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Abstract

We give a new proof that the approximate degree of the AND function over n inputs
is Ω(

√
n). Our proof extends to the notion of weighted degree, resolving a conjecture

of Kamath and Vasudevan. As a consequence we reprove that the approximate degree
of any read-once depth-2 De Morgan formula is the square root of the formula size up
to constant. This generalizes a theorem of Sherstov (TOC 2013) and Bun and Thaler
(Inf. Comput. 2015) and is a special case of a recent result of Ben-David et al. (FOCS
2018).

1 Introduction

The approximate degree of a Boolean function [NS94] is the smallest degree of a real-valued
polynomial that approximates it pointwise. Nisan and Szegedy showed that it is polynomially
related to a host of complexity measures including exact multilinear degree, sensitivity,
deterministic query complexity, and randomized query complexity. Beals et al. [BBC+01]
added quantum query complexity to the list, initiating a fruitful framework for proving
optimality of various quantum algorithms. More recent works study approximate degree as
a complexity measure in its own right, with focus on “low” complexity classes like symmetric
functions, small De Morgan formulas, and bounded-depth AND-OR circuits [Pat92, She13,
She18,BT15,BT17,BKT18].

Many of these works rely on Nisan and Szegedy’s Ω(
√
n) lower bound for the approximate

degree of the n-bit AND function. Their proof employs a symmetrization argument [MP69],
reducing the problem to a question about univariate polynomial approximation over the reals
to which tools from approximation theory are applied.

We give a new proof of this via Fourier analysis over the Boolean cube. Our proof general-
izes to the notion of weighted degree in which different variables make different contributions
to the degree of the approximating polynomial. In contrast, it is unclear if symmetrization
arguments can be extended to the weighted setting.

Kamath and Vasudevan [KV14] conjectured our main result and showed it implies that
the approximate degree of any depth-two read-once De Morgan formula of size N is Θ(

√
N).
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Previously Sherstov [She13] and Bun and Thaler [BT15] showed that this is true under the
assumption the formula is regular, that is all terms have the same number of variables. These
results are all subsumed by recent work of Ben-David et al. [BBGK18], who show a lower
bound of 2−O(d)

√
N for depth-d read-once De Morgan formulas using a different technique.

Notation and definitions. We use 〈w, x〉 =
∑
wixi for inner product over the reals,

‖w‖p = (
∑
wpi )

1/p for the p-norm of a vector/function, and 	 for symmetric set differ-
ence. For a vector w of n non-negative weights, the weighted degree degw p of a function
p : {−1, 1}n → R is the maximum value of w(S) =

∑
i∈S wi taken over all monomials

χS(x) =
∏

i∈S xi that appear in the Fourier expansion of p, namely

degw p = max{w(S) : p̂(S) 6= 0}, where p =
∑
S⊆[n]

p̂(S) · χS.

2 Main Theorem

Let δ : {−1, 1}n → {0, 1} be the point function

δ(x) =

{
1, if x = 1n,

0, otherwise.

Theorem 1. For every p : {−1, 1}n → R,

‖p− δ‖∞ ≥
√

Prx∼{−1,1}n [〈w, x〉 > 2 degw p]

2
.

Claim 2. degw p · q ≤ degw p+ degw q.

Proof. It suffices to prove the claim when p and q are monomials, i.e., p = χS and q = χT .
Then

degw χS · χT = degw χS	T = w(S 	 T ) ≤ w(S) + w(T ) = degw χS + degw χT .

Claim 3. There exists a probability mass function D over {−1, 1}n such that (1) D is the
square of a polynomial d of weighted degree at most ‖w‖1/2 and (2) D(1n) ≥ 1/2.

Proof. Let H be the set of subsets S of {1, . . . , n} of weight at most ‖w‖1/2 and

D(x) =
1

Z
ES∼H[χS(x)]2,

where the choice of S is uniform over H, and Z is a normalizing constant. Property (1)
holds by definition. To verify property (2), observe that the expectation evaluates to 1 when
x = 1n. It remains to verify that Z ≤ 2. Since Z =

∑
x∈{−1,1}n ES[χS(x)]2, we can write

Z =
∑

x∈{−1,1}n
ES,T [χS(x)χT (x)] =

∑
x∈{−1,1}n

ES,T [χS	T (x)] = ES,T
∑

x∈{−1,1}n
χS	T (x).
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For fixed S and T , the value of the last sum is 2n when S = T and zero otherwise. Therefore

Z = 2n · PrS,T∼H[S = T ].

The set H contains at least half the subsets of {1, . . . , n} because w(S)+w(S) = ‖w‖1, so at
least one among every complementing pair must be in H. Therefore the collision probability
of H is at least 2−n+1, and Z ≤ 2 as desired.

Proof of Theorem 1. Let D : {−1, 1}n → R be the distribution from Claim 3. Then

‖p− δ‖2∞ ≥ Ex∼D
[
(p(x)− δ(x))2

]
=

∑
x∈{−1,1}n

D(x) ·
(
p(x)− δ(x)

)2
=

∑
x∈{−1,1}n

(
d(x)p(x)− d(x)δ(x)

)2
=

∑
x∈{−1,1}n

(
d(x)p(x)− d(1n)δ(x)

)2
≥ 1

2

∑
x∈{−1,1}n

(
d(x)p(x)

d(1n)
− δ(x)

)2

,

The last inequality follows from part (1) of Claim 3. Let q = d · p/d(1n). By Parseval’s
identity ∑

x∈{−1,1}n

(
q(x)− δ(x)

)2
= 2n

∑
T⊆[n]

(
q̂(T )− δ̂(T )

)2 ≥ 2n
∑

T : w(T )>degw q

δ̂(T )2,

because q has no coefficients of weight exceeding degw q. The Fourier transform of δ is
δ̂(T ) = 2−n for all T so

‖p− δ‖2∞ ≥
1

2
· 2n ·

∑
T : w(T )>degw q

2−2n

=
1

2
Prrandom T ⊆ [n][w(T ) > degw q]

=
1

2
Prx∼{−1,1}n [〈w, x〉/2 + ‖w‖1/2 > degw q]. (1)

By Claim 2 and part (2) of Claim 3,

degw q ≤ degw d+ degw p ≤
‖w‖1

2
+ degw p.

Plugging degw q into (1) and simplifying gives the desired inequality.
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Consequences

When w1 = . . . wn = 1 the weighted degree is the standard polynomial degree, and we
recover the Nisan-Szegedy lower bound on the approximate degree of the AND function.

Corollary 4. For every degree-d polynomial p,

‖p− δ‖∞ ≥

√√√√ 1

2n+1

∑
t<n/2−d

(
n

t

)
.

The expression on the right is lower bounded by the larger of 1/2−O(d/
√
n) and 2−O(d2/n).

In the large d regime, this matches the best-known lower bound asymptotically and is tight
up to polylogarithmic factors in the exponent [KLS96]. For small d the correct bound is
1/2−Θ(d2/n) [BT15], so Corollary 4 is not tight.

The second corollary is a tight lower bound on the weighted approximate degree of AND.
The tightness up to constant follows from a quantum algorithm of Ambainis [Amb10].

Corollary 5. For every w and p, if degw p ≤
√

1− ε · ‖w‖2/2 then ‖p− δ‖∞ = Ω(ε).

Proof. Let X = w1x1 + · · · + wnxn where x ∼ {−1, 1}n is uniform over the Boolean cube.
Then E[X2] = ‖w‖22 and E[X4] =

∑
w4
i + 3

∑
w2
iw

2
j ≤ 3E[X2]2. By the Paley-Zygmund

inequality,

Pr
[
|X| >

√
1− ε · ‖w‖2

]
= Pr

[
X2 > (1− ε) · ‖w‖22

]
≥ ε2

3
.

Since X is a symmetric random variable, X exceeds
√

1− ε · ‖w‖2 with probability at least
ε2/6. Plugging into Theorem 1 we obtain that ‖p− δ‖∞ ≥ ε/

√
12.

3 Approximate degree of depth-two read-once De Mor-

gan formulas

Kamath and Vasudevan [KV14] showed that Corollary 5 implies the following lower bound on
functions of the form f(x) = AND(OR(x1), . . . , OR(xn)), where the OR terms are disjoint.

Theorem 6. There is a universal constant c such that for every p of degree at most c
√
N ,

‖p− f‖∞ ≥ 1/3, where N is the number of variables in f .

Sherstov [She13] and Bun and Thaler [BT15] proved this under the restrictive assumption
that the formula is regular, namely x1, . . . , xn are of equal size. Kamath and Vasudevan
showed that the result for regular formulas implies a weaker bound of Ω(

√
N/ logN) for the

general case.
We give the proof of Theorem 6 for completeness. Two distributions over {0, 1}n are

indistinguishable by S ⊆ [n] if their projections on S are identical.
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Proof. By the duality between polynomial approximation and bounded indistinguishabil-
ity [BIVW16] and standard amplification of distinguishing advantage, Corollaries 4 and 5
imply the following for sufficiently small constants c1, c2.

1. For every w there exists a pair of distributions ν0, ν1 over {0, 1}n that are indistin-
guishable by any subset of weight at most c2‖w‖2, but EY∼ν0 [AND(Y )] = 0 and
EY∼ν1 [AND(Y )] ≥ 2/3.

2. For every m there exists a pair of distributions µ0, µ1 over {0, 1}m that are indis-
tinguishable by any subset of size at most c1

√
m, but EX∼µ0 [OR(X)] ≤ 1/3 and

EX∼µ1 [OR(X)] = 1.

Let mt be the size of the t-th term of f and set wt =
√
mt. Given b ∈ {0, 1} sample

Xb ∈ {0, 1}N as follows. First sample Y ∈ {0, 1}n from νb. Then for each bit Yt, sample
Xt ∈ {0, 1}mt from µYt with length parameter m = mt. Set Xb = X0X1 . . . Xn.

First we argue that X0 and X1 are distinguishable by f . When b = 0, there always exists
a term t for which Yt = 0, so Pr[OR(Xt) = 1] ≤ 1/3. Therefore Pr[f(X0) = 0] ≤ 1/3. When
b = 1, with probability at least 2/3 all bits of Y are ones, in which case f(X1) evaluates to
1. Therefore Pr[f(X1) = 1] ≥ 2/3. It follows that E[f(X1)]− E[f(X0)] ≥ 1/3.

Next we argue that X0 and X1 are indistinguishable by any subset S of c
√
N inputs.

Let T ⊆ [n] be the set of terms t that intersect S in more than c1
√
mt variables. Then the

weight of T is at most

w(T ) =
∑
t∈T

wt =
∑
t∈T

√
mt <

|S|
c1
.

On the other hand, if X0 and X1 are distinguishable by S, then T must have weight more
than c2‖w‖2 = c2

√
N . It follows that |S| > c1c2

√
N .

In conclusion, X0 and X1 are indistinguishable by any subset of size c1c2
√
N , but are

distinguishable by f with advantage 1/3. By duality, the 1/3-approximate degree of f is at
least c1c2

√
N .
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