
Erasures versus Errors in Local Decoding and Property Testing∗
1

Sofya Raskhodnikovaa, Noga Ron-Zewib, and Nithin Varmab
2

aDepartment of Computer Science, Boston University, USA†.3

bDepartment of Computer Science, University of Haifa, Israel‡.4

Abstract5

We initiate the study of the role of erasures in local decoding and use our understanding to prove a6

separation between erasure-resilient and tolerant property testing. We first investigate local list-decoding7

in the presence of erasures. We prove an analog of a famous result of Goldreich and Levin on local8

list-decodability of the Hadamard code. Specifically, we show that the Hadamard code is locally list-9

decodable in the presence of a constant fraction of erasures, arbitrarily close to 1, with list sizes and query10

complexity better than in the Goldreich-Levin theorem. We further study approximate locally erasure11

list-decodable codes and use them to construct a property that is erasure-resiliently testable with query12

complexity independent of the input length, n, but requires nΩ(1) queries for tolerant testing. We also13

investigate the general relationship between local decoding in the presence of errors and in the presence14

of erasures.15

Keywords: erasures versus errors, local decoding, property testing, Hadamard code, Goldreich-Levin the-16

orem17

Acknowledgments. The authors express their gratitude to anonymous reviewers whose comments helped18

improve the presentation of this article. The authors are thankful to Venkatesan Guruswami for helping to19

tighten the analysis of the local erasure list-decoder for the Hadamard code and also for making a suggestion20

that led to Observation 5.2. The authors are grateful to Prahladh Harsha, Or Meir, Ramesh Krishnan S.21

Pallavoor, Adam Smith, Sergey Yekhanin, and Avi Wigderson for useful discussions. Last but not least,22

the authors would like to thank the sponsors and organizers of the Workshop on Local Algorithms 2018 for23

making this collaboration possible.24

1 Introduction25

The contributions of this work are two-fold: on one hand, we initiate the investigation of erasures in local26

decoding; on the other hand, we apply our understanding of local list-decoding to study the relative difficulty27

with which sublinear algorithms can cope with erasures and errors in their inputs.28

Intuitively, a family of codes is locally decodable in the presence of a specified type of corruptions (erasures29

or errors) if there exists an algorithm that, given oracle access to a codeword with a limited fraction of30

specified corruptions, can decode each desired character of the encoded message with high probability after31

querying a small number of characters in the corrupted codeword. In other words, we can simulate oracle32

access to the message by using oracle access to a corrupted codeword. This notion can be extended to33

local list-decoding by requiring the algorithm to output a list of descriptions of local decoders. Intuitively,34

∗A preliminary version [54] of this work has appeared in the proceedings of ITCS 2019. The first and the third author were
supported by National Science Foundation Grants CCF-142297 and CCF-1832228. Most of this work was done when the third
author was a student at Boston University.

†sofya@bu.edu
‡noga@cs.haifa.ac.il, nvarma@bu.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 195 (2018)

a family of codes is locally list-decodable in the presence of a specified type of corruptions if there exists an1

algorithm that, given oracle access to a corrupted codeword w, outputs a list of algorithms such that for2

each message x whose encoding sufficiently agrees with w, there is an algorithm in the list that, given oracle3

access to w, can simulate oracle access to x. In addition to the usual quantities studied in the literature4

on error-correcting codes (such as the fraction of corruptions a code can handle, its rate and efficiency of5

decoding), the important parameters in local decoding are the number of queries that the algorithms make6

to w and, in the case of local list-decoding, list size.7

The notion of locally decodable codes (LDCs) arose in the 1990s, motivated by numerous applications in8

complexity theory, such as program checking [49, 13, 24, 25], probabilistically checkable proofs [5, 3, 2, 53],9

derandomization [6, 59, 60], and private information retrieval [16]. Locally decodable codes that work in the10

presence of errors have been extensively studied [5, 13, 24, 25, 53, 7, 63, 21, 20, 8]. The related notion of locally11

list-decodable codes (LLDCs) has also received a lot of attention [31, 59, 39, 8, 45, 43, 34, 32] and found12

applications in cryptography [31], learning theory [46], average-to-worst-case reductions [48, 15, 26], and13

hardness amplification and derandomization [6, 59]. The literature on decoding in the presence of erasures is14

too vast to survey here. List-decoding in the presence of erasures (without the locality restriction) has been15

addressed by Guruswami [35] and Guruswami and Indyk [36]. In particular, Guruswami [35] constructed16

an asymptotically good family of binary linear codes that can be list-decoded from an arbitrary fraction of17

erasures with lists of constant size. Even though decoding in the presence of erasures is an important and well18

established problem, local (unique and list) decoding from erasures has only been studied from the perspective19

of hardness amplification where the interest is in proving lower bounds on query complexity [14, 62, 4, 33].120

Motivated by applications in property testing [30, 58], we begin our investigation of effects of erasures21

with local list-decoding. Our first result is a local erasure list-decoder for the Hadamard code. Local list-22

decodability of the Hadamard code in the presence of errors is a famous result of Goldreich and Levin [31].23

However, (local list) decoding of the Hadamard code is impossible when the fraction of errors reaches or24

exceeds 1/2. In contrast, we show that the Hadamard code is locally list-decodable in the presence of any25

constant fraction of erasures in [0, 1). Moreover, the list size and the query complexity for our decoder is26

better than for the Goldreich-Levin decoder: for our decoder, both quantities are inversely proportional27

to the fraction of input that has not been corrupted, whereas for the Goldreich-Levin decoder they are28

quadratically larger and are known to be optimal for that setting. Thus, our Hadamard decoder demonstrates29

that a square-root reduction in the list size and query complexity in local list-decoding can be achieved for30

some settings of parameters when we move from errors to erasures.31

The second thrust of our work, enabled by our local list-decoding results, is investigating the effects32

of adversarial corruption to inputs on the complexity of sublinear-time algorithms. Understanding the33

relative difficulty of designing algorithms that work in the presence of input errors and in the presence of34

input erasures is a problem of fundamental importance. The motivation of investigating adversarial input35

corruption spurred the generalization of property testing, one of the most widely studied models of sublinear-36

time algorithms [27, 28, 55, 57, 29], to (error) tolerant testing [52] and erasure-resilient testing [19].37

Erasure-resilient property testing falls between (standard) property testing and tolerant testing. Specif-38

ically, an erasure-resilient tester for a property, in the special case when no erasures occur, is a standard39

tester for this property. Also, a tolerant tester for a property implies the existence of an erasure-resilient40

tester with comparable parameters for the same property [19]. Fischer and Fortnow [23] separated standard41

and tolerant testing by describing a property that is easy to test in the standard model and hard to test42

tolerantly. Dixit et al. [19] showed that the property defined by Fischer and Fortnow separates standard43

property testing from erasure-resilient testing in the same sense. Dixit et al. [19] asked whether it is possible44

to obtain a separation between erasure-resilient and tolerant testing.45

In this work, we provide such a separation. Specifically, we describe a property of binary strings that is46

easy to test in the erasure-resilient model, but hard to test tolerantly.47

The key idea in our construction of the separating property is to encode sensitive regions of strings48

1There is a related line of work on local list recovery [40, 32], where codeword positions are associated with sets of symbols.
The goal, given oracle access to such a codeword, is to output a list of codewords such that for each codeword in the list, the
symbol at each position is equal to one of the symbols from the set associated with that position. In these terms, an erased
codeword position corresponds to its associated set being equal to the alphabet.

2

(without which testing becomes hard) with an error correcting code. We need a code that exhibits a1

difference in its local list-decoding capabilities for the same fraction of erasures and errors. Specifically, we2

want, for some constant α, q and L, a code that can be decoded from an α fraction of erasures with q queries3

and lists of size L, but cannot be decoded from an α fraction of errors. We first define a property where the4

sensitive regions are encoded with the Hadamard code and show that it is testable in the erasure-resilient5

model (with a constant number of queries), but is not testable tolerantly.6

Next, we want to strengthen the separation to obtain a property that is testable with erasures, but7

requires as many queries as possible to test tolerantly. In our construction, the lower bound on the number8

of queries needed for tolerant testing is determined by the rate of the code. Since the Hadamard code has9

low rate, we only get a polylogarithmic lower bound on the query complexity of tolerant testing. To obtain10

a lower bound of nΩ(1), we would need a code of polynomial rate. The question of whether there is a locally11

erasure list-decodable code (with constant α, q and L) of polynomial rate remains open. An LLDC with12

such parameters is the holy grail of research on local decoding.13

We circumvent the above difficulty by starting out with a property of binary strings that has a tester14

whose queries to a sensitive region of the input are nearly uniformly distributed. This implies that testing15

remains easy even if a constant fraction of the sensitive region is corrupted. We construct a new separating16

property by encoding the sensitive region using a code that is approximate locally list-decodable from erasures,17

where an approximate locally list-decodable code (ALLDC) is defined identically to an LLDC except that18

the algorithms output by a decoder for such a code simulate oracle access to strings that are close to the19

original messages. We show that the resulting property can be erasure-resiliently tested using a constant20

number of queries but needs nΩ(1) queries in order to be tested tolerantly, thus obtaining a strengthened21

separation.22

Next, we study the general relationship between local decoding in the presence of errors and in the23

presence of erasures. One can observe that every LLDC that works in the presence of errors also works24

in the presence of twice as many erasures (with the same parameters up to constant factors). We ask if25

LLDCs or ALLDCs that work in the presence of erasures can have significantly smaller list sizes and query26

complexity than LLDCs or ALLDCs of the same rate that work in the presence of errors. We also prove that27

such a statement cannot hold for the case of local unique decoding: specifically, we show that if a code is28

locally unique erasure-decodable, then there exists another comparable code that is locally unique decodable29

(up to minor losses in parameters).30

1.1 Model Definitions and Our Results31

This section contains descriptions and definitions of the codes, decoding tasks, and property testing models32

we study, and also statements and discussion of our main results.33

1.1.1 Local Erasure List-Decoding and the Hadamard Code.34

In this paper, we restrict our attention to binary codes. A binary code is an infinite family of maps {Cn :35

Fn2 → FN2 }n∈N. The parameter n is called the message length, N is the block length, and n/N is the rate of36

the code. Corruptions in codewords can either be in the form of erasures (missing entries, denoted by the37

symbol ⊥) or in the form of errors (wrong values from F2).38

Recall that a local list-decoder outputs a list of algorithms which give oracle access to decoded messages39

or, in other words implicitly compute the decoded messages. This, and the notion of local erasure list-decoders40

are formalized in the following definitions.41

Definition 1.1 (Implicit Computation). An algorithm A is said to implicitly compute x ∈ Fn2 if, for all42

i ∈ [n], the algorithm A on input i, outputs the ith bit of x.43

Definition 1.2 (Locally Erasure List-Decodable Codes (LLEDCs)). A family of codes {Cn : Fn2 → FN2 }n∈N44

is (α, q, L)-locally erasure list-decodable if there exists a randomized algorithm A such that, for every n ∈ N45

and every w ∈ (F2 ∪{⊥})N with at most an α fraction of erasures, the algorithm A makes at most q queries46

to w and outputs a list of randomized algorithms {T1, T2, . . . , TL} such that the following hold:47

3

1. With probability at least 2/3, for all x ∈ Fn2 such that Cn(x) agrees with w on all nonerased bits, there1

exists an index j ∈ [L] such that Tj with oracle access to w implicitly computes x.2

2. For all j ∈ [L] and i ∈ [n], the expected number of queries that the algorithm Tj makes to w on input3

i is at most q.4

Item 2 in the above definition can be used to obtain a high probability worst-case bound on the query5

complexity of the algorithms, by incurring a constant factor loss in the query complexity expression. The6

definition of an (α, q, L)-LLDC is identical to Definition 1.2 except that the input word has no erasures, and7

the list is required to contain, with probability at least 2/3, algorithms that implicitly compute messages8

corresponding to codewords disagreeing with the input word on at most an α fraction of bits. The celebrated9

Goldreich-Levin theorem [31] states that the Hadamard code, defined next, is an LLDC that has an efficient10

decoder.11

Definition 1.3 (Hadamard code). For a ∈ Fn2 , let Ha : Fn2 → F2 be defined as follows: Ha(x) = (
∑
i∈[n] ai ·12

xi) mod 2 for all x ∈ Fn2 . The Hadamard code, denoted by {Hn : Fn2 → F2n

2 }n∈N, is such that for a ∈ Fn2 ,13

the encoding Hn(a) is the string of evaluations of Ha over Fn2 .14

Our first result is about the local erasure list-decodability of the Hadamard code. It is an analogue of15

the Goldreich-Levin Theorem [31] for corruptions in the form of erasures. We first state the Goldreich-Levin16

Theorem and then state our result.17

Theorem 1.4 (Goldreich-Levin Theorem [31]). There is a
(
α,O(1

(1/2−α)2), O(1
(1/2−α)2)

)
-local list-decoder18

for the Hadamard code that works for every α ∈ [0, 1/2).19

Theorem 1.5 (Local Erasure List-Decoder for Hadamard). There is a
(
α,O(1

1−α), O(1
1−α)

)
-local erasure20

list-decoder for the Hadamard code that works for every α ∈ [0, 1).21

The Goldreich-Levin theorem holds for any fraction of errors in [0, 1/2). In contrast, our local erasure22

list-decoder works for any fraction of erasures less than 1. However, it is impossible to decode the Hadamard23

code in the presence of 1/2 fraction of errors because every Hadamard codeword has relative distance at24

most 1/2 from the all-zero codeword. Another improvement in Theorem 1.5 as compared to Goldreich-Levin25

is in the list size and the query complexity: from Θ(1
(1/2−α)2) to O(1

1−α). Such an improvement is impossible26

if we are decoding against errors as opposed to erasures. Specifically, for the list size, Blinovsky [12] and27

Guruswami and Vadhan [38] show that every list-decoder for every binary code that is list-decodable in28

the presence of an α fraction of errors must output lists of size Ω(1
(1/2−α)2). For the query complexity,29

Theorem 1.4 is also optimal, as shown by Ron-Zewi, Shaltiel and Varma [56] in a work subsequent to ours.30

Together with Theorem 1.5, these works give a separation between errors and erasures in the context of31

local list-decoding. Moreover, it follows from the works of Guruswami [35] and Ron-Zewi et al. [56] that32

Theorem 1.5 is also optimal for both the list size and query complexity.33

Finally, Observation 5.4 states that every (α, q, L)-LLDC is also an (2α, 4q, 4L)-LLEDC. By combin-34

ing this observation with the Goldreich-Levin theorem, one can obtain a local erasure list-decoder for the35

Hadamard code that works for every α ∈ [0, 1) and has list size and query complexity Θ(1
(1−α)2). However,36

we obtain quadratically better list size and query complexity in Theorem 1.5.37

1.1.2 Separation between Erasure-Resilient and Tolerant Testing38

We first describe the erasure-resilient and tolerant models of testing. A property P is a set of strings. Given39

a string x ∈ {0, 1}n and a property P ⊆ {0, 1}n, the Hamming distance of x from P is equal to the minimum,40

over y ∈ P, of the Hamming distance between x and y. A string x ∈ {0, 1}n is ε-far (α-close) from (to,41

respectively) a property P ⊆ {0, 1}n, if the Hamming distance of x from P is at least εn (at most αn,42

respectively).43

4

Definition 1.6 (α-erased strings and completions). Given α ∈ [0, 1), a string is α-erased if at most an α1

fraction of its values are erasures (denoted by ⊥). A completion of an α-erased string x ∈ {0, 1,⊥}n is a2

string y ∈ {0, 1}n that agrees with x on all the positions where x is nonerased.3

Definition 1.7 (Erasure-resilient tester). An α-erasure-resilient ε-tester [19] for a property P is a ran-4

domized algorithm that, given parameters α ∈ [0, 1), ε ∈ (0, 1) such that α + ε < 1 and oracle access to an5

α-erased string x, accepts with probability at least 2/3 if x has a completion in P and rejects with probability6

at least 2/3 if every completion of x is ε-far from P.2 The property P is α-erasure-resiliently ε-testable if7

there exists an α-erasure-resilient ε-tester for P with query complexity that depends only on the parameters8

α and ε (but not on the input length n).9

For the special case with no erasures, that is, when α = 0, we refer to the algorithm above as an ε-tester.10

Definition 1.8 (Tolerant tester). An (α, ε′)-tolerant tester [52] for P is a randomized algorithm that, given11

parameters α ∈ (0, 1), ε′ ∈ (α, 1) and oracle access to a string x, accepts with probability at least 2
3 if x is12

α-close to P and rejects with probability at least 2
3 if x is ε′-far from P. The property P is (α, ε′)-tolerantly13

testable if there exists an (α, ε′)-tolerant tester for P with query complexity that depends only on α and ε′14

(but not on the input length n).15

Comparison of parameters. We remark that, while comparing the two models, one possibility is to16

compare (α, α+ε)-tolerant testing of a property P with α-erasure-resilient ε-testing of P for the same values17

of α ∈ [0, 1) and ε ∈ (0, 1) such that α+ ε < 1. The parameter α in both models is an upper bound on the18

fraction of corruptions (erasures, or errors) that an adversary can make to an input. An α-erasure-resilient19

ε-tester rejects with probability at least 2
3 if, for every completion of an input string, one needs to change at20

least an ε fraction of the completion to make it satisfy P. Similarly, an (α, α+ ε)-tolerant tester rejects with21

probability at least 2
3 if, for every way of correcting an α fraction of the input values, one needs to change22

at least an additional ε fraction of the input to make it satisfy P.23

Separation. The following theorem states that there exists a property that is erasure-resiliently testable24

but is not tolerantly testable. This proves that tolerant testing is, in general, harder problem than erasure-25

resilient testing.26

Theorem 1.9 (Separation). There exists a property P and constants α, ε ∈ (0, 1) such that27

• P is α-erasure-resiliently ε-testable;28

• P is not (α, α+ ε)-tolerantly testable.29

Approximate Local Erasure List-Decoding and Strengthened Separation. We obtain a separation30

better than in Theorem 1.9 with the help of a variant of LLEDCs, called approximate locally erasure list-31

decodable codes (ALLEDC). An approximate local erasure list-decoder is identical to a local erasure list-32

decoder in all aspects except that the algorithms in its list are required to implicitly compute strings that are33

just “close” to the actual messages. More formally, (α, β, q, L)-ALLEDCs are defined as (α, q, L)-LLEDCs in34

Definition 1.2, except that we replace “implicitly computes x” at the end of Item 1 with “implicitly computes35

a string x′ ∈ Fn2 that is β-close to x”.36

The definition of an (α, β, q, L)-approximate locally list-decodable code (ALLDC) is identical to that of37

an (α, β, q, L)-ALLEDC except that the input word has no erasures, and the list is required to contain, with38

probability at least 2/3, algorithms that implicitly compute strings that are β-close to messages corresponding39

to codewords which are α-close to the input word.40

We observe (Observation 5.2) that every (α, β, q, L)-ALLDC is also a (2α, β, 4q, 4L)-ALLEDC, and com-41

bine this observation with existing constructions for ALLDCs [41, 9] to obtain efficient ALLEDCs. We use42

them and get our strengthened separation.43

2The rejection condition in this definition of erasure-resilient testing is differently parameterized than that in the definition
due to Dixit et al. [19]. We use the current definition as it gives cleaner query complexity expressions and is consistent with the
definition of erasure-resilient graph property testing defined by Levi et al. [47]. We refer the interested reader to Appendix A
for a comparison of the two definitions.

5

Theorem 1.10 (Strengthened Separation). There exists a property P ′ and constants α, ε ∈ (0, 1) such that1

• P ′ is α-erasure-resiliently ε-testable;2

• every (α, α+ ε)-tolerant tester for P ′ makes nΩ(1) queries.3

Relationship between Local Erasure-Decoding and Local Decoding. We investigate the general4

relationship between the erasures and errors in the context of local unique and list-decoding. We show5

that local (unique) decoding from erasures implies local (unique) decoding from errors, up to some loss in6

parameters.7

Definition 1.11 (Locally Erasure-Decodable Codes (LEDCs)). A code family {Cn : Fn2 → FN2 }n∈N is (α, q)-8

locally erasure-decodable if there exists an algorithm A that, given an index i ∈ [n] and oracle access to an9

input word w ∈ ({⊥} ∪ F2)N with at most an α fraction of erasures, makes at most q queries to w and10

outputs xi with probability at least 2
3 .11

A (α, q)-locally decodable code (LDC) is defined similarly to an (α, q)-LEDC except that the input word12

w contains at most an α fraction of errors instead of erasures. We observe (Observation 7.4) that an LDC13

is also locally erasure-decodable from (nearly) twice as many erasures. We also show that constant-query14

LEDCs are constant-query locally decodable (up to constant loss in parameters).15

Theorem 1.12. For every α ∈ [0, 1), if a code family {Cn : Fn2 → FN2 }n∈N is (α, q)-locally erasure-decodable,16

then it is (α
O(3q) , O(3q))-locally decodable.17

To prove Theorem 1.12, we start with a local erasure-decoder for {Cn}n∈N and transform it to be a18

nonadaptive and smooth local erasure-decoder, where this transformation uses ideas developed by Katz and19

Trevisan [42]. An algorithm is nonadaptive if its queries do not depend on the answers to the previous20

queries. A decoding algorithm is smooth if it decodes uncorrupted codewords by querying nearly uniformly21

distributed codeword indices. We first make the local erasure-decoder for {Cn}n∈N nonadaptive. We then22

show that every nonadaptive decoding algorithm for an LEDC can be transformed into a smooth decoding23

algorithm. We then use this ‘smoothness’ feature to show that the code family is locally decodable from a24

smaller fraction of errors than erasures.25

The technique outlined above cannot be directly used to obtain an analog of Theorem 1.12 for the case26

of local list-decoding since the notion of smoothness (the way we define it for use in our transformation)27

does not make sense in the local list-decoding setting. Smooth local decoding assumes oracle access to an28

uncorrupted codeword and the goal is to decode the message by making nearly uniformly distributed queries.29

Local list-decoding, however, is relevant in the setting that a codeword has a higher number of corrupt bits30

than the unique decoding radius.31

We remark that although our final code has small decoding radius (that is, it tolerates only a small32

fraction of errors), the decoding radius can be amplified to any constant arbitrarily close to 1/4 at the cost of33

increasing the query complexity and encoding length by a constant factor. Specifically, using a local version34

of the AEL transformation [1] (see [44, Lemma 3.1]), one can amplify the decoding radius to any constant35

arbitrarily close to 1/2 at the cost of increasing the query complexity, alphabet size, and length by constant36

factors. The alphabet then can be reduced back to binary by encoding the binary representation of each37

alphabet symbol with the Hadamard code. The length will grow by another constant factor, and using a38

local version of the GMD decoder [44, Corollary 3.9], one can show that final decoding radius is arbitrarily39

close to 1/4 and query complexity grows only by a constant factor.40

1.2 Open Questions41

The main open question raised by our work is whether local list-decoding is significantly easier in terms of42

the query complexity, the list size, or the rate of codes when corruptions are in the form of erasures. The43

same question can be asked about approximate local list-decoding. Our local erasure list-decoder for the44

Hadamard code shows that there is some advantage for having erasures over errors, in terms of the list size and45

6

query complexity, for some settings of parameters. A positive or negative answer to this question, combined1

with our result on the equivalence of errors and erasures in the local decoding regime, would enhance the2

understanding of whether local list-decoding is an inherently more powerful model when compared to local3

decoding.4

We remark that our proof that the existence of a locally decodable code that works in the presence of5

erasures implies the existence of a locally decodable code that works in the presence of errors and has related6

parameters does not directly extend to the setting of local list-decoding. However, it can be extended with7

an additional assumption that the output lists contain only valid algorithms (those that correspond to the8

original messages). This raises the question about the power of such an assumption.9

In our work, we show the existence of a property P and parameters α, ε ∈ (0, 1) satisfying α < ε and10

α + ε < 1 such that P has an efficient α-erasure-resilient ε-tester but no efficient (α, α + ε)-tolerant tester.11

In the work that introduced the erasure-resilient testing model, Dixit et al. [19] prove that for some range12

of parameters, tolerant testing is at least as hard as erasure-resilient testing.13

Observation 1.13 (Dixit et al. [19]). Let α, ε ∈ (0, 1) be such that α < ε. If there is an (α, ε)-tolerant14

tester with query complexity q for a property P, then there is an α-erasure-resilient ε-tester for P with query15

complexity q.16

Observation 1.13 does not rule out the existence of an (α, ε)-tolerantly testable property that is not α-17

erasure-resiliently ε′-testable for ε′ < ε. It would be an interesting direction to explore the exact relationship18

between the two models for the above range of parameters.19

Organization. The paper is organized as follows. Section 2 defines some of the notation that will be used20

throughout the paper. Our local erasure list-decoder for the Hadamard code is presented in Section 3. Next,21

in Section 4, we show our separation result (Theorem 1.9) based on the Hadamard code. Section 5 contains22

our transformation from approximate local list-decoding to approximate local erasure list-decoding. In23

Section 6, we show our strengthened separation result (Theorem 1.10) implied by the resulting approximate24

local erasure list-decoding algorithm. Finally, in Section 7, we detail our transformation from local erasure25

(unique) decoding to local (unique) decoding. Appendix A contains a comparison of the erasure-resilient26

model that we adopt in this paper with that of the original definition proposed by Dixit et al. [19].27

2 Preliminaries28

In this section, we define some of the notation used in the paper. We use F2 to denote the finite field of29

characteristic 2 that contains the elements 0 and 1. Given a, b ∈ F2, we use a+ b to denote the addition of30

a and b modulo 2. Let n ∈ N. For x ∈ Fn2 and i ∈ [n], we use xi to denote the i-th coordinate of x. Given31

x, y ∈ Fn2 , we use x⊕ y to denote the element of Fn2 whose ith entry is xi + yi. Let ek ∈ Fn2 for k ∈ [n] denote32

the kth standard basis vector, and let ~0 ∈ Fn2 denote the zero vector. Since a function can be represented33

by a string of evaluations over points in its domain, we often view a codeword of the Hadamard code Hn34

(see Definition 1.3) as the string of all evaluations of a linear function mapping Fn2 to F2. A function f is35

α-erased, if f evaluates to ⊥ on at most an α fraction of its domain.36

An α-erased string x ∈ {0, 1,⊥}n is ε-far from a property P ⊆ {0, 1}n if every completion (see Defi-37

nition 1.6) of x is ε-far from P. In other words, there is no way to complete x to a string that satisfies38

P without changing at least ε · |x| nonerased values in x. For strings x ∈ {0, 1,⊥}n and y ∈ {0, 1}n, the39

Hamming distance between x and y is defined to be the minimum number of nonerased values in x that40

need to be changed in order for it to be completable to y.41

3 Local Erasure List-Decoding of the Hadamard Code42

In this section, we describe a local erasure list-decoder for the Hadamard code and prove Theorem 1.5. We43

follow the style of the proof of the Goldreich-Levin theorem given in a tutorial by Luca Trevisan [61] on the44

applications of coding theory to complexity.45

7

Algorithm 1 Local Erasure List-Decoder for the Hadamard code

Input: α ∈ [0, 1); oracle access to α-erased linear function f : Fn2 → F2 ∪ {⊥}
. Let t← dlog2(12

1−α)e.
1: Sample and query z1, z2, . . . , zt ∈ Fn2 uniformly and independently at random.
. Let zS ←

⊕
i∈S zi for all nonempty S ⊆ [t]. Let zφ ← ~0. Let B ← {i ∈ [t] : f(zi) =⊥}.

2: for all b1, b2, . . . , b|B| ∈ {0, 1} do define
. Description of the local decoder Tb1,...,b|B| follows.

3: function Ab1,...,b|B|
4: input: x ∈ Fn2 ; oracle access to f : Fn2 → F2 ∪ {⊥}
5: for all S ⊆ [t] do
6: if f(x⊕ zS) 6=⊥ then return (+j∈S∩B bj) + (+j∈S∩([t]\B) f(zj)) + f(x⊕ zS).

7: return ⊥.
8: function Tb1,...,b|B|
9: input: k ∈ [n]; oracle access to f : Fn2 → F2 ∪ {⊥}

10: repeat
11: Pick y ∈ Fn2 uniformly and independently at random.
12: u← Ab1,...,b|B|(y ⊕ ek), v ← Ab1,...,b|B|(y).
13: if v 6=⊥ and u 6=⊥ then return u+ v.

14: return the descriptions of Tb1,...,b|B| for all b1, b2, . . . , b|B| ∈ {0, 1}.

Proof of Theorem 1.5. Our local erasure list-decoder, described in Algorithm 1, gets a parameter α ∈ [0, 1)1

as its input and has oracle access to an α-erased linear function f : Fn2 → F2 ∪ {⊥} (or, equivalently, oracle2

access to an α-erased codeword of the Hadamard code Hn).3

We now analyze Algorithm 1. Recall that for a string a ∈ Fn2 , the function Ha : Fn2 → F2 denotes the4

Hadamard encoding of a (see Definition 1.3). We will show that, with probability at least 2/3, for every5

a ∈ Fn2 such that the functions Ha and f agree with each other on all the nonerased points, one of the local6

decoders output by Algorithm 1 implicitly computes a (see Definition 1.1).7

There exists some iteration of Step 2 of Algorithm 1 such that bi = Ha(zi) for all i ∈ B. Let T and A8

denote the algorithms whose descriptions are generated in Steps 8 and 3 of this iteration, respectively.9

First, we show that for x distributed uniformly in Fn2 , the algorithm A on input x, returns Ha(x) with
probability at least 2/3. Consider the first set S′ ⊆ [t] (in the order that A considers sets) such that
f(x⊕ zS′) 6=⊥. According to the description of A,

A(x) =

(
+

j∈S′∩B
bj

)
+

(
+

j∈S′∩([t]\B)

f(zj)

)
+ f(x⊕ zS′)

=

(
+

j∈S′∩B
Ha(zj)

)
+

(
+

j∈S′∩([t]\B)

Ha(zj)

)
+Ha(x⊕ zS′)

=

(
+
j∈S′

Ha(zj)

)
+Ha(x) +

(
+
j∈S′

Ha(zj)

)
= Ha(x).

The second equality above holds as bi = Ha(zi) for all i ∈ B, and Ha(y) = f(y) for all nonerased y ∈ Fn2 .10

The third equality holds because Ha, being a linear function, satisfies Ha(y ⊕ y′) = Ha(y) + Ha(y′) for all11

y, y′ ∈ Fn2 .12

It remains to show that, with probability at least 2/3, there exists some set S ⊆ [t] such that f(x⊕zS) 6=⊥.13

Let α? ≤ α denote the fraction of erasures in f . For each S ⊆ [t], we have that f(x⊕zS) 6=⊥ with probability14

1 − α?, since x (and therefore, x ⊕ zS) is uniformly distributed in Fn2 . Define indicator random variables15

ZS = 1(f(x ⊕ zS) 6=⊥) for S ⊆ [t] and let Z =
∑
S⊆[t] ZS . The random variable Z is equal to the number16

8

of nonerased values among f(x⊕ zS) for S ⊆ [t]. The event that ∀S ⊆ [t], f(x⊕ zS) =⊥ is equivalent to the1

event that Z < 1.2

For each S ⊆ [t], we have E[ZS] = 1− α?. Therefore, by the linearity of expectation,

E[Z] =
∑
S⊆[t]

E[ZS] = 2t(1− α?).

For every two nonempty sets R,S ⊆ [t] such that R 6= S, the vectors zR and zS are independently and
uniformly distributed in Fn2 . Thus, the collection {x ⊕ zS |S ⊆ [t]} is pairwise independent, and hence the
random variables ZS for S ⊆ [t] are also pairwise independent. Now, for each S ⊆ [t], we have Var(ZS) =
(1− α?) · α?, and by the pairwise independence,

Var[Z] =
∑
S⊆[t]

Var[ZS] = 2t · α?(1− α?).

Applying the Chebyshev’s inequality,

Pr[Z < 1] = Pr[E[Z]− Z > E[Z]− 1]

≤ Pr[E[Z]− Z ≥ 2t · (1− α?)− 1]

≤ Pr

[
E[Z]− Z >

2t · (1− α?)
2

]
≤ 4Var(Z)

(1− α?)2 · (2t)2

≤ 4α?

(1− α?) · 2t
≤ 4α

(1− α) · 2t
≤ 1

3
.

The last inequality follows from our setting of t. Therefore, for x distributed uniformly in Fn2 , the3

algorithm A on input x, returns Ha(x) with probability at least 2
3 .4

Finally, we prove that T implicitly computes a ∈ Fn2 and that the expected number of queries that T makes5

to f is O(1
1−α). It is clear that the output of T on input k ∈ [n] is always a[k] = Ha(y⊕ek)+Ha(y) = Ha(ek).6

The number of queries made by T to A is a geometric random variable with success probability at least 1/3.7

Hence, the expected number of queries made by T to A is at most 3. Since the query complexity of A is8

at most 2t, the expected number of queries made to f in one invocation of T is at most 3 · 2t, which is at9

most 72
1−α . The number of algorithms whose descriptions are generated is also at most 2t, which is at most10

24
1−α .11

4 Separation12

In this section, we describe a property P that is erasure-resiliently testable using a constant number of13

queries, but not tolerantly testable using a constant number of queries, and prove Theorem 1.9. In fact, we14

prove the following (more general) statement and show that it implies Theorem 1.9.15

Theorem 4.1. Let ε? ∈ (0, 1
100) be a constant. There exists a property P ⊆ {0, 1}∗ such that16

• for every α ∈ [0, 3ε?

16) and ε ∈ (3ε?

4 , 1) such that α+ ε < 1, the property P can be α-erasure-resiliently17

ε-tested using O(1
ε) queries.18

• for all α ∈ (ε
?

8 , 1) and ε′ ∈ (α, ε? − (ε?)2

4), the query complexity of (α, ε′)-tolerant testing P on inputs19

of length N is Ω̃(logN).20

4.1 Description of the Separating Property P21

The property P is defined in terms of a property R that is hard to test in the standard property testing22

model [30, 58], a probabilistically checkable proof system (PCP of proximity [22, 10, 18]) for the problem23

9

of testing R, and the Hadamard code. We discuss them below. The idea of using PCPs of proximity1

in separating the two property testing models comes from the work of Fischer and Fortnow [23]. Our2

contribution is to use locally list-decodable codes in this context.3

Given a Boolean formula φ over n variables, let Rφ ⊆ {0, 1}n denote the set of all satisfying assignments4

to φ, represented as n-bit strings. Ben-Sasson, Harsha and Raskhodnikova [11] showed that for infinitely5

many n ∈ N, there exists a 3CNF formula φn on n variables such that every tester for Rφn requires Ω(n)6

queries.7

Lemma 4.2 ([11]). There exists a parameter ε? ∈ (0, 1) and a countably infinite set ℵ ⊆ N such that for all8

n ∈ ℵ, there exists a 3CNF formula φn with n variables and Θ(n) clauses such that every ε?-tester for Rφn9

has query complexity Ω(n).10

An important ingredient in the description of the separating property P is a probabilistically checkable11

proof system for property testing problems. The notion of proof assisted property testing was introduced by12

Ergun, Kumar, and Rubinfeld [22]. Ben-Sasson et al. [10] and Dinur and Reingold [18] defined and studied a13

special case of proof-assisted property testers called PCPs of proximity (or alternatively, assignment testers).14

PCPs of proximity were further studied by Dinur [17] and Meir [50, 51].15

Definition 4.3 (PCP of proximity [22, 10, 18]). Given a property Pn ⊆ {0, 1}n, the PCP of proximity16

(PCPP) for Pn is a randomized algorithm V that takes a parameter ε ∈ (0, 1], gets oracle access to a string17

y ◦ π, where y ∈ {0, 1}n is the input and π ∈ {0, 1}m is the proof, and satisfies the following:18

• if y ∈ Pn, then, for some π, the algorithm V always accepts y ◦ π;19

• if y is ε-far from Pn, then, for every π, the algorithm V rejects y ◦ π with probability at least 2
3 .20

A result by Dinur [17, Corollary 8.4] implies that there are efficient PCPPs (over a small constant21

alphabet Σ) for testing properties (over Σ) that are decidable using polynomial-sized circuits. The following22

restatement of this result is obtained by representing the symbols in Σ using the binary alphabet.23

Lemma 4.4 ([17]). If Pn ⊆ {0, 1}n is a property decidable by a circuit of size s(n), then there exists a24

randomized algorithm V ′ that gets oracle access to a string y ◦ π ∈ {0, 1}∗, where y ∈ {0, 1}n is the input25

and π is a proof of length at most s(n) · polylog s(n), and satisfies the following:26

• if y ∈ Pn, then for some proof π, the algorithm V ′ always accepts y ◦ π;27

• if y /∈ Pn, then for every π, the algorithm V ′ rejects y ◦ π with probability proportional to the relative28

Hamming distance of y from Pn.29

Moreover, V ′ makes a constant number of nonadaptive queries.30

An algorithm guaranteed by Lemma 4.4 for a property P can be converted to an efficient PCPP for P31

by simply repeating the former algorithm sufficiently many times.32

Lemma 4.5 ([17]). If Pn ⊆ {0, 1}n is a property decidable by a circuit of size s(n), then there exists a PCPP33

V that works for every ε ∈ (0, 1], uses a proof of length at most s(n) ·polylog s(n), and has query complexity34

O(1
ε). Moreover, the queries of V are nonadaptive.35

Claim 4.6 uses Lemma 4.5 in conjunction with the fact that the property R = {Rφn}n∈ℵ can be decided36

using linear-sized circuits.37

Claim 4.6. There exists a constant c > 0 such that for every large enough n ∈ N, there exists a PCPP V38

for the property Rφn that works for all ε ∈ (0, 1], uses a proof of length at most cn ·polylog n, and has query39

complexity O(1
ε).40

Proof. One can observe that for all n ∈ ℵ, the circuit complexity of deciding Rφn (described in Lemma 4.2)41

is O(n). In other words, there exists a c′′ such that for every large enough n, the property Rφn can be42

decided using a circuit of size at most c′′n. The claim follows by plugging this fact into Lemma 4.5.43

10

The following is the definition of our separating property P. At a high level, the definition says that, for1

all n ∈ ℵ, a string of length O(2n·polylog n) satisfies P if its first part is the repetition of a string y satisfying2

Rφn , and the second part is the encoding (by the Hadamard code) of y concatenated with a proof π that3

makes the algorithm V in Claim 4.6 accept.4

Definition 4.7 (Separating Property P). Let ε? ∈ (0, 1) and ℵ ⊆ N be as in Lemma 4.2. For n ∈ ℵ, let5

p(n) ≤ cn · polylog n denote the length of proof that the algorithm V in Claim 4.6 has oracle access to. A6

string x ∈ {0, 1}N of length N = 4
ε? · 2

n+p(n) satisfies P if the following conditions hold:7

1. The first (4
ε? − 1) · 2n+p(n) bits of x (called the plain part of x) consist of (4

ε? − 1) · 2n+p(n)

n repetitions8

of a string y ∈ Rφn of length n, for φn from Lemma 4.2.9

2. The remaining bits of x (called the encoded part of x) form the Hadamard encoding of a string y ◦π(y)10

of length n + p(n), where ◦ denotes the concatenation operation on strings. The string y ∈ {0, 1}n is11

the same as the one in the description of the plain part. The string π(y) ∈ {0, 1}p(n) is a proof such12

that the algorithm V (from Claim 4.6) accepts when given oracle access to y and π(y).13

4.2 Proof of Theorem 4.114

In this section, we prove Theorem 4.1, which in turn implies Theorem 1.9. Lemmas 4.8 and 4.12 prove the15

first and second parts of Theorem 4.1, respectively.16

We first give a high level overview of the proof. The erasure-resilient tester for P first obtains a list17

of (implicit) decodings of the encoded part (see Definition 4.7) of an input string x ∈ {0, 1}N using the18

local erasure list-decoder guaranteed by Theorem 1.5. If x ∈ P, with high probability, at least one of the19

algorithms implicitly computes (see Definition 1.1) the string y ◦ π(y), where y is such that the plain part of20

x (see Definition 4.7) consists of repetitions of y, and π(y) is a proof string such that the algorithm V (from21

Claim 4.6) accepts upon oracle access to y ◦π(y). In case x is ε-far from P we show that for every algorithm22

T output by the local erasure list-decoder, the string y′ ◦ π(y′) implicitly computed by T is such that, (1)23

either the plain part of x is far from being the repetitions of y′, (2) or y′ is far from R (in which case, the24

algorithm V from Claim 4.6 rejects when given oracle access to y′ ◦ π(y′)).25

To show that tolerant testing of P is hard, we reduce ε?-testing of Rφn to it. Specifically, given oracle26

access to a string y ∈ {0, 1}n that we want to ε?-test, we simulate oracle access to a string x ∈ {0, 1}N27

such that the plain part of x consists of repetitions of y, and every bit in the encoded part of x is 0. Since28

every Hadamard codeword has an equal number of 0s and 1s, the string x can be thought of as having a 0.529

fraction of “errors” in the encoded part. If y ∈ Rφn , then the string x is close to being in P, as the errors30

are only in the encoded part of x and the length of the encoded part is a small fraction of the length of x.31

If y is far from Rφn , then x is also far from P, since the plain part of x, whose length is a large fraction of32

the length of x, is the repetitions of y. Thus, the decision of a tolerant tester for P on x can be used to test33

y for Rφn , implying that the complexity of tolerant testing of P is equal to the complexity of testing Rφn .34

We now prove the existence of an efficient erasure-resilient tester for P. Recall that an α-erased string x35

is ε-far from a property P if there is no way to complete x to a string that satisfies P without changing at36

least ε · |x| nonerased values in x.37

Lemma 4.8. Let ε? ∈ (0, 1) be as in Lemma 4.2. For every α ∈ [0, 3ε?

16) and ε ∈ (3ε?

4 , 1) such that α+ε < 1,38

the property P can be α-erasure-resiliently ε-tested using O(1
ε) queries.39

Proof. The erasure-resilient tester for P is described in Algorithm 2. The query complexity of the tester is40

O(1/ε) as is evident from its description. We now prove that the tester, with probability at least 2
3 , accepts41

strings in P and rejects strings that are ε-far from P.42

Let ℵ, ε? ∈ (0, 1) be as in Lemma 4.2. Fix n ∈ ℵ and let p(n) and N be as in Definition 4.7. Let s43

denote (4
ε? − 1) · 2n+p(n)

n . Consider a string x ∈ {0, 1}N that we want to erasure-resiliently test for P. As in44

Definition 4.7, we refer to the substring x[1 . . . sn] as the plain part of x and the substring x[sn+ 1 . . . N] as45

the encoded part of x.46

11

Algorithm 2 Erasure-resilient tester for separating property P
Input: α, ε ∈ (0, 1), N = 4

ε? · 2
(n+p(n)); oracle access to x ∈ {0, 1,⊥}N

. Set s← (4
ε? − 1) · 2(n+p(n))

n , ε′ ← ε
3 , q ← 288, L← 96.

. Set Q← 10q+10qL ·
(⌈

9 logL
ε

⌉
+ d4 logLe · 3C

ε

)
, where C is the constant in the O notation of Claim 4.6.

1: Accept whenever the number of queries exceeds Q.
2: Run a (3

4 , q, L)-local erasure list-decoder for the Hadamard code (Algorithm 1) with oracle access to
x[sn+ 1..N], the encoded part of x. . Note that q and L are constants for local list-decoding from at most
a 3/4 fraction of erasures, and the specific values given here follow from the proof of Theorem 1.5.

. Let T1, T2, . . . , TL be the list of algorithms returned in the above step.
3: for each k ∈ [L] do
. Check if the plain part of x is the repetition of y, where y denotes the first n bits of the decoding (given
by Tk) of the encoded part of x.

4: repeat
⌈

9 logL
ε

⌉
times:

5: Pick a ∈R [n], i ∈R [s].
6: if x[(i− 1)n+ a] 6=⊥ and Tk(a) 6= x[(i− 1)n+ a] then
7: Discard the current k
. Check if the string y ∈ Rφn , where y denotes the first n bits of the decoding (by Tk) of the encoded part
of x.

8: repeat d4 logLe times:
9: Run V , from Claim 4.6, with input ε′ and oracle access to Tk.

10: Discard the current k if V rejects.

11: Reject if every k ∈ [L] is discarded; otherwise, accept.

Assume that x ∈ P. By this assumption, we can see that there exists a string y ◦ π ∈ {0, 1}n+p(n) such1

that (1) y ∈ Rφn and the plain part of x can be completed to a repetition of y, (2) π is a proof such that the2

algorithm V (from Claim 4.6) accepts when given oracle access to y ◦π, and (3) the encoded part of x can be3

completed to the Hadamard encoding of y ◦π. Since α < 3ε?/16 and the length of the encoded part is equal4

to N − sn = N · ε?/4, the fraction of erasures in the encoded part of x is less than (3ε?/16)/(ε?/4), which is5

equal to 3/4. Hence, by Theorem 1.5, with probability at least 2/3, there exists an algorithm Tk computed6

in Step 2 of Algorithm 2 such that Tk implicitly computes the string y ◦ π ∈ {0, 1}n+p(n). Therefore k is not7

discarded in either Step 7 or Step 10. Thus, the tester will accept with probability at least 2/3.8

Now, assume that x is ε-far from P. Let E denote the event that the number of queries made by the tester9

does not exceed its query budget. We first show that, conditioned on E, the tester rejects with probability10

at least 4/5.11

Claim 4.9. The plain part of x is 2ε
3 -far from being s repetitions of a string y ∈ Rφn .12

Proof. Since x is ε-far from satisfying P, at least εN nonerased values in x need to be changed in order to13

complete it to a string satisfying P. The length ε?

4 · N of the encoded part of x is an upper bound on the14

number of nonerased values in the encoded part, and therefore, it is at most εN/3 since ε ∈ (3ε?

4 , 1). Thus,15

the plain part of x needs to be changed in at least 2εN/3 nonerased values in order for it to be s repetitions16

of a string y ∈ Rφn . The claim follows.17

From Claim 4.9, it follows that at least 2ε·sn
3 nonerased points need to be changed in the plain part of x18

for it to be s repetitions of a string y ∈ Rφn .19

Claim 4.10. For any y ∈ {0, 1}n, if the plain part of x can be changed to s repetitions of y by modifying20

less than ε·sn
3 nonerased values, then y is ε

3 -far from Rφn .21

12

Proof. Consider y ∈ {0, 1}n such that we can change less than ε · sn/3 nonerased points in the plain part of1

x and make it s repetitions of y. Assume that there exists y′ ∈ Rφn such that the Hamming distance of y′ to2

y is at most ε ·n/3. Then, the plain part of x, can be changed to being s repetitions of y′ by first changing it3

to be s repetitions of y (modifying less than ε · sn/3 nonerased points) and then modifying at most s · ε ·n/34

nonerased points to make it s repetitions of y′. In other words, x[1 . . . sn] can be modified in less than5

2ε · sn/3 nonerased points to make it s repetitions of a string y′ in Rφn . This contradicts Claim 4.9.6

Fix k ∈ [L], where L is the number of algorithms returned by the local erasure list-decoder. Let y′ ∈7

{0, 1}n be the first n bits from the left in the decoding, using Tk, of the encoded part of x. We will show8

that the algorithm discards k with high probability. We split the analysis into two cases.9

Case I: Suppose we need to change at least ε·sn
3 nonerased points in the plain part of x for it to become

s repetitions of y′. We show that in this case, Steps 4-7 discard k with probability at least 9
10L . A point

(i− 1)n+ a for i ∈ [s] and a ∈ [n] is called a witness if x[(i− 1)n+ a] 6=⊥ and x[(i− 1)n+ a] 6= y′[a]. Since
we need to change at least ε ·sn/3 nonerased points in the plain part of x for it to become s repetitions of y′,
there are at least ε · sn/3 witnesses in the plain part of x. In each iteration of Steps 4-7, the point selected is
a witness with probability at least ε·sn

3sn = ε
3 . Thus, the probability that Algorithm 2 does not find a witness

(and does not discard k) in d 9 logL
ε e iterations is at most

(1− ε

3
)

9 logL
ε ≤ (1− ε

3
)

3 log(10)·log(L)
ε ≤ 1

10L
,

where we have used the inequality 3 log(10) ≤ 9.10

Case II: In this case, we assume that we can change less than ε · sn/3 nonerased points in the plain part
of x and make it s repetitions of y′. Then, by Claim 4.10, y′ is ε/3-far from Rφn . Let ε′ = ε

3 . By Claim 4.6,

for every proof π ∈ {0, 1}p(n), the algorithm V (from Claim 4.6), on input ε′ and oracle access to y′ ◦ π
(obtained via Tk), rejects (causing k to be discarded) with probability at least 2/3. Thus, the probability
that tester fails to discard k in d4 logLe independent iterations of Steps 8-10 is at most(

1− 2

3

)4 logL

≤
(

1− 2

3

)(3/2)·log(10)·log(L)

≤ 1

10L
.

Therefore, the probability that the tester fails to discard k is at most 1
10L + 1

10L ≤
1

5L . By the union11

bound, the probability that Algorithm 2 fails to discard some k ∈ [L] is at most 1/5. Thus, conditioned on12

the event E that the number of queries made by the tester does not exceed its query budget, with probability13

at least 4/5, the tester rejects.14

We now bound the probability of the event E. For this, we calculate the expected number of queries15

made by Algorithm 2. The number of queries made in Step 2 is at most q. For all k ∈ [L], the expected16

number of queries that each invocation of the algorithm Tk makes is at most q. Hence, the expected number17

of queries made in Steps 4-7 is at most L ·
(⌈

9 logL
ε

⌉
· q
)
.18

By Claim 4.6, the number of queries made by the algorithm V (from Claim 4.6) on input ε′ = ε
3 and19

oracle access to Tk, is at most 3C
ε , where C is the constant in the O notation of Claim 4.6. Thus, the20

expected number of queries made in Steps 8-10 by Algorithm 2 is at most L ·
(
d4 logLe · q · 3C

ε

)
.21

Therefore the expected total number of queries made by the tester is at most

q + qL ·
(⌈

9 logL

ε

⌉
+ d4 logLe · 3C

ε

)
.

Hence, the probability that the number of queries exceed Q (as defined in Algorithm 2) is at most 1/1022

by the Markov’s inequality. Thus, the probability that the tester accepts x that is ε-far from P is at most23

1/10 + 1/5 ≤ 1/3.24

Remark 4.11. We point out that the local erasure list-decoder (Algorithm 1) used in Algorithm 2 can be25

replaced by the local erasure list-decoder obtained by applying Observation 5.4 to the Goldreich-Levin Theorem26

by incurring only a constant factor loss in the query complexity of Algorithm 2.27

13

Lemma 4.12. Let ε? ∈ (0, 1) be as in Lemma 4.2. For every α ∈ (ε
?

8 , 1) and ε′ ∈ (α, ε? − (ε?)2

4), the query1

complexity of (α, ε′)-tolerant testing P on strings of length N is Ω̃(logN).2

Proof. Let ℵ, ε? ∈ (0, 1) be as in Lemma 4.2. We will prove the lemma by showing a reduction from ε?-testing3

of Rφn . Fix n ∈ ℵ and let p(n) and N be as in Definition 4.7. Let s denote (4
ε? − 1) · 2n+p(n)

n .4

Consider a string y ∈ {0, 1}n that we want to ε?-test for Rφn . Let x ∈ {0, 1}N be the string where the5

first sn bits of x are s repetitions of y and the remaining bits are all 0s. Recall that we refer to the substring6

x[1 . . . sn] as the plain part of x and the substring x[sn+ 1 . . . N] as the encoded part of x.7

Assume that A is an (α, ε′)-tolerant tester for P. We now describe an ε?-tester A′ for Rφn that has the8

same query complexity as A. Given oracle access to y ∈ {0, 1}n, the tester A′ runs the tester A on the string9

x ∈ {0, 1}N and accepts if and only if A accepts, where x is constructed from y as described above. Observe10

that one can simulate a query to x by making at most one query to y.11

We will show that if y ∈ Rφn , then x is α-close to P. Observe that the encoded part of x needs to be12

changed in at most a 1/2 fraction of its positions in order to make it the encoding of a string y ◦ π, where13

π is a proof that makes a PCP of proximity for testing Rφn accept. This follows from the fact that the14

normalized weight of every nonzero codeword in the Hadamard code is 1/2. Thus, the fraction of bits in15

x that needs to be changed in order to make it satisfy P is at most 1
2 ·

N−sn
N = ε?

8 , which is less than α.16

Therefore, by definition, A′ will accept x with probability at least 2/3.17

Assume now that y is ε?-far from Rφn . Then x needs to be changed in at least ε? · sn positions to make18

it satisfy P. Since sn/N = (1− ε?

4) as observed above, the relative Hamming distance of x from P is at least19

ε?·sn
N = ε? − (ε?)2

4 . That is, x is (ε? − (ε?)2

4)-far from P. Hence, for all ε′ < ε? − (ε?)2

4 , we have that A will20

reject x with probability at least 2/3, and therefore A′ will reject y with probability at least 2/3.21

Thus, we have shown that the query complexity of (α, ε′)-tolerant testing P is at least the query com-22

plexity of ε?-testing Rφn . Hence, the query complexity of (α, ε′)-tolerant testing P is Ω(n), which is equal23

to Ω̃(logN).24

Proof of Theorem 1.9. Theorem 4.1 states that, for certain ranges of parameters α, ε, ε′ ∈ (0, 1) and for large
enough N ∈ N, the property P on binary strings of length N , is α-erasure-resiliently ε-testable, but is not
(α, ε′)-tolerantly testable. To prove Theorem 1.9, we need to show the existence of α, ε ∈ (0, 1) such that the
property P on binary strings of length N is α-erasure-resiliently ε-testable, but is not (α, α + ε)-tolerantly
testable. In other words, the constraints imposed on α, ε, ε′ must have a solution for the setting of ε′ = ε+α.

ε?

8
< α <

3ε?

16
;

3ε?

4
< ε < 1;

ε′ = α+ ε < ε? − (ε?)2/4

For every 0 < ε? < 1/100, the value ε? − (ε?)2/4 is strictly greater than ε? − ε?/400 = 399ε?/400.25

For α = ε?/6 and ε = 4ε?/5, which satisfy the first two inequalities, we can see that α + ε = 29ε?/30 <26

399ε?/400 < ε? − (ε?)2/4. Thus there exists α, ε ∈ (0, 1) satisfying α + ε < 1 such that P is α-erasure-27

resiliently ε-testable, but not (α, α+ ε)-tolerantly testable. Theorem 1.9 follows.28

5 Approximate Local Erasure List-Decoding29

In this section, we prove the existence of an approximate locally erasure list-decodable code (ALLEDC) with30

inverse polynomial rate. Our starting point is an approximate locally list-decodable code (ALLDC) due to31

Impagliazzo et al. [41]. To this code, we apply an observation that every ALLDC that works in the presence32

of errors also works in the presence of twice as many erasures (with the same parameters up to constant33

factors). This gives us the required ALLEDC that we later use for our strengthened separation.34

Theorem 5.1 ([41] as restated by [9]). For every γ, β > 0, there exist a number f(γ, β) > 0 and a code35

family {Ck : Fk2 → Ff(γ,β)k5

2 }k∈N that is (γ, β,O(log(1/β)

(1
2−γ)3

), O(1
(1
2−γ)2

))-approximate locally list-decodable.36

14

For the sake of completeness, we state and prove the observation that every ALLDC that works in the1

presence of errors also works in the presence of twice as many erasures (with the same parameters up to2

constant factors).3

Observation 5.2. If a code family {Ck : Fk2 → Fn2}k∈N is (α, β, q, L)-approximate locally list-decodable, it is4

also (2α, β, 4q, 4L)-approximate locally erasure list-decodable.5

Proof. Consider a codeword w ∈ (F2 ∪ {⊥})n with at most 2α fraction of erasures. Let A be an (α, β, q, L)-6

approximate local list-decoder for Ck. Assume without loss of generality that the success probability of A7

is at least 5/6. This can be ensured by running A twice and outputting the concatenation of lists obtained8

in both iterations (the resulting algorithm succeeds if one of the iterations succeed). The approximate local9

erasure list-decoder A′ for Ck first runs A on the word w0 obtained by replacing each erasure in w with a 0,10

and then on the word w1 obtained by replacing each erasure in w with a 1. The list output by algorithm A′11

is the concatenation of lists output by A in these two executions. Let E1 be the event that the first execution12

of A succeeds and E2 be the event that the second execution of A succeeds. Each codeword w′ = Ck(y′) that13

agrees with w on all the nonerased points agrees with either w0 or w1 in at least 1−α fraction of points. In14

other words, for b ∈ {0, 1}, if b is the value that w′ takes in least half the erased points in w, then w′ and wb15

disagree on at most an α fraction of points. If E1 ∩E2 holds, there exists an algorithm in the list output by16

A′ that implicitly computes (see Definition 1.1) a string y′′ that is β-close to y′. The probability of failure17

of A′ is at most Pr[E1 ∪ E2] ≤ 1
3 . Hence, A′ is a (2α, β, 4q, 4L)-approximate local erasure list-decoder for18

Ck.19

Applying Observation 5.2 to Theorem 5.1, we get the ALLEDCs that we need.20

Lemma 5.3. Let c3 > 0 be a constant. For every γ, β > 0, there exist a number f(γ, β) > 0 and a code family21

{Ck : Fk2 → {0, 1}f(γ,β)k5}k∈N that is (γ, β, c3 log(1/β)
(1−γ)3 , c3

(1−γ)2)-approximate locally erasure list-decodable.22

The following is a corollary of Observation 5.2.23

Observation 5.4. If a code family {Ck : Fk2 → Fn2}k∈N is (α, q, L)-locally list-decodable, it is also (2α, 4q, 4L)-24

locally erasure list-decodable.25

6 Strengthened Separation26

In this section, we describe a property P ′ that can be erasure-resiliently tested using a constant number27

of queries, but for which every tolerant tester has query complexity nΩ(1), and prove Theorem 1.10. The28

following theorem implies Theorem 1.10.29

Theorem 6.1. There exists a property P ′ and constants ε? ∈ (0, 1), c2 > 1 such that,30

• For every ε ∈
(
ε?

8 , 1
)

and α ∈ (0, ε?

57600·c2) such that α+ ε < 1, property P ′ can be α-erasure-resiliently31

ε-tested using O(1
ε) queries,32

• For every α ∈ (ε?

57600·c2+2ε? , 1) and ε′ ∈
(
α, 28800·c2·ε?

28800·c2+ε?

)
, every (α, ε′)-tolerant tester for P ′ on inputs33

of length N has query complexity NΩ(1).34

6.1 Description of the Separating Property P ′
35

The property P ′ is very similar to the property P that we used in our first separation (see Definition 4.7).36

Like a string that satisfies P, a string that satisfies P ′ can also be thought of as consisting of a plain part37

(that contains the repetition of a string y ∈ Rφn) and an encoded part. The encoded part of a string in P38

is the Hadamard encoding of a string y ◦ π, where π is a proof that makes the algorithm V from Claim 4.639

accept. However, the encoded part of a string satisfying P ′ is the encoding of a string π′, where π′ is a proof40

15

(whose length is asymptotically equal to |π|) that makes a ‘smooth’ PCPP accept. In addition, the encoding1

uses an ALLEDC (from Section 5) instead of the Hadamard code.2

We first describe the ‘smooth’ PCPP used in our construction. The following lemma by Ben-Sasson et3

al. [10] and Guruswami and Rudra [37, Lemma 5] states that algorithms making nonadaptive queries can be4

transformed into algorithms that make nearly uniform queries.5

Lemma 6.2 ([37, 10]). Let n ∈ N. Consider a nonadaptive algorithm T that gets oracle access to strings6

from {0, 1}n. There exists a mapping ϕT : {0, 1}n → {0, 1}n′ and an algorithm T ′ satisfying the following:7

• For every x ∈ {0, 1}n, the distribution on outcomes of T with oracle access to x is identical to the8

distribution on outcomes of T ′ with oracle access to ϕT (x). Moreover, 3n < n′ ≤ 4n, and the number9

of queries that T ′ makes to ϕT (x) is at most twice the number of queries that T makes to x.10

• Upon oracle access to x′ ∈ {0, 1}n′ , each query of T ′ is to location j ∈ [n′] with probability at most11

2/n′.12

Combining Lemma 4.4 with Lemma 6.2 (along with the fact that R = {Rφn}n∈ℵ can be decided using13

linear-sized circuits), we get the required ‘smooth’ PCPP for R.14

Lemma 6.3 (Smooth PCPP). Let c1 > 0, c2 > 1 be fixed constants. Let n ∈ N. The property Rφn has a15

PCPP V that works for all ε ∈ (0, 1], gets oracle access to an input y of length n and a proof π of length at16

most c1n · poly log n, and makes at most c2
ε queries. Moreover, the queries of V are nonadaptive and satisfy17

the following:18

• each query V makes to y is to any particular location of y with probability 1/n;19

• each query V makes to π is to any particular location of π with probability at most 2/|π|.20

Proof. Let c > 0 be the constant from Claim 4.6. Consider the algorithm V ′ guaranteed by Lemma 4.4 for21

the property Rφn . The algorithm V ′ gets oracle access to the concatenation of an input y ∈ {0, 1}n and a22

proof π′ ∈ {0, 1}p′(n), where p′(n) ≤ cn · poly log n.23

We now describe an algorithm V ′′ that, on oracle access to a string y ◦ π′′, where y ∈ {0, 1}n and24

π′′ ∈ {0, 1}n+p′(n), and does the following:25

1. Sample a uniformly random i ∈ [n] and reject if y[i] 6= π′′[i].26

2. Simulate V ′ with oracle access to π′′ and reject if V ′ rejects.27

3. Accept if neither of the above events happen.28

We prove the following claim about the algorithm V ′′.29

Claim 6.4. V ′′ is an algorithm satisfying:30

• if y ∈ Rφn , then for some proof π′′, the algorithm V ′ always accepts y ◦ π′′;31

• if y /∈ Rφn , then for every π′′, the algorithm V ′ rejects y◦π′′ with probability proportional to the relative32

Hamming distance of y from Rφn .33

Proof. Assume y ∈ Rφn . There exists a proof π′ of length at most cn · poly log n such that the algorithm V ′34

accepts when given oracle access to y ◦ π′. Therefore, algorithm V ′′ accepts if given oracle access to y ◦ π′′,35

where π′′ = y ◦ π′.36

Next, assume that y /∈ Rφn . Let δ be the relative Hamming distance of y from Rφn . Fix π′′ ∈37

{0, 1}n+p′(n). Let δ′ be the relative Hamming distance of y from the string y′ obtained by considering38

the first n bits of π′′. Step 1 of the algorithm V ′′ rejects with probability δ′, since, for a uniformly random39

index i ∈ [n], we have that y[i] 6= y′[i] with probability δ′. If δ′ ≥ δ/2, then Step 1 of algorithm V ′′ rejects40

with probability at least δ/2. If δ′ < δ/2, then the relative Hamming distance of y′ from Rφn has to be41

16

greater than δ/2; otherwise, the distance of y from Rφn is less than δ, which is a contradiction. If y′ has1

distance at least δ/2 from Rφn , for every string z ∈ {0, 1}p′(n) that forms the last p′(n) bits of π′′, the2

algorithm V ′ with oracle access to π′′ = y′ ◦ z rejects with probability Ω(δ). That is, Step 2 of V ′′ rejects3

with probability Ω(δ).4

We can think of V ′′ as running two algorithms V1 and V2, where V1 makes the input queries of V ′′ and5

V2 makes the proof queries of V ′′. We observe that the query distribution of V1 is uniform over the input6

part. By applying Lemma 6.2 to V2 we obtain a mapping ϕ : {0, 1}∗ → {0, 1}∗ and an algorithm V ′2 such7

that each query of V ′2 is to a particular location in the string ϕ(π′′) with probability at most 2/|ϕ(π′′)|. By8

Lemma 6.2, we also have: |ϕ(π′′)| ≤ 4|π′′|.9

Let p(n) denote |ϕ(π′′)|, where π′′ ∈ {0, 1}n+p′(n). Consider the algorithm V ′′′ that runs V1 and V ′2 using10

a common random string with oracle access to a string y ◦ z, where y ∈ {0, 1}n and z ∈ {0, 1}p(n), and11

rejecting whenever V ′′ rejects based on the query answers. In addition, V ′′′ also rejects if the answers to its12

queries to z are not consistent with any string in the image of ϕ. Observe that V ′′ can check this condition,13

since it completely knows the mapping ϕ, which is fully determined by V2 (by Lemma 6.2).14

If y ∈ Rφn , then there exists a proof π′′ such that V ′′ accepts y ◦ π′′, implying that for the same π′′,15

the algorithm V ′′′ accepts y ◦ π, where π = ϕ(π′′). If y /∈ Rφn , then for every proof π′′, the algorithm V ′′16

rejects y ◦ π′′ with probability proportional to the relative Hamming distance of y from Rφn . This implies17

that for every proof π, the algorithm V ′′′ rejects y ◦π with probability proportional to the relative Hamming18

distance of y from Rφn .19

On input ε ∈ (0, 1), the algorithm V guaranteed by the statement of the lemma repeats for Θ(1/ε)20

time, the algorithm V ′′′. The acceptance and rejection guarantees of V are immediate. Note also that the21

distribution of a single input or proof query does not change by repetition. The lemma follows.22

The following is the definition of our separating property P ′. Note that the encoded part of a string23

satisfying P ′ contains the encoding of a proof as well as the complement of that encoding. This is done in24

order to equalize the number of 0s and 1s in the encoded part.25

Definition 6.5 (Separating Property P ′). Let ℵ, {Rφn}n∈ℵ and ε? ∈ (0, 1) be as in Lemma 4.2. Let c1 > 0,26

c2 > 1 be as in Lemma 6.3. Let c3 > 0 be as in Lemma 5.3. Let m = 28800·c2
ε? , γ = 1

2 + ε?

57600·c2 and27

β = ε?

9000c2·
⌈
ln

6c3
(1−γ)2

⌉ .28

For n ∈ ℵ, let p(n) ≤ c1 ·n ·polylog n denote the length of a valid proof that makes the algorithm V from29

Lemma 6.3 accept. Let f(·, ·) be as in Lemma 5.3. Let C = {Ck}k∈N be the (γ, β, c3 log(1/β)
(1−γ)3 , c3

(1−γ)2)-ALLEDC30

from Lemma 5.3.31

A string x ∈ {0, 1}N of length N = (m+ 1) ·2f(γ, β) · (p(n))5 satisfies P ′ if the following conditions hold:32

1. The first m ·2f(γ, β) ·(p(n))5 bits of x (called the plain part of x) consist of m · 2f(γ,β)·(p(n))5

n repetitions33

of a string y ∈ {0, 1}n, where y ∈ Rφn of length n.34

2. The remaining 2f(γ, β) · (p(n))5 bits of x is called the encoded part. Its first half is the encoding, using35

C, of a string π ∈ {0, 1}p(n) such that the PCPP V in Lemma 6.3 accepts when given oracle access to36

y ◦ π. The second half of the encoded part is the complement of its first half.37

6.2 Proof of Strengthened Separation38

In this section, we prove Theorem 6.1. Lemmas 6.6 and 6.10 together imply the first and second parts of39

Theorem 6.1, respectively. The high level idea of the proof of Lemma 6.6 is very similar to that of Lemma 4.8.40

The differences arise mainly because of the way the encoded parts of strings satisfying P and P ′ differ. The41

erasure-resilient tester for P could first check whether the plain part is a repetition of the ‘decoded input’,42

and then check whether the ‘decoded input’ is in R with the help of the ‘decoded PCPP proof’. Since the43

encoded part of P ′ is the encoding of just a PCPP proof, this is not possible. Instead, the erasure-resilient44

tester for P ′ samples a uniformly random point u from the plain part and uses the ‘block’ from which u is45

17

obtained as a ‘candidate input’ y. It then checks whether the plain part is a repetition of y and also checks1

whether y ∈ R using the ‘approximately decoded proof’. In case a string is α-erased and ε-far from P ′, we2

show that the ‘candidate input’ y that we sample is cα-erased and c′ε-far from R, for some constants c, c′.3

Hence, the smooth PCPP verifier rejects.4

Lemma 6.6. Let ε? ∈ (0, 1) be as in Lemma 4.2 and c2 > 1 be as in Lemma 6.3. For every ε ∈
(
ε?

8 , 1
)

and5

α ∈ (0, ε?

57600·c2) such that α+ ε < 1, the property P ′ is α-erasure-resiliently ε-testable using O(1
ε) queries.6

Proof. We first show that Algorithm 3 accepts, with probability at least 3/5, strings satisfying P ′ and rejects,7

with probability at least 3/5, strings that are ε-far from P ′. The success probability can be amplified by to8

2/3 by repeating Algorithm 3 a constant number of times and returning the majority decision.9

The erasure-resilient tester is presented in Algorithm 3. Let m denote 28800·c2
ε? . Let γ = 1

2 + ε?

57600·c2 ,10

β = ε?

9000c2·
⌈
ln

6c3
(1−γ)2

⌉ , q = c3 log(1/β)
(1−γ)3 , and L = c3

(1−γ)2 . For n ∈ ℵ, consider a string x ∈ {0, 1}N , where11

N = (m+ 1) · 2f(γ, β) · (p(n))5. The plain part of x is m times larger than the encoded part. Let s denote12

the number m · 2f(γ,β)·(p(n))5

n .13

Algorithm 3 Erasure-resilient tester for separating property P ′

Input: α, ε ∈ (0, 1), N = (m+ 1) · 2f(γ, β) · (p(n))5; oracle access to x ∈ {0, 1,⊥}N

. Set s← m · 2f(γ,β)·(p(n))5

n , q ← c3 log(1/β)
(1−γ)3 , and L← c3

(1−γ)2 .

. Set the query budget Q← 30 ·
(
d 432
ε e+ Ld6 ln 6Le · c2·75

24ε · q
)
.

1: Accept whenever the number of queries exceeds Q.

. Steps 2-7 check that the plain part of x is the repetition of a string y ∈ {0, 1}n.

2: repeat d 432
ε e times:

3: Sample a uniformly random point u from the plain part.
4: if x[u] 6=⊥ then
5: Let i ∈ [s], a ∈ [n] be such that u = (i− 1) · n+ a.
6: Repeatedly sample j ∈ [s] uniformly at random until x[(j − 1)n+ a] 6=⊥.
7: Reject if x[u] 6= x[(j − 1)n+ a].

. In order to query the i-th bit of the encoding, we query the i-th bits of both the first and second halves of
the encoded part. We set the i-th bit of the encoding to the i-th bit of the first half if that is nonerased, and
to the complement of the i-th bit of second half if that is nonerased. If both are erased, we set the i-th bit
of the encoding to ⊥.

8: Run the decoder for the (γ, β, q, L)-ALLED code (from Lemma 5.3) with oracle access to the encoded
part of x.
. Let A1, A2, . . . , AL be the list of algorithms returned in the above step.
. Steps 9-14 check that y ∈ Rφn using the smooth PCPP V (from Lemma 6.3) on decoded proofs.

9: for each k ∈ [L] do
10: repeat d6 ln 6Le times:
11: Sample i ∈ [s] uniformly at random.
12: Run the smooth PCPP V with proximity parameter 24ε

75 , and oracle access to the concatenation
of x[(i− 1) · n+ 1, . . . , (i− 1) · n+ n] and the string decoded by Tk.

13: Discard the current k if all query answers to V are nonerased and V rejects.

14: Reject if every k ∈ [L] is discarded; otherwise, accept.

Assume that x satisfies P ′. Since x satisfies P ′, the plain part of x is completable to the repetitions of y14

for some y ∈ Rφn . Therefore, Steps 2-7 do not reject. By the definition of P ′, the first half of the encoded15

part of x is the encoding (using the (γ, β, q, L)-ALLED code C from Lemma 5.3) of a string π(y) ∈ {0, 1}p(n)
16

18

such that the smoothed PCPP V with oracle access to y ◦ π(y) always accepts. The second half of the1

encoding is completable to the complement of the first half. The fraction of erasures in the encoded part2

(even if all of the erasures were there) is at most (m + 1)α. Therefore, the fraction of erasures is at most3

(m+ 1) · α ≤ 1
2 + 1

2m = γ in either the first half or the second half of the encoded part.4

By the definition of a (γ, β, q, L)-ALLED code, with probability at least 2/3, one of the algorithms5

T1, T2, . . . , TL returned by the approximate local list-decoder provides oracle access to π(y) with at most6

a β fraction of errors. Let Tk be that algorithm. The tester discards this k only if an erroneous point is7

queried in some iteration of Steps 10-13. Since each proof query of V (in Step 12) is made to a specific index8

in the proof with probability at most 2/|p(n)| and the string decoded by Tk is β-erroneous, by the union9

bound over queries of V , the probability of V querying an erroneous point in some iteration of Steps 10-1310

is at most 6 · dln 6Le · 2β · c2·75
24ε , where we used the fact that d6 ln 6Le ≤ 6 · dln 6Le. Now, the tester makes11

a wrong decision only if either (1) the approximate local list-decoder fails (which happens with probability12

at most 1/3), or (2) if the approximate local list-decoder succeeds but Steps 10-13 discard k. Hence, by13

the union bound over the two events, the probability that the tester makes a wrong decision is at most14

1
3 + 2 · 6 · dln 6Le · c2·75

24ε · β ≤
2
5 , where the inequality follows from our setting of β. Hence, Step 14 rejects15

with probability at most 2/5. That is, the tester accepts x with probability at least 3/5.16

Assume now that x is ε-far from P ′. Let Npl denote the set of nonerased points in the plain part of17

x. Let Nen denote the set of nonerased points in the encoded part of x. Let αpl denote the fraction (with18

respect to s · n, the length of the plain part) of erased points in the plain part.19

Let E denote the event that the number of queries made by the tester does not exceed the query budget20

Q. In what follows, we upper bound the probability that Algorithm 3 accepts, conditioned on E. We prove21

later, in Claim 6.9, that Pr[E] ≤ 1/30.22

Let εpl denote the fraction of points (with respect to s · n, the length of the plain part) in the plain part23

whose values need to be changed in order to make the plain part a repetition of some string y ∈ {0, 1}n. Let24

Sa = {(i − 1)n + a : i ∈ [s]} for all a ∈ [n]. We use the term a-th segment to refer to the set Sa. For all25

a ∈ [n], we have |Sa| = s. For all a ∈ [n], let αa = |{u ∈ Sa : x[u] =⊥}|/s denote the fraction of points in Sa26

that are erased. Let Na ⊆ Sa denote the set of nonerased points in the a-th segment.27

Case I: the plain part of x is ε/144-far from being the repetitions of every y ∈ {0, 1}n.28

For a ∈ [n], let εa denote the smallest fraction of points in Sa whose values need to be changed in order29

to satisfy x[u] = x[v] for all u, v ∈ Na. For every a ∈ [n] and u ∈ Na, the number of v ∈ Na such that30

x[u] 6= x[v], is at least εa · s. It is immediate that εpl · s · n =
∑
a∈[n] εa · s.31

Let F denote the event that the tester rejects in a single iteration of the loop in Steps 2-7. Let Ga for all
a ∈ [n] denote the event that the tester samples a nonerased point u from Sa in Step 3. Conditioned on Ga,
the number of nonerased points in Sa that make the tester reject is at least εa · s. Putting all this together,
we have,

Pr[F |E] =
∑
a∈[n]

Pr[Ga|E] · Pr[F |Ga, E] =
∑
a∈[n]

|Na|
sn
· εa · s
|Na|

=
∑
a∈[n]

1

n
· εa = εpl ≥

ε

144
.

Therefore, conditioned on E, in at least 432/ε iterations, the tester will reject with probability at least 19/20.32

Hence, in Case I, the algorithm accepts with probability at most 1
20 + Pr[E] ≤ 1

20 + 1
30 ≤

2
5 , where we prove33

later (in Claim 6.9) Pr[E] ≤ 1/30. Thus, the algorithm rejects with probability at least 3/5.34

Case II: the plain part of x is ε/144-close to being repetitions of a string y∗ ∈ {0, 1}n.35

We first show that y∗ has to be far from Rφn .36

Claim 6.7. The string y∗ is ε/2-far from Rφn .37

Proof. Otherwise, one can transform the entire plain part of x to (be completable to) repetitions of y∗ by38

making at most sn · ε
144 ≤ N · ε

144 changes. This can then be transformed to repetitions of a string in39

Rφn by making at most sn · ε2 ≤ N · ε2 changes. Thus, the string x can be made to satisfy P ′ by making40

at most N ·
(

ε
144 + ε

2 + 1
m+1

)
changes, where the term N

m+1 accounts for the number of changes in the41

19

encoded part. Since ε > ε?

8 and c2 > 1, we have that m = 28800·c2
ε? > 144

71ε . Hence, 1
m < 71ε

144 and, therefore,1

N ·
(

ε
144 + ε

2 + 1
m+1

)
< εN . Thus, the string x can be made to satisfy P ′ by making less than εN changes.2

This is a contradiction.3

Let Bi = {(i − 1)n + a : a ∈ [n]} for all i ∈ [s]. We use the term i-th block to refer to the set Bi. For4

all i ∈ [s], we have, |Bi| = n. Let αi = |{u∈Bi:x[u]=⊥}|
n for all i ∈ [s] denote the fraction of points in Bi that5

are erased. Let Ni ⊆ Bi denote the set of nonerased points in the i-th block. Let εi for all i ∈ [s] denote the6

fraction of points in Bi whose values need to be changed in order to satisfy x[(i − 1)n + a] = y∗[a] for all7

a ∈ [n]. In other words, εin is the smallest number of points in Ni that need to be changed in order for the8

i-th block to be completable to y∗.9

Fix k ∈ [L]. We show that Algorithm 3 discards k with high probability. Consider a single iteration10

of the repeat-loop in Steps 11-13. Let y′ denote the (partially erased) string represented by the block that11

Algorithm 3 samples in Step 11. Let G1 denote the (good) event that y′ is ε/6-close to y∗. Let G2 denote12

the (good) event that y′ has at most 48α fraction of erasures. We first evaluate the probability that the13

tester discards k in Steps 11-13 conditioned on G1 and G2.14

Claim 6.8. Conditioned on G1 and G2, the string y′ is 24ε/75-far from Rφn .15

Proof. Let y′′ be a string in Rφn closest to y′. Let d denote the number of nonerased bits in y′ that need16

to be changed in order for it to be completable to y′′. By our conditioning, y′ is a 48α-erased string that is17

ε/6-close to y∗. Thus, one can convert y∗ into y′ and then y′ into y′′ by modifying at most 48αn + εn
6 + d18

bits in y∗. Since y∗ is ε/2-far from Rφn , we get that d ≥ εn
2 −

εn
6 − 48αn. From the restrictions on α and ε,19

one can verify that for all settings of these parameters, we have α ≤ ε
3600 , which implies that d ≥ 24εn

75 .20

The smooth PCPP V , with proximity parameter 24ε
75 , is run on y′ and the proof decoded by Tk. Let B121

denote the (bad) event that the PCPP V obtains an erased bit as the answer to some query. Let B2 denote22

the (bad) event that V accepts. By Lemma 6.3, V makes c2·75
24ε queries and each query of V to the input23

part is made to each of the n input indices with probability 1/n. Hence Pr[B1|E,G1, G2], the probability24

that some input query is made to an erased point, is at most c2·75
24ε · 48α.25

The probability that the V accepts (even if there were no erased query answers) is Pr[B2|E,G1, G2] and
is, by Definition 4.3, at most 1/3. Thus, the probability that the smooth PCPP accepts, conditioned on E,
G1, and G2, is by the union bound, at most

c2 · 75

24ε
· 48α+

1

3
≤ 1

24
+

1

3
,

where the inequality follows from our setting of ε and α.26

To bound the probability that the PCPP accepts in a single iteration of Steps 11-13, we now evaluate
Pr[G1] and Pr[G2]. Let the random variable X denote the relative Hamming distance of y′ from y∗. Then,

E[X] =
∑
i∈[s]

1

s
· εi = εpl ≤

ε

144
.

By Markov’s inequality,

Pr[G1] = Pr[X ≥ ε

6
] ≤ E[X]/(ε/6) ≤ 1/24.

To bound Pr[G2], let the random variable Y denote the fraction of erasures in y′. We have that

E[Y] =
∑
i∈[s]

αi
s

= αpl.

Even if all the erasures were in the plain part, αpl ≤ αN
sn ≤ α · (1 + 1

m). Again, by an application of Markov’s
inequality, we get

Pr[G2] = Pr[Y > 48α] ≤ E[Y]

48α
≤

1 + 1
m

48
≤ 1/24.

20

Therefore, conditioned on E, the probability that the PCPP accepts in one iteration of Steps 11-13 is at
most

Pr[B1|E,G1, G2] + Pr[B2|E,G1, G2] + Pr[G2] + Pr[G1] ≤ 1

24
+

1

3
+

1

24
+

1

24
≤ 2

3
.

That is, conditioned on E, for a fixed k ∈ [L], in d6 ln 6Le independent repetitions of Steps 11-13, the1

probability that the PCPP does not discard k is at most
(
1− 1

3

)d6 ln 6Le ≤ 1
36L2 . Hence, conditioned on E,2

the probability that for some k ∈ [L], Steps 10-13 accepts is, by the union bound, at most 1/(36L). Thus,3

if x is in Case II, the probability that the tester accepts is at most, 1
36L + Pr[E] ≤ 1

36L + 1
30 ≤

2
5 , where4

Claim 6.9 shows that Pr[E] is at most 1/30, which then completes the proof of Lemma 6.6.5

Claim 6.9. The probability that Algorithm 3 exceeds its query budget is at most 1/30.6

Proof. We first compute the expected number of queries that the tester makes. Lemma 6.3 implies that the7

verifier V , when run with parameter 24ε
75 , makes at most c2·75

24ε queries. Hence, the number of queries made8

in Steps 9-13 is at most Ld6 ln 6Le · c2·75
24ε · q, where q and L are the query complexity and list size of the9

approximate local list-decoder, respectively.10

We now calculate the expected number of queries made from Steps 3-7. Let Y denote the number of
queries made in a particular iteration of Steps 3-7. The variable Y is nonzero only if the sampled point u is
nonerased. To calculate E[Y]:

E[Y] =
∑
a∈[n]

|Na|
sn
· 1

1− αa
=
∑
a∈[n]

(1− αa)s

sn
· 1

1− αa
= 1.

Hence, the expected number of queries made by the tester in Steps 2-7 is d 432
ε e. Hence, setting Q to11

30 ·
(
d 432
ε e+ Ld6 ln 6Le · c2·75

24ε · q
)
, and applying Markov’s inequality, one can see that Pr[E] ≤ 1/30.12

13

Next, we show that it is hard to tolerant test P ′. The proof of Lemma 6.10 is identical to the proof of14

Lemma 4.12 up to change in parameters.15

Lemma 6.10. Let ε? ∈ (0, 1) be as in Lemma 4.2 and c2 > 1 be as in Lemma 6.3. For every α ∈16

(ε?

57600·c2+2ε? , 1), and ε′ ∈
(
α, 28800·c2·ε?

28800·c2+ε?

)
, every (α, ε′)-tolerant tester for P ′ requires Ω̃(N0.2) queries.17

Proof. Let ℵ be as in Lemma 4.2 and let n ∈ ℵ. We will prove the lemma by showing a reduction from18

ε?-testing of Rφn . Let N and p(n) be as in Definition 6.5. Let s denote m · 2f(γ, β) · (p(n))5/n.19

Consider a string y ∈ {0, 1}n that we want to ε?-test for Rφn . Let x ∈ {0, 1}N be the string where the20

first sn bits of x are s repetitions of y and the remaining bits are all 0s. We refer to the substring x[1 . . . sn]21

as the plain part of x and the substring x[sn+ 1 . . . N] as the encoded part of x.22

Assume that A is an (α, ε′)-tolerant tester for P ′. We now describe an ε?-tester A′ for Rφn that has the23

same query complexity as A. Given oracle access to y ∈ {0, 1}n, the tester A′ runs the tester A on the string24

x ∈ {0, 1}N (as constructed from y above) and accepts iff A accepts. Observe that one can simulate a query25

to x by making at most one query to y.26

We will show that if y ∈ Rφn , then x is α-close to P ′. Observe that the encoded part of x needs to be27

changed in at most a 1
2 fraction of its positions in order to make it the encoding of a string π, where π is28

a proof that makes a smooth PCPP for testing Rφn (as guaranteed by Lemma 6.3) accept. This follows29

from the fact that the encoded part of every string that satisfies the property contains an equal number30

of 0s and 1s. Thus, the fraction of bits in x that needs to be changed in order to make it satisfy P ′ is at31

most 1
2 ·

N−sn
N = 1

2(m+1) = ε?

57600·c2+2ε? , which is less than α. Therefore, by definition, A′ will accept x with32

probability at least 2
3 .33

Assume now that y is ε?-far from Rφn . Then x needs to be changed in at least ε? · sn positions to make34

it satisfy P ′. From this, one can observe that x is ε? · m
m+1 -far from P ′. Hence, for all ε′ < ε? · m

m+1 , we have35

that A will reject x with probability at least 2/3, and therefore A′ will reject y with probability at least 2/3.36

21

Thus, we have shown that the query complexity of (α, ε′)-tolerant testing P ′ is at least the query com-1

plexity of ε?-testing Rφn . Hence, the query complexity of (α, ε′)-tolerant testing P ′ is Ω(n), which is equal2

to Ω̃(N0.2).3

Remark 6.11. We would like to point out that the lower bound on the query complexity of tolerant testing4

(from Lemma 6.10) can be improved if there exist approximate local erasure list-decodable codes with larger5

rate. In other words, constant-query approximate local erasure list-decodable codes with larger rate, when6

used in our above construction, directly imply an even stronger separation between the query complexity of7

erasure-resilient and tolerant testing models.8

Proof of Theorem 1.10. From Theorem 6.1, we get the following constraints on α, ε, ε′:

ε?

57600 · c2 + 2ε?
< α <

ε?

57600 · c2
; ε >

ε?

8
; ε′ <

28800 · c2ε?

28800 · c2 + ε?
.

To complete the proof of Theorem 1.10, it is enough to find values of ε, α that satisfy the above constraints,9

where we set ε′ = ε + α. For sufficiently small ε?, the upper bound on ε + α is strictly greater than ε?/2.10

So, it is enough to find ε < ε?/4 and α < ε?/4 that also satisfy the first two conditions. The existence of11

such ε and α is clear from the bounds imposed on them by the first two constraints.12

7 Local Erasure-Decoding Versus Local Decoding13

In this section, we prove Theorem 1.12 and an observation that if a code is locally decodable, it is also14

locally erasure-decodable up to (nearly) twice as many erasures. A part of our proof (Claim 7.2) uses ideas15

developed Katz and Trevisan [42].16

Definition 7.1 (Smooth Locally Decodable Codes). A code family {Cn : Fn2 → FN2 }n∈N is (q, η)-smooth17

locally decodable if there exists a nonadaptive (0, q)-local erasure-decoder A (see Definition 1.11) that, given18

oracle access to an uncorrupted codeword w ∈ FN2 , and an input i ∈ [n], is such that, for all j ∈ [N], the19

probability that A queries j is at most η.20

It is easy to see that the following two claims imply Theorem 1.12.21

Claim 7.2. For every α ∈ [0, 1), if a code family {Cn : Fn2 → FN2 }n∈N is (α, q)-locally erasure-decodable,22

then {Cn : Fn2 → FN2 }n∈N is (q′, η)-smooth locally decodable, where q′ = 3q, and η = q′

αN .23

Claim 7.3. For every α ∈ [0, 1), if a code family {Cn : Fn2 → FN2 }n∈N is (q, q
α·N)-smooth locally decodable,24

then {Cn : Fn2 → FN2 }n∈N is (α
O(q) , O(q))-locally decodable.25

Proof of Claim 7.2. Let A be an (α, q)-local erasure-decoder for Cn. Since A could be adaptive, for every26

choice of random coins, the execution of A can be represented as a ternary tree, where each node represents27

a query. The root represents the first query made by A. The three children of a non-leaf node u represent28

the next points that A will query for the cases that the answers to the query u are 0, 1, or ⊥. The size of29

this tree is at most 3q. Consider an algorithm A1 that, after having generated its random string r ∈ {0, 1}∗,30

queries all the points in the tree of execution of A on the string r. After obtaining the answers to its queries,31

A1 outputs the value at the end of the root-to-leaf path that matches with the actual query answers. Note32

that there is exactly one such path. Therefore, A1 is a nonadaptive local erasure-decoder for Cn that makes33

at most q′ = 3q queries and has the same success probability as A.34

We now use A1 to construct A2, a (q′, q′

αN)-smooth local decoder for Cn. Consider an uncorrupted
codeword w = Cn(x) for x ∈ Fn2 . For each i ∈ [n], let qi ≤ q′ denote the number of queries made by A1

on input i and let Si denote the set consisting of indices in [N] that get queried by A1 (on input i) with

probability more than q′

αN . For i ∈ [n], k ∈ [qi], it is clear that∑
j∈[N]

Pr[kth query of A
(·)
1 (i) is to position j] = 1.

22

Hence, for each i ∈ [n], ∑
j∈[N]

∑
k∈[qi]

Pr[kth query of A
(·)
1 (i) is to position j] = qi ≤ q′.

From this, we have |Si| ≤ α ·N . On input i ∈ [n] and oracle access to w = Cn(x), the algorithm A2 simulates1

A1 in the following way. If A1 queries j′ ∈ Si, the algorithm A2 does not query j′ and assumes that w[j′] =⊥.2

Thus, A2 is a (q′, q′

αN)-smooth local decoder for Cn.3

Proof of Claim 7.3. Consider a (q, q
αN)-smooth local decoder A for Cn. We will construct an (α

12q , 72q)-local4

decoder A′ for Cn. Algorithm A′, on input i ∈ [n] and oracle access to a word w with at most an α
12q fraction5

of errors, performs 72 independent repetitions of A and outputs the majority value output among all the6

iterations.7

Let x ∈ Fn2 be such that y = Cn(x) is the codeword closest to w. If A is run on input i with oracle8

access to y, then for at least a 2
3 fraction of the sequences of its random coin tosses, A returns xi correctly.9

When A is run on input i with oracle access to w, by the union bound and the smoothness of A, at most an10

α
12q ·N ·

q
αN = 1

12 fraction of sequences of its random coin tosses result in an erroneous position being queried.11

Hence, the probability that A, on input i and oracle access to w, returns xi correctly is at least 2
3 −

1
12 .12

Hence, by a Chernoff bound, the probability that A′, which is obtained by running 72 independent iterations13

of A and outputting the majority answer, outputs xi correctly is at least 2/3. The query complexity of A′14

is 72q.15

The following observation is based on an idea suggested to us by Venkatesan Guruswami.16

Observation 7.4. Every (α, q)-locally decodable code family {Cn : Fn2 → FN2 }n∈N is also (2α−ρ,O(q))-locally17

erasure-decodable, where ρ = O(
√

α
N).18

Proof. Consider an (α, q)-local decoder A for Cn : Fn2 → FN2 . Let w ∈ (F2 ∪ {⊥})N be a codeword with at19

most (2α − ρ)N erasures. Consider algorithm A′ that, on input i ∈ [n] and oracle access to w, runs A on20

input i ∈ [n] and oracle access to w′, where w′ is generated on the fly by filling in the erased bits of w with21

0 or 1 u.a.r. The expected Hamming distance of w′ to the code is at most αN − ρ
2N . By a Chernoff bound,22

the probability that the Hamming distance of w′ to the code is more than αN is at most 1
12 . The probability23

of failure of A′ is at most 5
12 . One can amplify the success probability to 2/3 by performing 72 independent24

repetitions of A′ and outputting the majority answer.25

A Two Definitions of Erasure-Resilient Testing26

In this section, we show that for constant α, ε ∈ (0, 1), the definition of α-erasure-resilient ε-testing model27

used in this paper is equivalent to that defined by Dixit et al. [19]. For convenience, we refer to the former28

and latter definitions as the new and old definitions, respectively. We first describe the rejection condition29

of an erasure-resilient tester according to the old definition, which is the only difference between the two30

definitions. For α ∈ [0, 1) and ε ∈ (0, 1), an α-erasure-resilient ε-tester for a property P (of strings of length31

n) rejects, with probability at least 2/3, an α-erased string x ∈ {0, 1,⊥}n if every completion of x has to be32

changed in at least ε · |N | nonerased values in order for it to satisfy P, where N denotes the set of nonerased33

points in x.34

Claim A.1. Let α, ε ∈ (0, 1) such that α + ε < 1. Let P be a property over strings of length n. If T is an35

α-erasure-resilient ε-tester for a property P with query complexity q(ε, α, n) w.r.t. the old definition, then T36

is also an α-erasure-resilient ε-tester for P with query complexity q(ε, α, n) w.r.t. the new definition.37

Proof. Consider an α-erased string x ∈ {0, 1,⊥}n. If x satisfies P, then T accepts x with probability at least38

2/3. If x is ε-far from P w.r.t. the new definition, then P is ε·n
|N | -far from P w.r.t. the old definition. Since39

ε·n
|N | ≥ ε, the tester T , when run with parameters α and ε, rejects x with probability at least 2/3. Moreover,40

the query complexity of T remains the same.41

23

Claim A.2. Let α, ε ∈ (0, 1) and ε′ = ε(1 − α). Let P be a property over strings of length n. If T is an1

α-erasure-resilient ε′-tester with query complexity q(ε′, α, n) for P w.r.t. the new definition, then T is an2

α-erasure-resilient ε-tester for P with query complexity q(ε(1− α), α, n) w.r.t. the old definition.3

Proof. Consider an α-erased string x ∈ {0, 1,⊥}n. If x satisfies P, then T accepts x with probability at least4

2/3. If x is ε-far from P w.r.t. the old definition, then P is ε·|N |
n -far from P w.r.t. the new definition. Since5

ε·|N |
n ≥ ε(1−α), the tester T , when run with parameters α′ = α and ε′ = ε(1−α), rejects x with probability6

at least 2/3.7

References8

[1] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly optimal recovery9

(extended abstract). In 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS)10

1995, pages 512–519, 1995.11

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification12

and intractability of approximation problems. J. of ACM, 45(3):501–555, 1998.13

[3] Sanjeev Arora and Shmuel Safra. Probabilistic checkable proofs: A new characterization of NP. J. of14

ACM, 45(1):70–122, 1998.15

[4] Sergei Artemenko and Ronen Shaltiel. Lower bounds on the query complexity of non-uniform and16

adaptive reductions showing hardness amplification. Comput. Complex., 23(1):43–83, 2014.17

[5] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylog-18

arithmic time. In proceedings of STOC 1991, pages 21–31, 1991.19

[6] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time simula-20

tions unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318, 1993.21

[7] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-Francois Raymond. Breaking the O(n1/(2k−1))22

barrier for information-theoretic private information retrieval. In proceedings of FOCS 2002, pages23

261–270, 2002.24

[8] Avraham Ben-Aroya, Klim Efremenko, and Amnon Ta-Shma. Local list decoding with a constant25

number of queries. In proceedings of FOCS 2010, pages 715–722, 2010.26

[9] Avraham Ben-Aroya, Klim Efremenko, and Amnon Ta-Shma. A note on amplifying the error-tolerance27

of locally decodable codes. Electronic Colloquium on Computational Complexity (ECCC), 17:134, 2010.28

[10] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust PCPs29

of proximity, shorter PCPs, and applications to coding. SIAM J. Comput., 36(4):889–974, 2006.30

[11] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF properties are hard to test.31

SIAM J. Comput., 35(1):1–21, 2005.32

[12] Volodia M. Blinovsky. Bounds for codes in the case of list decoding of finite volume. Problems of33

Information Transmission, 22(1):7–19, 1986.34

[13] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numer-35

ical problems. J. of Computer and System Sciences, 47(3):549–595, 1993.36

[14] Andrej Bogdanov and Muli Safra. Hardness amplification for errorless heuristics. In 48th Annual IEEE37

Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI,38

USA, Proceedings, pages 418–426. IEEE Computer Society, 2007.39

24

[15] Jin-yi Cai, Aduri Pavan, and D. Sivakumar. On the hardness of permanent. In proceedings of STACS1

99, volume 1563, pages 90–99, 1999.2

[16] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information retrieval. J. of3

ACM, 45(6):965–981, 1998.4

[17] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.5

[18] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP theorem.6

SIAM J. Comput., 36(4):975–1024, 2006.7

[19] Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin M. Varma. Erasure-resilient8

property testing. SIAM J. Comput., 47(2):295–329, 2018.9

[20] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM J. Comput.,10

40(4):1154–1178, 2011.11

[21] Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J. Comput.,12

41(6):1694–1703, 2012.13

[22] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically checkable proofs.14

Inf. Comput., 189(2):135–159, 2004.15

[23] Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for Boolean properties. Theory of16

Comput., 2(9):173–183, 2006.17

[24] Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-18

testing/correcting for polynomials and for approximate functions. In proceedings of STOC 1991, pages19

32–42, 1991.20

[25] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Information Processing21

Letters, 43(4):169–174, 1992.22

[26] Goldreich, Rubinfeld, and Sudan. Learning polynomials with queries: The highly noisy case. SIAM J.23

on Discrete Mathematics, 13, 2000.24

[27] Oded Goldreich. A brief introduction to property testing. In Studies in Complexity and Cryptography.25

Miscellanea on the Interplay between Randomness and Computation - In Collaboration with Lidor Avi-26

gad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam27

Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, pages28

465–469. 2011.29

[28] Oded Goldreich. Introduction to testing graph properties. In Studies in Complexity and Cryptography.30

Miscellanea on the Interplay between Randomness and Computation - In Collaboration with Lidor Avi-31

gad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam32

Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, pages33

470–506. 2011.34

[29] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.35

[30] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and36

approximation. J. ACM, 45(4):653–750, 1998.37

[31] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In proceedings38

of STOC 1989, pages 25–32, 1989.39

25

[32] Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shubhangi Saraf. Locally1

testable and locally correctable codes approaching the gilbert-varshamov bound. IEEE Transactions on2

Information Theory, 64(8):5813–5831, 2018.3

[33] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive procedures with4

advice, and lower bounds on hardness amplification proofs. In FOCS, 2018.5

[34] Alan Guo and Swastik Kopparty. List-decoding algorithms for lifted codes. IEEE Trans. Information6

Theory, 62(5):2719–2725, 2016.7

[35] Venkatesan Guruswami. List decoding from erasures: bounds and code constructions. IEEE Trans.8

Information Theory, 49(11):2826–2833, 2003.9

[36] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with near-optimal10

rate. IEEE Trans. Information Theory, 51(10):3393–3400, 2005.11

[37] Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In proceedings of RANDOM12

2005, pages 306–317, 2005.13

[38] Venkatesan Guruswami and Salil P. Vadhan. A lower bound on list size for list decoding. IEEE Trans.14

Information Theory, 56(11):5681–5688, 2010.15

[39] Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In proceedings of RAN-16

DOM 2008, pages 455–468, 2008.17

[40] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-rate tensor codes &18

applications. In Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science19

(FOCS). IEEE Computer Society, 2017.20

[41] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform direct product21

theorems: Simplified, optimized, and derandomized. SIAM J. Comput., 39(4):1637–1665, 2010.22

[42] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-correcting23

codes. In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM24

Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 80–86. ACM, 2000.25

[43] Swastik Kopparty. List-decoding multiplicity codes. Theory of Comput., 11:149–182, 2015.26

[44] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally correctable and27

locally testable codes with sub-polynomial query complexity. J. ACM, 64(2):11:1–11:42, 2017.28

[45] Swastik Kopparty and Shubhangi Saraf. Local list-decoding and testing of random linear codes from29

high error. SIAM J. Comput., 42(3):1302–1326, 2013.30

[46] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum. SIAM J. on31

Comput., 22(6):1331–1348, 1993.32

[47] Amit Levi, Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Erasure-resilient33

sublinear-time graph algorithms. In Proceedings of ITCS 2021, 2021.34

[48] R. J. Lipton. New directions in testing. In Distributed Comput. and Cryptography, volume 2 of DIMACS35

Series in Discrete Mathematics and Theoretical Computer Science, pages 191–202. 1991.36

[49] Richard J. Lipton. Efficient checking of computations. In proceedings of the 7th Annual ACM Symposium37

on Theoretical Aspects of Computer Science (STACS), pages 207–215, 1990.38

[50] Or Meir. Combinatorial PCPs with efficient verifiers. Comp. Complexity, 23(3):355–478, 2014.39

26

[51] Or Meir. Combinatorial PCPs with short proofs. Comp. Complexity, 25(1):1–102, 2016.1

[52] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approximation.2

J. Comput. Syst. Sci., 72(6):1012–1042, 2006.3

[53] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In proceedings of4

STOC 1994, pages 194–203, 1994.5

[54] Sofya Raskhodnikova, Noga Ron-Zewi, and Nithin M. Varma. Erasures vs. errors in local decoding6

and property testing. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019,7

January 10-12, 2019, San Diego, California, USA, pages 63:1–63:21, 2019.8

[55] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends in Theo-9

retical Computer Science, 5(2):73–205, 2009.10

[56] Noga Ron-Zewi, Ronen Shaltiel, and Nithin Varma. Query complexity lower bounds for local list-11

decoding and hard-core predicates (even for small rate and huge lists). In Proceedings of ITCS 2021,12

2021.13

[57] Ronitt Rubinfeld and Eric Blais. Something for (almost) nothing: New advances in sublinear-time14

algorithms. In Handbook of Big Data., pages 155–167. 2016.15

[58] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to16

program testing. SIAM J. Comput., 25(2):252–271, 1996.17

[59] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the XOR lemma.18

J. Comput. Syst. Sci., 62(2):236–266, 2001.19

[60] Luca Trevisan. List-decoding using the XOR lemma. In proceedings of the 44th Annual IEEE Symposium20

on Foundations of Computer Science (FOCS), pages 126–135, 2003.21

[61] Luca Trevisan. Some applications of coding theory in computational complexity. CoRR, cs.CC/0409044,22

2004.23

[62] Thomas Watson. Query complexity in errorless hardness amplification. Comput. Complex., 24(4):823–24

850, 2015.25

[63] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. of the ACM,26

55(1):1:1–1:16, 2008.27

27

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

