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Abstract. We prove anti-concentration for the inner product of
two independent random vectors in the discrete cube. Our results
imply Chakrabarti and Regev’s lower bound on the randomized
communication complexity of the gap-hamming problem. They are
also meaningful in the context of randomness extraction. The proof
provides a framework for establishing anti-concentration in discrete
domains. The argument has two different components. A local
component that uses harmonic analysis, and a global (‘information
theoretic’) component.

1. Introduction

Anti-concentration of a random processes means that the distribution
of outcomes is not concentrated in a small region. No single outcome
is obtained too often. It plays an important role in mathematics and
computer science (see e.g. [11, 16, 1] and references within).

The standard example is a sum of i.i.d. random variables. If X in
X = {±1}n is fixed, and B is uniformly distributed in X , then the
random integer 〈B,X〉 =

∑
iBiXi is anti-concentrated. The probability

that 〈B,X〉 takes any specific value is at most O(1/
√
n). This was

studied and generalized by Littlewood and Offord [11], Erdös [7], and
many others. Higher dimensional analogs of this phenomenon were
studied by Frankl and Furedi [8], Halász [9] and others.

It is interesting to understand the generality of this phenomenon (see
also [15] and references within). Anti-concentration certainly fails when
the entropy of B is not full. We can, for example, condition B on the
pretty likely event that 〈B,X〉 = 0.

Can we somehow recover anti-concentration? A natural suggestion is
to allowX to be random as well. This indeed recovers anti-concentration,
as the following theorem shows.

Theorem (Chakrabarti and Regev [4]). There is a constant c > 0 so
that the following holds. Let A,B ⊆ X be of sizes at least 2(1−c)n. If
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(A,B) is uniformly distributed in A× B then

P[| 〈A,B〉 | ≤ c
√
n] ≤ 1− c.

Chakrabarti and Regev’s proof uses the deep connection between the
discrete cube and gaussian space. They proved a geometric correlation
inequality in gaussian space, and translated it to the cube. Vidick [18]
later simplified part of their argument, but stayed in the geometric set-
ting. Sherstov [13] found a third proof that uses Talagrand’s inequality
from convex geometry [14] and ideas of Babai, Frankl and Simon from
communication complexity [2].

We generalize the theorem above.

Theorem. For every β > 0, there are c, C > 0 so that the following
holds. Let A,B ⊆ X be so that |B| = 2βn and |A| ≥ 2(1−c)n. If (A,B)
is uniformly distributed in A× B then for all w ∈ Z,

P[〈A,B〉 = w] ≤ C√
n
.

This theorem is part of a more fundamental phenomenon. When
studying anti-concentration, what we are ultimately interested in is
proving point-wise estimates. Namely, we would like to control the
concentration probability or the `∞ norm1

‖ν‖∞ = max
ω∈Ω

ν(ω)

(see [16] and references within).
Our main result is the following sharp bound on the concentration

probability. Let X be uniformly distributed in X . Let B be a family of
vectors in X of size 2βn. Let µX be the distribution of 〈B,X〉 with X
fixed and B uniformly distributed in B.

Theorem 1. For every β > 0, there are c, C > 0 so that

P
X

[
‖µX‖∞ > C√

n

]
< C2−cn.

To prove the theorem, we build a flexible framework for proving
anti-concentration results in discrete domains. Think of the random
variable 〈B,X〉 as built in n steps. It starts as 0, and BdXd is added
to 〈B<d, X<d〉 to generate 〈B≤d, X≤d〉. To analyze the behavior of this
system, we first show that locally entropy often increasing (Section 2).
This part of the argument uses harmonic analysis (even though our
ultimate goal is not the `2 norm). The second part of the argument is
macroscopic (Section 3). We identify a global event that guarantees
that the small local increments in entropy yield substantial entropy

1We consider only finite probability spaces in this text.
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in the whole system. The last step is proving that the macroscopic
event almost always holds. This is achieved by an encoding argument.
Situations where the macroscopic entropy is not high can be described
by a small number of bits.

There are several differences between our argument and the ones
in [4, 18, 13]. The main difference is that the arguments from [4, 18, 13]
are based, in one way or another, on the geometry of euclidean space.
The arguments in [4, 18] prove a correlation inequality in gaussian space
and translate it to the discrete world. It seems that such an argument
can not yield effective bounds on the concentration probability in the
discrete setting. A common ingredient to [4, 13] is showing that every
set of large enough measure contains many almost orthogonal vectors
(this is called ‘identifying the hard core’ in [13]). In [18] this part of
the argument is replaced by a statement about a relevant matrix. Our
argument does not contain any such step.

Related topics.

Communication complexity. Chakrabarti and Regev’s main motivation
was understanding the randomized communication complexity of the
gap-hamming problem. The gap-hamming problem was introduced by
Indyk and Woodruff in the context of streaming [10]. Proving lower
bounds on its communication complexity was a central open problem for
almost ten years, until Chakrabarti and Regev solved it [4]. Vidick [18]
and Sherstov [13] later simplified the proof.

Our results also imply the lower bound for the randomized commu-
nication complexity of the gap-hamming problem (see e.g. [13]). As
opposed to [4, 18, 13], the proof presented here lies entirely in the
discrete domain. The underlying ideas may therefore be of independent
interest.

Pseudorandomness. Randomness is a computational resource [17]. There
are many sources of randomness, and some of them are weak or imper-
fect. Randomness extractors allow to use weak sources of randomness
as if they were perfect.

The study of randomness extractors is about constructing explicit
maps that transform weak sources of randomness to almost uniform
outputs. The main goal is generating a uniform output in the most
general scenario possible. This often requires ingenious constructions.

The scenario described above fits nicely in the context of two-source
extractors. A two-source extractor maps two independent random
variables A and B with significant min-entropy to a single almost
uniform output.
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Chor and Goldreich [6] used Lindsey’s lemma to show that inner
product modulo two is a two-source extractor. The bit 〈A,B〉 mod 2 is
close to a uniform random bit as long as |A| · |B| � 2n. Bourgain [3],
Raz [12] and Chattopadhyay and Zuckerman [5] constructed two-source
extractors with much better parameters.

This work can be interpreted as studying a related but somewhat
different question. The high-level suggestion is to investigate what other
pseudorandom properties known extractors satisfy.

We already know that inner product is an excellent two-source ex-
tractor. Now we also know that over the integers inner product is
anti-concentrated. This is not as good as being uniform, but inner
product is not uniform over the integers (it is binomial).

2. Microscopically

Here we analyze the local behavior. The argument is spectral and
uses harmonic analysis. We work over the abelian group ZN = Z/NZ
with N = d

√
ne. This choice of N allows to deduce the O( 1√

n
) estimate.

2.1. Harmonic analysis. The group ZN acts on the vector space of
functions from ZN to C. This vector space is endowed with the standard
inner product 〈f, g〉 =

∑
z∈ZN f(z)g(z) where ξ is the complex conjugate

of ξ ∈ C. For z ∈ Zn, let Sz be the operator that shifts the function
f : ZN → C by z. That is, Szf(x) = f(x − z) for all x. The shifts
are unitary and they commute. Let {ez : z ∈ ZN} be the set of the N
normalized eigenvectors:

ez(x) = ψa(x)√
N
,

where

ψa(x) = e2πi
zx
N .

The eigenvalue of ez with respect to the shift S1 is λz = e−2πi
z
N . The

Fourier transform of f is f̂ : ZN → C defined by

f̂(z) = 〈f, ez〉 .

2.2. Local changes. The first observation is that the coefficients of
the Fourier transform do not increase. Assume we have two distribution
µ1 and µ−1 on ZN . Think about them as distributions of two particles
Z1 and Z−1. We use them to generate a new distribution

ν = γS1µ1 + (1− γ)S−1µ−1



ANTI-CONCENTRATION IN MOST DIRECTIONS 5

where γ ∈ [0, 1]. Stated differently, we consider the particle

Z =

{
Z1 + 1 with probability γ,

Z−1 − 1 with probability 1− γ.

Observation 2. For all z ∈ ZN , since |λz| = 1 using convexity,

|ν̂(z)|2 ≤ γ|µ̂1(z)|2 + (1− γ)|µ̂−1(z)|2.

The main lemma is a quantitative estimate of the local change in the
Fourier coefficients. For x ∈ {±1}, let

νx = γSxµ1 + (1− γ)S−xµ−1

Let X ∈ {±1} be distributed uniformly at random.

Lemma 3. Let γ ∈ [γ0, 1− γ0] with γ0 ∈ [0, 1
2
]. For every z ∈ ZN ,

E
X
|ν̂X(z)|2 ≤ (1− γ0

2
+ γ0

2
| cos(4π z

N
)|)(γ|µ̂1(z)|2 + (1− γ)|µ̂−1(z)|2).

Proof of Lemma 3. Start by bounding the geometric average:

|ν̂1(z)| · |ν̂−1(z)|
= |γλzµ̂1(z) + (1− γ)λ−zµ̂−1(z)| · |γλ−zµ̂1(z) + (1− γ)λzµ̂−1(z)|
≤ γ2|µ̂1(z)|2 + (1− γ)2|µ̂−1(z)|2

+ γ(1− γ)|µ̂1(z)µ̂−1(z)(λ2z + λ−2z)|
≤ γ2|µ̂1(z)|2 + (1− γ)2|µ̂−1(z)|2

+ γ(1− γ)(|µ̂1(z)|2 + |µ̂−1(z)|2)| cos(4π z
N

)|
= γ|µ̂1(z)|2(γ + (1− γ)| cos(4π z

N
)|)

+ (1− γ)|µ̂−1(z)|2(1− γ + γ| cos(4π z
N

)|)
≤ (1− γ0 + γ0| cos(4π z

N
)|)(γ|µ̂1(z)|2 + (1− γ)|µ̂−1(z)|2).

Thus,

min{|ν̂1(z)|2, |ν̂−1(z)|2}
≤ (1− γ0 + γ0| cos(4π z

N
)|)(γ|µ̂1(z)|2 + (1− γ)|µ̂−1(z)|2).

By Observation 2,

E
X
|ν̂X(z)|2

≤ (1− γ0
2

+ γ0
2
| cos(4π z

N
)|)(γ|µ̂1(z)|2 + (1− γ)|µ̂−1(z)|2). �
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3. Macroscopically

We now analyze the global behavior. We use a decision tree to
represent the system (Section 3.1). This representation allows to identify
positions where the system ‘mixes’ (Section 3.2). We then show that
all but a tiny fraction of positions are mixing (Section 3.3).

3.1. Representing the system. Think of the elements of X as vectors
(x1, x2, . . . , xn). Consider a full binary tree of depth n. The root v0 has
depth n and is labeled by the variable xn. The two children of the root
have depth n− 1 and are labelled by xn−1. In general, all vertices of
depth d are labelled by xd. The depth of the leaves is 0. Every x ∈ X
defines a walk from the root v0 to a leaf in the tree. We identify between
X and the leaves in the tree.

Let B be a collection of vectors in X of size |B| = 2βn. Let P be the
uniform distribution on B. The elements of B correspond to leaves in
the tree. Every vertex v in the tree corresponds to the set B(v) ⊆ B of
all leaves in B that are under v. Let Pv be the uniform distribution on
B(v). Let γv be the distribution on {±1} that is inducted by Pv on the
bit from v to its children. If the depth of v is d = d(v) then γv is the
marginal of Pv on the d’th coordinate.

Fix a parameter γ0 ∈ (0, 1/2). Call a vertex v unbiased if

γv(1) ∈ [γ0, 1− γ0].

Intuitively, unbiased vertices are positions where the entropy of the
system can potentially grow. The unbiased count #ub(v) of a vertex v
is the number of unbiased vertices on the path from v to the root.

The following claim shows that if B is large then there are many
unbiased vertices.2

Claim 4. For every α > 0, the number of leaves v with #ub(v) < αn
is at most 2n(α+H(α)+H(β/ log(1/γ0))).

Proof. Encode a leaf v with #ub(v) < αn using the following data:

(1) The depths at which the unbiased nodes appear. There are at
most 2nH(α) such options.

(2) The value of the path that reaches v at these depths. There are
at most 2αn such options.

(3) The depths at which the path that reaches v goes through the
minority side of a vertex that is not unbiased. If there are δn
such depths then γδn0 ≥ P (v) = 2−βn. There are, therefore, at
most 2nH(β/ log(1/γ0)) such options.

2H(ξ) = −ξ log(ξ)− (1− ξ) log(1− ξ) is the binary entropy function.
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3.2. Mixing vertices. We analyze the behavior of the system for a
fixed x ∈ X . In the next section, we see what happens if x is random.

For a vertex v, define a distribution µv = µx,v over the integers. If v
has depth d = d(v) > 0, define µv to be the distribution of the inner
product 〈B≤d, x≤d〉 where B ∼ Pv. The distribution µv when v is a leaf
gives mass 1 to the integer 0.

Call a vertex v with two children v1 and v−1 z-mixing if it is unbiased
and

|µ̂v(z)|
≤ (1− γ0

2
+ γ0

2
| cos(4π z

N
)|)(γ|µ̂v1(z)|2 + (1− γ)|µ̂v−1(z)|2).(1)

This definition makes sense with Lemma 3 in mind.
For a vertex v and a leaf u ∈ B(v), denote by #mix(v → u) the

number of z-mixing vertices (including v) on the path from v to u. Let
α0 > 0 be a parameter. Recall that v0 is the root of the tree. Define
the set of ‘good’ leaves as

G = Gz = {u ∈ B : #mix(v0 → u) ≥ α0

4
n}.

Define

q(v) = qz(v) = min{#mix(v → u) : u ∈ B(v) ∩ G};
when B(v) ∩ G = ∅, define q(v) = min ∅ =∞. A crucial observation is
that if G 6= ∅ then q(v0) ≥ α0

4
n.

The measure q(v) allows to control the Fourier coefficients at the
vertex v.

Lemma 5. For every z ∈ ZN and every vertex v so that B(v) 6= ∅,

|µ̂v(z)|2 ≤ 1
N

(1− γ0
2

+ γ0
2
| cos(4π z

N
)|)q(v) + Pv(¬G).

The lemma is most interesting at the root v0:

|µ̂v0(z)|2 ≤ 1
N

(1− γ0
2

+ γ0
2
| cos(4π z

N
)|)

α0n
4 + P (¬G).(2)

Proof. The proof is by induction. The induction base is when v is a
leaf in B. If v is not in G then Pv(¬G) = 1 (in this case q(v) =∞). If
v is in G then q(v) = 0. In both cases, the lemma holds since

|µ̂v(z)| = | 〈µv, ez〉 | ≤ ‖µv‖1‖ez‖∞ = 1√
N
.

For the induction step, denote by v1 and v−1 the two children of v.
Simplify notation:

q = q(v), d = d(v) & γ = γv(1).
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Since

〈B≤d, x≤d〉 =

{
〈B<d, x<d〉+ xd Bd = 1

〈B<d, x<d〉 − xd Bd = −1

we can write

µv = γSxdµv1 + (1− γ)S−xdµv−1 .

There are two cases to consider.

Non-mixing. If v is not mixing then q = min{q(v1), q(v−1)}. Since
Pv(¬G) = γPv1(¬G) + (1 − γ)Pv−1(¬G), Observation 2 and induction
imply

|µ̂v(z)|2 ≤ 1
N

(1− γ0
2

+ γ0
2
| cos(4π z

N
)|)q + Pv(¬G).

Mixing. If v is mixing then q = 1 + min{q(v1), q(v−1)}. In this case, by
definition and induction,

|µ̂v(z)| ≤ (1− γ0
2

+ γ0
2
| cos(4π z

N
)|)(γ|µ̂v1(z)|2 + (1− γ)|µ̂v−1(z)|2)

≤ 1
N

(1− γ0
2

+ γ0
2
| cos(4π z

N
)|)q + Pv(¬G).

�

3.3. Many good leaves. The previous section (Lemma 5) highlights
the role of the good leaves G. We need to show that G is typically
almost full.

Lemma 6. There is a constant c = c(α0) > 0 so that for each z ∈ ZN ,

E
X

[P (¬Gz)] < 2−cn + 2n(α0+H(α0)+H(β/ log(1/γ0)))

|B| .

Proof.

E
X

[P (¬Gz)] = 1
|B|

∑
v∈B

P
X

[#mix(v) < α0

4
n].

By Claim 4, the number of leaves v with #ub(v) < α0n is at most
2n(α0+H(α0)+H(β/ log(1/γ0))). We can thus focus on the rest of the leaves.
Let v be a leaf in B with K = #ub(v) ≥ α0n. Let u1, . . . , uK be the
unbiased vertices on the path from the root to v. Denote by Ek the
indicator random variable for the event that uk is z-mixing (namely, (1)
holds for uk).

Claim 7. For each k > 1, we have E[Ek|E1, . . . , Ek−1] ≥ 1
2
.

Proof. Fix u = uk of depth d. Denote its two children by u1 and u−1.
Fix X<d so that µX(u1) and µX(u−1) are fixed as well. Let Xd be
uniform in {±1}. Lemma 3 implies that for at least one choice of Xd

the vertex u is mixing. �
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By the claim, the sequence of random variables S0 and Sk = E1 +
E2 + . . .+ Ek − k

2
is a submartingale. Azuma’s inequality implies that

P[#mix(v) < α0

4
n] ≤ P[SK − S0 < −K

4
] ≤ e−

K
32 .

�

3.4. Putting it together.

Proof of Theorem 1. Let X be uniformly distributed in X . Let B be
a family of vectors in X of size |B| = 2βn. Let α0, γ0 > 0 be so that
4(α0 +H(α0)) ≤ β and 4H(β/ log(1/γ0)) ≤ β. By Lemma 6, there is a
constant c′ = c′(β) > 0 so that for each z ∈ ZN ,

E
X

[P (¬Gz)] < 2−c
′n + 2n(α0+H(α0)+H(β/ log(1/γ0)))

|B| .

By Markov’s inequality and the union bound,

P
X

[∃z ∈ ZN P (¬Gz) > 2−cn] < 2N2−2cn ≤ C2−cn

for some c, C > 0 that depend on β.
Fix x so that P (¬Gz) ≤ 2−cn for all z ∈ ZN . Let µ = µx(v0). By (2),

for all z ∈ ZN

|µ̂(z)| > 1√
N

√
(1− γ0

2
+ γ0

2
| cos(4π z

N
)|)

α0n
4 + 2−cn.

Since N ≈
√
n and cos(ξ) ≈ 1− ξ2 near zero,

‖µ̂‖1 ≤ C√
N
.

Thus, for every w ∈ ZN ,

µ(w) =
∑
z

µ̂(z)ez(w) ≤ ‖µ̂‖1‖ez‖∞ ≤ C
N
.

�
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