFs of small size?
their motivation, other than being a natural problem on the structure of DNFs, came from the
goal of designing faster deterministic algorithms to approximately count the number of satisfying
assignements of a DNF. Their main structural result on DNFs is the following.

∗Supported by NSF grant CCF-1614023.
†Supported by NSF grant CCF-1614023.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 190 (2018)

Theorem 1.1 ([GMR13]). Let f be a boolean function which can be expressed as a width-w DNF.
Then for every ε > 0, f can be ε-approximated by a DNF of width w and size (w log(1/ε))O(w).

It was conjectured in [GMR13] that the term (w log(1/ε))w is not tight. In particular, Con-
jecture 6.1 in their paper speculates that the bound can be improved to c(ε)w, and moreover that
possibly one can take c(ε) = (log 1/ε)O(1). Our main result in this paper resolves the weaker
conjecture.

Theorem 1.2 (Main theorem). Let f be a boolean function which can be expressed as a width-w
DNF. Then for every ε > 0, f can be ε-approximated by a DNF of width w and size (1/ε)O(w).

While the dependence we obtain on the error ε > 0 is probably sub-optimal, our main goal
was to sharpen the dependence on the width w, from wO(w) to 2O(w) (for a fixed error ε). As
we shortly describe, the same challenge appears in two other related problem: the Erdős-Rado
sunflower conjecture [ER60] and Mansour’s conjecture [Man95].

1.1 Erdős-Rado sunflower conjecture

The Erdős-Rado sunflower conjecture deals with set systems. To see the relation between set
systems and DNFs, note that if F is a set system of sets S ⊂ [n], then there is a natural associated
(monotone) DNF given by f(x) = ∨S∈F ∧i∈S xi. A w-uniform set system is a set system in which
all sets contain w elements. The DNF associated to a w-uniform set system is a width-w DNF. In
the other direction, any width-w DNF contains a large unary DNF (concretely, with at least a 2−w

fraction of the clauses) [GMR13]. Unary DNFs are similarly equivalent to set systems.
We next introduce sunflowers, which are widely studied in combinatorics.

Definition 1.3 (Sunflower). A collection of r sets S1, . . . , Sr is called an r-sunflower if all the
pairwise intersections Si ∩ Sj are the same.

The Erdős-Rado sunflower lemma [ER60] states that if F is a w-uniform set system, and
|F| > w!(r−1)w, then F must contain an r-sunflower. The well-known sunflower conjecture is that
the dependence on w can be improved.

Conjecture 1.4 (Sunflower conjecture). For any r ≥ 3 there exists c = c(r) such that the following
holds. If F is a w-uniform set system, and |F | > cw, then F contains an r-sunflower.

The sunflower conjecture has been open for nearly 60 years. Despite much research, the best
bounds, even for r = 3, still are of the order of ww.

Approximate sunflowers. Rossman [Ros14] defined the notion of an approximate sunflower,
motivated by applications in complexity theory.

Definition 1.5 (Approximate sunflower). A set system F is a γ-approximate sunflower if the
following holds. Let C = ∩S∈FS be the common core of all sets in F , and define F ′ = {S \C : S ∈
F}. Let f ′ be the monotone DNF associated with F ′. Then Pr[f ′(x) = 1] ≥ 1− e−γ.

Rossman proved that if F is a w-uniform set system of size |F| > (w log(1/γ))O(w), then F
must contain a γ-approximate sunflower. Similarly to the sunflower conjecture, it is reasonable to
conjecture that a better bound holds.

Conjecture 1.6 (Approximate sunflower conjecture). For any γ > 0 there exists c = c(γ) > 0
such that the following holds. If F is a w-uniform set system, and |F | > cw, then F contains an
γ-approximate sunflower.

In fact, one can show [LLZ18, LSZ18] that the approximate sunflower conjecture implies the
sunflower conjecture.

2

Connection to DNF sparsification. The main tool used in [GMR13] to achieve their re-
sult about DNF sparsification is the sunflower and approximate sunflower lemmas stated above.
Roughly speaking, they used the approximate sunflower lemma to compress an approximate sun-
flower to its common core. A barrier towards an improved dependence on the width w in their
result, is that the dependence on w in both lemmas is of the order of ww. Thus, one of the main
motivations of the current work is to achieve DNF sparsification that breaks the ww bound. A more
ambitious goal (which we discuss in Section 4) is to use the connection between sunflower structure
and DNF sparsification as highlighted in [GMR13], together with our improved DNF sparsification
result, to obtain improved bounds for the sunflower conjecture.

1.2 Mansour’s conjecture

Mansour’s conjecture [Man95] deals with the approximation of DNFs by sparse polynomials. We
say that a boolean function f : {0, 1}n → {0, 1} can be ε-approximated by a polynomial of sparsity
t if there exists a polynomial p : {0, 1}n → R with at most t monomials such that

Ex∈{0,1}n
[
(f(x)− p(x))2

]
≤ ε.

Conjecture 1.7 (Mansour’s conjecture for size). For any ε > 0 there exists c = c(ε) > 0 such that
the following holds. Any DNF of size s can be ε-approximated by a polynomial of sparsity clog s.

One of the motivations behind Mansour’s conjecture, other than a better understanding of
the structure of DNFs, is that it would give an efficient agnostic learning algorithm for DNFs
[GKK08b,GKK08a].

As was noted in [GMR13], it makes sense to speculate a similar conjecture for bounded width
DNFs. As any DNF of size s can be approximated by a DNF of width w = O(log(s/ε)), this latter
conjecture is stronger.

Conjecture 1.8 (Mansour’s conjecture for width). For any ε > 0 there exists c = c(ε) > 0 such
that the following holds. Any DNF of width w can be ε-approximated by a polynomial of sparsity
cw.

The best known bound for Mansour’s conjecture for width [Man95] is that it holds for sparsity
(w log(1/ε))O(w) (the bound for size holds by approximating a bounded size DNF with a bounded
width DNF). So again, we see the ww term appearing, where the conjecture asks if it can be
improved to c(ε)O(w) (and moreover that c(ε) = O(log 1/ε)). In fact, Mansour shows that his
technique would not yield a wo(w)-type bound, so other ideas are necessary. A direct corollary of
our main theorem is that both versions of Mansour’s conjecture are equivalent.

Corollary 1.9. Conjecture 1.7 and Conjecture 1.8 are equivalent.

In addition, we think that our sparsification lemma gives some clues on how to prove Mansour’s
conjecture. We discuss this more in Section 4.

1.3 Proof overview

Let f = ϕ1∨ . . .∨ϕt be a DNF, where each ϕi is a clause (conjunction of literals). The main object
which underlies our work is the function which maps an input to the first clause which satisfies it.
We call this the DNF index function. Observe that this depends on the specific structure of the
DNF, and not just the boolean function it computes. Moreover, it depends on the order of the
clauses.

3

Definition 1.10 (DNF index function). Let f = ϕ1 ∨ . . . ∨ ϕt be a DNF. The index function of f
is a function Indf : {0, 1}n → {1, . . . , t} ∪ {⊥} defined as follows:

Indf(x) =

{
⊥ if f(x) = 0

min{i ∈ [t] : ϕi(x) = 1} if f(x) = 1

Let pi = Prx[Indf(x) = i] denote the fraction of inputs such that the i-th clause is the first
clause that satisfies them. The following is a natural approach for DNF sparsification: only keep
clauses ϕi for which pi is noticeable.

However, it is not clear how many noticeable clauses could there be. For example, a bad scenario
would be if pi = 1/t for all i; in this case there would be no way to significantly sparsify the DNF.
However, this cannot be the case, as if ϕ1 as width w then p1 = 2−w. So, the main challenge is to
show that there is a small set of indices I ⊂ [t], such that

∑
i/∈I pi ≤ ε. Our main theorem shows

that this holds for |I| = (1/ε)O(w).
Next, we highlight how we show that. At its core, our argument has two parts: a combinatorial

part, where we prove switching lemma for the DNF index function; and an analytic part, where
we analyze the noise sensitivity of the index function and connect it to the problem of DNF
sparsification.

Combinatorial part: Switching lemma. The behaviour of DNFs under random restrictions
have been well studied. Razborov [Raz95], refining previous work of H̊astad [H̊as87], showed that
DNFs simplify under random restrictions. See also [Bea94] for an exposition.

We need a few standard definitions. A restriction is ρ ∈ {0, 1, ∗}n. An (n, k)-random restriction
is a uniform restriction ρ ∈ {0, 1, ∗}n with exactly k stars. Given a boolean function f : {0, 1}n →
{0, 1}, its restriction under ρ is denoted f |ρ : {0, 1}ρ−1(∗) → {0, 1}. Given a function f : {0, 1}n → X
for some finite set X, we denote its decision tree complexity by DT(f).

The well-known switching lemma for DNFs [H̊as87,Raz95,Bea94] is the following result. Let f
be an n-variate boolean function computed by a width-w DNF. Let k = αn. Let ρ ∈ {0, 1, ∗}n be
an (n, k)-random restriction. Then for any d ≥ 1,

Pr
ρ

[DT(f |ρ) ≥ d] ≤ (7αw)d.

We extend this result to the DNF index function. Assume that f = ϕ1 ∨ . . . ∨ ϕt and let Indf :
{0, 1}n → {1, . . . , t} ∪ {⊥} be its associated DNF index function. We prove (Lemma 2.1) that for
any d ≥ 1,

Pr
ρ

[DT(Indf |ρ) ≥ d] ≤ (32αw)d.

Analytic part: Noise sensitivity. Let I denote the set of noticeable clauses i ∈ [t]. Our goal
is to upper bound

∑
i/∈I pi. To that end, we study the behaviour of the index function under noise.

Given x ∈ {0, 1}n let Nρ(x) denote the noise distribution around x, where y ∼ Nρ(x) is sampled
by taking Pr[xi = yi] = ρ independently for i ∈ [n]. The main observation is that that if all (or
most) of the pi are negligible, then Indf cannot be stable under noise. This is since if Indf(x) = i,
and pi is tiny, then if we sample y ∼ Nρ(x) then with high probability Indf(y) 6= i. This follows
from the well known fact (whose proof is based on the hypercontractive inequality) that small sets
in the hypercube are not noise stable.

So, our goal is to show that Indf is noise stable. Concretely, we say that an input x which
satisfies f is (ρ, γ)-stable for f if

Pr
y∼Nρ(x)

[Indf(x) = Indf(y)] ≥ γ.

4

Thus, if most inputs are stable, then if we first sample x ∈ {0, 1}n uniformly, and then take
i = Indf(x), then with high probability pi is noticeable. This then implies that

∑
pi is concentrated

on a small set I. To conclude, we need to show that indeed most inputs x ∈ f−1(1) are noise stable.
This in turn follows from our switching lemma for Indf . Consider an equivalent way to jointly

sample x, y, where first we sample ρ ∈ {0, 1, ∗}n where Pr[ρi = ∗] = 1 − ρ, and then sample x, y
conditioned on xi = yi = ρi whenever ρi 6= ∗. If Indf |ρ has a small depth decision tree, then
there is a noticeable probability that it evaluates to the same leaf on both x, y. That is, that
Indf(x) = Indf(y). Thus, the switching lemma allows us to prove that most inputs are noise
stable, completing the proof.

Paper organization. We prove the switching lemma for the DNF index function in Section 2.
We apply it to obtain the DNF sparsification result in Section 3. We discuss open problems in
Section 4.

Acknowledgements. We thank Xin Li, Benjamin Rossman, Noam Solomon and Avishay Tal
for useful discussions on this problem. Jiapeng would also like to thank his wife, Yingcong Li.

2 Switching lemma for DNF index function

Let f be a width-w DNF. Recall that the index function of f maps an input to the first term that
is satisfies, or to ⊥ if no clause is satisfied. The main goal of this section is to prove a switching
lemma for the DNF index function. We start with some preliminary definitions.

Decision tree. Let g : {0, 1}n → X be a function where X is some finite set. A decision tree for
g is a binary tree whose nodes are labeled by variables and whose leaves are labeled by elements
of X. The decision tree complexity of g, denoted DT(g), is the minimal depth of a decision tree
computing g.

Restrictions. A restriction is ρ ∈ {0, 1, ∗}n. Given a function g : {0, 1}n → X, its restriction g|ρ
is the sub-function obtained by restricting to inputs which agree with ρ. That is, let S = {i : ρi = ∗}
be the “alive” variables. Then g|ρ : {0, 1}S → X by mapping z ∈ {0, 1}S to g(x), where xi = zi if
i ∈ S and xi = ρi otherwise.

Random restrictions. An (n, k)-random restriction is the the uniform distribution over restric-
tions ρ ∈ {0, 1, ∗}n with exactly k stars.

The following is the main result of this section.

Lemma 2.1 (Switching lemma for the DNF index function). Let f be a width-w DNF on n
variables, and let Indf be its DNF index function. Let k = αn and let ρ be an (n, k)-random
restriction.. Then for every d ≥ 1,

Pr
ρ

[DT(Indf |ρ) ≥ d] ≤ (32αw)d.

Proof. We assume α ≤ 1/32w otherwise the claim is trivial. Let ρ ∈ {0, 1, ∗}n. We say that ρ is
“bad” if DT(Indf |ρ) ≥ d. We use a compression argument, similar to the one used by Razborov
[Raz95] to prove the switching lemma for DNFs.

The DNF f = ϕ1 ∨ . . . ∨ ϕt is fixed throughout. Let Vj denote the variables that appear in ϕj .
We use the following notations. Given two strings a, a′ their concatenation is a◦a′. Given a known

5

set W of size w, and a set V ⊂W of a known size, we can uniquely describe V by a string in [w]|V |.
We denote this representation SetIndex(W,V). We define three operations on restrictions:

• Append: given a restriction ρ ∈ {0, 1, ∗}n and a partial input u ∈ {0, 1}S where S ⊂ ρ−1(∗),
we denote by append(ρ, u) the restriction obtained by appending u to ρ:

append(ρ, u) =

{
ui if i ∈ S
ρi otherwise

• Delete: given a restriction ρ ∈ {0, 1, ∗}n and a set S ⊂ ρ−1({0, 1}), we denote by delete(ρ, S)
the restriction obtained by setting the symbols in S to stars:

delete(ρ, S) =

{
∗ if i ∈ S
ρi otherwise

• Update: given a restriction ρ ∈ {0, 1, ∗}n and a partial input u ∈ {0, 1}S where S ⊂
ρ−1({0, 1}), we denote by update(ρ, u) the restriction obtained by updating the elements in
S to u:

update(ρ, u) =

{
ui if i ∈ S
ρi otherwise

We next present the encoding and decoding algorithms.

Encode(ρ)

Input: restriction ρ ∈ {0, 1, ∗}n.
Output: restriction τ ∈ {0, 1, ∗}n, string a ∈ N∗.

1. Initialize τ = ρ. Initialize a to be an empty string.

2. For j = 1, . . . , t do:

(a) If ϕj |ρ ≡ 0 then skip to the next j.

(b) If ϕj |ρ ≡ 1 then abort the loop.

(c) Otherwise compute:

i. Aj = {i ∈ Vj : ρi = ∗} the alive variables in ϕj .

ii. uj ∈ {0, 1}Aj an assignment under which DT(Indf |append(ρ,uj)) is maximized.

iii. vj ∈ {0, 1}Aj an assignment under which ϕj |append(ρ,vj) ≡ 1.

(d) Update:

i. ρ = append(ρ, uj).

ii. τ = append(τ, vj).

iii. a = a ◦ |Aj | ◦ SetIndex(Vj , Aj) ◦ uj .

3. Return τ, a.

6

Decode(τ, a)

Input: restriction τ ∈ {0, 1, ∗}n, string a ∈ N∗.
Output: restriction ρ ∈ {0, 1, ∗}n.

1. Initialize A to be an empty set.

2. For j = 1, . . . , t do:

(a) If ϕj |τ ≡ 0 then skip to the next j.

(b) Otherwise read from a: Aj ⊂ Vj and uj ∈ {0, 1}Aj .
(c) Update:

i. A = A ∪Aj .
ii. τ = update(τ, uj).

3. Return ρ = delete(τ,A).

We first argue that the encoding and decoding are correct.

Claim 2.2. For any ρ ∈ {0, 1, ∗}n it holds that DECODE(ENCODE(ρ)) = ρ.

Proof. Let τ, a = ENCODE(ρ). Note that if ρi 6= ∗ then τi = ρi. So, we just need to verify that
the decoding procedure deletes exactly the elements that were appended in the encoding procedure,
namely ∪Aj . Say that an index j ∈ [t] is active if in the encoding procedure, we have that ϕj |ρ is
non-constant when it is considered. Let J = {j1, . . . , jr} denote the set of active indices. The main
observation is that these are also the indices in which in the decoding procedure we have ϕj |ρ 6≡ 0.
In fact, one can further verify that ϕj |ρ ≡ 1 in these cases. To conclude note that the auxiliary
string a allows to precisely recover the sets Aj .

To conclude the proof we need to bound the probability that ρ is bad. To do so, we bound the
size of the set {ENCODE(ρ) : ρ is bad}. Assume that τ, a = ENCODE(ρ). As ρ is bad, we have
DT(Indf |ρ) ≥ d. This means that m =

∑
|Aj | ≥ d by the choice of the uj . Given a fixed m we

bound the number of choices for τ, a.
The restriction τ has exactly k −m stars, and so has

(
n

k−m
)
2n−k+m options. Assume there are

r sets Aj with |Aj | > 0. The number of choices of |A1|, . . . , |Ar| is equal to the number of ways we
can decompose m = a1 + . . .+ ar with ai ≥ 1, which equals

(
m−1
r−1

)
. The sum of these over all r is

2m−1. Given that |Aj | > 0 for some j, the number of options for SetIndex(Vj , Aj) is w|Aj | and the
number of choices for uj is 2|Aj |. So we obtain

{ENCODE(ρ) : ρ is bad} ≤
∑
m≥d

(
n

k −m

)
2n−k+m(4w)m.

On the other hand, the total number of restrictions ρ with exactly k stars equals
(
n
k

)
2n−k. So we

obtain that

Pr[ρ is bad] ≤
∑
m≥d

(
n

k−m
)(

n
k

) (8w)m ≤
∑
m≥d

(
α

1− α

)m
(8w)m ≤

∑
m≥d

(16αw)m ≤ (32αw)d,

7

where the last inequality follows from the assumption α ≤ 1/32w.

We would need the following simple corollary. Let Rn,α be the distribution over restrictions
{0, 1, ∗}n where Pr[ρi = ∗] = α and Pr[ρi = 0] = Pr[ρi = 1] = 1−α

2 .

Corollary 2.3. Let f be a width-w DNF on n variables, and let Indf be its DNF index function.
Let ρ ∼ Rn,α. Then for every d ≥ 1,

Pr
ρ∼Rn,α

[DT(Indf |ρ) ≥ d] ≤ (64αw)d + 2−Ω(αn).

Proof. Let ρ ∼ Rn,α and let k = |ρ−1(∗)|. Conditioned on |ρ−1(∗)| = k, the distribution of ρ is
an (n, k)-random restriction. Namely, it is uniform in Un,k, the set of restrictions in {0, 1, ∗}n with
exactly k stars. Then

Pr
ρ∼Rn,α

[DT(Indf |ρ) ≥ d] =
∑
k

Pr
ρ∼Rn,α

[|ρ−1(∗) = k|] · Pr
ρ∈Un,k

[DT(Indf |ρ) ≥ d].

The probability that k ≥ 2αn is exponentially small in αn. Whenever k ≤ 2αn we use Lemma 2.1
to deduce the bound.

3 DNF sparsification

Our goal is to prove the following theorem.

Theorem 3.1. Let f = ϕ1∨ . . .∨ϕt be a width-w DNF. Then for every ε > 0, there exists a subset
I ⊂ [t] of size |I| ≤ (1/ε)O(w) such that the following holds. Let f ′ =

∨
i∈I ϕi. Then

Pr[f(x) 6= f ′(x)] ≤ ε.

3.1 Noticeable indices

Let f = ϕ1 ∨ . . . ∨ ϕt be a width-w DNF. To recall, Indf is the index function of f , which maps
an input x to the first clause that it satisfies, or to ⊥ if f(x) = 0. The main question we study is:
how are the outputs of the DNF index function distributed? for example, can they be uniform in
[t]? we show that the answer is no if t is too large, which leads us to be able to approximate f as
a smaller DNF.

Definition 3.2 (Noticeable index). Let f = ϕ1 ∨ . . . ∨ ϕt be a DNF. An index i ∈ [t] is called
τ -noticeable if

Pr
x∈{0,1}n

[Indf(x) = i] ≥ τ.

For example, if f is a DNF, and ϕ1 is the first clause with w variables, then 1 is (2−w)-noticeable
since Pr[ϕ1(x) = 1] = 2−w. We denote the set of all noticeable indices by

I(f, τ) = {i ∈ [t] : i is τ -noticeable}.

The following claim is straightforward.

Claim 3.3. |I(f, τ)| ≤ 1/τ .

Proof. Ii i ∈ I(f, τ) then Pr [Indf(x) = i] ≥ τ . These events are disjoint for different i.

8

3.2 Noise stability

The following are standard definitions in Fourier analysis of boolean functions.

Definition 3.4 (Noisy distribution). Given x ∈ {0, 1}n and a noise parameter ρ ∈ [0, 1], we
denote by Nρ(x) the distribution over y ∈ {0, 1}n, where Pr[yi = xi] = 1+ρ

2 and Pr[yi 6= xi] = 1−ρ
2

independently for all i ∈ [n].

Definition 3.5 (Stability). Let g : {0, 1}n → {0, 1} be a boolean function. The ρ-stability of g is

Stabρ(g) = Pr
x∈{0,1}n,y∼Nρ(x)

[g(x) = g(y) = 1] .

We use the following shorthand: |g| = Prx∈{0,1}n [g(x) = 1] is the fraction of inputs on which g
accepts. We will need the following fact which follows from the hyper-contractive inequality (see
for example [O’D14], page 259).

Fact 3.6. Let g : {0, 1}n → {0, 1} be a boolean function. Then Stabρ(g) ≤ |g|
2

1+ρ .

The following claim is a simple corollary of Fact 3.6. It studies the noise sensitivity of a
decomposition of a boolean function f into disjoint boolean functions g1, . . . , gt.

Claim 3.7. Let f = g1 + . . .+ gt where f, g1, . . . , gt : {0, 1}n → {0, 1} are boolean functions. Given
a parameter τ ∈ [0, 1] define

I = {i ∈ [t] : |gi| ≥ τ}.

Then ∑
i/∈I

Stabρ(gi) ≤ τ
1−ρ
1+ρ .

Proof. Fact 3.6 gives that for i /∈ I we have Stabρ(gi) ≤ |gi|
2

1+ρ ≤ |gi| · τ
1−ρ
1+ρ . Thus∑

i/∈I

Stabρ(gi) ≤ τ
1−ρ
1+ρ

∑
i/∈I

|gi| ≤ τ
1−ρ
1+ρ .

3.3 Noise stability of the index function

The noise stability of boolean function is a well-studied topic. Here, we study the noise stability of
the DNF index function.

Definition 3.8 (Stable and sensitive inputs). Let f be a DNF, Indf be its DNF index function,
and let x ∈ {0, 1}n be an input which satisfies f . The input x is called (ρ, γ)-stable for f if

Pr
y∼Nρ(x)

[Indf(x) = Indf(y)] ≥ γ.

Otherwise, x is called (ρ, γ)-sensitive for f .

Definition 3.9 (Index sensitivity). The (ρ, γ)-index sensitivity of f is the fraction of (ρ, γ)-
sensitive inputs for f ,

IndexSensitivity(f, ρ, γ) = Pr
x∈{0,1}n

[f(x) = 1 ∧ x is (ρ, γ)-sensitive for f] .

9

The following lemma connects the index sensitivity to DNF sparsification.

Lemma 3.10. Let f = ϕ1 ∨ . . . ∨ ϕt be a DNF. Fix ρ, γ, τ ∈ [0, 1]. Let I = I(f, τ) be the set of
τ -noticeable clauses of f , and define f ′ =

∨
i∈I ϕi. Then

Pr[f(x) 6= f ′(x)] ≤ IndexSensitivity(f, ρ, γ) + γ−1τ
1−ρ
1+ρ .

Proof. Observe that f ′(x) ≤ f(x) for all x. So, if f(x) 6= f ′(x) then necessarily f ′(x) = 0, f(x) = 1
and Indf(x) /∈ I. Let Ic = [t] \ I. Then

Pr[f(x) 6= f ′(x)] ≤
∑
i∈Ic

Pr[Indf(x) = i].

To simplify notation, for x ∈ {0, 1}n let E(x) denote the event “x is (ρ, γ)-stable for f”. Then we
can bound

Pr[f(x) 6= f ′(x)] ≤ Pr[f(x) = 1 ∧ ¬E(x)] +
∑
i∈Ic

Pr[Indf(x) = i ∧ E(x)].

The first term equals IndexSensitivity(f, ρ, γ). To bound the second term, Fix i ∈ Ic. Conditioned
on E(x) we have Pry∼Nρ(x)[Indf(x) = Indf(y)] ≥ γ. Thus

Pr
x∈{0,1}n,y∼Nρ(x)

[Indf(x) = Indf(y) = i ∧ E(x)] ≥ γ · Pr[Indf(x) = i ∧ E(x)].

Let gi : {0, 1}n → {0, 1} be the indicator of the event Indf(x) = i, so that f = g1 + . . .+ gt. Then
we have

Pr[Indf(x) = i ∧ E(x)] ≤ γ−1 · Pr[Indf(x) = Indf(y) = i] = γ−1 · Stabρ(gi).

To conclude we have

Pr[f(x) 6= f ′(x)] ≤ IndexSensitivity(f, ρ, γ) + γ−1 ·
∑
i∈Ic

Stabρ(gi).

The bound now follows from Claim 3.7.

Thus, we reduced the problem of compressing DNFs to that of bounding the index sensitivity
of DNFs. The following lemma shows that for width-w DNFs is, most of their inputs are stable
at noise level ρ = 1−O(1/w). Its proof uses the switching lemma for the DNF index function, or
more precisely Corollary 2.3.

Lemma 3.11. Let f be an n-variate width-w DNF. Set ρ = 1− 1
128w and let γ = 2−d for an integer

d ≥ 1. Then
IndexSensitivity(f, ρ, γ) ≤ 2γ + 2−Ω(n/w).

Proof. Let x ∈ {0, 1}n sampled uniformly and let y ∼ Nρ(x). It will be convenient to sample x, y
in an equivalent but different way. Recall that Rn,α is a distribution over restrictions ρ ∈ {0, 1, ∗}n
where Pr[ρi = ∗] = α and Pr[ρi = 0] = Pr[ρi = 1] = 1−α

2 . Then we can sample (x, y) as follows:

1. Sample ρ ∼ Rn,α where α = 1− ρ. Let S = {i : ρi = ∗}.

2. Sample x|S ∈ {0, 1}S uniformly, and set xi = ρi if i /∈ S.

10

3. Sample y|S ∈ {0, 1}S uniformly, and set yi = ρi if i /∈ S.

Next, fix ρ and assume that DT(Indf |ρ) = d. Then in particular, the probability that x|S , y|S
take the same path in the decision tree is at least 2−d. So we obtain that

Pr
x,y

[Indf(x) = Indf(y)|ρ] ≥ 2−DT(Indf |ρ).

Let p(x) denote the probability that DT(Indf |ρ) ≥ d when ρ is sampled conditioned on x. Then

Pr
y

[Indf(x) = Indf(y)|x] ≥ 2−(d−1)(1− p(x)).

We would like to show that for most x it holds that p(x) ≤ 1/2; such x will be (ρ, 2−d)-stable for
f . That is, we wish to upper bound

p = Pr
x

[p(x) ≥ 1/2] ≤ 2 Pr
ρ

[DT(Indf |ρ) ≥ d] .

Corollary 2.3 bounds the right hand side, and for α = 1/128w gives

p ≤ 21−d + 2−Ω(n/w).

We now prove Theorem 3.1.

Proof of Theorem 3.1. Let ρ, γ, τ ∈ [0, 1] to be optimized shortly. Let I = I(f, τ), where |I| ≤ 1/τ
by Claim 3.3. Combining Lemma 3.10 with Lemma 3.11 gives the bound

Pr[f 6= f ′] ≤ O(γ) + 2−Ω(n/w) + γ−1τ
1−ρ
1+ρ .

First, we note that we may assume that n = Ω(w log(1/ε)) as otherwise the theorem holds vacuously,
as the total number of possible width w clauses is 2w

(
n
w

)
≤ O(log 1/ε)w. Let ρ = 1 − 1/128w,

γ = O(ε) and τ = εO(w). Then
Pr[f(x) 6= f ′(x)] ≤ ε.

4 Discussions and open problems

We discuss several open problems and future research directions which stem from our work.

Improved sparsification bounds. It is a natural question to ask what is the tight bound
(respect to both ε and w) of DNF sparsification. Gopalan et al. [GMR13] gave a bound of
(w log(1/ε))O(w) and our bound is (1/ε)O(w). In our approach, there is a trade off on how to
choose the noise parameter ρ. In our proof, we used ρ = 1 − Ω(1/w). With smaller noise, we get
a stronger random restriction result, however a weaker bound from the hyper-contrative inequality
(which is used in the proof of Fact 3.6). In order to improve our bound, a natural approach is to
use large noise, ρ = 1 − Ω(1). In order to improve the sparsification bound in this way, we need
to understand what happens when we randomly restrict 1 − Ω(1) variables of a given DNF. We
believe that some structure still remains in this DNF that can allow for our proof structure to go
through. This makes the bound of (log 1/ε)O(w) conjectured by [GMR13] seem plausible. In fact,
a stronger bound of poly(2w, log(1/ε)) might be true.

11

Connections to Mansour’s conjecture. There are possible approaches to prove Mansour’s
conjecture via our technique. First, let us point out a result of Klivans, Lee and Wan [KLW10].
They prove that Mansour’s conjecture is true for random DNFs. More specifically, it holds for any
DNF which satisfies (in a strong way) that most inputs satisfy only a few clauses.

Theorem 4.1 ([KLW10]). Let f = ϕ1 ∨ · · · ∨ ϕt be a DNF with t terms. Assume that for some
ε > 0 it holds that

Pr
x

[x satisfies j clauses] = O

(
log(1/ε)

j

)j
∀j ≤ O(log n).

Then f can be ε-approximated by a polynomial with sparsity tlog(1/ε).

The high level proof of Theorem 4.1 is as follows. Let Vi denote the variables of ϕi. For an
integer k ≥ 1 define

Ak :=

{
S ⊆ [n] : ∃I ⊆ [t], (|I| = k) ∧ (S ⊆

⋃
i∈I

Vi)

}

It is clear that |Ak| ≤ tk ·2k·w. The proof of [KLW10] constructs a polynomial supported in Alog(1/ε)

that approximates f . This is true as they show that the log(1/ε)-th moment of S(x) =
∑
ϕi(x)

approximates the DNF.
However, this is false for general DNFs. The main reason is that clauses can intersect quite a

bit, and hence there is no control over high moments of S(x). However, we conjecture that this
can be overcome with a more careful definition. For k ≥ 1 define

Bk :=

{
S ⊆ [n] : ∃I ⊆ [t],

(∣∣⋃
i∈I

Vi
∣∣ ≤ kw) ∧(S ⊆⋃

i∈I
Vi

)}

Conjecture 4.2. Let f = ϕ1 ∨ · · · ∨ ϕt be a DNF with t terms. Then f can be ε-approximated by
a polynomial whose monomials are supported in Bk for k = O(log(1/ε)).

It is clear that Ak ⊆ Bk. However it is not clear how to upper bound the size of Bk. Here is the
place where our sparsification result may help. Define

Ck :=

{
I ⊆ [t] :

∣∣⋃
i∈I

Vi
∣∣ ≤ kw}

and define
ψk :=

∨
I∈Ck

(∧i∈Iϕi)

Let ψ′k be the sparsifed DNF that ε-approximated ψk. Define

Dk :=

{
S ⊆ [n] : ∃I ∈ ψ′, S ⊆

⋃
i∈I

Vi

}

Note that D is a DNF of width kw and hence ψ′k has (1/ε)O(kw) clauses by our result.

Conjecture 4.3. Let f = ϕ1 ∨ · · · ∨ ϕt be a DNF with t terms. Then f can be ε-approximated by
a polynomial whose monomials are supported in Dk for k = O(log(1/ε)).

12

Connections to the sunflower conjecture. We already discussed that the sunflower and ap-
proximate sunflower lemmas were pivotal to the result of [GMR13] on DNF sparsification. The
goal here is to speculate about a reverse connection. We showed in [LLZ18] a direct connection
between the sunflower conjecture and problems about the existence of specific extractors. Here, we
point out another connection to this paper.

Let F be a w-uniform set system. For a set T of the base elements let FT = {S \T : S ∈ F , T ⊂
S} denote the link of T in F . Let fF denote the monotone width-w DNF associated with F . As
we already mentioned, one way to prove the sunflower conjecture is to confirm the approximate
sunflower conjecture (Conjecture 1.6). That is, to find a set T such that

Pr
x

[fFT = 1] ≥ 0.9 .

In this paper, we proved that the DNF index function is not symmetric, in the sense that only a
few clauses are noticeable. The existence of such T seems related to the ability to show that the
DNF satisfiability is concentrated in relatively a few clauses; however how to make this precise is
still open.

References

[Bea94] Paul Beame. A switching lemma primer. Technical report, Technical Report UW-CSE-
95-07-01, Department of Computer Science and Engineering, University of Washington,
1994.

[ER60] Paul Erdős and R Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 35(1):85–90, 1960.

[GKK08a] Parikshit Gopalan, Adam Kalai, and Adam R Klivans. A query algorithm for agnosti-
cally learning DNF?. In COLT, pages 515–516, 2008.

[GKK08b] Parikshit Gopalan, Adam Tauman Kalai, and Adam R Klivans. Agnostically learning
decision trees. In Proceedings of the fortieth annual ACM symposium on Theory of
computing, pages 527–536. ACM, 2008.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster
deterministic counting algorithm. Computational Complexity, 22(2):275–310, 2013.

[H̊as87] Johan H̊astad. Computational limitations of small-depth circuits. 1987.

[KLW10] Adam R Klivans, Homin K Lee, and Andrew Wan. Mansour’s conjecture is true for
random DNF formulas. In COLT, pages 368–380. Citeseer, 2010.

[LLZ18] Xin Li, Shachar Lovett, and Jiapeng Zhang. Sunflowers and quasi-sunflowers from ran-
domness extractors. In LIPIcs-Leibniz International Proceedings in Informatics, volume
116. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[LSZ18] Shachar Lovett, Noam Solomon, and Jiapeng Zhang. Unpublished work. 2018.

[Man95] Yishay Mansour. An nO(log logn) learning algorithm for DNF under the uniform distri-
bution. Journal of Computer and System Sciences, 50(3):543–550, 1995.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

13

[Raz95] Alexander A Razborov. Bounded arithmetic and lower bounds in boolean complexity.
In Feasible Mathematics II, pages 344–386. Springer, 1995.

[Ros14] Benjamin Rossman. The monotone complexity of k-clique on random graphs. SIAM
Journal on Computing, 43(1):256–279, 2014.

14
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

