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Abstract. We prove anti-concentration for the inner product of
two independent random vectors in the discrete cube. Our results
imply Chakrabarti and Regev’s lower bound on the randomized
communication complexity of the gap-hamming problem. They are
also meaningful in the context of randomness extraction. The proof
provides a framework for establishing anti-concentration in discrete
domains. The argument has two different components. A local
component that uses harmonic analysis, and a global (“information
theoretic”) component.

1. Introduction

Anti-concentration of a random processes means that the distribution
of outcomes is not concentrated in a small region. No single outcome
is obtained too often. It plays an important role in mathematics and
computer science (see e.g. [11, 16, 1] and references within).

The standard example is a sum of i.i.d. random variables. If X in
X = {±1}n is fixed, and B is uniformly distributed in X , then the
random integer 〈B,X〉 =

∑
iBiXi is anti-concentrated. The probability

that 〈B,X〉 takes any specific value is at most O(1/
√
n). This was

studied and generalized by Littlewood and Offord [11], Erdös [7], and
many others. Higher dimensional analogs of this phenomenon were
studied by Frankl and Furedi [8], Halász [9] and others.

It is interesting to understand the generality of this phenomenon (see
also [15] and references within). Anti-concentration certainly fails when
the entropy of B is not full. We can, for example, condition B on the
pretty likely event that 〈B,X〉 = 0.

Can we somehow recover anti-concentration? A natural suggestion is
to allowX to be random as well. This indeed recovers anti-concentration,
as the following theorem shows.

Theorem (Chakrabarti and Regev [4]). There is a constant c > 0 so
that the following holds. Let A,B ⊆ X be of sizes at least 2(1−c)n. If
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(A,B) is uniformly distributed in A× B then

P[| 〈A,B〉 | ≤ c
√
n] ≤ 1− c.

Chakrabarti and Regev’s proof uses the deep connection between the
discrete cube and gaussian space. They proved a geometric correlation
inequality in gaussian space, and translated it to the cube. Vidick [18]
later simplified part of their argument, but stayed in the geometric set-
ting. Sherstov [13] found a third proof that uses Talagrand’s inequality
from convex geometry [14] and ideas of Babai, Frankl and Simon from
communication complexity [2].

We generalize the theorem above.

Theorem 1. For every β > 0, there are c, C > 0 so that the following
holds. Let A,B ⊆ X be so that |B| = 2βn and |A| ≥ 2(1−c)n. If (A,B)
is uniformly distributed in A× B then for all I ⊂ Z,

P[〈A,B〉 ∈ I] ≤ C
( |I|2
n

)1/4
.

Theorem 1 directly implies Chakrabarti and Regev’s theorem. The
measure of any set of size much smaller than

√
n is bounded away

from 1. This holds even when B is quite small, say |B| = 2n/10. The
theorem also implies a point-wise bound: P[〈A,B〉 = z] = O(n−1/4) for
all z ∈ Z (below we provide a stronger point-wise bound).

When studying anti-concentration, what we are ultimately interested
in is proving point-wise estimates. Namely, we would like to control the
concentration probability or the `∞ norm1

‖ν‖∞ = max
ω∈Ω

ν(ω)

(see [16] and references within). Although it is the strongest measure of
anti-concentration, it is not analytic. Other norms are, therefore, often
more convenient to work with.

The `r norm is defined as ‖ν‖r =
(∑

ω(ν(ω))r
)1/r

. The corresponding
Rényi entropy of ν is Hr(ν) = r

1−r log ‖ν‖r for r > 1. The norm and
the entropy are inversely related; the smaller the norm, the larger
the entropy, and vice versa. The norm yields the following type of
anti-concentration.

Claim 2. For every r ≥ 1 and event I, we have ν(I) ≤ |I|(r−1)/r‖ν‖r.

Our main result is a general upper bound on the norms of the
distribution of interest. Let X be uniformly distributed in X . Let B
be a family of vectors in X of size 2βn. Let µX be the distribution of
〈B,X〉 with X fixed and B uniformly distributed in B.

1We consider only finite probability spaces in this text.
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Theorem 3. For every β > 0, there are c, C > 0 so that for each r ≥ 2,

P
X

[
‖µX‖r > C( r

n(r−1)/r )1/2
]
< C2−cn.

The theorem is sharp in the sense that even when B = X , the norm
‖µX‖r is roughly ( 1

n(r−1)/(r) )
1/2. There is a gap of order r1/2 between the

upper and lower bounds.
The `∞ norm can be approximated by the `r norm for large values of r.

Taking r ≈ log n we get the following estimate on the concentration
probability that is sharp up to a factor of order (log n)1/2.

Corollary 4. For every β > 0, there are c, C > 0 so that

P
X

[
‖µX‖∞ > C( logn

n
)1/2
]
< C2−cn.

The corollary allows to strengthen Theorem 1 for singletons and
small sets. Let ν denote by distribution of 〈A,B〉 from Theorem 1. The
theorem implies that ‖ν‖∞ is at most order ( 1

n
)1/4. Corollary 4 implies

a stronger estimate: ‖ν‖∞ is at most order ( logn
n

)1/2. The true value

should be order ( 1
n
)1/2. This remains open.

To prove the results above, we build a framework for proving anti-
concentration results in discrete domains. Think of the random variable
〈B,X〉 as built in n steps. It starts as 0, and BdXd is added to
〈B<d, X<d〉 to generate 〈B≤d, X≤d〉. To analyze the behavior of this
system, we first show that locally (in the microscopic scale) entropy
often increasing (Section 2). This part of the argument uses harmonic
analysis (even though our ultimate goal is not the `2 norm). The second
part of the argument is macroscopic (Section 3). We identify a global
event that guarantees that the small local increments in entropy yield
substantial entropy in the whole system. The last step is proving that
the macroscopic event almost always holds. This is achieved by an
encoding argument. Situations where the macroscopic entropy is not
high can be described by a small number of bits.

There are several differences between our argument and the ones
in [4, 18, 13]. The main difference is that the arguments from [4, 18, 13]
are based, in one way or another, on the geometry of euclidean space.
The arguments in [4, 18] prove a correlation inequality in gaussian space
and translate it to the discrete world. It seems that such an argument
can not yield effective bounds on the concentration probability in the
discrete setting. A common ingredient to [4, 13] is showing that every
set of large enough measure contains many almost orthogonal vectors
(this is called “identifying the hard core” in [13]). In [18] this part of
the argument is replaced by a statement about a relevant matrix. Our
argument does not contain any such step.
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Related topics.

Communication complexity. Chakrabarti and Regev’s main motivation
was understanding the randomized communication complexity of the
gap-hamming problem. The gap-hamming problem was introduced by
Indyk and Woodruff in the context of streaming [10]. Proving lower
bounds on its communication complexity was a central open problem for
almost ten years, until Chakrabarti and Regev solved it [4]. Vidick [18]
and Sherstov [13] later simplified the proof.

Theorem 1 also implies the lower bound for the randomized commu-
nication complexity of the gap-hamming problem (see e.g. [13]). As
opposed to [4, 18, 13], the proof presented here lies entirely in the
discrete domain. The underlying ideas may therefore be of independent
interest.

Pseudorandomness. Randomness is a computational resource [17]. There
are many sources of randomness, and some of them are weak or imper-
fect. Randomness extractors allow to use weak sources of randomness
as if they were perfect.

The study of randomness extractors is about constructing explicit
maps that transform weak sources of randomness to almost uniform
outputs. The main goal is generating a uniform output in the most
general scenario possible. This often requires ingenious constructions.

The scenario described above fits nicely in the context of two-source
extractors. A two-source extractor maps two independent random
variables A and B with significant min-entropy to a single almost
uniform output.

Chor and Goldreich [6] used Lindsey’s lemma to show that inner
product modulo two is a two-source extractor. The bit 〈A,B〉 mod 2 is
close to a uniform random bit as long as |A| · |B| � 2n. Bourgain [3],
Raz [12] and Chattopadhyay and Zuckerman [5] constructed two-source
extractors with much better parameters.

This work can be interpreted as studying a related but somewhat
different question. The high-level suggestion is to investigate what other
pseudorandom properties known extractors satisfy.

We already know that inner product is an excellent two-source ex-
tractor. Now we also know that over the integers inner product is
anti-concentrated. This is not as good as being uniform, but inner
product is not uniform over the integers (it is binomial).

Remark. The way 1√
n

emerges in the proof is quite surprising. As

an example, consider the sequence recursively defined by a0 = 1 and
ad+1 = ad(1 − 0.5a2

d). The observation is that an = O( 1√
n
). This
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recursion comes from harmonic analysis (Lemma 6). The second power
of ad in the recursion comes from the second power in the approximation
cos(ξ) ≈ 1− ξ2.

2. Microscopically

Here we analyze the local increases in entropy. The argument is
spectral and uses harmonic analysis. We work over the abelian group
ZN = Z/NZ with N = 2n+ 1. The choice of N ensures that there is a
one-to-one correspondence between the integer 〈B,X〉 and the group
element 〈B,X〉 mod N .

2.1. Harmonic analysis. The group ZN acts on the vector space of
functions from ZN to C. This vector space is endowed with the standard
inner product 〈f, g〉 =

∑
z∈ZN f(z)g(z) where ξ is the complex conjugate

of ξ ∈ C. For z ∈ Zn, let Sz be the operator that shifts the function
f : ZN → C by z. That is, Szf(x) = f(x − z) for all x. The shifts
are unitary and they commute. Let {ez : z ∈ ZN} be the set of the N
normalized eigenvectors:

ez(x) = e
2πi

zx
N√
N
.

The eigenvalue of ez with respect to the shift S1 is λz = e−2πi
z
N . The

Fourier transform of f is f̂ : ZN → C defined by

f̂(z) = 〈f, ez〉 .

Remark. Harmonic analysis naturally allows to work with the `2 norm.
Our goal is to analyze general `r norms. We, therefore, need to translate
the problem from `r to `2.

2.2. Entropy locally increases. The first observation is that entropy
does not decrease (the second law of thermodynamics). Assume we have
two distribution µ1 and µ−1 on ZN . Think about them as distributions
of two particles Z1 and Z−1. We use them to generate a new distribution

µ = γS1µ1 + (1− γ)S−1µ−1

where γ ∈ [0, 1]. Stated differently, we consider the particle

Z =

{
Z1 + 1 with probability γ,

Z−1 − 1 with probability 1− γ.

The entropy of the new particle is not smaller than the average entropy
of the old particles.
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Observation 5. For every r ≥ 1, for every two distributions µ1 and
µ−1 on ZN and for every γ ∈ [0, 1],

‖γS1µ1 + (1− γ)S−1µ−1‖rr ≤ γ‖µ1‖rr + (1− γ)‖µ−1‖rr.

The main lemma is a quantitative estimate on the increase in en-
tropy when one new bit of randomness is inserted into the system (the
randomness determines which shift is applied).

Lemma 6. For every r ≥ 2, for every two distributions µ1 and µ−1 on
ZN and for every γ ∈ [0, 1],

1
2
(‖γS1µ1 + (1− γ)S−1µ−1‖rr + ‖γS−1µ1 + (1− γ)S1µ−1‖rr)(1)

≤ γ‖µ1‖rr + (1− γ)‖µ−1‖rr(2)

− γ(1−γ)
120

( ‖µ1‖
3r
r

‖µ1‖2rr/2
+ ‖µ−1‖3rr
‖µ−1‖2rr/2

) + 10
N2 (γ‖µ1‖rr + (1− γ)‖µ−1‖rr).(3)

The term in (1) is the entropy in the system after the new bit of
entropy is introduced. The term in (2) is the entropy in the system
before the new entropy arrives. The term in (3) is the increase in entropy.
The + 10

N2 . . . term in (3) is somehow necessary; if the distributions are
already uniform then there is no hope for increase in entropy.

Proof of Lemma 6. Start by fixing x ∈ {±1}, and considering

µ = γSxµ1 + (1− γ)S−xµ−1.

Move from `r to `2 by considering

f1 = µ
r/2
1 & f−1 = µ

r/2
−1 .

Convexity implies

‖µ‖rr =
∑
z

(|γµ1(z − x) + (1− γ)µ−1(z + x)|r/2)2

≤
∑
z

(γ|µ1(z − x)|r/2 + (1− γ)|µ−1(z + x)|r/2)2

= ‖γSxf1 + (1− γ)S−xf−1‖2
2.

Since shifts are unitary,

‖µ‖rr ≤ γ2‖f1‖2
2 + (1− γ)2‖f−1‖2

2 + 2γ(1− γ)R(〈Sxf1, S−xf−1〉),
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where R(ξ) is the real part of the complex number ξ. Focus on

〈Sxf1, S−xf−1〉 =

〈∑
z

f̂1(z)Sxez,
∑
z′

f̂−1(z′)S−xez′

〉
=
∑
z

f̂1(z)f̂−1(z)λzλ−1
z

=
∑
z

f̂1(z)f̂−1(z)λ2
z.

Now, average over the two options for x,

(1) ≤ γ2‖f1‖2
2 + (1− γ)2‖f−1‖2

2 + 2γ(1− γ)R(
∑
z∈Z

f̂1(z)f̂−1(z)λ
2
z+λ−2

z

2
)

≤ γ2‖f1‖2
2 + (1− γ)2‖f−1‖2

2 + 2γ(1− γ)
∑
z∈Z

|f̂1(z)f̂−1(z) cos(4πz
N

)|.

Let κ : ZN → R be defined by κz =
√
| cos(4πz

N
)|. Denote by u.v the

point-wise product of the two functions u and v. The Cauchy-Schwarz
and the AM-GM inequalities imply

(1) ≤ γ2‖f1‖2
2 + (1− γ)2‖f−1‖2

2 + 2γ(1− γ)‖f̂1.κ‖‖f̂−1.κ‖

≤ γ2‖f1‖2
2 + (1− γ)2‖f−1‖2

2 + γ(1− γ)(‖f̂1.κ‖2
2 + ‖f̂−1.κ‖2

2).

The following estimate is the last ingredient in the proof.

Claim 7. For every non-zero g : ZN → C,

‖ĝ.κ‖2
2 ≤ (1− ‖g‖42

120‖g‖41
+ 10

N2 )‖g‖2
2.

Proof. For every z,

|ĝ(z)|2 ≤ (‖g‖1‖ez‖∞)2 =
‖g‖21
N
.

Interpreting the elements of ZN as the integers {0, 1, . . . , N − 1}, let Z
be the set of z ∈ ZN so that the distance of 4πz

N
from {0, π, 2π, 3π, 4π}

is at least
‖g‖22
4‖g‖21

. There are at most 2ξ + 1 integers whose distance from

0 is at most ξ. The number of elements not in Z is hence at most

5 + 8 · 2 N‖g‖22
16π‖g‖21

.

If
5‖g‖21
N

>
‖g‖22

6
then 10

N2 >
‖g‖42

120‖g‖41
and the claim holds. Otherwise,

‖ĝ‖2
2 ≤

‖g‖21
N
·
(

5 +
N‖g‖22
π‖g‖21

)
+
∑
z∈Z

|ĝ(z)|2 ≤ ‖g‖22
2

+
∑
z∈Z

|ĝ(z)|2.
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Using the approximation | cos(ξ)| ≤ 1− Ω(ξ2) that is valid near 0,

‖ĝ.κ‖2
2 =

∑
z

|ĝ(z)|2| cos(4πz
N

)|

≤
∑
z 6∈Z

|ĝ(z)|2 +
∑
z∈Z

|ĝ(z)|2| cos(4πz
N

)|

≤
∑
z 6∈Z

|ĝ(z)|2 + (1− ‖g‖42
60‖g‖41

)
∑
z∈Z

|ĝ(z)|2

≤ (1− ‖g‖42
120‖g‖41

)‖g‖2
2.

�

By the claim,

γ2‖f1‖2
2 + γ(1− γ)‖f̂1.κ‖2

2

≤ γ2‖f1‖2
2 + γ(1− γ)(1− ‖f1‖42

120‖f1‖41
+ 10

N2 )‖f1‖2
2

= γ‖µ1‖rr
(
1− (1− γ) ‖µ1‖2rr

120‖µ1‖2rr/2
+ 10(1−γ)

N2

)
.

A similar bound holds for f−1. Thus,

(1) ≤ γ‖µ1‖rr + (1− γ)‖µ−1‖rr −
γ(1−γ)

120
( ‖µ1‖

3r
r

‖µ1‖2rr/2
+ ‖µ−1‖3rr
‖µ−1‖2rr/2

)

+ 10
N2 (γ‖µ1‖rr + (1− γ)‖µ−1‖rr).

�

3. Macroscopically

We now analyze the global entropy. We use a decision tree to represent
the system (Section 3.1). This representation allows to identify positions
where entropy is expected to grow (Section 3.2). We then show that all
but a tiny fraction of positions indeed increase entropy (Section 3.3).

3.1. Representing the system. Think of the elements of X as vectors
(x1, x2, . . . , xn). Consider a full binary tree of depth n. The root v0 has
depth n and is labeled by the variable xn. The two children of the root
have depth n− 1 and are labelled by xn−1. In general, all vertices of
depth d are labelled by xd. The depth of the leaves is 0. Every x ∈ X
defines a walk from the root v0 to a leaf in the tree. We identify between
X and the leaves in the tree.

Let B be a collection of vectors in X of size |B| = 2βn. Let P be the
uniform distribution on B. The elements of B correspond to leaves in
the tree. Every vertex v in the tree corresponds to the set B(v) ⊆ B of
all leaves in B that are under v. Let Pv be the uniform distribution on
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B(v). Let γv be the distribution on {±1} that is inducted by Pv on the
bit from v to its children. If the depth of v is d = d(v) then γv is the
marginal of Pv on the d’th coordinate.

Fix a parameter γ0 ∈ (0, 1/2). Call a vertex v unbiased if

γv(1) ∈ [γ0, 1− γ0].

Intuitively, unbiased vertices are positions where the entropy of the
system can potentially grow. The unbiased count #ub(v) of a vertex v
is the number of unbiased vertices on the path from v to the root.

The following claim shows that if B is large then there are many
unbiased vertices.2

Claim 8. For every α > 0, the number of leaves v with #ub(v) < αn
is at most 2n(α+H(α)+H(β/ log(1/γ0))).

Proof. Encode a leaf v with #ub(v) < αn using the following data:

(1) The depths at which the unbiased nodes appear. There are at
most 2nH(α) such options.

(2) The value of the path that reaches v at these depths. There are
at most 2αn such options.

(3) The depths at which the path that reaches v goes through the
minority side of a vertex that is not unbiased. If there are δn
such depths then γδn0 ≥ P (v) = 2−βn. There are, therefore, at
most 2nH(β/ log(1/γ0)) such options.

�

3.2. Where does the entropy grow? Here we identify positions in
the system where the entropy grows. We analyze the entropy of the
system for a fixed x ∈ X . In the next section, we see what happens if x
is random. We also fix r ≥ 2 and focus on the `r norm.

For a vertex v, define a distribution µ(v) = µx(v) over the integers.
If v has depth d = d(v) > 0, define µ(v) to be the distribution of the
inner product 〈B≤d, x≤d〉 where B ∼ Pv. The distribution µ(v) when v
is a leaf gives mass 1 to the integer 0.

Call a vertex v with two children v1 and v−1 mixing if it is unbiased
and

‖µ(v)‖rr ≤ (1 + 10
N2 )(γv(1)‖µ(v1)‖rr + γv(−1)‖µ(v−1)‖rr)

− γv(1)γv(−1)

120

( ‖µ(v1)‖3r
r

‖µ(v1)‖2r
r/2

+
‖µ(v−1)‖3r

r

‖µ(v−1)‖2r
r/2

)
.(4)

2H(ξ) = −ξ log(ξ)− (1− ξ) log(1− ξ) is the binary entropy function.
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Intuitively, mixing vertices are places where the entropy strictly increases.
This definition makes sense with Lemma 6 in mind.

For a vertex v and a leaf u ∈ B(v), denote by #mix(v → u) the
number of mixing vertices (including v) on the path from v to u. Let
α0 > 0 be a parameter. Recall that v0 is the root of the tree. Define
the set of “good” leaves as

G = {u ∈ B : #mix(v0 → u) ≥ α0

4
n}.

Define
q(v) = min{#mix(v → u) : u ∈ B(v) ∩ G};

when B(v) ∩ G = ∅, define q(v) = min ∅ =∞. A crucial observation is
that if G 6= ∅ then q(v0) ≥ α0

4
n.

The measure q(v) allows to control the entropy of the system at the
vertex v. If q(v) is large then the entropy of the system at v is high, as
long as Pv(¬G).

Lemma 9. Assume N > 10. For every δ ∈ (0, 1), there is a constant
C = C(γ0, δ) > 0 so that the following holds. For every r ≥ 2, every
x ∈ X and every vertex v so that B(v) 6= ∅,

‖µ(v)‖rr ≤ (1 + 10
N2 )d(v)

( (Cr)r/2

(q(v)+(Cr)r/(r−1))(r−1)/2 + ( 1
1−δ )

d(v)Pv(¬G)
)
.

The lemma is most interesting at the root v0:

‖µ(v0)‖rr ≤ 3
( (Cr)r/2

(α0n/4)(r−1)/2 + ( 1
1−δ )

nP (¬G)
)
.(5)

Proof. The proof is by induction. The induction base is when v is a
leaf in B. If v is not in G then Pv(¬G) = 1 (in this case q(v) =∞). If v

is in G then q(v) = 0 and (Cr)r/2

(q(v)+(Cr)r/(r−1))(r−1)/2 = 1. In both cases, the

lemma holds since ‖µ(v)‖rr ≤ 1.
For the induction step, denote by v1 and v−1 the two children of v.

Simplify notation:

µ = µ(v), µ1 = µ(v1) & µ−1 = µ(v−1),

and
q = q(v), d = d(v) & γ = γv(1).

Since

〈B≤d, x≤d〉 =

{
〈B<d, x<d〉+ xd Bd = 1

〈B<d, x<d〉 − xd Bd = −1

we can write

µ = γSxdµ1 + (1− γ)S−xdµ−1.

There are two cases to consider.
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Non-mixing. If v is not mixing then q = min{q1, q−1}. Since Pv(¬G) =
γPv1(¬G) + (1− γ)Pv−1(¬G), Observation 5 and induction imply

‖µ‖rr ≤ γ‖µ1‖rr + (1− γ)‖µ−1‖rr
≤ (1 + 10

N2 )d
( (Cr)r/2

(q+(Cr)r/(r−1))(r−1)/2 + ( 1
1−δ )

dPv(¬G)
)
.

Mixing. If v is mixing then q = 1 + min{q1, q−1}. The following claim
summarizes the main technical part.

Claim 10. The following bound holds for v1:

(1 + 10
N2 )‖µ1‖rr −

1−γ
120

‖µ1‖3rr
‖µ1‖2rr/2

(6)

≤ (1 + 10
N2 )d

(
(Cr)r/2

(q+(Cr)r/(r−1))(r−1)/2 + ( 1
1−δ )

dPv1(¬G)
)
.(7)

A similar bound holds for v−1.

Proof. For simplicity of notation, let

η = q − 1 + (Cr)r/(r−1) & C ′ = 9
δ2

(Cr)r(r−2)/(r−1).

Start by considering the case that

( 1
1−δ )

d−1Pv1(¬G) > 1−δ
δ

(Cr)r/2

η(r−1)/2 .

In this case,

(Cr)r/2

η(r−1)/2 + ( 1
1−δ )

d−1Pv1(¬G) < Pv1(¬G)( 1
1−δ )

d−1( δ
1−δ + 1)

= Pv1(¬G)( 1
1−δ )

d.

By induction,

‖µ1‖rr ≤ (1 + 10
N2 )d−1

( (Cr)r/2

η(r−1)/2 + ( 1
1−δ )

d−1Pv1(¬G)
)
.

This completes the proof:

(6) ≤ (1 + 10
N2 )‖µ1‖rr

≤ (1 + 10
N2 )d

(
(Cr)r/2

η(r−1)/2 + ( 1
1−δ )

d−1Pv1(¬G)
)

≤ (1 + 10
N2 )dPv1(¬G)( 1

1−δ )
d ≤ (7).

We can thus assume that

( 1
1−δ )

d−1Pv1(¬G) ≤ 1−δ
δ

(Cr)r/2

η(r−1)/2 .

Convexity implies

‖µ1‖rr =
∑
z

µ1(z)
(
(µ1(z))

r−2
2
)2(r−1)

r−2 ≥ (‖µ1‖r/2r/2)
2(r−1)
r−2 .
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By induction and the above,

‖µ1‖2r
r/2 ≤ (‖µ1‖rr)

2(r−2)
r−1

≤
(
(1 + 10

N2 )d−1
( (Cr)r/2

η(r−1)/2 + ( 1
1−δ )

d−1Pv1(¬G)
))2(r−2)

r−1

≤ C′

ηr−2 .

Hence,

1−γ
120

‖µ1‖3rr
‖µ1‖2rr/2

≥ 1−γ
120C′

ηr−2‖µ1‖3r
r .

So,

(6) ≤ (1 + 10
N2 )‖µ1‖rr −

1−γ
120C′

ηr−2‖µ1‖3r
r .

The map ξ 7→ (1 + 10
N2 )ξ − 1−γ

120C′
ηr−2ξ3 is increasing when ξ2 ≤ C′

ηr−2 .

Since η ≥ (Cr)r/(r−1),(
(1 + 10

N2 )d−1
( (Cr)r/2

η(r−1)/2 + ( 1
1−δ )

d−1Pv1(¬G)
))2 ≤

(
3
δ

(Cr)r/2

η(r−1)/2

)2

≤ 9
δ2

(Cr)r

ηr−2 · 1
η

≤ C′

ηr−2 .

Therefore, by induction

(6) ≤ (1 + 10
N2 )d

( (Cr)r/2

η(r−1)/2 + ( 1
1−δ )

d−1Pv1(¬G)
)

− 1−γ
120C′

ηr−2
(
(1 + 10

N2 )d−1
( (Cr)r/2

η(r−1)/2 + ( 1
1−δ )

d−1Pv1(¬G)
))3

≤ (1 + 10
N2 )d( 1

1−δ )
d−1Pv1(¬G)

+ (1 + 10
N2 )d

(
(Cr)r/2

η(r−1)/2 − 1−γ
360C′

ηr−2
( (Cr)r/2

η(r−1)/2

)3
)
.

Focus on the expression inside the last brackets:

(Cr)r/2

η(r−1)/2

(
1− (1−γ)δ2(Cr)r(r−2)/(r−1)

360·9 ηr−2
( (Cr)r/2

η(r−1)/2

)2
)

= (Cr)r/2

η(r−1)/2

(
1− (1−γ)δ2(Cr)r/(r−1)

3240
1
η

)
.

Since v is unbiased, to complete the proof, it suffices to show that

1
η(r−1)/2

(
1− γ0δ2(Cr)r/(r−1)

3240
1
η

)
≤ 1

(η+1)(r−1)/2

or (
1 + 1

η

)(r−1)/2(
1− γ0δ2(Cr)r/(r−1)

3240
1
η

)
≤ 1.
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Since η ≥ 2r and since 0 ≤ ξ ≤ 1
2k

implies (1 + ξ)k ≤ 1 + 2kξ,(
1 + 1

η

)(r−1)/2(
1− γ0δ2(Cr)r/(r−1)

3240
1
η

)
≤
(

1 + 2r
η

)(
1− γ0δ2(Cr)r/(r−1)

3240
1
η

)
≤ 1 + 2r

η
− γ0δ2(Cr)r/(r−1)

3240
1
η
≤ 1.

�

The claim completes the proof of the lemma, since

‖µ‖rr ≤ (1 + 10
N2 )(γ‖µ1‖rr + (1− γ)‖µ−1‖rr)

− γ(1−γ)
120

(
‖µ1‖3rr
‖µ1‖2rr/2

+ ‖µ−1‖3rr
‖µ−1‖2rr/2

)
= γ

(
(1 + 10

N2 )‖µ1‖rr −
1−γ
120

‖µ1‖3rr
‖µ1‖2rr/2

)
+ (1− γ)

(
(1 + 10

N2 )‖µ−1‖rr −
γ

120
‖µ−1‖3rr
‖µ−1‖2rr/2

)
.

�

3.3. Many mixing leaves. The previous section (Lemma 9) highlights
the role of the good leaves G in the overall entropy of the system. To
show that the overall entropy is high, we need to show that G is typically
almost full.

Lemma 11. There is a constant c = c(α0) > 0 so that

E
X

[P (¬G)] < 2−cn + 2n(α0+H(α0)+H(β/ log(1/γ0)))

|B| .

Proof.

E
X

[P (¬G)] = 1
|B|

∑
v∈B

P
X

[#mix(v) < α0

4
n].

By Claim 8, the number of leaves v with #ub(v) < α0n is at most
2n(α0+H(α0)+H(β/ log(1/γ0))). We can thus focus on the rest of the leaves.
Let v be a leaf in B with K = #ub(v) ≥ α0n. Let u1, . . . , uK be the
unbiased vertices on the path from the root to v. Denote by Ek the
indicator random variable for the event that uk is mixing (namely, (4)
holds for uk).

Claim 12. For each k > 1, we have E[Ek|E1, . . . , Ek−1] ≥ 1
2
.

Proof. Fix u = uk of depth d. Denote its two children by u1 and u−1.
Fix X<d so that µX(u1) and µX(u−1) are fixed as well. Let Xd be
uniform in {±1}. Lemma 6 implies that for at least one choice of Xd

the vertex u is mixing. �
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By the claim, the sequence of random variables S0 and Sk = E1 +
E2 + . . .+ Ek − k

2
is a submartingale. Azuma’s inequality implies that

P[#mix(v) < α0

4
n] ≤ P[SK − S0 < −K

4
] ≤ e−

K
32 .

�

3.4. Putting it together.

Proof of Theorem 3. Let X be uniformly distributed in X . Let B be
a family of vectors in X of size |B| = 2βn. Let α0, γ0 > 0 be so that
4(α0 +H(α0)) = β and 4H(β/ log(1/γ0)) = β. By Lemma 11, there is
a constant c′ = c′(β) > 0 so that

E
X

[P (¬G)] < 2−c
′n + 2n(α0+H(α0)+H(β/ log(1/γ0)))

|B| ≤ 2−3cn

for some c = c(β) > 0. By Markov’s inequality

P
X

[P (¬G) > 2−2cn] < 2−cn.

Choose δ = δ(β) > 0 so that ( 1
1−δ )

n = 2cn. By (5), there is a constant
C ′ = C ′(β) > 0 so that

‖µX‖rr ≤ 3
( (C′r)r/2

(α0n/4)(r−1)/2 + 2cnP (¬G)
)
.

It follows that

P[‖µX‖rr > 3
( (C′r)r/2

(α0n/4)(r−1)/2 + 2−cn
)
] < 2−cn.

There is C = C(β) > 0 so that

3
( (C′r)r/2

(α0n/4)(r−1)/2 + 2−cn
)
≤ Cr rr/2

n(r−1)/2 .

�

Proof of Theorem 1. By Theorem 3, there are c, C > 0 so that

P
X

[‖µX‖2
2 >

C√
n
] < C2−cn.

Since P[X ∈ A] ≥ 2−cn/2,

P
A

[
‖µA‖2

2 >
C√
n

]
≤ C2−cn2cn/2 = C2−cn/2.

By Claim 2,

P
A

[
µA(I) >

√
|I| C√

n

]
≤ P

A
[‖µA‖2

2 >
C√
n
].

Hence,

P
A,B

[〈A,B〉 ∈ I] = P
A

[µA(I)] ≤
√
|I| C√

n
+ C2−cn/2.
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�
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Appendix A. Norms and anti-concentration

Proof of Claim 2.

‖ν‖rr ≥ |I|
∑
ω∈I

1
|I|(ν(ω))r ≥ |I|

(∑
ω∈I

1
|I|ν(ω)

)r
= 1
|I|r−1 (ν(I))r.

�
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