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Abstract

A local tester for an error-correcting code is a probabilistic procedure that queries a small
subset of coordinates, accepts codewords with probability one, and rejects non-codewords with
probability proportional to their distance from the code. The local tester is robust if for non-
codewords it satisfies the stronger property that the average distance of local views from ac-
cepting views is proportional to the distance from the code. Robust testing is an important
component in constructions of locally testable codes and probabilistically checkable proofs as it
allows for composition of local tests.

In this work we show that for certain codes, any (natural) local tester can be converted
to a roubst tester with roughly the same number of queries. Our result holds for the class of
affine-invariant lifted codes which is a broad class of codes that includes Reed-Muller codes,
as well as recent constructions of high-rate locally testable codes (Guo, Kopparty, and Sudan,
ITCS 2013). Instantiating this with known local testing results for lifted codes gives a more
direct proof that improves some of the parameters of the main result of Guo, Haramaty, and
Sudan (FOCS 2015), showing robustness of lifted codes.

To obtain the above transformation we relate the notions of local testing and robust testing to
the notion of agreement testing that attempts to find out whether valid partial assignments can
be stitched together to a global codeword. We first show that agreement testing implies robust
testing, and then show that local testing implies agreement testing. Our proof is combinatorial,
and is based on expansion / sampling properties of the collection of local views of local testers.
Thus, it immediately applies to local testers of lifted codes that query random affine subspaces
in Fm

q , and moreover seems amenable to extension to other families of locally testable codes
with expanding families of local views.

1 Introduction

Our main result shows a transformation from local testing to robust testing for the class of affine-
invariant lifted codes. We start by describing the notions of local testing, robust testing, and lifted
codes.

1.1 Local testing and robust testing

A code is a subset C ⊆ Σn. The elements of C are called codewords, Σ is the alphabet of the code,
and n is the block length. The rate of the code is the ratio (log|Σ| |C|)/n. The code is linear if
Σ = Fq where Fq is the finite field of q elements, and C is an Fq-linear subspace of Fnq . It will
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be convenient to think of codewords in C as functions f : U → Σ where U is a domain of size
n. For a pair of functions f, g : U → Σ we let dist(f, g) denote the fraction of inputs x ∈ U for
which f(x) 6= g(x). The relative distance dist(C) of the code is the minimum of dist(f, g) over all
codewords f, g ∈ C. For a function f : U → Σ we let dist(f, C) denote the minimum of dist(f, g)
over all codewords g ∈ C.

A local tester for the code C is a probabilistic oracle algorithm that on oracle access to a function
f : U → Σ makes at most Q queries to f , and accepts f ∈ C with probability one, while rejecting
f 6∈ C with probability at least α · dist(f, C). We refer to Q as the query complexity of the tester,
and to α as the soundness. In this work we shall restrict our attention to local testers that pick a
random subset K ⊆ U of cardinality Q according to some distribution, and accept if and only if
f |K ∈ C|K .1 The requirement then is that f |K ∈ C|K with probability one whenever f ∈ C, and

Pr
K

[f |K /∈ C|K ] ≥ α · dist(f, C) (1)

otherwise.
In this work we will be interested in the stronger notion of robustness. We say that a local

tester as above is robust if for non-codewords the average distance of its local views from accepting
views is proportional to the distance of the given function from the code. That is, as before we
require that f |K ∈ C|K with probability one whenever f ∈ C, but instead of (1) we now require
that

EK
[
dist(f |K , C|K)

]
≥ α · dist(f, C) (2)

whenever f /∈ C. Here we refer to α as the robustness of the tester.
The notion of robustness was introduced by Ben-Sasson and Sudan [BS06] based on analogous

notions for probabilistically checkable proofs [BGH+06, DR06]. Robustness is a natural property
of local testers that relates the global distance of a function from the code to its local distance from
accepting views on local views. Moreover, robustness is also an important ingredient in construc-
tions of locally testable codes and probabilistically checkable proofs as it allows for composition
of local tests. Specifically, it follows by definition that if a code C is robustly testable with query
complexity Q and soundness α, and additionally each local restriction C|K is locally testable with
query complexity Q′ and soundness α′, then the code C is locally testable with query complexity
Q′ and soundness α · α′. This property is useful when local restrictions can be tested efficiently
which can happen if the code has many symmetries (as is the case with the class of lifted codes
considered in this work) or can be achieved, in the case of probabilistically checkable proof, by
attaching a short proof of proximity.

One can easily observe that (2) implies (1) since f |K /∈ C|K whenever dist(f |K , C|K) > 0,
so robustness is a stronger requirement than local testing. For the other direction, note that a
local tester with soundness α has robustness at least α/Q since dist(f |K , C|K) ≥ 1/Q whenever
f |K /∈ C|K . A natural question is whether this loss in roubstness is necessary, and whether
robustness is strictly stronger notion than local testing. In this work we shall show that this
loss is unnecessary for the class of lifted codes, discussed below.

1.2 Lifted codes

Lifted codes are specified by a base code C ⊆ {F`q → Fq} and a dimension m ≥ `. We further
assume that the base code C is linear and affine-invariant, that is, for any codeword f ∈ C, and

1Local testers may generally apply a more complex predicate on f |K . However, natural local testers are typically
of the restricted form we consider, and moreover it can be shown that a local tester for a linear code must be of this
form [BHR05].
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for any affine transformation A : F`q → F`q it holds that f ◦A ∈ C. Given these we define the lifted

code C`↗m to be the code consisting of all functions f : Fmq → Fq that satisfy that f |L ∈ C for any
`-dimensional affine subspace L.

Lifted codes were first introduced by Ben-Sasson et al [BSMSS11], and their local testability
properties were further explored in subsequent work [GKS13, HRS15, GHS15]. They are a natural
generalization of the well-studied family of Reed-Muller codes, and moreover they also give rise
to new families of locally testable codes that outperform Reed-Muller codes in certain range of
parameters [GKS13]. Specifically, lifted codes lead to one of the two known constructions (the
other one being tensor codes [BS06, BV15, Vid15, KMRS17]) of high-rate locally testable codes
(i.e., locally testable codes with rate approaching one and sublinear locality). Generally, lifted
codes form a natural subclass of affine-invariant codes satisfying the ’single-orbit characterization’
property that is known to imply local testability, as well as local decodability [KS08].

There is a natural local test associated with lifted codes: on oracle access to a function f : Fmq →
Fq, pick a uniform random `-dimensional affine subspace L and accept if and only if f |L ∈ C.
It follows immediately by definition that this test accepts any valid codeword f ∈ C`↗m with
probability one, but more work is required to show that this test is sound. Specifically, since the
test forms a single orbit characterization, it follows from [KS08] that it has soundness roughly q−2`.
The dependence of the soundness on the dimension ` was later eliminated in [HRS15] who showed
soundness that is only a function of q (though an extremely quickly decaying one).

As for robustness, the above local testing results, together with the straightforward transfor-
mation from local testing to robust testing, immediately give robustness that is dependent on the
dimension `. This was eliminated recently in [GHS15] who showed robustness of the form poly(δ)
(about δ74, where δ is the relative distance of the code) for the local test that queries subspaces
of slightly larger dimension of 2`. Interestingly, [GHS15] did not rely on the aforementioned local
testing results, but rather relied on viewing lifted codes as the intersection of ’modified tensor
codes’. They then proceeded by showing that these modified tensor codes are robustly testable
(using the proof method of [Vid15] showing robustness of tensor codes), and that this implies local
testability of the lifted code (see Section 2.4 for more details about the proof method of [GHS15]).

1.3 Our results

Our main result gives a transformation from local testing to robust testing, that does not suffer the
factor of Q (the query complexity) loss in robustness, for the class of lifted codes. The transforma-
tion uses local testability in a ’black-box’ manner, and shows that if a code in this family is locally
testable (using the natural subspace tester) then it is also robustly testable with roughly the same
number of queries and robustness.

For k ≥ `, let the k-dimensional (subspace) test denote the local tester that on oracle access to
a function f : Fmq → Fq queries a uniform random k-dimensional affine subspace K and accepts if

and only if f |K ∈ C`↗k.

Theorem 1.1 (Main). Let C ⊆ {F`q → Fq} be an affine-invariant linear code, and m ≥ k ≥
`. Suppose that C`↗m is locally testable using the k-dimensional test with query complexity qk

and soundness α, and let δ := mink≤r≤m dist(C`↗r). Then C`↗m is robustly testable using the
(2k + logq(4/δ))-dimensional test with query complexity O(q2k/δ) and robustness Ω(α · δ3).

Note that if the relative distance δ is constant, we only incur a constant multiplicative loss in
robustness and testing dimension.

To apply the above theorem one can instantiate it with the local testing result of [KS08] that
says that lifted codes are locally testable using the `-dimensional test with soundness ≈ q−2`
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(see Theorem 3.4 below). However, to obtain constant robustness we need that the soundness
of the initial local tester would be constant (independent of q and `), and for this we observe
(in Proposition 6.1) that the soundness of [KS08] can be easily amplified to Ω(1) at the cost of
increasing the testing dimension to ≈ 3`.2 Using this observation we obtain the following.

Corollary 1.2. Let C ⊆ {F`q → Fq} be an affine-invariant linear code of relative distance δ, and

m ≥ `. Then C`↗m is robustly testable using the (6`+logq(128/δ))-dimensional test with robustness
Ω(δ3).

Compared to the above corollary, [GHS15] use lower dimension of 2`, but also obtain lower
robustness of Ω(δ74).

As described next, our proof is combinatorial, relying mainly on expansion / sampling properties
of the collection of local views. In particular, it uses very little about the algebraic structure of
lifted codes or the base code. We thus hope that such techniques would prove useful in the future
for showing robustness for other families of locally testable codes with similar expansion properties.

2 Proof overview

Our proof is based on a new connection between the notions of local testing, robust testing, and
agreement testing. Specifically, we show that for the class of lifted codes agreement testing implies
robust testing, and local testing implies agreement testing. The combination of these two implica-
tions gives our main Theorem 1.1. Next we elaborate on the notion of agreement testing, followed
by an overview of each of the implications.

2.1 Agreement testing

An agreement test attempts to find out whether partial assignments to local views can be stitched
together to a single global codeword. Let C ⊆ {U → Σ} be a code, and let S be a collection of
subsets of U . An agreement tester for C,S is a probabilistic oracle algorithm that receives oracle
access to a collection of partial assignments {fS : S → Σ | S ∈ S} on sets of S, where fS ∈ C|S
for any S ∈ S. The tester queries a few of the fS ’s, and is required to accept with probability
one any collection (fS)S that is consistent with some global codeword g ∈ C (that is, g|S = fS for
any S ∈ S), while rejecting any inconsistent collection (fS)S with probability proportional to the
minimal fraction of fS ’s that must be changed in order to be consistent with some global codeword.
In this work we focus on the two query agreement tester that picks a pair of sets S, S′ ∈ S according
to some distribution and accepts if and only if fS and fS′ agree on their intersection S ∩ S′.

Agreement testing has first appeared in PCP constructions [AS98, ALM+98] as so-called ”low
degree tests”, and is a key component in the proof of almost all PCP theorems. A prime example
is the line vs. line low degree test [GLR+91, RS96] in the proof of the PCP theorem. In the
PCP construction, a function on a large vector space is replaced by an ensemble of (supposed)
restrictions to all possible affine lines. These restrictions are supplied by a prover and are not
a priori guaranteed to agree with any single global function. The “low degree test” is run by the
verifier to check that restrictions on intersecting lines agree with each other, i.e. they give the same
value to the point of intersection. The main point of the argument is to show that the passing of
the test implies agreement with a single global function. In these early low degree tests (including

2Such an amplification with similar blow-up in query complexity can be easily obtained by repeating the test and
accepting if and only if all invocations accept; we however need that the tester would be a subspace tester which can
be obtained using sampling properties of affine subspaces.
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the linearity testing work of [BLR90]) an agreement test component can be discerned but quite
implicitly. Indeed, it was only separated in the works [RS97, AS03] that looked at the so-called
list-decoding regime3, with the goal of proving a large gap for the PCP.

Goldreich and Safra [GS99] tried to separate the algebraic aspect of the low degree test from
the combinatorial, and formulated a more general “consistency test” which is also referred to as an
agreement test. They also proved a certain local to global result which was too weak to be useful
for PCPs. In hindsight it is clear that since their family of subsets consisted of axis parallel lines,
the expansion was not strong enough for a good agreement test. Only recently [DK17] the role of
expansion underlying the family of subsets had begun to be uncovered.

Work on agreement testing then continued the combinatorial direction of [GS99] mainly in the
list-decoding regime for direct product testing [DR06, DG08, IKW12, DS14, DL17]. The techniques
developed in this line of work turn out to be useful also for agreement testing in the unique-decoding
regime (which is the more standard testing regime), and in particular for our work here.

2.2 Agreement testing implies robust testing

We begin with an overview of the simpler implication from agreement testing to robust testing.
Suppose that we have a two query agreement tester for C,S as described above. We would like to
show that the local tester that queries a random S ∈ S is robust. Let T be the collection of subsets
of U formed by pairwise intersections of sets in S. The main properties we need out of S, T are
sampling properties, specifically, that S samples well the set of points U , and that for any S ∈ S all
sets in T contained in S sample well the set of points in S. The main property we need out of the
code is that its restrictions to sets in T have distance. In the case of lifted codes these properties
can be guaranteed by letting S, T be families of affine subspaces of fixed dimension.

To see that the proposed local tester is indeed robust, suppose that we have a function f : U → Σ
that is close to C|S on a typical S, our goal is to show that f is close to a codeword g ∈ C. We
first create an instance (fS)S for the agreement tester by letting fS ∈ C|S be the closest valid
assignment to f |S . Next observe that since f |S is typically close to fS , and by assumption that
T ’s sample well inside S’s, for a typical T and S, S′ containing T it holds that fS |T ≈ f |T ≈ fS′ |T ,
and by distance property on T this implies in turn that typically fS |T = fS′ |T . Consequently,
agreement testability implies the existence of a codeword g ∈ C that agrees with most fS , and so
g|S = fS ≈ f |S for most S. But since S samples well inside U we conclude that f must be close to
g as required.

2.3 Local testing implies agreement testing

We now turn to the local testing to agreement testing implication which is a bit more involved.
Suppose that we have a local testing algorithm for C that queries a random set K ∈ K and accepts
if and only if f |K ∈ C|K . We would like to obtain an agreement tester for C with respect to
some collection of subsets S. As before, let T be the collection of subsets of U formed by pairwise
intersections of sets in S. Once more the main properties we require out of S, T ,K are sampling
properties. Specifically, we need that S samples well inside U , and that for any T ∈ T all sets in
K contained in T sample well inside T . We also require distance properties out of C, specifically
that C has distance on U and on restrictions to sets in S and T . Once more, in the case of lifted
codes these properties can be guaranteed by letting S, T ,K be families of affine subspaces of fixed
dimension.

3In the list decoding regime one would like to reject a function that is (1 − ε)-far from the code with very high-
probability of 1−O(ε).
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To show agreement testability, let (fS)S be a collection of valid assignments to sets in S (so
fS ∈ C|S for any S), and suppose that fS agrees with fS′ on S ∩ S′ for most pairs S, S′. Our goal
will be to find a global codeword g ∈ C that agrees with most fS . We find the function g in the
following three stages.

Initial stage: In the first stage we define for any K ∈ K a ’most popular function’ PlurK by
choosing the most common value among fS |K going over all S ∈ S containing K. We then show,
using the assumption that fS ’s typically agree on their intersections, that this most popular function
is obtained with overwhelming probability for a typical K.

Local structure stage: In the second stage we define for each K ∈ K a function gK : U → Σ by
letting gK(x) be the most common ’vote’ among all fS that contain K and x and agree with PlurK
on K (this function is well defined because of the initial stage). We then show that for a typical
K, gK is close to some function hK ∈ C, and moreover hK |S = fS for most S containing K.

To see why the above holds, first note that by assumptions that C has distance on T ’s, and
K’s sample well inside T ’s, if a pair of fS ’s agree on K then they must typically also agree on
their whole intersection. Therefore gK(x) is also typically defined with overwhelming probability.
Consequently, for a typical K, and most K ′, gK |K′ agrees with some fS . Recalling that fS ’s are
valid assignments, local testability then implies the existence of hK ∈ C that is close to gK . The
fact that hK |S = fS for most S containing K follows by assumption that S samples well U , and
distance property on S.

Global structure stage: In the final stage we show that there exists K̂ such that hK̂ agrees

with fS for most S (not necessarily containing K̂). We can then set our ’global function’ g to be
equal to hK̂ . To this end, we first observe that it suffices to show that most functions hK are in
fact identical. This now follows since for typical S ⊇ K ∪K ′ it holds that hK |S = fS = hK′ |S , and
consequently since S samples U it must typically hold that hK = hK′ .

2.4 The proof method of Guo et al

The proof method of Guo et al [GHS15] for showing robustness of lifted codes is very different from
ours. In particular, it relies heavily on the algebraic structure of lifted codes. More specifically, the
proof is based on viewing the lifted codes as the intersection of ’modified tensor codes’. The tensor
product C⊗m of a code C ⊆ {Fq → Fq} can be thought of as the ’axis-parallel lifting’ of C, that is,
it is the code that consists of all functions f : Fmq → Fq whose restrictions to any axis-parallel line

belong to C. The ’modified tensor code’ is a code of the form C⊗mb where b is a direction in Fmq ,

and C⊗mb consists of all functions f ∈ C⊗m whose restrictions to lines in direction b also belong to
C.

The authors first use the proof method of [Vid15], showing robust testing of tensor codes, to
show that the modified tensor codes are also robustly testable. They then use the fact that the
lifted code is the intersection of all codes of the form C⊗mb for all directions b (this is true when the
dimension of the base code for lifting is ` = 1; when ` > 1 the proof becomes more complicated) to
deduce robust testability for the lifted code. However, since intersection of robustly testable codes
is not necessarily robustly testable, a non-trivial work is required to show robust testability, which
in particular exploits the degree structure of affine-invariant lifted codes.

The above program can be carried out only when the dimension m of the lifted code is a small
constant multiple of `, and the authors use the ’bootstrapping’ technique [RS96, ALM+98, AS03,
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Aro94] to extend the result to work for arbitrary large m.
In contrast, we work directly with lifted codes of large dimension which allows us to exploit

the sampling / expansion properties of large affine subspaces in Fmq . To the best of our knowledge,
even for the special case of low-degree polynomials, this gives the first analysis of robustness that
is not based on the two step approach of first analyzing the constant dimensional case and only
then moving to the general dimensional case.

As opposed to [GHS15] who reprove local testability on the way, our proof uses local testability
in a black-box manner. Thus, it exhibits a separation between the algebraic properties that are
used for showing local testability, and the combinatorial properties that are needed in order to turn
local testability into robust testability.

Paper organization. The rest of the paper is organized as follows. In Section 3 we set some
notation, provide some definitions, and present the expansion properties of subspaces that we
use. The transformation from agreement testing to robust testing is given in Section 4, while the
transformation from local testing to agreement testing apperas in Section 5. We wrap-up in Section
6 with the full transformation from local testing to robust testing that proves our main Theorem
1.1 and Corollary 1.2.

3 Preliminaries

For a prime power q, let Fq denote the finite field of q elements. Let {Fmq → Fq} denote the
set of functions mapping Fmq to Fq. In what follows we focus on codes which are subsets of
functions C ⊆ {Fmq → Fq}. For a pair of functions f, g : Fmq → Fq we use dist(f, g) to denote
the fraction of inputs x ∈ Fmq for which f(x) 6= g(x). The relative distance dist(C) of the code C is
minf 6=g∈C{dist(f, g)}. For a function f : Fmq → Fq we use dist(f, C) to denote ming∈C{dist(f, g)}.

The code C is said to be linear if it is an Fq-linear subspace, i.e., for every α ∈ Fq and f, g ∈ C,
we have αf + g ∈ C. A function A : Fmq → Fmq is said to be an affine transformation if there exist
a matrix M ∈ Fm×mq and a vector b ∈ Fmq such that A(x) = Mx + b. The code C is said to be
affine-invariant if for every affine transformation A and every f ∈ C we have f ◦ A ∈ C (where
(f ◦A)(x) = f(A(x))).

3.1 Lifted codes

A subset L ⊆ Fmq is said to be an `-dimensional affine subspace if there exist α0 ∈ Fmq and linearly

independent α1, . . . , α` ∈ Fmq such that L = {α0 +
∑`

i=1 αixi|x1, . . . , x` ∈ Fq}. We fix an arbitrary

affine map γL : F`q → L (which we can view as a parameterization of L). For a function f : Fmq → Fq,
the restriction f |L is viewed as a function in {F`q → Fq} through f ◦ γL : F`q → Fq. In particular,

when we ask if f |L
?
∈ C ⊆ {F`q → Fq} what we are really asking is whether f ◦ γL ∈ C. Note that

if C is affine-invariant, whether f |L ∈ C does not depend on the choice of the parametrization γL.

Definition 3.1 (Lifted codes). Let C ⊆ {F`q → Fq} be an affine-invariant linear code, and m ≥ `.
The m-dimensional lift C`↗m of C is given by

C`↗m :=
{
f : Fmq → Fq | f |L ∈ C for every `-dimensional affine subspace L ⊆ Fmq

}
.

Proposition 3.2 (Distance of lifted codes, [GKS13], Theorem 5.1, Part (2)). Let C ⊆ {F`q → Fq}
be an affine-invariant linear code, and m ≥ `. Then dist(C`↗m) ≥ dist(C)− q−`.
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3.2 Local testing, robust testing, and agreement testing

We now formally define the notions of local testing, robust testing, and agreement testing, special-
ized to the class of lifted codes and subspace testers. In the case of local testing and robust testing
this simply means that the tester samples a uniform random k-dimensional affine subspace and its
accepting views are codewords in C`↗k.

Definition 3.3 (Local testing of lifted codes). Let C ⊆ {F`q → Fq} be an affine-invariant linear

code, and m ≥ k ≥ `. The m-dimensional lift C`↗m is (k, α)-testable if for every f : Fmq → Fq it
holds that

Pr
K

[
f |K /∈ C`↗k

]
≥ α · dist(f, C`↗m),

where the probability is over a uniform random k-dimensional affine subspace K ⊆ Fmq .

Theorem 3.4 ([KS08], Theorem 2.9). Let C ⊆ {F`q → Fq} be an affine-invariant linear code,
and m ≥ `. Then the `-dimensional test rejects a function f : Fmq → Fq with probability at least
1
2 ·min

{
q−2`, dist(f, C`↗m)

}
. In particular, C`↗m is

(
`, q

−2`

2

)
-testable.

Definition 3.5 (Robust testing of lifted codes). Let C ⊆ {F`q → Fq} be an affine-invariant linear

code, and m ≥ k ≥ `. The m-dimensional lift C`↗m is (k, α)-robust if for every f : Fmq → Fq it
holds that

EK
[
dist(f |K , C`↗k)

]
≥ α · dist(f, C`↗m),

where the expectation is over a uniform random k-dimensional affine subspace K ⊆ Fmq .

We note the following easy implications.

Proposition 3.6. Let C ⊆ {F`q → Fq} be an affine-invariant linear code, and m ≥ k ≥ `. Then
the following hold.

1. If C`↗m is (k, α)-robust then it is (k, α)-testable.

2. If C`↗m is (k, α)-testable then it is (k, α · q−k)-robust.

3. If C`↗m is (k, α)-testable then it is (r, α)-testable for any k ≤ r ≤ m.

4. If C`↗m is (k, α)-robust then it is (r, α)-robust for any k ≤ r ≤ m.

Proof. Part (1) follows since f |K /∈ C`↗k whenever dist(f |K , C`↗k) > 0, while Part (2) follows
since dist(f |K , C`↗k) ≥ q−k whenever f |K /∈ C`↗k.

Part (3) follows by observing that for a uniform random r-dimensional affine subspace R,

Pr
R

[
f |R /∈ C`↗r

]
= ER

[
1f |R /∈C`↗r

]
≥ ER

[
Pr
K⊆R

[
f |K /∈ C`↗k

]]
= Pr

K

[
f |K /∈ C`↗k

]
,

where the inequality follows since f |R ∈ C`↗r implies that f |K ∈ C`↗k for any K.
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Finally, Part (4) follows by letting fR be the codeword in C`↗r that is closest to f |R, and noting
that

ER
[
dist(f |R, C`↗r)

]
= ER

[
dist(f |R, fR)

]
= ER

[
EK⊆R

[
dist(f |K , fR|K)

]]
≥ ER

[
EK⊆R

[
dist(f |K , C`↗k)

]]
= EK

[
dist(f |K , C`↗k)

]
,

where the inequality follows since fR|K ∈ C`↗k for any K.

We now turn to the definition of agreement testing. The agreement testers we consider are
two query testers that for t < s, sample a uniform random t-dimensional affine subspace T , and a
pair of uniform random s-dimensional affine subspaces S, S′ containing T , and accept if and only
if fS , fS′ agree on T .

For a code C ⊆ {Fmq → Fq} we let C(s) be the code containing all collections (fS)S of partial
assignments to s-dimensional affine subspaces that are consistent with some global codeword g ∈ C,
formally,

C(s) :=
{

(fS)S | ∃ g ∈ C such that g|S = fS for any s-dimensional affine subspace S
}
.

For a pair of collections (fS)S , (gS)S of partial assignments to s-dimensional affine subspaces we
denote by dist((fS)S , (gS)S) the fraction of s-dimensional affine subspaces S for which fS 6= gS ,
and we define dist((fS)S , C(s)) accordingly.

Definition 3.7 (Agreement testing of lifted codes). Let C ⊆ {F`q → Fq} be an affine-invariant

linear code, and m ≥ s > t ≥ `. The m-dimensional lift C`↗m is (s, t, α)-agreement testable if for
every collection (fS)S where fS ∈ C`↗s for every s-dimensional affine subspace S it holds that

Pr
T, S⊇T, S′⊇T

[fS |T 6= fS′ |T ] ≥ α · dist
(
(fS)S , C

`↗m(s)
)
,

where the probability is over a uniform random t-dimensional affine subspace T ⊆ Fmq , and uniform
random s-dimensional affine subspaces S, S′ containing T .

3.3 Subspace expansion

Let d0, d1, d2 ∈ {0, 1, . . . ,m} be integers, and let W ⊆ Fmq be a fixed affine subspace of dimension d0.
We denote by Id1,d2(d0) the bipartite graph whose left side are all d1-dimensional affine subspaces of
Fmq , whose right side are all d2-dimensional affine subspaces of Fmq containing W , and an edge (U, V )
is present in the graph if and only if U ⊆ V (note that the structure of the graph is independent of
the choice of W ). Our proof makes use of expansion properties of this graph.

Proposition 3.8. The second largest normalized singular value of the adjacency matrix of Id1,d2(d0)
is at most q−(d2−d1−d0)/2.

Proof. Let Gr(m,d1) be the Grassmann graph whose vertices are d1-dimensional spaces and edges
connect two d1-spaces that intersect on an d1 − 1 space. We quote [BCN89, Theorem 9.3.3] that
gives the un-normalized eigenvalues

θj = qj+1

[
d1 − j

1

][
n− d1 − j

1

]
−
[
j

1

]
9



and the degree is

k = q

[
d1

1

][
n− d1

1

]
Plugging in j = 1 one gets the second largest eigenvalue in absolute value is approximately

λ(Gr(m, d1)) ≈ 1
√
q
. (3)

It can be shown that λ(Id1,d2(0)) ≈ (λ(Gr(m, d1)))d2−d1 . When adding W we are essentially
moving to the graph Id1,d2−d0(0), i.e. λ(Id1,d2(d0)) ≈ λ(Id1,d2−d0(0)).

We shall use the following sampling property of Id1,d2(d0).

Proposition 3.9. Let G = (L ∪R,E) be a bipartite graph with second largest normalized singular
value λ. Then for any subset A ⊆ L of density α it holds that |N(A)| ≥ (1 − λ2/α) · |R| where
N(A) denotes the set of neighbors of A in R.

Proof. Let B := R\N(A) and β := |B|/|R|. Noting that Pr(u,v)∈E [u ∈ A∧v ∈ B] = 0, by expander
mixing lemma (see e.g., [DK17, Lemma 2.8.]) we have that

αβ =

∣∣∣∣ Pr
(u,v)∈E

[u ∈ A ∧ v ∈ B]− αβ
∣∣∣∣ ≤ λ√αβ,

and so β ≤ λ2/α. It follows that |N(A)| = (1− β)|R| ≥ (1− λ2/α)|R|.

4 From agreement testing to robust testing

In this section we prove the following lemma showing the agreement testing to robust testing
implication.

Lemma 4.1 (Agreement testing implies robust testing). Let C ⊆ {F`q → Fq} be an affine-invariant

linear code, and m ≥ s > t ≥ `. Suppose that C`↗m is (s, t, α)-agreement testable, and let
δ := dist(C`↗t). Then C`↗m is

(
s,Ω(αδ)

)
-robust.

Proof. For simplicity of notation, in what follows we let T, S denote the random variables obtained
by sampling a uniform random affine subspace of dimension t, s respectively. Suppose that f : Fmq →
Fq has ES [dist(f |S , C`↗s)] ≤ ε, our goal is to find a codeword g ∈ C`↗m such that dist(f, g) ≤
O(ε/(αδ)).

The proof proceeds as follows. We would like to apply our assumption on agreement testabil-
ity, and towards this, we create an instance (fS)S for the agreement tester by letting fS be the
codeword in C`↗s that is closest to f |S . We then use the fact that fS is typically close to f |S ,
together with the fact that t-dimensional affine subspaces sample well inside s-dimensional affine
subspaces, and the assumption that C has distance on t-dimensional affine subspaces, to show that
PrT, S⊇T, S′⊇T [fS |T 6= fS′ |T ] is small. Agreement testability then gives a codeword g ∈ C`↗m that
is consistent with most fS , and using the fact that s-dimensional affine subspaces sample well inside
Fmq this implies in turn that dist(f, g) is small. Details follow.

We begin by showing that PrT, S⊇T, S′⊇T [fS |T 6= fS′ |T ] is small. Recall first that ES [dist(f |S , fS)] =
ES [dist(f |S , C`↗s)] ≤ ε. Next observe that for a fixed s-dimensional affine subspace S, any point
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in a uniform random t-dimensional affine subspace contained in S is uniform in S. Thus we also
have that ES, T⊆S [dist(f |T , fS |T )] ≤ ε, and consequently

Pr
T, S⊇T, S′⊇T

[
dist(fS |T , fS′ |T ) ≥ δ

]
≤ 2 · Pr

T, S⊇T

[
dist(f |T , fS |T ) ≥ δ/2

]
= 2 · Pr

S, T⊆S

[
dist(f |T , fS |T ) ≥ δ/2

]
≤ 4ε

δ
.

But since fS |T , fS′ |T are both codewords of C`↗t, a code of relative distance δ, the above implies
in turn that PrT, S⊇T, S′⊇T [fS |T 6= fS′ |T ] ≤ 4ε

δ .
Our assumption on agreement testability now gives a codeword g ∈ C`↗m that has PrS [g|S 6=

fS ] ≤ 4ε/(αδ). But since any point in a uniform random s-dimensional affine subspace is uniform
in Fmq this gives in turn that

dist(f, g) = ES
[
dist(f |S , g|S)

]
≤ ES

[
dist(f |S , fS)

]
+ ES

[
dist(fS , g|S)

]
≤ ε+

4ε

αδ
≤ 5ε

αδ
.

5 From local testing to agreement testing

In this section we prove the following lemma that gives the local testing to agreement testing
implication.

Lemma 5.1 (Local testing implies agreement testing). Let C ⊆ {F`q → Fq} be an affine-invariant

linear code, and m ≥ k ≥ `. Suppose that C`↗m is (k, α)-testable, and let δ := mink≤r≤m dist(C`↗r).
Then C`↗m is (2k + logq(4/δ), k + 1,Ω(α · δ2))-agreement testable.

Proof outline: For simplicity of notation, in what follows let s := 2k+ logq(4/δ) and t := k+ 1.
We let both S, S′ (T , T ′ and K, K ′, resp.) denote random variables obtained by sampling a
uniform random affine subspace of dimension s (t, k, resp.).

Let (fS)S be a collection of partial assignments such that fS ∈ C`↗s for every S, and

Pr
T, S⊇T, S′⊇T

[fS |T 6= fS′ |T ] ≤ ε. (4)

Our goal is to find a global codeword g ∈ C`↗m that has

Pr
S

[g|S 6= fS ] ≤ O
( ε

α · δ2

)
. (5)

We find the codeword g in three stages.

1. In the initial stage (Section 5.1) we define for any k-dimensional affine subspace K a ’most
popular function’ PlurK : Fkq → Fq by choosing the most common value among fS |K going
over all S ⊇ K. We show that for a typical K, this function is obtained with an overwhelming
plurality of 1−O(ε).

2. In the “local structure” stage (Section 5.2) we define for any k-dimensional affine subspace
K a function gK : Fmq → Fq by letting gK(x) be the most common ’vote’ among all fS that
contain both K and x and agree with PlurK on K. We then show that for a typical K, gK
is close to some codeword hK ∈ C`↗m, and moreover hK |S = fS for most S containing K.
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3. In the “global structure” stage (Section 5.3) we show that there exists K̂ for which hK̂ |S = fS
for most S (not necessarily containing K̂). We can then set our ’global function’ g to be equal
to hK̂ .

5.1 Initial stage

For any k-dimensional affine subspace K we let PlurK : Fkq → Fq denote the most common value
among fS |K for S containing K, that is,

PlurK := pluralityS⊇K{fS |K}.

Next we use our assumption (4) to show that for a typical K, the function PlurK is obtained with
overwhelming plurality.

Lemma 5.2.

EK
[

Pr
S⊇K

[
fS |K 6= PlurK

]]
≤ 2ε.

Proof. Since the collision probability lower bounds the probability of hitting the most common
value, it suffices to show that

Pr
K, S⊇K, S′⊇K

[
fS |K 6= fS′ |K

]
≤ 2ε. (6)

Clearly if t = k we would be done by (4), so the whole point is to show the same for t > k.
We describe a distribution on triples (S1, S

′, S2) such that (S1, S2) are distributed as in (6) but the
pairs (S1, S

′) and (S′, S2) are distributed as in (4):

1. Choose a uniform random k-dimensional affine subspace K.

2. Choose a pair of uniform random t-dimensional affine subspaces T1, T2 containing K.

3. For i = 1, 2, choose a uniform random s-dimensional affine subspace Si containing Ti.

4. Choose a uniform random s-dimensional affine subspace S′ containing T1 ∪ T2 (this can be
done since t = k + 1 and s ≥ k + 2).

One can check that indeed K,S1, S2 are distributed as in (6) while Ti, Si, S
′ are distributed as

in (4). Thus by our assumption (4),

Pr
K, S1⊇K, S2⊇K

[
fS1 |K 6= fS2 |K

]
≤ Pr

T1, S1⊇T1, S′⊇T1

[
fS1 |T1 6= fS′ |T1

]
+ Pr
T2, S′⊇T2, S2⊇T2

[
fS′ |T2 6= fS2 |T2

]
≤ 2ε.

5.2 Local structure

Next we define for every k-dimensional affine subspace K the function gK : Fmq → Fq. As described
above, for every x ∈ Fmq , we let gK(x) be the most common value among fS(x) for S that contain
both K and x and agree with PlurK on K, that is,

gK(x) := pluralityS⊇K∪{x}, fS |K=PlurK{fS(x)}.

Next we would like to show that for a typical K, gK is close to some codeword hK ∈ C`↗m,
and additionally hK |S = fS for most S containing K. We show these in three steps:
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1. Boosting step (Lemma 5.3): In this step we show that for typical K,x, the plurality in the
definition of gK(x) is obtained with overwhelming probability.

2. LTC step (Lemma 5.4): In this step we use the previous step to show that for a typical gK ,
for most K ′, gK |K′ agrees with some fS on K ′, and therefore is a codeword of C`↗k. By local
testability assumption this implies in turn that such gK is close to being in the code C`↗m,
and we denote by hK ∈ C`↗m the closest codeword to gK .

3. Agreement step (Lemma 5.5): In this step we show that a typical hK agrees with most fS
for S ⊇ K.

We start with the boosting step, showing that for typical K,x, the plurality in the definition
of gK(x) is obtained with overwhelming probability. Intuitively, this follows by assumption that
the code has distance on t-dimensional affine subspaces, together with the fact that k-dimensional
affine subspaces sample well inside t-dimensional affine subspaces, which imply that if a pair of fS
agree on K then they must typically also agree on their whole intersection.

Lemma 5.3 (Boosting step).

EK, x/∈K
[

Pr
S⊇K∪{x}

[
fS(x) 6= gK(x)

∣∣ fS |K = PlurK
]]
≤ O

(
q−k · ε

δ · (1− 4ε)

)
.

Proof. Since the collision probability lower bounds the probability of hitting the most common
value, it suffices to show that

Pr
K, x/∈K, S⊇K∪{x}, S′⊇K∪{x}

[
fS(x) 6= fS′(x) | fS |K = fS′ |K = PlurK

]
≤ O

(
q−k · ε

δ · (1− 4ε)

)
.

Now we have that

Pr
K, x/∈K, S⊇K∪{x}, S′⊇K∪{x}

[
fS(x) 6= fS′(x) | fS |K = fS′ |K = PlurK

]
≤ Pr

K, T⊇K, S⊇T, S′⊇T

[
fS |T 6= fS′ |T | fS |K = fS′ |K = PlurK

]
=

PrT, S⊇T, S′⊇T, K⊆T
[
fS |K = fS′ |K = PlurK | fS |T 6= fS′ |T

]
· PrT, S⊇T, S′⊇T

[
fS |T 6= fS′ |T

]
PrK, T⊇K, S⊇T, S′⊇T

[
fS |K = fS′ |K = PlurK

] .

Next we bound each of the terms above.
By our assumption (4), the right hand term in the numerator is upper bounded by ε. To bound

the denominator note that by Lemma 5.2,

Pr
K, T⊇K, S⊇T, S′⊇T

[fS |K = fS′ |K = PlurK ] ≥ 1− 2 · Pr
K, S⊇K

[fS |K 6= PlurK ] ≥ 1− 4ε. (7)

To bound the left hand term in the numerator note first that since fS , fS′ are both codewords of
C`↗s then fS |T , fS′ |T are distinct codewords in C`↗t, and so dist(fS |T , fS′ |T ) ≥ δ. We now apply
Propositions 3.8 and 3.9 on the graph I0,k(0): The ambient space is T , and the graph connects
the points of T (which are the 0-dimensional affine subspaces contained in T ) on the left to the k-
dimensional affine subspaces contained in T on the right. By Proposition 3.8 the graph I0,k(0) has
second largest normalized singular value at most q−k/2, and so taking A = {x ∈ T | fS(x) 6= fS′(x)}
in Proposition 3.9 we deduce that at most q−k/δ fraction of K can miss A altogether. Thus,

Pr
T, S⊇T, S′⊇T, K⊆T

[
fS |K = fS′ |K

∣∣ fS |T 6= fS′ |T
]
≤ q−k

δ
. (8)

The final bound is obtained by combining the bounds in (4), (7), and (8).
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Next we use the assumption on local testability to show that for a typical K, gK is close to
being a codeword of C`↗m.

Lemma 5.4 (LTC step).

EK
[
dist

(
gK , C

`↗m)] ≤ O ( ε

α · δ

)
.

Proof. To apply our assumption on local testability we first show that gK |K′ is typically a codeword
of C`↗k. For this, first observe that if gK |K′ is not a codeword of C`↗k then gK |K′ 6= fS |K′ for all
S (since fS ∈ C`↗s and so fS |K′ ∈ C`↗k). Thus we have

EK, K′
[
1gK |K′ /∈C`↗k

]
≤ EK, K′

[
Pr

S⊇K∪K′
[gK |K′ 6= fS |K′ ]

]
≤ EK, K′

[
Pr

S⊇K∪K′

[
gK |K′ 6= fS |K′

∣∣ fS |K = PlurK
]]

+ Pr
K, S⊇K

[fS |K 6= PlurK ]

We claim that the above expression is at most O(ε/δ). To see this note first that by Lemma 5.2
the right hand term is at most 2ε . To bound the left hand term, note that since each individual
point in K ′ is uniformly distributed in Fmq this term is upper bounded by

qk · EK, x
[

Pr
S⊇K∪{x}

[
gK(x) 6= fS(x)

∣∣ fS |K = PlurK
]]
,

which is in turn at most O(ε/δ) by Lemma 5.3 (noting that the probability in the above expression
is zero whenever x ∈ K).

Finally, for any k-dimensional affine subspace K let εK := PrK′
[
gK |K′ /∈ C`↗k

]
. Then on the

one hand EK [εK ] = EK, K′
[
1gK |K′ /∈C`↗k

]
≤ O(ε/δ), and on the other hand dist(gK , C

`↗m) ≤ εK/α
for any K by assumption that C`↗m is (k, α)-testable. We conclude that

EK
[
dist

(
gK , C

`↗m)] ≤ EK
[εK
α

]
≤ O

( ε

α · δ

)
.

For any k-dimensional affine subspace K let hK ∈ C`↗m be the codeword that is closest to gK .
Then by the above lemma,

EK
[
dist(gK , hK)

]
≤ O

( ε

α · δ

)
.

The following lemma says that for a typical K we have that hK |S = fS for most S containing
K, which follows by the fact that s-dimensional affine subspaces sample well inside Fmq and by
assumption that the code has distance on s-dimensional affine subspaces.

Lemma 5.5 (Agreement step).

EK
[

Pr
S⊇K

[
hK |S 6= fS

]]
≤ O

( ε

α · δ2

)
.

Proof. We show that for typical S ⊇ K, on the one hand, by Lemma 5.4 and the fact that s-
dimensional affine subspaces sample well inside Fmq , dist(hK |S , gK |S) is small, and on the other hand,
by Lemma 5.3, dist(gK |S , fS) is small. We then conclude by triangle inequality that dist(hK |S , fS)
is small, which implies in turn that hK |S = fS by assumption that the code has distance on
s-dimensional subspaces.
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We start by showing that dist(hK |S , gK |S) is typically small. For this note that for a fixed
k-dimensional affine subspace K and uniform random S containing K, each individual point in
S \K is uniformly distributed in Fmq \K. Thus we have

EK, S⊇K
[
dist(hK |S , gK |S)

]
≤ q−(s−k) + EK

[
dist(hK , gK)

]
≤ δ

4
+O

( ε

α · δ

)
, (9)

where the last inequality follows by choice of s ≥ k + logq(4/δ) and Lemma 5.4.
Next we show that dist(hK |S , fS) is typically small. For this note that

EK, S⊇K
[
dist(gK |S , fS)

]
≤ q−(s−k) + EK, x/∈K

[
Pr

S⊇K∪{x}

[
gK(x) 6= fS(x)

]]
≤ q−(s−k) + EK, x/∈K

[
Pr

S⊇K∪{x}

[
gK(x) 6= fS(x)

∣∣ fS |K = PlurK
]]

+ Pr
K, S⊇K

[fS |K 6= PlurK ]

≤ δ

4
+O

( ε
δ

)
, (10)

where the last inequality follows by choice of s ≥ k + logq(4/δ) and Lemmas 5.3 and 5.2.
Combining (9) and (10), by triangle inequality we have that

EK, S⊇K
[
dist(hK |S , fS)

]
≤ δ

2
+O

( ε

α · δ

)
,

and by Markov’s inequality,

Pr
K, S⊇K

[
dist(hK |S , fS) ≥ δ

]
≤ O

( ε

α · δ2

)
.

Finally, since both hK |S and fS are codewords of C`↗s and dist(C`↗s) ≥ δ we conclude that
hK |S 6= fS with probability at most O

(
ε

α·δ2
)

over the choice of K and S ⊇ K.

5.3 Global structure

We now complete the proof of Lemma 5.1 by showing that there exists a codeword g ∈ C`↗m that
agrees with most fS . We start by showing that most functions hK are in fact identical, which
follows by Lemma 5.5 and the fact that s-dimensional affine subspaces sample well inside Fmq .

Lemma 5.6. There exists a k-dimensional affine subspace K̂ such that

Pr
K

[
hK 6= hK̂

]
≤ O

( ε

α · δ2

)
.

Proof. By Lemma 5.5,

Pr
K, K′, S⊇K∪K′

[
hK |S 6= hK′ |S

]
≤ 2 · Pr

K, S⊇K

[
hK |S 6= fS

]
≤ O

( ε

α · δ2

)
,

and so by averaging there exists K̂ such that

Pr
K, S⊇K∪K̂

[
hK |S 6= hK̂ |S

]
≤ O

( ε

α · δ2

)
.
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Markov’s inequality then implies that

Pr
S⊇K∪K̂

[
hK |S 6= hK̂ |S

]
≥ 1

2

with probability at most O
(

ε
α·δ2
)

over the choice of K.
Next observe that if hK 6= hK̂ then since hK , hK̂ are both codewords of C`↗m and dist(C`↗m) ≥

δ, it must hold that dist(hK , hK̂) ≥ δ. We now apply Propositions 3.8 and 3.9 on the graph I0,s(2k)

that connects the points of Fmq on the left to the s-dimensional affine subspaces containing K ∪ K̂
on the right. By Proposition 3.8 the graph I0,s(2k) has second largest normalized singular value at
most q−(s−2k)/2, and so taking A =

{
x ∈ Fmq

∣∣ hK(x) 6= hK̂(x)
}

in Proposition 3.9 we deduce that

Pr
S⊇K̂∪K

[
hK̂ |S 6= hK |S

]
≥ 1− q−(s−2k)

δ
≥ 1/2,

where the last inequality follows by assumption that s ≥ 2k + logq(2/δ).
It now follows that hK 6= hK̂ with probability at most O

(
ε

α·δ2
)

over the choice of K.

We can now complete the proof of Lemma 5.1.

Proof of Lemma 5.1. Set g ∈ C`↗m to be the function hK̂ guaranteed by Lemma 5.6. By Lemmas
5.5 and 5.6,

Pr
S

[
g|S 6= fS

]
= Pr

K, S⊇K

[
g|S 6= fS

]
≤ Pr

K

[
g 6= hK

]
+ Pr
K, S⊇K

[
hK |S 6= fS

]
≤ O

( ε

α · δ2

)
.

So g satisfies (5) as required.

6 From local testing to robust testing

6.1 Proof of Main Theorem 1.1

We can now combine Lemmas 4.1 and 5.1 to prove our main Theorem 1.1, restated below, showing
a transformation from local testing to robust testing.

Theorem (1.1). Let C ⊆ {F`q → Fq} be an affine-invariant linear code, and m ≥ k ≥ `. Suppose

that C`↗m is locally testable using the k-dimensional test with query complexity qk and soundness
α, and let δ := mink≤r≤m dist(C`↗r). Then C`↗m is robustly testable using the (2k + logq(4/δ))-

dimensional test with query complexity O(q2k/δ) and robustness Ω(α · δ3).

Proof of Theorem 1.1. By Lemma 5.1 we have that C`↗m is (2k + logq(4/δ), k + 1,Ω(α · δ2))-

agreement testable, and by Lemma 4.1 this implies in turn that C`↗m is (2k+ logq(4/δ),Ω(α · δ3))-
robust.

6.2 Proof of Corollary 1.2

We now instantiate our main Theorem 1.1 with Theorem 3.4 to show that lifted codes are robustly
testable. For this, we first observe that one can amplify the soundness of the tester given by
Theorem 3.4 to a constant (independent of q and `) at the cost of increasing the testing dimension
to ≈ 3`.
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Proposition 6.1. Let C ⊆ {F`q → Fq} be an affine-invariant linear code, and m ≥ 3` + logq 4.

Then C`↗m is
(
3`+ logq 4,Ω(1)

)
-testable.

Proof. If the `-dimensional test rejects with probability at least 1
2 · dist(f, C`↗m) then by Part (3)

of Proposition 3.6, the (3` + logq 4)-dimensional test also rejects with the same probability and
we are done. Otherwise, by Theorem 3.4, the `-dimensional test rejects with probability at least
1
2 · q

−2`.
Consider the graph I`,3`+logq 4(0) with left hand side being all `-dimensional affine subspaces of

Fmq and right hand side being all (3` + logq 4)-dimensional affine subspaces of Fmq . Next we apply
Propositions 3.8 and 3.9 on the graph I`,3`+logq 4(0) with A being the collection of all `-dimensional
affine subspaces on which the `-dimensional test rejects. Noting that the (3`+ logq 4)-dimensional
test will reject on any neighbor of A we conclude that the (3`+logq 4)-dimensional test rejects with

probability at least 1− q−(2`+logq 4)

q−2`/2
= 1

2 .

We now turn to the proof of Corollary 1.2, restated below.

Corollary (1.2). Let C ⊆ {F`q → Fq} be an affine-invariant linear code of relative distance δ,

and m ≥ `. Then C`↗m is robustly testable using the (6` + logq(128/δ))-dimensional test with
robustness Ω(δ3).

Proof. Suppose first that δ < 2q−`. In this case by Theorem 3.4, C`↗m is (`,Ω(q−2`))-testable, and
so by Part (2) of Prposition 3.6, C`↗m is also robustly testable using the `-dimensional test with
robustness Ω

(
q−3`

)
≥ Ω(δ3). By Part (4) of Proposition 3.6 it follows that the (6`+ logq(128/δ))-

dimensional test also has robustness Ω(δ3).
Next assume that δ ≥ 2q−`. In this case Proposition 3.2 gives that dist(C`↗r) ≥ δ/2 for any

` ≤ r ≤ m, and so we may apply Proposition 6.1 and Theorem 1.1 and conclude that C`↗m is
(6`+ logq(128/δ),Ω(δ3))-robust.

Acknowledgements We thank Prahladh Harsha for helpful discussions.
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