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Abstract

The best known size lower bounds against unrestricted circuits have remained around 3n for
several decades. Moreover, the only known technique for proving lower bounds in this model,
gate elimination, is inherently limited to proving lower bounds of less than 5n. In this work, we
propose a non-gate-elimination approach for obtaining circuit lower bounds, via certain depth-
three lower bounds. We prove that every (unbounded-depth) circuit of size s can be expressed
as an OR of 2s/3.9 16-CNFs. For DeMorgan formulas, the best known size lower bounds have
been stuck at around n3−o(1) for decades. Under a plausible hypothesis about probabilistic

polynomials, we show that n4−ε-size DeMorgan formulas have 2n
1−Ω(ε)

-size depth-3 circuits
which are approximate sums of n1−Ω(ε)-degree polynomials over F2. While these structural
results do not immediately lead to new lower bounds, they do suggest new avenues of attack on
these longstanding lower bound problems.

Our results complement the classical depth-3 reduction results of Valiant, which show that
logarithmic-depth circuits of linear size can be computed by an OR of 2εn nδ-CNFs, and slightly
stronger results for series-parallel circuits. It is known that no purely graph-theoretic reduction
could yield interesting depth-3 circuits from circuits of super-logarithmic depth. We overcome
this limitation (for small-size circuits) by taking into account both the graph-theoretic and
functional properties of circuits and formulas.

We show that improvements of the following pseudorandom constructions imply super-linear
circuit lower bounds for log-depth circuits via Valiant’s reduction: dispersers for varieties, cor-
relation with constant degree polynomials, matrix rigidity, and hardness for depth-3 circuits
with constant bottom fan-in. On the other hand, our depth reductions show that even modest
improvements of the known constructions give elementary proofs of improved (but still linear)
circuit lower bounds.
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1 Introduction

The Boolean circuit model is natural for computing Boolean functions. A circuit corresponds
to a simple straight line program where every instruction performs a binary operation on two
operands, each of which is either an input or the result of a previous instruction. The structure of
this program is extremely simple: no loops, no conditional statements. Still, we know no functions
in P (or even NP, or even ENP) that requires even 3.1n binary instructions (“size”) to compute on
inputs of length n. This is in sharp contrast with the fact that it is easy to non-constructively find
such functions: simple counting arguments show a random function on n variables has circuit size
Ω(2n/n) with probability 1− o(1) [Sha49].

The strongest known circuit size lower bound (3 + 1
86)n− o(n) was proved for affine dispersers

for sublinear dimension [FGHK16]. This proof, as well as all previous proofs for general circuit
lower bounds against explicit functions, is based on the method of gate elimination. The main idea
is to find a substitution to an input variable that eliminates sufficiently many gates from the given
circuit, and then proceed by induction. While this is the most successful method known so far
for proving lower bounds for unrestricted circuits, the resulting case analysis becomes increasingly
tedious: when eliminating (say) 3 or 4 gates, one must consider all possible cases when two of these
gates coincide. It is difficult to imagine a proof of 5n lower bound using these ideas. This intuition
was recently made formal in [GHKK18], where it was shown that a certain formalization of the
gate elimination technique is unable to obtain a stronger than 5n lower bound. Therefore we must
find new approaches for proving lower bounds against circuits of unbounded depth. Let us review
some of the prior results on various circuit models.

Linear Circuits. Superlinear lower bounds are not known even for linear circuits, i.e., circuits
consisting of only XOR gates (also known as ⊕ gates). Note every linear function with one output
has a circuit of size at most n − 1. For linear circuits, we consider linear transformations, multi-
output functions of the form f(x) = Ax where A ∈ Fm×n2 . For a random matrix A ∈ {0, 1}n×n,
the size of the smallest linear circuit computing Ax is Θ(n2/ log n) [Lup56] with probability 1 −
o(1), but for explicitly-constructed matrices the strongest known lower bound is 3n − o(n) due to
Chashkin [Cha94]. Interestingly, Chashkin’s proof is not based on gate elimination: he first shows
that the parity check matrix H ∈ {0, 1}logn×n of the Hamming code has circuit size 2n − o(n) by
proving that every circuit for H has at least n−o(n) gates of out-degree at least 2.1 Then he “pads”
H to an n × n matrix H ′ and shows that n − o(n) additional gates are needed for H ′. Similarly,
the best known lower bound on the complexity of linear circuits with log n ≤ m < o(n2) outputs is
2n+m− o(n) (also follows from [Cha94]).

Log-Depth Circuits. Nothing stronger than a (3 + 1
86)n− o(n) size lower bound is known even

for circuits of depth O(log n). It is straightforward to show that any function that depends on all of
its n variables requires depth at least log n. One can also present an explicit function that cannot
be computed by a circuit of depth smaller than 2 log n − o(log n) using Nechiporuk’s lower bound
of n2−o(1) on formula size over the full binary basis [Nec66]. Still, proving superlinear size lower
bounds for circuits of depth O(log n) remains a major open problem [Val77].

1All logarithms are base 2 unless noted otherwise.
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Constant-Depth Circuits. Another natural and simple model of computation is bounded-depth
unbounded fan-in circuits, which correspond to highly parallelizable computation. In this paper,
we focus on depth-2 circuits of the form AND ◦ OR (i.e., CNFs) and depth-3 circuits of the form
OR ◦ AND ◦ OR (i.e., ORs of CNFs), where the inputs of the circuit are variables and their
negations, and the gates have unbounded fan-in. Such circuits are much more structured, and
therefore are easier to analyze and to prove lower bounds. For example, it is easy to show that the
minimal number of clauses in a CNF computing the parity of n bits is equal to 2n−1, which yields
an optimal lower bound for depth-2 circuits. However, already for depth 3 there is a large gap
between known lower and upper bounds: it is known [Dan96, Ser18] that the minimum depth-3
circuit size of a random function on n variables is Θ(2n/2), but the best known lower bound for an
explicit function is 2Ω(

√
n) [H̊as86, HJP93, PPZ97, Bop97, PPSZ05, MW17].

Much stronger lower bounds are known for depth-3 circuits where the fan-in of the “bottom”
gates (those closest to the inputs) is bounded by a parameter k. Namely, for any k ≤ O(

√
n),

Paturi, Saks, and Zane [PPZ97] proved a 2n/k lower bound for computing parity, Wolfovitz [Wol06]

proved a lower bound of (1 + 1/k)n+O(logn) for ETHR n
k+1

2, and a stronger lower bound of 2
µkn

k−1 for

k ≥ 3 and some constants µk > 1 was proven in [PPSZ05] for a BCH code. For example, [PPSZ05]
gives a lower bound of 20.612n when the bottom fan-in of the circuit is k = 3, and a lower bound
of 2n/10 for the bottom fan-in k = 16. For the case of bottom fan-in k = 2, even a 2n−o(n) lower
bound is known [PSZ97].

A simple counting argument shows that for any constant k = O(1), a random function requires
depth-3 circuits of size 2n−o(n). Calabro, Impagliazzo, and Paturi [CIP06] construct a family of
2O(n2) explicit functions, most of which require depth-3 circuits with k = O(1) of size 2n−o(n).
Santhanam and Srinivasan [SS12] improve on this by constructing such a family of functions of size
2f(n) for every f(n) = ω(n log n).

DeMorgan Formulas. While explicit super-linear lower bounds for circuits are not known,
there are super-linear lower bounds for formulas. In this paper, we focus on the well-studied
DeMorgan formulas, which are circuits where every intermediate computation is used exactly once:
all gates have out-degree one, and the operations are fan-in two ANDs and ORs, with inputs
being variables and their negations. The two most successful methods for proving lower bounds
on DeMorgan formula size are random restrictions [Sub61, And87, IN93, PZ93, H̊as98, Tal14] as
well as Karchmer–Wigderson games and the Karchmer–Raz–Wigderson conjecture [Khr71, KW90,
KRW95, GMWW14, DM16]. Both approaches have led to a lower bound of n3−o(1) and are currently
stuck at giving stronger lower bounds.

1.1 Valiant’s Depth Reduction

Remarkably, a classical result of Valiant from the 70’s relates three of the four models above: linear,
log-depth, and constant-depth circuits. Using a depth reduction for DAGs [EGS75], Valiant [Val77]
shows that for any circuit of size cn and depth d, and for every integer k, one can remove at most
2ckn
log d wires such that the resulting circuit has depth at most d/2k. Letting k be a sufficiently large
constant, this wire-removal lemma shows how any circuit of size O(n) and depth O(log n) can be
converted into an OR ◦ AND ◦ OR circuit where the OR output gate has fan-in 2O(n/ log logn) and
the lower OR gates have fan-in O(nε) for any desired ε > 0. Hence, by exhibiting a function that

2ETHR n
k+1

outputs 1 if and only if the sum of the n input bits over the integers equals n
k+1

.
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has no depth-3 circuit with these restrictions, it follows that this function cannot be computed
by circuits of linear size and logarithmic depth. Unfortunately, the best known lower bounds on
depth-3 circuits (as mentioned earlier) are still too far from those required for this reduction.

In the same paper, Valiant introduced the notion of matrix rigidity (a similar notion was
independently introduced by Grigoriev [Gri76]) and related it to the size of linear circuits of log-
depth using ideas similar to those described above. Alas, the known lower bounds on matrix rigidity
are also far from being able to give new lower bounds on the size of log-depth linear circuits.

1.2 Our Results: New Depth Reductions

The main contributions of this paper are new reductions to depth-3 circuits that work for un-
restricted circuits and (conditionally) for super-cubic formulas, as well as new results connecting
various pseudorandom objects to circuit lower bounds. In particular, we show how to express
super-cubic DeMorgan formulas as subexponential-size depth-3 circuits of a certain form, under
the hypothesis that DeMorgan formulas have probabilistic polynomials of non-trivial degree. This
suggests an approach for improving formula size lower bounds, by proving strong lower bounds on
depth-3 circuits.

1.2.1 Depth Reductions for Circuits

In Valiant’s depth reduction, one can only have d/2k < log n (and< cn removed edges) for circuits of
depth d ≤ O(log n). Thus, Valiant’s depth reduction technique does not yield interesting results for
circuits of super-logarithmic depth. Moreover, Schnitger and Klawe [Sch82, Sch83, Kla94] construct
an explicit family of DAGs showing that the parameters achieved by Valiant are essentially optimal.
Their counterexamples convincingly show that a pure graph-theoretic approach to circuit depth
reduction cannot give non-trivial results for unrestricted circuits.

In this paper, we overcome this difficulty by presenting a counterpart of Valiant’s depth reduc-
tion that works for circuits of unrestricted depth. Our depth reduction takes into account not only
the underlying graph of a circuit, but also the functions computed by the circuit gates.

Our first result shows that unbounded-depth circuits of size less than 3.9n can be converted
into 2δn disjunctions of short 16-CNFs, for some δ < 1.

Theorem 1.1. Every circuit of size s can be computed as an OR
2d
s
2 e ◦ANDs ◦OR2 circuit and as

an OR
2d

s
3.9 e ◦AND214·s ◦OR16 circuit.

As a consequence, in order to prove a 3.9n − o(n) size lower bound on unrestricted circuits, it
suffices to provide a function that cannot be computed by an OR of fewer than 2n−o(n) 16-CNF’s.
To prove Theorem 1.1, we gradually transform the given circuit into an OR of CNF’s by carefully
picking a suitable internal gate and branching on its two possible output values. In contrast to
Valiant’s reduction, our transformation works for circuits of arbitrary depth. This is achieved by
an argument that takes into account both the graph structure of the circuit and the functional
properties of the gates involved. Since in this approach we can branch on internal gates (inside the
circuit), we can avoid a massive case analysis. This also distinguishes our approach from known
circuit lower bound proofs based on gate elimination, which must set input gates (or gates very
close to the inputs) for the argument to work.

It should be noted that known satisfiability algorithms based on branching, as well as circuit
lower bounds based on gate elimination [PPZ97, PPSZ05, Sch05, San10, CK15] may be viewed as
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depth-reductions for small circuits: if at most k variables are set in any branch before the circuit
has a “trivial” form, then the circuit can be expressed as an OR of 2k “trivial” forms. At the same
time, the known techniques in this line of work appear stuck at lower bounds of around 3n, and
provably cannot go beyond linear-size bounds [GHKK18].

On the way to proving Theorem 1.1, we study structural results about converting small cir-
cuits into disjunctions of k-CNFs, that have curious connections to properties of k-CNFs found in
the Satisfiability Coding Lemma [PPZ97, PPSZ05] and Sparsification Lemma [IPZ01, CIP06]. In
particular, we ask the following question.

Open Problem 1.1. Prove or disprove: for any constant c, any circuit of size cn can be computed
as an

OR2(1−δ(c))n ◦AND ◦ORγ(c)

circuit, for some δ(c) > 0 and integer γ(c) ≥ 1.

If such depth-3 circuits always existed, this would constitute a new approach to proving super-
linear circuit lower bounds. If no depth-3 circuit of this form exists for some linear-size circuits,
then we would have a separation between linear-size circuits and (for example) super-linear-size
series-parallel circuits (by Valiant’s reduction for such circuits, see Theorem 2.1). Note that for
the gate elimination method such limitations are known [GHKK18], and they do not apply to the
approach presented in this work.

Our second result is a new “non-rigidity” result for matrices with small linear circuits: if a matrix
M over F2 can be computed by a linear circuit of size s, then it is possible to flip at most 16 bits
in every row of M to drop its rank below s/4. This opens up an approach to proving linear circuit
lower bounds on sizes up to 4n.

Theorem 1.2. For every matrix M ∈ Fm×n2 of linear circuit complexity s, RM (bs/4c) ≤ 16 .

1.2.2 Pseudorandom Objects and Circuit Lower Bounds

The classical result by Valiant shows that improvements of known depth-3 circuit lower bounds
and rigid matrices imply super-linear log-depth circuit lower bounds. Our depth reductions show
that even modest improvements of the known constructions also give modest improvements of
unrestricted circuit lower bounds.

In Section 5, we show that Valiant’s and our reduction are applicable to two more types of
pseudorandom objects: dispersers for varieties, and functions having small correlation with low
degree polynomials. These implications are briefly summarized3 in Table 1.

1.2.3 Depth Reductions for Formulas

For DeMorgan formulas we give a conditional depth-reduction (stated informally, see Theorem 3.4
for a formal statement): if there is an ε > 0 such that DeMorgan formulas of size s have probabilistic
polynomials of degree s1−ε and error 1/3 over F2, then for some δ > 0 every DeMorgan formula
of size O(n3+δ) can be written as an approximate sum of 2n

1−γ
degree-n1−γ F2-polynomials for

3In this table we only present strongest implications from the strongest premises. Our reductions would still give
new circuit lower bounds even from weaker objects (see Section 5 for formal statements of the results). For example,
the second line of the table says that a lower bound of 2n−o(n) against depth-3 circuits would give a lower bound of
3.9n. On the other hand, a lower bound of 20.8n would lead to an elementary proof of a lower bound of 3.1n.
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improving known lower bound to lower bound implies lower bound

V sn
ε

3 (f) ≥ 2n
1−ε

[PPZ97] sn
ε

3 (f) ≥ 2
ω
(

n
log logn

)
slog(f) = ω(n)

* s16
3 (f) ≥ 2

n
10 [PPSZ05] s16

3 (f) ≥ 2n−o(n) s(f) ≥ 3.9n

V
(
nε,∞, 2n−n1/2−ε

)
-disp. [Rem16]

(
nε,∞, 2n−ω

(
n

log logn

))
-disp. slog(f) = ω(n)

*
(
16,∞, 2(1−ε)n)-disp. [VW08] (16, 1.3n, 2o(n))-disp. s(f) ≥ 3.9n

*
(

16, n
(logn)c , 2

o(n)
)

-disp. [CT15] (16, 1.3n, 2o(n))-disp. s(f) ≥ 3.9n

V RM
(
ω
(

n
log logn

))
> log log n [Fri93] RM

(
ω
(

n
log logn

))
> nε s⊕,log(M) = ω(n)

* RM ( n65) > 16 [PV91] RM (n− o(n)) > 16 s⊕(M) ≥ 4n

Table 1: Comparing the depth reductions of this paper (labeled with *) with the depth reduction
of Valiant [Val77] (labeled with V). We use the following notation (all formal definitions are given
in Sections 2 and 5): s(f) is the smallest size of a circuit computing f , slog refers to circuits of
depth O(log n), sk3 refers to circuits that are ORs of k-CNFs, s⊕ refers to circuits consisting of ⊕
gates only; (d,m, s)-disp. stands for a (d,m, s)-disperser, a function that is not constant on any
subset of the Boolean hypercube of size at least s that is defined as the set of common roots of at
most m polynomials of degree at most d; RM (r) is the row-rigidity of M for the rank r over F2,
i.e., the smallest row-sparsity of a matrix A such that rank(M ⊕A) ≤ r.

a constant γ > 0.4 Moreover, if there are probabilistic polynomials of degree O(
√
s) for DeMorgan

formulas of size s (which we conjecture is true), our depth reduction holds for DeMorgan formulas
of size n3.99.

Interestingly, the techniques used to express DeMorgan formulas as depth-3 circuits are totally
different from those used in Theorem 1.1 and 1.2. Namely, we first balance a formula (without
increasing its size too much), decompose it into a small top part and several small bottom formulas,
approximate the top part by a real-valued low-degree polynomial, then rewrite the bottom parts
as probabilistic polynomials (as hypothesized). Finally, we collapse these two polynomials into
a depth-3 circuit.

The hypothesis that lower-degree probabilistic polynomials exist for every DeMorgan formula
of size s looks very plausible. We have not found an example of a size-s formula that resists the
construction of an O(

√
s)-degree probabilistic polynomial. Note that such polynomials do exist in

the real-approximation sense [Rei11]. For example, every symmetric function (such as MAJORITY)
has probabilistic polynomials of O(

√
s) degree [AW15], and it is not hard to show that the layered

OR-AND tree of depth log2(s) has a probabilistic polynomial of O(
√
s) degree as well; in fact, any

layered tree of depth log2(s) with the same gate type at each layer (AND or OR) has such degree.5

It is possible that there are “nasty” formulas that resist lower-degree probabilistic polynomials, but
given the examples we already know, we do not know what they might look like.

4Similar results can be stated for Fp where p is any prime.
5Briefly: we can always write such formulas as either an OR of ANDs of O(

√
s) literals, or an AND of ORs of

O(
√
s) literals. From there, we can simply replace the output gate with an O(1)-degree probabilistic polynomial (as

in Razborov [Raz87]), and the other gates with exact polynomials of O(
√
s) degree.
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Open Problem 1.2. Prove or disprove: every DeMorgan formula of size s has a probabilistic
polynomial over F2 of degree O(

√
s) with constant error less than 1/2.

1.3 Motivating Example

Here we provide a simple example of a reduction of unbounded circuits to depth-3 circuits, to give
an idea of what is possible.

A formula is a circuit where every internal gate (i.e. not the inputs and not the output) has
out-degree exactly 1. In our simple example, we will show that a circuit of size, say, 2.7n can be
computed by an OR of 20.9n formulas of small size (2.7n). Since we know almost-quadratic lower
bounds [Nec66] on formula size, we may hope to find a function which is not computable by an OR
of � 2n linear-size formulas.

Lemma 1.3 (Toy Example). Every circuit of size s can be expressed as an OR of 2ds/3e formulas,
each of size less than s.

Proof. For a circuit C, let s(C) denote its size. For s ≤ 3, we just transform a circuit into a single
formula of the same size. For s > 3, we proceed by induction. If the given circuit C is a formula,
no transformation is needed. Otherwise take the topologically first gate G of out-degree at least 2.
Note G is computed by a formula (all previous gates have out-degree 1); let t = s(G) be the size of
this formula. Consider two minimum-size circuits C0 and C1 that compute the same function as C
on the input sets {x ∈ {0, 1}n : G(x) = 0} and {x ∈ {0, 1}n : G(x) = 1}, respectively. We claim
that s(C0), s(C1) ≤ s − t − 2 ≤ s − 3, since to compute C0 and C1 one can remove the subcircuit
in C computing gate G as well as two successors of G. The successors can be removed because
G outputs a constant on both parts of the considered partition of the Boolean hypercube, and all
gates in the subcircuit of G are only needed to compute G (G is computed by a formula). Now,
note that

C(x) ≡ (¬G(x) ∧ C0(x)) ∨ (G(x) ∧ C1(x)) .

Applying the induction hypothesis to C0 and C1, we can rewrite C as an OR of at most 2d(s−3)/3+1e ≤
2ds/3e formulas of size (s− t− 2) + (t+ 1) < s.

This result would imply a circuit lower bound of 3n−o(n) for any function that has correlation at
most 2−n+o(n) with all formulas of linear size. While we do know functions that have exponentially
small correlation 2−εn with formulas of linear size [San10, KLP12, ST13, KRT13, Tal14, IK17],
none of them gives a bound of 2−n+o(n). At any rate there is an inherent limitation for this toy
approach. By Parseval’s identity, every Boolean function has a Fourier coefficient ≥ 2−n/2. This
implies that the correlation of this function with the corresponding parity function is at least 2−n/2

(and this is essentially tight correlation with small formulas for a random function). Since every
parity on a subset of inputs can be computed by a formula of size ≤ n, Lemma 1.3 would only be
able to prove circuit lower bounds of 1.5n.

In order to prove stronger circuit lower bounds, we need to improve both parameters: the
constant 3 in the exponent, and the class of formulas we reduce circuits to. Our Theorem 1.1
achieves this: it reduces a circuit to an OR of 2d

s
3.9
e formulas, each of which is a 16-CNF. Therefore

strong enough correlation bounds against 16-CNFs would yield new circuit lower bounds.
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2 Definitions and Preliminaries

2.1 Unrestricted Circuits

Let Bn,m be the set of all Boolean functions f : {0, 1}n → {0, 1}m and let B2 = B2,1. A circuit is
a directed acyclic graph that has n nodes of in-degree 0 labeled with x1, . . . , xn that are called input
gates. All other nodes are called internal gates, have in-degree 2, and are labeled with operations
from B2. Some m gates are also marked as output gates. Such a circuit computes a function from
Bn,m in a natural way. The size s(C) of a circuit C is its number of internal gates. This definition
extends naturally to functions: s(f) is the smallest size of a circuit computing the function f .

The depth of a gate G is the maximum number of edges (also called wires) on a path from an
input gate to G. The depth of a circuit is the maximum depth of its gates. By slogn(f) we denote
the smallest size of a circuit of depth O(log n) computing f .

A circuit is called linear if it consists of ⊕ gates only. The corresponding circuit size measure
is denoted by s⊕.

Our unrestricted circuits are usually drawn with input gates at the top, so by a top gate of
a circuit we mean a gate that is fed by two variables.

2.2 Series-Parallel Circuits

A labeling of a directed acyclic graph G = (V,E) is a function ` : V → N such that for every edge
(u, v) ∈ E one has `(u) < `(v). A graph/circuit G is called series-parallel if there exists a labeling `
such that for no two edges (u, v), (u′, v′) ∈ E, `(u) < `(u′) < `(v) < `(v′). The corresponding
circuit complexity measure is ssp.

2.3 Depth-3 Circuits

Unlike unrestricted circuits, depth-3 circuits are usually drawn the other way around, i.e., with the
output gate at the top. In this paper, we focus on OR ◦AND ◦OR circuits, i.e., ORs of CNFs. We
will use subscripts to indicate the fact that the fan-in of a particular layer is bounded. Namely,
an ORp ◦ANDq ◦ORr circuit is an OR of at most p CNFs each of which contains at most q clauses
and at most r literals in every clause. Since the gates of a depth 3 circuit are allowed to have
an unbounded fan-in, it is natural to define the size of such a circuit as its number of wires. It
is not difficult to see that for k = O(1) the size of an OR ◦ AND ◦ ORk circuit is equal to the
fan-in of its output gate up to a polynomial factor in n. By sk3(f) we denote the smallest size of
an OR ◦AND ◦ORk circuit computing f .

2.4 Rigidity

We say that a matrix M ∈ Fm×n2 is s-sparse if each row of M contains at most s non-zero elements.
The rigidity of a matrixM ∈ Fm×n2 for the rank parameter r is the minimum sparsity of a matrixA ∈
{0, 1}m×n such that rankF2(M ⊕A) ≤ r:

RM (r) = min{s : rankF2(M ⊕A) ≤ r, A is s-sparse} .
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2.5 Probabilistic, Approximate, and Robust Polynomials

Since even functions of small circuit and formula complexity may only have large-degree polynomial
representations, it often proves convenient to use randomized polynomials or polynomials which
approximate (rather than exactly compute) a given function.

Definition 2.1 (Probabilistic polynomials). Let f : {0, 1}n → {0, 1} be a Boolean function. A
distribution D of n-variate degree-d polynomials over F2 is a probabilistic polynomial for f with
degree d and error ε if for every x ∈ {0, 1}n,

Pr
p∼D

[f(x) = p(x)] ≥ 1− ε.

Definition 2.2 (Approximate Polynomials). Let f : {0, 1}n → {0, 1} be a Boolean function. An
n-variate multilinear degree-d polynomial p over R is an approximate polynomial for f with degree
d and error ε if for every x ∈ {0, 1}n,

|p(x)− f(x)| ≤ ε.

Definition 2.3 (Robust Polynomials). Let f : {0, 1}n → [0, 1] be a polynomial over R. Then a
polynomial p : Rn → R is δ-robust for f if for every x ∈ {0, 1}n and for every ε ∈ [−1/3, 1/3]n,

|f(x)− p(x+ ε)| ≤ δ.

2.6 Valiant’s Depth Reductions

Here we formally recall the classical depth reduction results by Valiant [Val77].

Theorem 2.1 ([Val77, Cal08, Vio09]). For every c ≥ 1 and ε > 0 there exists a δ > 0 such that
every circuit C of size cn and depth c log n can be computed as

1. an OR
2

δn
log logn

◦AND ◦ORnε circuit

2. and as an OR2εn ◦AND ◦OR
2(logn)

1−δ circuit.

Furthermore, for every c ≥ 1 and ε > 0 there is a k ≥ 1 such that every series-parallel circuit of
size cn and unbounded depth can be computed as an OR2εn ◦AND ◦ORk circuit.

Theorem 2.1 applied to linear circuits yields the following.

Theorem 2.2 ([Val77, Cal08, Vio09]). Let M ∈ Fm×n be a matrix. For every c ≥ 1 and ε > 0
there exists δ > 0 such that, if a linear circuit C of size cn and depth c log n computes Mx for every
x ∈ Fn, then

1. RM
(

δn
log logn

)
≤ nε;

2. and RM (εn) ≤ 2(logn)1−δ .

Furthermore, for every c ≥ 1 and ε > 0 there is a k ≥ 1 such that if C is a series-parallel linear
circuit of size cn and unbounded depth, then RM (εn) ≤ k .
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3 Formula Depth Reduction

In this section, we give a (conditional) depth reduction for DeMorgan formulas. We start by
balancing a given formula. For this we use the following result due to Tal [Tal14].

Lemma 3.1 (Claim VI.2 in [Tal14]). Let F be a DeMorgan formula of size s over the set of
variables X = {x1, ..., xn}, and t be some parameter; then, there exist k ≤ 36s/t formulas over X,
denoted by T1, ..., Tk, each of size at most t, and there exists a read-once formula F ′ of size k such
that F ′(T1(x), ..., Tk(x)) = F (x) for all x ∈ {0, 1}n.

Below we will also make use of the following results by Reichardt [Rei11] and Sherstov [She12].

Theorem 3.2 ([Rei11]). If f : {0, 1}n → {0, 1} can be computed by a DeMorgan formula of size s,
then f has an approximate polynomial of degree O(

√
s) with error ε = 1/10.

Theorem 3.3 ([She12]). If f : {0, 1}n → [0, 1] is a polynomial of degree d over R, then there is a
δ-robust polynomial p for f of degree O(d+ log(1/δ)).

Now we are ready to present the main result of this section: Assuming DeMorgan formulas of size
s have probabilistic polynomials of degree O(s1−δ) for some δ > 0, we will obtain subexponential-
size depth-3 circuits computing formulas of super-cubic size.

In the following, a SUM gate will compute an approximate sum: a (real-weighted) sum of the
inputs such that, over all Boolean inputs, the sum is within ±1/3 of the 0-1 value of a desired
Boolean function.

Theorem 3.4. Suppose for some δ > 0, DeMorgan formulas of size ` have probabilistic polynomials
of degree `1−δ with error 1/3. Then for every α < δ/(1 − δ) there is a γ > 0, so that for every
formula F of size s = O(n3+α), there is a 2n

1−γ
-size approximate sum of degree-n1−γ F2-polynomials

computing F . That is, F can be computed by a

SUM
2n

1−γ ◦MOD2
2n

1−γ ◦ ANDn1−γ .

Proof. First, we apply Lemma 3.1 to F for some parameter t to be defined later. We obtain a
read-once formula F ′ of size k = O(s/t), and k formulas T1, . . . , Tk each of size ≤ t.

Let p be an approximate polynomial (over the reals) for F ′ of degree d = O(
√
k) with error

1/10, guaranteed by Theorem 3.2. Applying Theorem 3.3, we get a 1/10-robust polynomial p′ for
p of degree d′ = O(

√
k).

By the hypothesis of the theorem, we know that each Ti has a probabilistic polynomial of degree
O(t1−δ) with error ε = 1/3. For each Ti, draw O(log s) independent copies of this probabilistic
polynomial, and take their majority vote with an O(log s)-degree polynomial. For an appropriate
leading constant in the big-O, we can obtain a probabilistic polynomial for Ti of degree O(t1−δ ·log s)
with error 1/(10s).

Let D1, . . . ,Dk be probabilistic polynomials of degree D = O(t1−δ · log s) with error ε = 1/(10s)
for the formulas T1, . . . , Tk. The error bound ε = 1/(10s) guarantees that for every x ∈ {0, 1}n, all
k polynomials compute the correct value with probability at least 9/10.

Now for every Ti, we compute the average Ai (over the reals) of O(n) independent samples from
Di. By a Chernoff bound and union bound, each Ai is within ±1/10 of the correct 0-1 value for Ti,
over all 2n inputs x, with probability of error 1/ exp(n). By the properties of robust polynomials,

9



p′ fed the sums Ai will still output the correct value (within ±1/10) for all inputs x ∈ {0, 1}n, for
some choice of samples.

Therefore F can be computed by a

SUMnd′ ◦ PRODUCTd′ ◦ SUMO(n) ◦MOD2 ◦ ANDD.

Applying distributivity to the PRODUCT of SUMs, we get

SUMnd′ ◦ SUMnO(d′) ◦ PRODUCTd′ ◦MOD2 ◦ ANDD.

Noting the PRODUCTs now take 0/1 inputs, we can replace them with ANDs:

SUMnd′ ◦ SUMnO(d′) ◦ ANDd′ ◦MOD2 ◦ ANDD.

Taking the Fourier expansion of the AND function (see, e.g., (5) in Lemma 5.4), we can replace
each AND gate with a SUM of 2d

′
MOD2s of fan-in ≤ d′:

SUMnd′ ◦ SUMnO(d′) ◦ SUM2d′ ◦MOD2 ◦ ANDD.

Merging the SUMs, our final expression has the form:

SUMnO(d′) ◦MOD2 ◦ ANDD.

Finally, we want to choose a value of t so that the fan-in of the SUM is subexponential, and the
fan-ins of the AND’s are sublinear (which will also imply that the fan-in of the MOD2’s are sub-
exponential). Let t = n1+β, where β is an arbitrary number between α < β < δ/(1 − δ). Note
that

d′ = O(
√
k) = O(

√
s/t) = O(n1−β−α

2 ) = O(n1−γ)

for every 0 < γ < β−α
2 . Also, observe that

D = O(t1−δ · log s) = O(n1−(1−δ)(δ/(1−δ)−β) log n) = O(n1−γ)

for every 0 < γ < (1− δ)(δ/(1− δ)− β).
From the upper bounds on d′ and D, we have that F can be computed by

SUM
2n

1−γ ◦MOD2
2n

1−γ ◦ ANDn1−γ

for some γ > 0.

The above formula depth reduction shows that, if there are more efficient probabilistic poly-
nomials for DeMorgan formulas (and we have no reason to doubt this), then super-cubic formulas
have interesting representations as approximate sums of sub-exponentially many sub-linear degree
F2-polynomials. Recent work [Wil18, CW19] can already be applied to prove interesting lower
bounds against approximate sums of 2n

α F2-polynomials of degree nβ, where α + β < 1. The
remaining challenge will be to prove lower bounds when max{α, β} < 1.

4 Circuit Depth Reductions

In this section, we present new depth reductions for circuits with unrestricted depth.
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4.1 Linear Circuits

We start by considering linear circuits, i.e., circuits consisting of ⊕ gates only. For technical reasons,
we assume that there are n+ 1 input gates in a linear circuit: x1, . . . , xn as well as the constant 0.
For a matrix M ∈ {0, 1}m×n, we say that a linear circuit C with m outputs computes the linear
transformation M if the i-th output of C(x) equals the i-th row of Mx for all x ∈ {0, 1}n, treating
C(x) as the vector of output values. We say that a linear circuit C computing M is optimal if no
circuit of smaller size computes M .

The main result of this subsection asserts that matrices computable by small linear circuits are
not too rigid. The contrapositive says: to get an improved lower bound on the size of linear circuits,
it suffices to construct a matrix with good rigidity parameters. Below, we restate the corresponding
theorem formally and then prove it.

Theorem 1.2. For every matrix M ∈ Fm×n2 of linear circuit complexity s, RM (bs/4c) ≤ 16 .

Proof. Let C be an optimal circuit of size s computing M . If s < 16 or the depth of C is at
most 4, then each output depends on at most 16 variables. Hence M is 16-sparse and the theorem
statement holds. Consider this as the base case of an induction on s.

For the induction step, we “normalize” C. Namely, we show how to express M as the (modulo
2) sum of two F2-matrices A and B, where A is 16-sparse (each row has ≤ 16 ones) and B has
rank at most bs/4c. Note that if C has an output gate H of depth at most 4, then H depends on
at most 24 = 16 inputs. Thus the corresponding row rH of M has at most 16 ones. Consider the
(m − 1) × n matrix M−H obtained by removing rH from M . We claim that RM−H (bs/4c) ≤ 16
implies RM (bs/4c) ≤ 16. Indeed, suppose M−H = A−H ⊕ B−H where A−H is 16-sparse and
rank(B−H) ≤ bs/4c. To get matrices A and B for M , we simply add the row rH to A−H and a
corresponding all-zero row to B−H . Clearly, the resulting matrix A is 16-sparse and the rank of
the resulting matrix B does not change. Thus, in the following, we assume WLOG that C has no
output gates of depth at most 4. Our crucial step is the following claim.

Claim 4.1. Let C be an optimal linear circuit computing M ∈ {0, 1}m×n such that s(C) ≥ 16, and
no output gate of C has depth smaller than 5. Then there is a gate G in C and a linear circuit C′
computing a matrix M ′ ∈ {0, 1}m×n with the properties:

1. s(C′) ≤ s(C)− 4, and

2. for every x ∈ {0, 1}n, if G(x) = 0 then C(x) = C′(x).

For now, suppose the claim is proved. Consider the circuit C′, gate G in C, and matrix M ′

provided by Claim 4.1. Let g ∈ {0, 1}1×n be the characteristic vector of the linear function computed
by G, so that G(x) = gx. By the claim, gx = 0 implies (M ⊕M ′)x = 0. Hence (M ⊕M ′) is either
the zero matrix, or it defines the same linear subspace as g: M⊕M ′ = tg for a vector t ∈ {0, 1}m×1.

By the induction hypothesis, M ′ = A′ ⊕ B′ where A′ is 16-sparse, and rank(B′) ≤ b s−4
4 c =

b s4c−1. Thus, M = A′⊕B, where the matrix B = B′⊕ tg has rank at most bs/4c by subadditivity
of the rank function.

We now turn to proving the remaining claim.

Proof of Claim 4.1.
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Case 1: There is a gate G in C of depth at least 2 and at most 4, and has out-degree at
least 2. Let the predecessors of G be B and C, and call two of its successors D and E, see
Figure 4.1 (in this and the following figures, we write the out-degrees of some of the gates near
them). The circuit C′ is obtained from C by “assigning” the output of G to be 0. Note that
B(x) = C(x) for all x ∈ {0, 1}n where G(x) = 0. At least one of B and C must be an internal
gate (otherwise G would have depth 1), let it be C. Since C computes the same function as B,
it may be removed from C′: we remove it, and replace every wire of the form C → H by a new
wire B → H. Note that neither G nor C is an output gate. Now, we show that both D and E
can also be removed. Let us focus on the gate D (for E it is shown similarly) and call its
other predecessor F . Since G = 0, the gate D computes the same function as F . This means
that one may remove D: we remove it and replace every wire D → H by a wire F → H.
If D happens to be an output gate, we move the corresponding output label from D to F .

B ⊕ C

⊕G

⊕D ⊕ E

F

Case 1: assuming G = 0, the
gate G is removed, B is re-
placed by C, and D and E are
replaced by their other prede-
cessors.

xi

⊕D

⊕
1

C

⊕
1

B

⊕G

⊕E

⊕ F

Case 2: assuming G = 0, the
gates B, C, and G are removed
whereas E is replaced by F .

Figure 1: Cases in the proof of Claim 4.1.

Case 2: All gates of depth at least 2 and at most 4 have out-degree exactly 1 in C. Take
a gate G of depth 4 and trace back its longest path to an input: xi → D → C → B → G. Let
also E be the successor of G (which exists because C has depth at least 5). By assumption,
gates B and C have out-degree 1. This means that in C they are only used for computing the
gate G. This, in turn, means that assuming G = 0, we can remove G, B, and C (note none
of them is an output). Finally, the gate E can be replaced by the other input F of E (note
F /∈ {B,C,G}, since C is optimal).

This completes the proof.

Remark 4.2. Extending the same ideas, one can show that any linear circuit C of size s can be
computed by an OR

2d
s
4 e ◦ ANDs·214 ◦ OR16 circuit. For this, one considers two optimal circuits C0
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and C1 resulting from C by assuming G = 0 and G = 1, respectively. As shown in the proof, both
C0 and C1 have size at most s− 4. One then proceeds by induction. We illustrate this approach in
full detail in the next subsection.

Remark 4.3. The proof of Theorem 1.2 gives a decomposition M = A⊕ B = A⊕ (C ·D), where
A ∈ Fm×n is 16-sparse, C ∈ Fm×s/4 is composed of vectors t, and D ∈ Fs/4×n is composed of
vectors g. Since the chosen gate G always has depth at most four, the vector g is 16-sparse. Thus,
we in fact have a decomposition M = A⊕ (C ·D), where both A and D are 16-sparse. In particular,
the row-space of M is spanned by the union of row-spaces of A and D. This implies that the row-
space of M can be spanned by at most (m+ s

4) 16-sparse vectors. The corresponding matrix property
is called outer dimension, and it is studied in [PP06, Lok09]. While the current lower bounds on the
outer dimension of explicit matrices do not lead to new circuit lower bounds, it would be interesting
to study their applications in this context.

4.2 General Boolean Circuits

In this section, we study the following natural question: given a Boolean circuit6 and given an
integer k ≥ 2, what is the smallest OR ◦AND ◦ORk circuit computing the same function? To this
end, we introduce the following notation. For an integer k ≥ 2, we define α(k) as the infimum of
all values α such that any circuit of size s can be rewritten as a OR2αs ◦AND ◦ORk circuit.

For proving upper bounds on α(k) it will be convenient to consider the following class of circuits.
Let ORp ◦ ANDq ◦ C(r) be a class of circuits with an output OR that is fed by at most p AND’s
of at most q circuits of size at most r.

Theorem 4.4. Every circuit of size s can be computed as:

1. an OR
2d
s
2 e ◦ANDd s

2
e ◦ C(1) circuit;

2. an OR
2d

s
3.9 e ◦ANDd s

3
e ◦ C(15) circuit.

Note that any circuit of size r depends on at most r+ 1 variables, and hence can be written as
an (r + 1)-CNF with at most 2r clauses. Therefore every ORp ◦ANDq ◦ C(r) circuit can be easily
converted into a ORp ◦ ANDq2r ◦ ORr+1 circuit. Thorem 1.1, which we restate below, is then an
immediate corollary of Theorem 4.4. In turn, it implies that α(2) ≤ 1

2 and α(16) ≤ 1
3.9 .

Theorem 1.1. Every circuit of size s can be computed as an OR
2d
s
2 e ◦ANDs ◦OR2 circuit and as

an OR
2d

s
3.9 e ◦AND214·s ◦OR16 circuit.

Proof of Theorem 4.4. Both parts are proven in a similar fashion. We proceed by induction on s.
The base case is when s is small. We then just have an OR1 ◦AND1 ◦ C(s) circuit.

For the induction step we take a gate G of C and consider two circuits C0 and C1 where Ci com-
putes the same as C on all inputs {x ∈ {0, 1}n : G(x) = i}. We may assume both Ci’s are minimal
size among all such circuits. Since Ci can be obtained from C by removing the gate G (as it computes
the constant i on the corresponding subset of the Boolean hypercube), we conclude that s(Ci) < s.
This allows us to proceed by induction. Assume that by the induction hypothesis Ci is guaranteed

6In this section we consider functions with one output, but these results can be trivially generalized to the multi-
output case.
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to be expressible as an ORpi ◦ ANDqi ◦ C(ri) circuit. We use the following identity to convert C
into the required circuit:

C(x) ≡ ([G(x) = 0] ∧ C0(x)) ∨ ([G(x) = 1] ∧ C1(x)) . (1)

Assume that the subcircuit of C computing the gate G has at most t gates. We claim that [G(x) =
i] ∧ Ci can be written as an ORpi ◦ ANDqi+1 ◦ C(max{ri, t}) circuit. For this, we just feed a new
circuit computing G to every AND gate. Plugging this into (1), gives an

ORp0+p1 ◦ANDmax{q0,q1}+1 ◦ C(max{t, r0, r1}) (2)

circuit for computing C.
Below, we provide details specific to each of the two items from the theorem statement. In

particular, we estimate the parameters pi’s, qi’s, ri’s, and t and plug them into (2).

1. The base case is s = 1. Then C consists of a single gate and can be expressed as an OR1 ◦
AND1 ◦ C(1) circuit. For the induction step, assume that s ≥ 2 and take a gate A that
depends on two variables. Let G = A, hence t = 1. The gate A must have at least one
successor (otherwise C can be replaced by a circuit with smaller than s gates). Clearly,

A and its successors are not needed in Ci’s. Hence, by the induction hypothesis pi ≤ 2
s−2
2

+1,
qi ≤ s−2

2 + 1, ri ≤ 1. Plugging this into (2) gives the desired result.

2. Take a gate A that is fed by two variables x and z and has the maximum distance to an
output. If its distance to output is at most 4, then s(C) ≤ 15 and we just rewrite it as
an OR1 ◦AND1 ◦C(15) circuit. This is the base case. Assume now that the distance from A
to the output gate is at least 5. In the analysis below, we always “follow” the longest path
from A to the output. This allows us to conclude that any such path is long enough and
hence each gate considered has positive out-degree (i.e., is not an output). Moreover, each
gate on this path cannot depend on too many variables. Let B be a successor of A on the
longest path to the output.

In the five cases below, we show that we can always find a gate G that s(G) ≤ 15 and
both s(C0) and s(C1) are small enough. In particular, s(C0), s(C1) ≤ s − 4 works for us:

p0 + p1 ≤ 2 · 2d
s−4
3.9
e < 2d

s
3.9
e, max{q0, q1}+ 1 ≤ d s−4

3 e+ 1 < d s3e.
See Figure 2 for an illustration of the five cases. For a gate G, by out(G) we denote the
out-degree of G.

Case 1: out(B) = 1. Let C be the successor of B.

Case 1.1: out(C) = 1. Let E be the successor of C. Let G = E. In Ci’s, one removes B,
C (as they were only needed to compute E that is now a constant), E, and the
successors of E.

Case 1.2: out(C) ≥ 2. Let G = C. In Ci’s, one removes B, C, and the successors of C.

Case 2: out(B) ≥ 2. Let D be the other input of B. It may be a gate or an input variable.
If B computes a constant Boolean binary operation or an operation that depends on A
or D only, then C is not optimal. Otherwise, B computes one of the following two types
of functions (either linear or quadratic polynomial over F2):
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x z

A

1
B

1
C

E

Case 1.1: when
E is constant,
one removes B,
C, E, and succes-
sors of E.

x z

A

1
B

2+

C

Case 1.2: when
C is constant,
one removes B,
C, and successors
of C.

x z

A
D

⊕
2+

B

Case 2.1: when
B is constant,
one removes B
and its succes-
sors, replace A
by D ⊕ c.

x z

A
1

∧
2+

B

Case 2.2.1: when
B is constant,
one removes B
and its succes-
sors, and A.

x z

A
2+

∧
2+

B

Case 2.2.2:
when B is con-
stant, one re-
moves B and its
successors; more-
over, B = 1 it
forces A to be
a constant and
removes A and
its successors.

Figure 2: Cases in the proof of the second part of Theorem 4.4.

Case 2.1: B(A,D) = A⊕D⊕ c where c ∈ {0, 1}. Let G = B. In Ci’s, one immediately
removes B and its successors. Also, in Ci, D⊕A = i⊕ c. Hence, A may be replaced
by D ⊕ i⊕ c.

Case 2.2: B(A,D) = (A⊕ a) · (D ⊕ d)⊕ c where a, d, c ∈ {0, 1}.
Case 2.2.1: out(A) = 1. Let G = C. In Ci’s, one removes B, its successors, and A.

Case 2.2.2: out(A) ≥ 2. Let D be the other successor of B. Let G = B. In
Ci’s, one removes B and its successors. Also, B = c ⊕ 1 forces A = a ⊕ 1
and D = d ⊕ 1. Hence, in Cc⊕1 two additional gates are removed: A and its
successors (if a successor of B happens to be a successor of A also, then it is
a function on A and D and the circuit can be simplified, which contradicts its

optimality). Hence, p0 + p1 ≤ 2d
s−3
3.9
e + 2d

s−5
3.9
e . This is smaller than 2d

s
3.9
e since

2−
3
3.9 + 2−

5
3.9 < 1.

This completes the proof.

Remark 4.5. It is not difficult to see that the output OR gate is a “disjoint OR”, and can be
replaced by a SUM gate over the integers. In other words, for every x ∈ {0, 1}n, at most one
subcircuit feeding into the OR gate may evaluate to 1. This holds because we always consider two
mutually exclusive cases: G = 0 or G = 1.

4.3 Properties of α(k)

We start by observing a lower bound on α(k).
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Lemma 4.6. For any integer k ≥ 2, α(k) ≥ 1/k.

Proof. Let ⊕n denote the parity function of n inputs. It has 2n−1 inputs where it is equal to 1 and
all these inputs are isolated, that is, the Hamming distance between any pair of them is at least
2. As proven by Paturi, Pudlák, and Zane [PPZ97], every k-CNF has at most 2n(1−1/k) isolated
satisfying assignments. This implies that ⊕n cannot be computed by an OR of fewer than 2n/k−1

k-CNFs. Since s(⊕n) = n− 1, this implies that

α(k) ≥
n
k − 1

n− 1
.

Since this must hold for arbitrary large n, α(k) ≥ 1/k.

Thus, we know the exact value of α(2) = 1
2 . This immediately implies a circuit lower bound of

2n−o(n) for BCH codes. Indeed, it was shown in [PSZ97] that when the bottom fan-in is restricted
to k = 2, then BCH codes require depth-3 circuits of size 2n−o(n). And, since α(2) = 1

2 , they must
have circuit complexity at least 2n− o(n).

One can use techniques from Theorem 4.4 to prove an upper bound of α(3) ≤ log2 3
4 . Thus, we

know that
1

3
≤ α(3) ≤ log2 3

4
< 0.3963 .

We conjecture that the upper bound on α3 is tight. One way to prove this would be to find
the s3

3 complexity of the inner product function: IP(x1, . . . , xn) = x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−1xn. In

particular, if the upper bound shown in the next lemma is tight, then α(3) = log2 3
4 .

Lemma 4.7.

1. 2
n
4 ≤ s2

3(IP) ≤ 2
n
2
−o(n).

2. 2
n
6 ≤ s3

3(IP) ≤ 3
n
4 .

Proof. Note that by substituting every other input of IP by 1, one gets the parity function ⊕n
2

on
the remaining n/2 inputs. Now both lower bounds follow from the corresponding lower bounds for

the parity function: s2
3(⊕k) ≥ 2

k
2 and s3

3(⊕k) ≥ 2
k
3 .

1. The first upper bound follows from the fact that IP(x1, . . . , xn) = 1 iff there is an odd number
of ones among

p1 = x1x2, p2 = x3x4, . . . , pn
2

= xn−1xn .

Hence,

IP(x1, . . . , xn) ≡
∨

S⊆[n
2

] : |S| mod 2=1

∧
i∈S

[pi = 1] ∧
∧
i 6∈S

[pi = 0]

 .

It remains to note that each [pi = c] can be expressed as a 2-CNF because pi depends on two
variables.

2. For the second upper bound, note that IP(x1, . . . , xn) = 1 iff there is an odd number of 1’s
among

p1 = x1x2 ⊕ x3x4, p2 = x5x6 ⊕ x7x8, . . . , pn
4

= xn−3xn−2 ⊕ xn−1xn .
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To compute IP by a depth 3 circuit, we go through all possible 2
n
4
−1 values of p1, . . . , pn

4
such

that an odd number of them is equal to 1:

IP(x1, . . . , xn) ≡
∨

S⊆[n
4

] : |S| mod 2=1

∧
i∈S

[pi = 1] ∧
∧
i 6∈S

[pi = 0]

 (3)

Now, we show that [pi = 0] can be written as a single 3-CNF, whereas [pi = 1] can be expressed
as an OR of two 3-CNFs. W.l.o.g. assume that i = 1. The clauses of a 3-CNF expressing
[pi = 0] should reject all assignments to x1, x2, x3, x4 ∈ {0, 1} where IP(x1, x2, x3, x4) = 1. In
all such assignments, one of the two monomials (x1x2 and x3x4) is equal to 0 whereas the other
one is equal to 1. Hence, one needs to write down a set of clauses rejecting the following four
partial assignments: {x1 = 0, x3 = x4 = 1}, {x2 = 0, x3 = x4 = 1}, {x1 = x2 = 1, x3 = 0},
{x1 = x2 = 1, x4 = 0}. Thus,

[p1(x1, x2, x3, x4) = 0] ≡ (x1∨¬x3∨¬x4)∧(x2∨¬x3∨¬x4)∧(¬x1∨¬x2∨x3)∧(¬x1∨¬x2∨x4) .

In turn, to express [p1 = 1] as an OR of two 3-CNFs we consider both assignments to x1:

[p1(x1, x2, x3, x4) = 1] ≡ ((x1) ∧ [x2 ⊕ x3x4 = 0]) ∨ ((¬x1) ∧ [x3x4 = 1]) .

It remains to note that each of [x2 ⊕ x3x4 = 0] and [x3x4 = 1] can be written as a 3-CNF.
Let [pi = 0] ≡ Pi and [pi = 1] ≡ ((xi) ∧Qi) ∨ ((¬xi) ∧Ri) where Pi, Qi, and Ri are 3-CNFs.
One may then expand (3) as follows:

∨
S⊆[n

4
] : |S| mod 2=1

∨
T⊆S

∧
i∈T

((xi) ∧Qi) ∧
∧

i∈S\T

((¬xi) ∧Ri) ∧
∧
i 6∈S

Pi


The fan-in of the resulting OR-gate is

∑
S⊆[n

4
] : |S| mod 2=1

2|S| ≤

n
4∑
i=0

(
n/4

i

)
2i = 3

n
4 .

Open Problem 4.1. Determine s3
3(IP).

Besides finding the exact values of α(k), it would be interesting to find out whether every circuit
of linear size can be computed by a non-trivial depth 3 circuit with constant bottom fan-in. We
restate this open problem below.

Open Problem 1.1. Prove or disprove: for any constant c, any circuit of size cn can be computed
as an

OR2(1−δ(c))n ◦AND ◦ORγ(c)

circuit, for some δ(c) > 0 and integer γ(c) ≥ 1.
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This paper supports the conjecture by showing that it holds for small values of c. As an-
other example, we can consider a class of functions where we know linear upper bounds on cir-
cuit complexity. For any symmetric function f (i.e., a function whose value depends only on
the sum over integers of the input bits) we know that s(f) ≤ 4.5n + o(n) [DKKY10]. It is also
known [PSZ97, Wol06] that symmetric functions can be computed by relatively small depth-3
circuits: sk3(f) ≤ poly(n) · (1 + 1/k)n (and this bound is tight [Wol06]).

Since in our depth reduction results, we always get k-CNFs with small linear number of clauses,
it is interesting to study the expressiveness of OR of exponential number of such k-CNFs. Let
us define α(k, c) as the infimum of all values α such that any circuit of size at most cn can be
computed as an OR2αn ◦ ANDcn ◦ ORk. We can upper bound the rate of convergence of α(k, c)
using the following width reduction result for CNF-formulas [Sch05, CIP06].

Theorem 4.8 ([Sch05, CIP06]). For any constant 0 < ε ≤ 1 and a function C : N→ N, any CNF
formula f with n variables and n · C(n) clauses can be expressed as f = ORt

i=1fi, where t ≤ 2εn

and each fi is a k-CNF formula with at most n · C(n) clauses, where k = O
(

1
ε · log

(
C(n)
ε

))
.

For our applications, we are interested in α(k, c) for small fixed c. Since for every c, α(k, c) is
a non-increasing bounded sequence, we let α(∞, c) = limk→∞ α(k, c). Then Theorem 4.8 implies

that α(k, c) ≥ α(∞, c) ≥ α(k, c)−O
( log(ck)

k

)
.

5 Applications

In this section, we state formally the results that are presented in the last three row-blocks of Table 1.
Namely, we show that improving the parameters for the known explicit constructions of the following
pseudorandom objects imply circuits lower bounds via depth reduction techniques presented in the
previous section:

• functions that are not constant on any large algebraic variety in {0, 1}n defined by polynomials
of small degree (such functions are called dispersers);

• functions that agree with any polynomial of small degree on roughly half of the points in
{0, 1}n;

• matrices that are far from matrices of small rank.

For comparison, we also show what these tools give when applied to Valiant’s reductions.

5.1 Dispersers

In this section we show that dispersers for algebraic varieties over F2 cannot be computed by
small circuits. We note that dispersers for varieties of degree one have been used for proving lower
bounds on unrestricted circuits [DK11, FGHK16], and it is known that an explicit construction of a
disperser for varieties of degree two would slightly improve the known circuit lower bounds [GK16].
Now we show that dispersers for varieties of degree 16 will give new circuit lower bounds via a new
simple method.
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Definition 5.1. A set S ⊆ {0, 1}n is called an (d,m)-variety if it is a set of common roots of at
most m polynomials of degree at most d:

S = {x ∈ {0, 1}n : p1(x) = · · · = pm(x) = 0, deg(pi) ≤ d for all 1 ≤ i ≤ m} .

A set S is called a d-variety (or a variety of degree d) if it is an (d,∞)-variety.

Definition 5.2. A Boolean function f : {0, 1}n → {0, 1} is called a (d,m, s)-disperser (for parame-
ters d,m, and s which possibly depend on n) if f is non-constant on any (d,m)-variety S ⊆ {0, 1}n
of size larger than s.

We will make use of the Sparsification Lemma first proven by Impagliazzo, Paturi and
Zane [IPZ01]. The dependence of C on k was later improved in [CIP06]. (And this is essentially
tight by [MRW05].)

Theorem 5.1 (Corollary 1 in [IPZ01], Section 6 in [CIP06]). For all ε > 0 and positive k, there
exists C such that any k-CNF formula f with n variables can be expressed as f = ORt

i=1fi, where

t ≤ 2εn and each fi is a k-CNF formula with at most Cn clauses, where C = O
((

k
ε

)3k)
.

Now we are ready to state the main result of this section.

Theorem 5.2. Let f : Fn → F be a function with |f−1(1)| ≥ |f−1(0)| and ε > 0 be a constant.7

• If f is an (16, 1.3(1− ε)n, 2εn)-disperser, then s(f) ≥ 3.9(1− ε)n− 4.

• If f is an (ω(1), O(n), 2(1−ε)n)-disperser, then ssp(f) = ω(n).

• If f is (2(logn)1−o(1) ,∞, 2(1−ε)n)-disperser, then slog(f) = ω(n).

• If f is (nε,∞, 2n−ω(n/ log logn))-disperser, then slog(f) = ω(n).

Proof.

• From Theorem 4.4, we know that if f is computable by a circuit of size s, then f is also
computable by a circuit C ∈ OR2s/3.9 ◦ANDs/3◦C(15). Let t = 2s/3.9, and let f1, . . . , ft : Fn →
F be the t functions computed in the gates of the AND level of C. Since f = ORt

i=1fi, we
have that f−1(1) =

⋃t
i=1 f

−1
i (1). Thus,

2n−1 ≤
∣∣f−1(1)

∣∣ ≤ t∑
i=1

|f−1
i (1)| ≤ t ·max

i
|f−1
i (1)| . (4)

Each fi is an ANDs/3 ◦ C(15), that is, a set of common roots of s/3 polynomials of degree
16 (recall that over F2 every monomial is multilinear; hence a circuit of size 15 computes
a polynomial of degree at most 16). Since f is a disperser for varieties of size 2εn defined
by s/3 polynomials of degree 16, each f−1

i (1) ≤ 2εn. Now, (4) implies that s/3.9 ≥ n−εn−1.

7If |f−1(1)| < |f−1(0)|, one can consider the negation of f , since taking negations does not change the disperser
parameters.
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• The proofs of items (2)–(4) of this theorem follow the same pattern, so we only present the
proof of the second item. Assume, towards a contradiction, that an (ω(1), O(n), 2(1−ε)n)-
disperser f can be computed by a series-parallel circuit of size cn. From Theorem 2.1, such a
circuit can be expressed as a circuit C ∈ OR

2
εn
3
◦AND◦ORk for k = k(c, ε). By Theorem 5.1,

each k-CNF computed by the AND gates of C, can be replaced by an OR of 2
εn
3 k-CNFs with

Cn clauses each where C = C(δ, ε). Let t = 2
2εn
3 , and let f1, . . . , ft : Fn → F be the t k-CNFs

with Cn clauses whose OR computes f . Now we have that each fi is an ANDCn ◦ORk, that
is, a set of common roots of Cn polynomials of degree k (each computing an ORk). From the
disperser property of f , we have that each fi computes at most 2(1−ε)n ones of f . Therefore,
in order to compute all ≥ 2n−1 ones of f , t must be greater than 2εn−1, which contradicts
the definition t = 2

2εn
3 .

We remark that in the first item of Theorem 5.2, even dispersers for varieties defined by 1.3(1−
ε)n functions of 16 variables (rather than all polynomials of degree 16) will suffice for proving a
lower bound.

In order to prove a new circuit lower bound against unrestricted circuits, it suffices to construct
a (16, 1.05n, 20.2n)-disperser. There are known constructions of dispersers for constant-degree vari-
eties over large fields [Dvi12, BSG12, LZ19]. For F2, a long line of work achieved almost optimal
dispersers for degree d = 1 varieties, which are not constant on sets of size 2(logn)c for a con-
stant c [Li16]. Also, the known constructions can handle large varieties of large degrees [Rem16],
or smaller varieties of size 2αn of constant degree (for a constant α) [LZ19]. On the other hand,
the result of Cohen and Tal [CT15, Theorem 5], together with an efficient construction of affine

dispersers from [Li16], gives an explicit construction of
(

16, n
(logn)c , 2

o(n)
)

-disperser (it handles va-

rieties of the desired size, but only defined by fewer polynomials). Thus, although the currently
known constructions do not suffice for proving new lower bounds, they are tantalizingly close to
the ones needed for a simple proof of circuit lower bounds via Theorem 4.4.

We conclude this section with a simple counting argument showing that a random function is
a disperser with great parameters.

Lemma 5.3. Let d = d(n), m = m(n), s = s(n) be such that s > 3dmnd. Then a random function
f : {0, 1}n → {0, 1} is a (d,m, s)-disperser with probability 1− o(1).

Proof. Consider a function f that is not a (d,m, s)-disperser. That is, f is constant on some
(d,m)-variety. In particular, f can be uniquely specified by

1. a (d,m)-variety V where f is constant,

2. one of the two possible constant values that f takes on V ,

3. values at the remaining (at most 2n − s) points.

There are k =
∑d

i=0

(
n
i

)
≤ 2dnd monomials of degree at most d over {x1, . . . , xn} (as any

monomial is multilinear). Therefore, there are 2k polynomials of degree at most d, and at most 2mk

(d,m)-varieties. Therefore, the number of functions f which are not (d,m, s)-dispersers is bounded
from above by

2mk · 2 · 22n−s ≤ 22dndm+1+2n−s ≤ 22n · o(1)

Thus, a random function is an (d, k, s)-disperser with probability at least 1− o(1).
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5.2 Correlation with Polynomials

In this section we show that a function that has small correlation with low-degree polynomials
has high circuit complexity. We show this by using a known connection between correlation with
polynomials and dispersers for varieties.

Definition 5.3. For two functions f, g : Fn → F, we define their correlation as

Cor(f, g) =
∣∣∣Pr
x

[f(x) = g(x)]− Pr
x

[f(x) 6= g(x)]
∣∣∣ ,

where x is drawn uniformly at random from Fn.

By Cor(f, d) we denote the correlation of a function f with polynomials of degree d:

Cor(f, d) = max
g

Cor(f, g) ,

where the maximum it taken over all polynomials g of degree at most d.
There are several constructions of functions that have small correlation with polynomials of

low degree [Raz87, Smo87, BNS92, VW08, Dvi12, Rem16], or sparse polynomials [Vio07]. In par-

ticular, the generalized inner product function has correlation 2
−Ω
(

n

4d·d

)
with polynomials of de-

gree d [BNS92], and Viola and Wigderson [VW08] constructed a function with correlation 2
−Ω
(
n

2d

)
with polynomials of degree d. See [Vio09] for an overview of the known bounds on correlation.

We use the fact that small correlation with polynomials of degree d implies small correlation
with products of polynomials of degree d, and, as a consequence, a disperser for varieties of degree d.

Lemma 5.4 (Implicit in [Dvi12, CT18, LZ19]). If Cor(f, d) ≤ ε, then f is (d,∞, ε · 2n)-disperser.

Proof. Consider a variety V = {x ∈ {0, 1}n : q1(x) = · · · = qk(x) = 0}, where each qi : Fn → F is a
non-constant polynomial of degree at most d. Let g(x) =

∏k
i=1(qi(x)⊕ 1) be the indicator function

of V , and from the Fourier expansion we have

g(x) =

∑
S⊆{1,...,k}(−1)

∑
i∈S qi(x)

2k
. (5)

Now note that for any S ⊆ {1, . . . , k},∣∣∣Ex [(−1)f(x)+
∑
i∈S qi(x)

]∣∣∣ = Cor

(
f,
∑
i∈S

qi(x)

)
≤ ε ,

because
∑

i∈S qi(x) is a polynomial of degree at most d and Cor(f, d) ≤ ε. Now∣∣∣Ex [(−1)f(x) · g(x)
]∣∣∣ =

∣∣∣∣∣Ex
[

(−1)f(x) ·
∑

S⊆{1,...,k}(−1)
∑
i∈S qi(x)

2k

]∣∣∣∣∣
=

1

2k

∣∣∣∣∣∣Ex
 ∑
S⊆{1,...,k}

(−1)f(x)+
∑
i∈S qi(x)

∣∣∣∣∣∣
≤ 1

2k

∑
S⊆{1,...,k}

∣∣∣E [(−1)f(x)+
∑
i∈S qi(x)

]∣∣∣
≤ 2kε

2k
= ε .
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In particular, for any variety V of size |V | > ε2n, f(x) is not constant on V .

Now Theorem 5.2 and Lemma 5.4 imply the following result.8

Theorem 5.5. Let f ∈ Bn and ε > 0 be a constant.

• If Cor(f, ω(1)) ≤ 2−εn, then ssp(f) = ω(n).

• If Cor(f, 2(logn)1−o(1)) ≤ 2−εn, then slog(f) = ω(n).

• If Cor(f, nε) ≤ 2−ω(n/ log logn), then slog(f) = ω(n).

5.3 Rigidity

In order to prove super-linear circuit lower bounds for log-depth circuits via Valiant’s reduction,

one needs to construct matrices M with rigidity RM
(

δn
log logn

)
> nε or rigidity RM (εn) > 2(logn)1−δ

for some constant ε > 0 and every constant δ > 0. For super-linear lower bounds for series-parallel
circuits, one needs to find matrices with rigidity RM (εn) > δ. Also, Razborov [Raz89] proved
that rigidity RM

(
2(log logn)c

)
> n

2(log logn)ε for all c ≥ 1 gives a language that does not belong to
the polynomial hierarchy for communication complexity. The best known explicit lower bound on
rigidity for every r is R(r) ≥ Ω

(
n
r log n

r

)
[Fri93, PV91, SSS97, Lok09].9 Thus, for new bounds via

Valiant’s reduction (or Razborov’s reduction for communication complexity), one needs to improve
the known bounds asymptotically.

In order to get new circuit lower bounds via Theorem 1.2, we need to find a matrix M ∈ Fn×n
with rigidity RM (0.75n) > 16 (or a rectangular matrix M ∈ Fm×n for m ≥ n which is rigid
for higher rank RM (n2 + m

4 ) > 16). There are several explicit construction of matrices having
rigidity R(εn) > 16 for some constant ε [Fri93, PV91, SSS97, Lok09]. Valiant [Val77] showed that

a random matrix M ∈ Fn×n has rigidity R(r) ≥ (n−r)2−2n−logn
n log(2n2)

for any r < n −
√

2n+ log n. In

particular, RM (n− 6
√
n log n) > 16 for a random matrix M . As for explicit constructions, Pudlák

and Vavř́ın [PV91] found the exact value of rigidity (for every rank r) of the upper triangular
matrix Tn ∈ Fn×n. In particular, they showed that R( n65) > 16. A matrix which is rigid for larger
values of rank (at the price of having more outputs) was given in [PR94] and [JS13, Theorem 3.36]:
A generator matrix M ∈ Fm×n of a linear code with relative distance δ > 0 for any r ≤ n/16 has
rigidity

RM (r) ≥ δn log(n/r)

8(r + log(n/r))
.

We now show that using the ideas from [Fri93, SSS97], one can improve this constant, but this is
still not sufficient for getting new bounds using Theorem 1.2.

8We remark that we do not apply these results to the depth reduction presented in this paper, but only to
Valiant’s depth reduction. Indeed, it would only give us a statement of the form: If Cor(f, 16) ≤ 2−n(1−ε), then
s(f) ≥ 3.9(1 − ε)n − 4. But as we noted in Section 1.3, every Boolean function has correlation at least 2−n/2 with
some linear polynomial.

9There is also a semi-explicit construction due to Goldreich and Tal [GT16]. This construction can be constructed

in plain-exponential time 2O(n) and has rigidity R(r) ≥ Ω
(

n2

r2 logn

)
for every r ≥

√
n. This bound is better than the

known explicit bounds for r = o
(

n
logn log logn

)
. It is also known [AKTV18] how to construct a matrix with rigidity

as high as R(r) ≥ Ω(n) for any rank r = n0.5−ε using subexponential time 2o(n) .
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Recall that H(x) = −x log x − (1 − x) log(1 − x) for 0 < x < 1, and that the generator matrix
M ∈ Fm×n of a code can always be transformed such that the first n rows of M form the identity
matrix.

Lemma 5.6. Let A ∈ F(m−n)×n, and let I ∈ Fn×n be the identity matrix. If M =

[
I
A

]
is a

generator matrix of a linear code with relative distance δ and rate R = n
m , then RA(r) > 16 for

r = max
0<α<1

(
αn ·H

(
δ(1− α)

2α(1− α)R+ 32α

))
− o(n) .

Proof. We will show that for every 16-sparse matrix B,

rank(A⊕B) > αn ·H
(

δ(1− α)

2α(1− α)R+ 32α

)
− o(n) .

First we take the αn sparsest columns of B. By Markov’s inequality, each of them has at most
16m

(1−α)n non-zero entries. Let A′, B′,M ′ ∈ Fm×αn be the submatrices of A, B, and M corresponding

to this set of αn columns. For a vector x ∈ Fn, let |x| be the number of non-zero elements in it.
Since M generates a code with relative distance δ, we have that for every non-zero x ∈ Fn,

|Mx| ≥ δm. From Mx =

[
I
A

]
x =

[
x
Ax

]
, we have that |Ax| ≥ δm− |x|. Since this holds for every

non-zero x, including x with zeros in all coordinates not in A′, we get that for every x ∈ Fαn,
|A′x| ≥ δm− |x|.

Now we only consider non-zero x ∈ Fαn with exactly k = βn ones where β = δ(1−α)
(1−α)R+16 − o(1).

For such an x,

|(A′ ⊕B′)x| ≥ |A′x| − |B′x| ≥ δm− |x| − |x| · 16m

(1− α)n
≥ δm− βn

(
1 +

16m

(1− α)n

)
> 0

due to the choice of β. This implies that all linear combinations of exactly k/2 columns from A′⊕B′
are distinct. That is, the columns of A′ ⊕B′ span at least

(
αn
k/2

)
points in Fm, and

rank(A⊕B) ≥ rank(A′ ⊕B′) ≥ log

(
αn

k/2

)
= αn ·H(β/2α)− o(n)

= αn ·H
(

δ(1− α)

2α(1− α)R+ 32α

)
− o(n) .

Let us consider Justesen’s code [Jus72], [MS77, Chapter 10, §11, Theorem 12]. For δ = 0.077, we
have an efficient construction of a linear code with rate R = 0.15. In Lemma 5.6, we set α = 0.182
and get that this matrix is rigid for rank r > n

64 beating the bound from [PV91] (at the price of
having m− n = n(1/R− 1) outputs).

If we take the concatenation of a Reed-Solomon code (as the outer code) and an optimal linear
inner code, then for every δ we can construct in polynomial time a code with relative distance δ
matching the Zyablov bound (see, e.g., the discussion in [ABN+92]):

R = max
δ≤µ≤0.5

(
(1−H(µ))

(
1− δ

µ

))
.
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In particular, if we take such a code with δ = 0.49, then in the Zyablov bound we set µ = 0.493
and get R ≈ 8 · 10−7. Now we set α = 0.252 in Lemma 5.6, and get rigidity for rank as high as
r > n

15 (at the price of having too many outputs).

5.4 Open Problems

We conclude with a short summary of pseudorandom objects which would lead to new circuit lower
bounds via depth reductions described in Section 4.

Open Problem 5.1. Prove that ENP contains a language f having one of the following properties:

• f cannot be computed by an OR20.8n ◦ANDn·215 ◦OR16.

• f is a disperser for varieties of size at least 20.2n defined by 1.05n polynomials each of which
depends on at most 16 variables (and, thus, has degree at most 16).

• f is a linear function defined by a matrix M ∈ Fn×n of rigidity RM (0.8n) > 16 (that is, in
order to decrease the rank of M to 0.8n, one has to change more than 16 elements in some
row of M).

Open Problem 5.2. Show that every DeMorgan formula of size s has a probabilistic polynomial
over F2 of degree s0.99 and error 1/3, or give evidence this is not true. We conjecture the degree
can be made O(

√
s).
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