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Abstract

A local tester for an error-correcting code is a probabilistic procedure that queries a small subset of
coordinates, accepts codewords with probability one, and rejects non-codewords with probability propor-
tional to their distance from the code. The local tester is said to be robust if for non-codewords it satisfies
the stronger property that the average distance of local views from accepting views is proportional to the
distance from the code. Robust testing is an important component in constructions of locally testable codes
and probabilistically checkable proofs as it allows for composition of local tests.

In this work, we show that for certain codes, any (natural) local tester can be converted to a robust
tester with roughly the same number of queries. Our result holds for the class of affine-invariant lifted codes
which is a broad class of codes that includes Reed-Muller codes, as well as recent constructions of high-rate
locally testable codes (Guo, Kopparty, and Sudan, ITCS 2013). Instantiating this with known local testing
results for lifted codes gives a more direct proof that improves some of the parameters of the main result
of Guo, Haramaty, and Sudan (FOCS 2015), showing robust soundness of lifted codes.

To obtain the above transformation, we relate the notions of local testing and robust testing to the notion
of agreement testing that attempts to find out whether valid partial assignments can be stitched together to
a global codeword. We first show that agreement testing implies robust testing, and then show that local
testing implies agreement testing. Our proof is combinatorial, and is based on sampling properties of the
collection of local views of local testers. Thus, it immediately applies to local testers of lifted codes that
query random affine subspaces in Fm

q , and moreover seems amenable to extension to other families of
locally testable codes with expanding families of local views.
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1 Introduction

Our main result shows a transformation from local testing to robust testing for the class of affine-invariant
lifted codes. We start by describing the notions of local testing, robust testing, and lifted codes.

1.1 Local testing and robust testing

A code is a subset C ⊆ Σn. The elements of C are called codewords, Σ is the alphabet of the code, and n is the
block length. The rate of the code is the ratio (log|Σ| |C|)/n. The code is linear if Σ = Fq where Fq is the finite
field of q elements, and C is an Fq-linear subspace of Fn

q . It will be convenient to think of codewords in C
as functions f : U → Σ where U is a domain of size n. For a pair of functions f , g : U → Σ, we let dist( f , g)
denote the fraction of inputs x ∈ U for which f (x) 6= g(x). The relative distance dist(C) of the code is the
minimum of dist( f , g) over all distinct codewords f , g ∈ C. For a function f : U → Σ, we let dist( f , C)
denote the minimum of dist( f , g) over all codewords g ∈ C.

A local tester for the code C is a probabilistic oracle algorithm that on oracle access to a function f : U → Σ
makes at most Q queries to f , and accepts f ∈ C with probability one, while rejecting f 6∈ C with probability
at least α · dist( f , C). We refer to Q as the query complexity of the tester, and to α as the soundness. In this
work, we shall restrict our attention to local testers that pick a random subset K ⊆ U of cardinality Q
according to some distribution, and accept if and only if f |K ∈ C|K.1 The requirement then is that f |K ∈ C|K
with probability one whenever f ∈ C, and

Pr
K
[ f |K /∈ C|K] ≥ α · dist( f , C) (1)

otherwise.
In this work, we will be interested in the stronger notion of robust soundness2. We say that a local tester

as above is robustly sound (or just robust) if for non-codewords the average distance of its local views from
accepting views is proportional to the distance of the given function from the code. That is, as before we
require that f |K ∈ C|K with probability one whenever f ∈ C, but instead of (1) we now require that

EK
[
dist( f |K, C|K)

]
≥ α · dist( f , C) (2)

whenever f /∈ C. Here we refer to α as the robust soundness of the tester.
The notion of robust soundness was introduced by Ben-Sasson and Sudan [BS06] based on analogous

notions for probabilistically checkable proofs [BGHSV06, DR06]. Robust Soundness is a natural property of
local testers that relates the global distance of a function from the code to its local distance from accepting
views on local views. Moreover, robust soundness is also an important ingredient in constructions of locally
testable codes and probabilistically checkable proofs as it allows for composition of local tests. Specifically,
it follows by definition that if a code C is robustly testable with query complexity Q and soundness α, and
additionally each local restriction C|K is locally testable with query complexity Q′ and soundness α′, then

1Local testers may generally apply a more complex predicate on f |K . However, natural local testers are typically of the restricted
form we consider, and moreover it can be shown that a local tester for a linear code must be of this form [BHR05].

2This strengthened notion of soundness has been referred to as robust soundness [BGHSV06, BS06] or just robustness [GHS15] in
earlier works. To make precise the contrast with the standard notion of soundness (1), we will refer to is as “robust soundness” in this
work.
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the code C is locally testable with query complexity Q′ and soundness α · α′. This property is useful when
local restrictions can be tested efficiently which can happen if the code has many symmetries (as is the case
with the class of lifted codes considered in this work) or can be achieved, in the case of probabilistically
checkable proof, by attaching a short proof of proximity.

One can easily observe that (2) implies (1) since f |K /∈ C|K whenever dist( f |K, C|K) > 0, so robust
soundness is a stronger requirement than (standard) soundness in local testing. For the other direction,
note that a local tester with soundness α has robust soundness at least α/Q since dist( f |K, C|K) ≥ 1/Q
whenever f |K /∈ C|K. A natural question is whether this loss in robust soundness is necessary, and whether
robust soundness is strictly stronger notion than (standard) soundness for local testing. In this work, we
shall show that this loss is unnecessary for the class of lifted codes, discussed below.

1.2 Lifted codes

Lifted codes are specified by a base code C ⊆ {F`
q → Fq} and a dimension m ≥ `. We further assume that the

base code C is linear and affine-invariant. That is, for any codeword f ∈ C, and for any affine transformation
A : F`

q → F`
q, it holds that f ◦ A ∈ C. Given these we define the lifted code C`↗m to be the code consisting of

all functions f : Fm
q → Fq that satisfy that f |L ∈ C for any `-dimensional affine subspace L.

Lifted codes were first introduced by Ben-Sasson, Maatouk, Shpilka and Sudan [BMSS11], and their
local testability properties were further explored in subsequent work [GKS13, HRS15, GHS15]. They are a
natural generalization of the well-studied family of Reed-Muller codes, and moreover they also give rise to
new families of locally testable codes that outperform Reed-Muller codes in a certain range of parameters
[GKS13]. Specifically, lifted codes lead to one of the two known constructions (the other one being tensor
codes [BS06, BV15, Vid15, KMRS17]) of high-rate locally testable codes (i.e., locally testable codes with rate
approaching one and sublinear locality). Generally, lifted codes form a natural subclass of affine-invariant
codes satisfying the ’single-orbit characterization’ property that is known to imply local testability, as well
as local decodability [KS08].

There is a natural local test associated with lifted codes: on oracle access to a function f : Fm
q → Fq, pick

a uniform random `-dimensional affine subspace L and accept if and only if f |L ∈ C. It follows immediately
by definition that this test accepts any valid codeword f ∈ C`↗m with probability one, but more work is
required to show that this test is sound. Specifically, since the test forms a single orbit characterization, it
follows from the work of Kaufman and Sudan [KS08] that it has soundness roughly q−2`. The dependence
of the soundness on the dimension ` was later eliminated by Haramaty, Ron-Zewi and Sudan [HRS15] who
showed soundness that is only a function of q (though an extremely quickly decaying one).

As for robust soundness, the above local testing results, together with the straightforward transfor-
mation from local testing to robust testing, immediately give robust soundness that is dependent on the
dimension `. This was eliminated recently by Guo, Haramaty and Sudan [GHS15] who showed robust
soundness of the form poly(δ) (about δ74, where δ is the relative distance of the code) for the local test that
queries subspaces of slightly larger dimension of 2`. Interestingly, Guo, Haramaty and Sudan [GHS15] did
not rely on the aforementioned local testing results, but rather relied on viewing lifted codes as the inter-
section of ’modified tensor codes’. They then proceeded by showing that these modified tensor codes are
robustly testable (using the proof method of Viderman [Vid15] showing robust soundness of tensor codes),
and that this implies local testability of the lifted code (see Section 2.4 for more details about the proof
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method of Guo, Haramary and Sudan [GHS15]).

1.3 Our results

Our main result gives a transformation from local testing to robust testing, that does not suffer the factor
of Q (the query complexity) loss in robust soundness, for the class of lifted codes. The transformation uses
local testability in a ’black-box’ manner, and shows that if a code in this family is locally testable (using
the natural subspace tester) then it is also robustly testable with roughly the same number of queries and
robust soundness.

For k ≥ `, let the k-dimensional (subspace) test denote the local tester that on oracle access to a function f :
Fm

q → Fq queries a uniform random k-dimensional affine subspace K and accepts if and only if f |K ∈ C`↗k.

Main Theorem 1.1. Let C ⊆ {F`
q → Fq} be an affine-invariant linear code, and m ≥ k ≥ `. Suppose

that C`↗m is locally testable using the k-dimensional test with query complexity qk and soundness α, and let
δ := mink≤r≤m dist(C`↗r). Then C`↗m is robustly testable using the (2k + 2 + logq(4/δ))-dimensional test
with query complexity O(q2k+2/δ) and robust soundness Ω(α · δ3).

Note that if the relative distance δ is constant, we only incur a constant multiplicative loss in robust
soundness and testing dimension.3 We conjecture that the testing dimension for proving robust soundness
may be as small as k + 1, and leave it as an interesting question for future research.

To apply the above theorem one can instantiate it with the local testing result of Kaufman and Sudan
[KS08] that says that lifted codes are locally testable using the `-dimensional test with soundness ≈ q−2`

(see Theorem 3.4 below). However, to obtain constant robust soundness we need that the soundness of the
initial local tester would be constant (independent of q and `), and for this we observe (in Proposition 6.1)
that the soundness of Kaufman and Sudan [KS08] can be easily amplified to Ω(1) at the cost of increasing
the testing dimension to ≈ 3`.4 Using this observation we obtain the following.

Corollary 1.2. There exists an absolute constant c > 1 so that the following holds. Let C ⊆ {F`
q → Fq} be an

affine-invariant linear code of relative distance δ, and m ≥ `. Then C`↗m is robustly testable using the (6`+ 4 +

logq(c/δ))-dimensional test with robust soundness Ω(δ3).

Compared to the above corollary, the work of Guo, Haramaty and Sudan [GHS15] uses a lower dimen-
sion of 2`, but also obtain a lower robust soundness of Ω(δ74).

As described next, our proof is combinatorial, relying mainly on sampling properties of the collection of
local views. In particular, it uses very little about the algebraic structure of lifted codes or the base code. We
thus hope that such techniques would prove useful in the future for showing robust soundness for other
families of locally testable codes with similar sampling properties.

3One natural example for codes with constant δ are the lifted Reed-Solomon codes of Guo, Kopparty and Sudan [GKS13]. Further-
more, it was shown by them [GKS13] that for any m ≥ `, dist(C`↗m) ≥ dist(C)− q−` (see Proposition 3.2 below).

4Such an amplification with similar blow-up in query complexity can be easily obtained by repeating the test and accepting if and
only if all invocations accept; we however need that the tester would be a subspace tester which can be obtained using sampling
properties of affine subspaces.
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2 Proof overview

Our proof is based on a new connection between the notions of local testing, robust testing, and agreement
testing. Specifically, we show that for the class of lifted codes agreement testing implies robust testing,
and local testing implies agreement testing. The combination of these two implications gives our Main
Theorem 1.1. Next we elaborate on the notion of agreement testing, followed by an overview of each of the
implications.

2.1 Agreement testing

An agreement test attempts to find out whether partial assignments to local views can be stitched together
to a single global codeword. Let C ⊆ {U → Σ} be a code, and let S be a collection of subsets of U. An
agreement tester for C,S is a probabilistic oracle algorithm that receives oracle access to a collection of partial
assignments { fS : S → Σ | S ∈ S} on sets of S , where fS ∈ C|S for any S ∈ S . The tester queries a few
of the fS’s, and is required to accept with probability one any collection ( fS)S that is consistent with some
global codeword g ∈ C (that is, g|S = fS for any S ∈ S), while rejecting any inconsistent collection ( fS)S

with probability proportional to the minimal fraction of fS’s that must be changed in order to be consistent
with some global codeword. In this work, we focus on an agreement tester that picks a pair of sets S, S′ ∈ S
according to some distribution and accepts if and only if fS and fS′ agree on their intersection S ∩ S′.

Agreement testing has first appeared in PCP constructions [AS98, ALMSS98] as so-called ”low degree
tests”, and is a key component in the proof of almost all PCP theorems. A prime example is the line vs.
line low degree test [GLRSW91, RS96] in the proof of the PCP theorem. In the PCP construction, a function
on a large vector space is replaced by an ensemble of (supposed) restrictions to all possible affine lines.
These restrictions are supplied by a prover and are not a priori guaranteed to agree with any single global
function. The “low degree test” is run by the verifier to check that restrictions on intersecting lines agree
with each other, i.e. they give the same value to the point of intersection. The main point of the argument
is to show that the passing of the test implies agreement with a single global function. In these early low
degree tests (including the linearity testing work of Blum, Luby and Rubinfeld [BLR93]) an agreement test
component can be discerned but quite implicitly. Indeed, it was only separated in the works [RS97, AS03]
that looked at the so-called list-decoding regime5, with the goal of proving a large gap for the PCP.

Goldreich and Safra [GS00] tried to separate the algebraic aspect of the low degree test from the combi-
natorial, and formulated a more general “consistency test” which is also referred to as an agreement test.
They also proved a certain local to global result which was too weak to be useful for PCPs. In hindsight
it is clear that since their family of subsets consisted of axis parallel lines, the expansion was not strong
enough for a good agreement test. Only recently [DK17, DD19] the role of expansion underlying the family
of subsets had begun to be uncovered.

Work on agreement testing then continued the combinatorial direction of Goldreich and Safra [GS00]
mainly in the list-decoding regime for direct product testing [DR06, DG08, IKW12, DS14, DN17]. The
techniques developed in this line of work turn out to be useful also for agreement testing in the unique-
decoding regime (which is the more standard testing regime), and in particular for our work here.

5In the list decoding regime one would like to reject a function that is (1 − ε)-far from the code with very high-probability of
1−O(ε).
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Our proof of agreement testing based on local testing (see Section 5) is significantly simpler than general
agreement testing theorems. The reason is that we avoid a major technical difficulty that stems from the
varying size of disagreement between pairs of local views. In the general setting this can be anywhere
from disagreement on only one point in the intersection to disagreement on the entire intersection, leading
to a very subtle argument. In contrast, in our setting the local view restricted to the intersection is itself
an error correcting code, so whenever local views disagree, they must disagree on a linear fraction of the
intersection. This makes the proof of the agreement theorem very direct, and much easier than the proofs
in aforementioned works.

A general agreement testing theorem that holds in quite broad generality was proven by Dikstein and
Dinur [DD19] (published after the first version of this work). This result (see Theorems 6.2 and 6.3 in that
paper) is very similar to what we prove here but the parameters are slightly weaker.

2.2 Agreement testing implies robust testing

We begin with an overview of the simpler implication from agreement testing to robust testing. In what fol-
lows, we say that a collection of subsets S of the ground set U samples well the set of points U if, informally,
for any subset A ⊆ U of density γ (i.e., |A|/|U| = γ), it holds that for most subsets S ∈ S , the density of A
inside S is approximately γ (i.e., |A ∩ S|/|S| is approximately γ).

Suppose that we have an agreement tester for C,S as described above. We would like to show that the
local tester that queries a random S ∈ S is robustly sound. Let T be the collection of subsets of U formed
by pairwise intersections of sets in S . The main properties we need out of S , T are sampling properties,
specifically, that S samples well the set of points U, and that for any S ∈ S , all sets in T contained in S
sample well the set of points in S. The main property we need out of the code is that its restrictions to sets
in T have distance. In the case of lifted codes these properties can be guaranteed by letting S , T be families
of affine subspaces of fixed dimensions s, t, respectively, where s� t.

To see that the proposed local tester is indeed robustly sound, suppose that we have a function f : U →
Σ that is close to C|S on a typical S, our goal is to show that f is close to a codeword g ∈ C. We first create
an instance ( fS)S for the agreement tester by letting fS ∈ C|S be the closest valid assignment to f |S. Next
observe that since f |S is typically close to fS, and by assumption that T’s sample well inside S’s, for a typical
T and S, S′ containing T, it holds that both fS|T and fS′ |T are close to f |T , and by distance property on T
this implies in turn that typically fS|T = fS′ |T . Consequently, agreement testability implies the existence of
a codeword g ∈ C that agrees with most fS, and so g|S = fS and fS is close to f |S for most S. But since S
samples well inside U we conclude that f must be close to g as required.

2.3 Local testing implies agreement testing

We now turn to the local testing to agreement testing implication which is a bit more involved. Suppose
that we have a local testing algorithm for C that queries a random set K ∈ K and accepts if and only if
f |K ∈ C|K. We would like to obtain an agreement tester for C with respect to some collection of subsets S .
As before, let T be the collection of subsets of U formed by pairwise intersections of sets in S . Once more
the main properties we require out of S , T ,K are sampling properties. Specifically, we need that S samples
well inside U, and that for any T ∈ T , all sets in K contained in T sample well inside T. We also require
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distance properties out of C, specifically that C has distance on U and on restrictions to sets in S and T .
Once more, in the case of lifted codes these properties can be guaranteed by letting S , T ,K be families of
affine subspaces of fixed dimensions s, t, k, respectively, where s� t� k.

To show agreement testability, let ( fS)S be a collection of valid assignments to sets in S (so fS ∈ C|S for
any S), and suppose that fS agrees with fS′ on S ∩ S′ for most pairs S, S′. Our goal will be to find a global
codeword g ∈ C that agrees with most fS. We find the function g in the following three stages.

Initial stage: In the first stage we define for any K ∈ K a ’most popular function’ PlurK by choosing the
most common value among fS|K going over all S ∈ S containing K. We then show, using the assumption
that fS’s typically agree on their intersections, that this most popular function is obtained with overwhelm-
ing probability for a typical K.

Local structure stage: In the second stage we define for each K ∈ K a function gK : U → Σ by letting gK(x)
be the most common ’vote’ among all fS that contain K and x and agree with PlurK on K (this function is
well defined because of the initial stage). We then show that for a typical K, gK is close to some function
hK ∈ C, and moreover hK|S = fS for most S containing K.

To see why the above holds, first note that by assumptions that C has distance on T’s, and K’s sample
well inside T’s, if a pair of fS’s agree on K then they must typically also agree on their whole intersection.
Therefore gK(x) is also typically defined with overwhelming probability. Consequently, for a typical K, and
most K′, gK|K′ agrees with some fS. Recalling that fS’s are valid assignments, local testability then implies
the existence of hK ∈ C that is close to gK. The fact that hK|S = fS for most S containing K follows by
assumption that S samples well U, and distance property on S .

Global structure stage: In the final stage we show that there exists K̂ such that hK̂ agrees with fS for most
S (not necessarily containing K̂). We can then set our ’global function’ g to be equal to hK̂. To this end, we
first observe that it suffices to show that most functions hK are in fact identical. This now follows since for
typical S ⊇ K ∪ K′ it holds that hK|S = fS = hK′ |S, and consequently since S samples U it must typically
hold that hK = hK′ .

2.4 The proof method of Guo, Haramaty and Sudan

The proof method of Guo, Haramaty and Sudan [GHS15] for showing robust soundness of lifted codes
is very different from ours. In particular, it relies heavily on the algebraic structure of lifted codes. More
specifically, the proof is based on viewing the lifted codes as the intersection of ’modified tensor codes’. The
tensor product C⊗m of a code C ⊆ {Fq → Fq} can be thought of as the ’axis-parallel lifting’ of C. That is, it is
the code that consists of all functions f : Fm

q → Fq whose restrictions to any axis-parallel line belong to C.
The ’modified tensor code’ is a code of the form C⊗m

b where b is a direction in Fm
q , and C⊗m

b consists of all
functions f ∈ C⊗m whose restrictions to lines in direction b also belong to C.

The authors first use the proof method of Viderman [Vid15], showing robust testing of tensor codes, to
show that the modified tensor codes are also robustly testable. They then use the fact that the lifted code is
the intersection of all codes of the form C⊗m

b for all directions b (this is true when the dimension of the base
code for lifting is ` = 1; when ` > 1 the proof becomes more complicated) to deduce robust testability for
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the lifted code. However, since intersection of robustly testable codes is not necessarily robustly testable, a
non-trivial work is required to show robust testability, which in particular exploits the degree structure of
affine-invariant lifted codes.

The above program can be carried out only when the dimension m of the lifted code is a small constant
multiple of `, and the authors use the ’bootstrapping’ technique [RS96, ALMSS98, AS03, Aro94] to extend
the result to work for arbitrary large m.

In contrast, we work directly with lifted codes of large dimension which allows us to exploit the sam-
pling properties of large affine subspaces in Fm

q . To the best of our knowledge, even for the special case of
low-degree polynomials, this gives the first analysis of robust soundness that is not based on the two step
approach of first analyzing the constant dimensional case and only then moving to the general dimensional
case.

In contrast to the proof of Guo, Haramaty and Sudan [GHS15] who reprove local testability on the way,
our proof uses local testability in a black-box manner. Thus, it exhibits a separation between the algebraic
properties that are used for showing local testability, and the combinatorial properties that are needed in
order to turn local testability into robust testability.

Paper organization. The rest of the paper is organized as follows. In Section 3 we set some notation, pro-
vide some definitions, and present the sampling properties of subspaces that we use. The transformation
from agreement testing to robust testing is given in Section 4, while the transformation from local testing
to agreement testing apperas in Section 5. We wrap-up in Section 6 with the full transformation from local
testing to robust testing that proves our Main Theorem 1.1 and Corollary 1.2.

3 Preliminaries

For a prime power q, let Fq denote the finite field of q elements. Let {Fm
q → Fq} denote the set of functions

mapping Fm
q to Fq. In what follows we focus on codes which are subsets of functions C ⊆ {Fm

q → Fq}.
For a pair of functions f , g : Fm

q → Fq, we use dist( f , g) to denote the fraction of inputs x ∈ Fm
q for which

f (x) 6= g(x). The relative distance dist(C) of the code C is min f 6=g∈C{dist( f , g)}. For a function f : Fm
q → Fq,

we use dist( f , C) to denote ming∈C{dist( f , g)}.
The code C is said to be linear if it is an Fq-linear subspace, i.e., for every α ∈ Fq and f , g ∈ C, we have

α f + g ∈ C. A function A : Fm
q → Fm

q is said to be an affine transformation if there exist a matrix M ∈ Fm×m
q

and a vector b ∈ Fm
q such that A(x) = Mx + b. The code C is said to be affine-invariant if for every affine

transformation A and every f ∈ C we have f ◦ A ∈ C (where ( f ◦ A)(x) = f (A(x))).

3.1 Lifted codes

A subset L ⊆ Fm
q is said to be an `-dimensional affine subspace if there exist α0 ∈ Fm

q and linearly independent
α1, . . . , α` ∈ Fm

q such that L = {α0 + ∑`
i=1 αixi|x1, . . . , x` ∈ Fq}. We fix an arbitrary affine map γL : F`

q → L
(which we can view as a parameterization of L). For a function f : Fm

q → Fq, the restriction f |L is viewed

as a function in {F`
q → Fq} through f ◦ γL : F`

q → Fq. In particular, when we ask if f |L
?
∈ C ⊆ {F`

q → Fq}
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what we are really asking is whether f ◦ γL ∈ C. Note that if C is affine-invariant, whether f |L ∈ C does
not depend on the choice of the parametrization γL.

Definition 3.1 (Lifted codes). Let C ⊆ {F`
q → Fq} be an affine-invariant linear code, and m ≥ `. The m-

dimensional lift C`↗m of C is given by

C`↗m :=
{

f : Fm
q → Fq | f |L ∈ C for every `-dimensional affine subspace L ⊆ Fm

q
}

.

Proposition 3.2 (Distance of lifted codes, [GKS13, Theorem 5.1, Part (2)]). Let C ⊆ {F`
q → Fq} be an affine-

invariant linear code, and m ≥ `. Then dist(C`↗m) ≥ dist(C)− q−`.

3.2 Local testing, robust testing, and agreement testing

We now formally define the notions of local testing, robust testing, and agreement testing, specialized to
the class of lifted codes and subspace testers. In the case of local testing and robust testing this simply
means that the tester samples a uniform random k-dimensional affine subspace and its accepting views are
codewords in C`↗k.

Definition 3.3 (Local testing of lifted codes). Let C ⊆ {F`
q → Fq} be an affine-invariant linear code, and

m ≥ k ≥ `. The m-dimensional lift C`↗m is (k, α)-testable if for every f : Fm
q → Fq it holds that

Pr
K

[
f |K /∈ C`↗k] ≥ α · dist( f , C`↗m),

where the probability is over a uniform random k-dimensional affine subspace K ⊆ Fm
q .

Theorem 3.4 ([KS08, Theorem 2.9]). Let C ⊆ {F`
q → Fq} be an affine-invariant linear code, and m ≥ `. Then

the `-dimensional test rejects a function f : Fm
q → Fq with probability at least 1

2 ·min
{

q−2`, dist( f , C`↗m)
}

. In

particular, C`↗m is
(
`, q−2`

2

)
-testable.

Definition 3.5 (Robust testing of lifted codes). Let C ⊆ {F`
q → Fq} be an affine-invariant linear code, and

m ≥ k ≥ `. The m-dimensional lift C`↗m is (k, α)-robust if for every f : Fm
q → Fq it holds that

EK
[
dist( f |K, C`↗k)

]
≥ α · dist( f , C`↗m),

where the expectation is over a uniform random k-dimensional affine subspace K ⊆ Fm
q .

We note the following easy implications.

Proposition 3.6. Let C ⊆ {F`
q → Fq} be an affine-invariant linear code, and m ≥ k ≥ `. Then the following hold.

1. If C`↗m is (k, α)-robust then it is (k, α)-testable.

2. If C`↗m is (k, α)-testable then it is (k, α · q−k)-robust.

3. If C`↗m is (k, α)-testable then it is (r, α)-testable for any k ≤ r ≤ m.

4. If C`↗m is (k, α)-robust then it is (r, α)-robust for any k ≤ r ≤ m.
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Proof. Part (1) follows since f |K /∈ C`↗k whenever dist( f |K, C`↗k) > 0, while Part (2) follows since dist( f |K, C`↗k) ≥
q−k whenever f |K /∈ C`↗k.

Part (3) follows by observing that for a uniform random r-dimensional affine subspace R,

Pr
R

[
f |R /∈ C`↗r] = ER

[
1 f |R /∈C`↗r

]
≥ ER

[
Pr

K⊆R

[
f |K /∈ C`↗k]]

= Pr
K

[
f |K /∈ C`↗k],

where the inequality follows since f |R ∈ C`↗r implies that f |K ∈ C`↗k for any K.
Finally, Part (4) follows by letting fR be the codeword in C`↗r that is closest to f |R, and noting that

ER
[
dist( f |R, C`↗r)

]
= ER

[
dist( f |R, fR)

]
= ER

[
EK⊆R

[
dist( f |K, fR|K)

]]
≥ ER

[
EK⊆R

[
dist( f |K, C`↗k)

]]
= EK

[
dist( f |K, C`↗k)

]
,

where the inequality follows since fR|K ∈ C`↗k for any K.

We now turn to the definition of agreement testing. The agreement testers we consider are testers that
for t < s, sample a uniform random t-dimensional affine subspace T, and a pair of uniform random s-
dimensional affine subspaces S, S′ containing T, and accept if and only if fS, fS′ agree on T.

For a code C ⊆ {Fm
q → Fq}, we let C(s) be the code containing all collections ( fS)S of partial assign-

ments to s-dimensional affine subspaces that are consistent with some global codeword g ∈ C, formally,

C(s) :=
{
( fS)S | ∃ g ∈ C such that g|S = fS for any s-dimensional affine subspace S

}
.

For a pair of collections ( fS)S, (gS)S of partial assignments to s-dimensional affine subspaces, we denote
by dist(( fS)S, (gS)S) the fraction of s-dimensional affine subspaces S for which fS 6= gS, and we define
dist(( fS)S, C(s)) accordingly.

Definition 3.7 (Agreement testing of lifted codes). Let C ⊆ {F`
q → Fq} be an affine-invariant linear code, and

m ≥ s > t ≥ `. The m-dimensional lift C`↗m is (s, t, α)-agreement testable if for every collection ( fS)S where
fS ∈ C`↗s for every s-dimensional affine subspace S it holds that

Pr
T, S⊇T, S′⊇T

[ fS|T 6= fS′ |T ] ≥ α · dist
(
( fS)S, C`↗m(s)

)
,

where the probability is over a uniform random t-dimensional affine subspace T ⊆ Fm
q , and uniform random s-

dimensional affine subspaces S, S′ containing T.
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3.3 Sampling properties of affine subspaces

Let T be a collection of affine subspaces T ⊆ Fm
q of dimension t, and let S be a collection of affine subspaces

S ⊆ Fm
q of dimension s, for t < s. Let I(T ,S) denote the bipartite inclusion graph whose left side are all

affine subspaces T ∈ T , whose right side are all affine subspaces S ∈ S , and an edge (T, S) is present in
the graph if and only if T ⊆ S. For α, β ∈ (0, 1), we say that I(T ,S) is an (α, β)-hitting sampler if for every
subset A ⊆ T with |A| ≥ α|T |, it holds that |N(A)| ≥ (1− β)|S|, where N(A) denotes the set of neighbors
of A in S .

First we note that in the case where T is the collection of all points in Fm
q (i.e., 0-dimensional affine

subspaces), and S is the collection of all s-dimensional affine subspaces, the hitting sampler property is an
immediate consequence of the fact that points in a random affine subspace are uniformly distributed and
pairwise independent, and Chebyshev’s inequality.

Lemma 3.8. Let 0 < s < m, let T be the collection of all points in Fm
q , and let S be the collection of all s-dimensional

affine subspaces of Fm
q . Then for any α > 0, the inclusion graph I(T ,S) is an (α, q−s

α )-hitting sampler.

The following lemma from [IJKW10] is an extension for the case where for a fixed affine subspace R ⊆
Fm

q of dimension r < s, T is the collection of all points in Fm
q \ R, and S is the collection of all s-dimensional

affine subspaces containing R.

Lemma 3.9 ([IJKW10, Lemma 2.12]). Let 0 < r < s < m, and let R ⊆ Fm
q be an affine subspace of dimension r.

Let T be the collection of all points in Fm
q \ R, and let S be the collection of all s-dimensional affine subspaces in Fm

q

containing R. Then for any α > 0, the inclusion graph I(T ,S) is an (α, 4q−(s−r−2)

α )-hitting sampler.

Remark 3.10. [IJKW10, Lemma 2.11] is only stated for the case where s = m
2 , while [IJKW10, Lemma 2.12] is only

stated for the case where r = s
2 . However, it can easily be seen that the proof implies the bounds we state for general

values of 0 < r < s < m.

Finally, we cite the following lemma due to Impagliazzo, Kabanets and Wigderson [IKW12], which
deals with the case where T is the collection of all t-dimensional linear subspaces, and S is the collection of
all s-dimensional linear subspaces.

Lemma 3.11 ([IKW12, Lemma 2.3]). Let 0 < t < s < m, let T be the collection of all t-dimensional linear
subspaces in Fm

q , and let S be the collection of all s-dimensional linear subspaces in Fm
q . Then for any α > 0, the

inclusion graph I(T ,S) is an (α, 18q−(s−t)

α )-hitting sampler.

Remark 3.12. [IKW12, Lemma 2.3] gives a quantitatively worse bound for the case that I(T ,S) is an averaging
sampler.6 However, the proof first gives the bound we state, and only then shows how to deduce the worse bound for
the case of an averaging sampler.

We further observe that Lemma 3.11 gives a similar bound for affine subspaces.

6 For α, β ∈ (0, 1), we say that I(T ,S) is an (α, β)-averaging sampler if for every subset A ⊆ T with |A| ≥ α|T |, for at least a (1− β)-

fraction of the vertices S ∈ S it holds that
∣∣∣ |A∩N(S)|

deg(S) − α
∣∣∣ ≤ α

2 . Note that an (α, β)-averaging sampler is in particular an (α, β)-hitting
sampler.
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Corollary 3.13. Let 0 < t < s, let T be the collection of all t-dimensional affine subspaces in Fm
q , and let S be

the collection of all s-dimensional affine subspaces in Fm
q . Then for any α > 0, the inclusion graph I(T ,S) is an

(α, 18q−(s−t−1)

α )-hitting sampler.

Proof. Let A ⊆ T be a collection of t-dimensional affine subspaces in Fm
q so that |A| ≥ α|T |. Let S ∈ S be a

uniformly random s-dimensional affine subspace. Then S can be sampled by first picking a random affine
shift v ∈ Fm

q , then picking a random s-dimensional linear subspace V ⊆ Fm
q so that v /∈ V \ {0}, and finally

letting S = v + V. As for a fixed vector v ∈ Fm
q , and a random s-dimensional linear subspace V ⊆ Fm

q , we
have that v ∈ V with probability at most q−(m−s), which is negligible in our setting, we may assume that V
is a completely random s-dimensional linear subspace. Next observe that v + V contains a t-dimensional
affine subspace T = w + W ∈ A if V contains Span{w − v, W}. The proof is completed by noting that,
conditioned on choosing v, by Lemma 3.11, V contains Span{w − v, W} for some T = w + W ∈ A with

probability at least 1− 18·q−(s−t−1)

α .

4 From agreement testing to robust testing

In this section we prove the following lemma showing the agreement testing to robust testing implication.

Lemma 4.1 (Agreement testing implies robust testing). Let C ⊆ {F`
q → Fq} be an affine-invariant linear code,

and m ≥ s > t ≥ `. Suppose that C`↗m is (s, t, α)-agreement testable, and let δ := dist(C`↗t). Then C`↗m is(
s, Ω(αδ)

)
-robust.

Proof. For simplicity of notation, in what follows we let T, S denote the random variables obtained by
sampling a uniform random affine subspace of dimension t, s respectively. Suppose that f : Fm

q → Fq has
ES[dist( f |S, C`↗s)] ≤ ε. Our goal is to find a codeword g ∈ C`↗m such that dist( f , g) ≤ O(ε/(αδ)).

The proof proceeds as follows. We would like to apply our assumption on agreement testability, and
towards this, we create an instance ( fS)S for the agreement tester by letting fS be the codeword in C`↗s that
is closest to f |S. We then use the fact that fS is typically close to f |S, together with the fact that t-dimensional
affine subspaces sample well inside s-dimensional affine subspaces, and the assumption that C has distance
on t-dimensional affine subspaces, to show that PrT, S⊇T, S′⊇T [ fS|T 6= fS′ |T ] is small. Agreement testability
then gives a codeword g ∈ C`↗m that is consistent with most fS, and using the fact that s-dimensional
affine subspaces sample well inside Fm

q this implies in turn that dist( f , g) is small. Details follow.
We begin by showing that PrT, S⊇T, S′⊇T [ fS|T 6= fS′ |T ] is small. Recall first that ES[dist( f |S, fS)] =

ES[dist( f |S, C`↗s)] ≤ ε. Next observe that for a fixed s-dimensional affine subspace S, any point in a
uniform random t-dimensional affine subspace contained in S is uniform in S. Thus we also have that
ES, T⊆S[dist( f |T , fS|T)] ≤ ε, and consequently

Pr
T, S⊇T, S′⊇T

[
dist( fS|T , fS′ |T) ≥ δ

]
≤ 2 · Pr

T, S⊇T

[
dist( f |T , fS|T) ≥ δ/2

]
= 2 · Pr

S, T⊆S

[
dist( f |T , fS|T) ≥ δ/2

]
≤ 4ε

δ
.
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But since fS|T , fS′ |T are both codewords of C`↗t, a code of relative distance δ, the above implies in turn that
PrT, S⊇T, S′⊇T [ fS|T 6= fS′ |T ] ≤ 4ε

δ .
Our assumption on agreement testability now gives a codeword g ∈ C`↗m that has PrS[g|S 6= fS] ≤

4ε/(αδ). But since any point in a uniform random s-dimensional affine subspace is uniform in Fm
q this

gives in turn that

dist( f , g) = ES
[
dist( f |S, g|S)

]
≤ ES

[
dist( f |S, fS)

]
+ ES

[
dist( fS, g|S)

]
≤ ε +

4ε

αδ
≤ 5ε

αδ
.

5 From local testing to agreement testing

In this section we prove the following lemma that gives the local testing to agreement testing implication.

Lemma 5.1 (Local testing implies agreement testing). Let C ⊆ {F`
q → Fq} be an affine-invariant linear code,

and m ≥ k ≥ `. Suppose that C`↗m is (k, α)-testable, and let δ := mink≤r≤m dist(C`↗r). Then C`↗m is (2k + 2+
logq(4/δ), k + 1, Ω(α · δ2))-agreement testable.

Proof outline: For simplicity of notation, in what follows let s := 2k + 2+ logq(4/δ) and t := k + 1. We let
both S, S′ (T, T′ and K, K′, resp.) denote random variables obtained by sampling a uniform random affine
subspace of dimension s (t, k, resp.).

Let ( fS)S be a collection of partial assignments such that fS ∈ C`↗s for every S, and

Pr
T, S⊇T, S′⊇T

[ fS|T 6= fS′ |T ] ≤ ε. (3)

Our goal is to find a global codeword g ∈ C`↗m that has

Pr
S
[g|S 6= fS] ≤ O

( ε

α · δ2

)
. (4)

We find the codeword g in three stages.

1. In the initial stage (Section 5.1) we define, for any k-dimensional affine subspace K, a ’most popular
function’ PlurK : Fk

q → Fq by choosing the most common value among fS|K going over all S ⊇ K. We
show that for a typical K, this function is obtained with an overwhelming plurality of 1−O(ε).

2. In the “local structure” stage (Section 5.2) we define, for any k-dimensional affine subspace K, a func-
tion gK : Fm

q → Fq by letting gK(x) be the most common ’vote’ among all fS that contain both K
and x and agree with PlurK on K. We then show that for a typical K, gK is close to some codeword
hK ∈ C`↗m, and moreover hK|S = fS for most S containing K.

3. In the “global structure” stage (Section 5.3) we show that there exists K̂ for which hK̂|S = fS for most
S (not necessarily containing K̂). We can then set our ’global function’ g to be equal to hK̂.

12



5.1 Initial stage

For any k-dimensional affine subspace K, we let PlurK : Fk
q → Fq denote the most common value among

fS|K for S containing K. That is,
PlurK := pluralityS⊇K{ fS|K}.

Next we use our assumption (3) to show that for a typical K, the function PlurK is obtained with over-
whelming plurality.

Lemma 5.2.

EK

[
Pr

S⊇K

[
fS|K 6= PlurK

]]
≤ 2ε.

Proof. Since the collision probability lower bounds the probability of hitting the most common value, it
suffices to show that

Pr
K, S⊇K, S′⊇K

[
fS|K 6= fS′ |K

]
≤ 2ε. (5)

Clearly if t = k we would be done by (3), so the whole point is to show the same for t > k. We describe a
distribution on triples (S1, S′, S2) such that (S1, S2) are distributed as in (5) but the pairs (S1, S′) and (S′, S2)

are distributed as in (3):

1. Choose a uniform random k-dimensional affine subspace K.

2. Choose a pair of uniform random t-dimensional affine subspaces T1, T2 containing K.

3. For i = 1, 2, choose a uniform random s-dimensional affine subspace Si containing Ti.

4. Choose a uniform random s-dimensional affine subspace S′ containing T1 ∪ T2 (this can be done since
t = k + 1 and s ≥ k + 2).

One can check that indeed K, S1, S2 are distributed as in (5) while Ti, Si, S′ are distributed as in (3). Thus
by our assumption (3),

Pr
K, S1⊇K, S2⊇K

[
fS1 |K 6= fS2 |K

]
≤ Pr

T1, S1⊇T1, S′⊇T1

[
fS1 |T1 6= fS′ |T1

]
+ Pr

T2, S′⊇T2, S2⊇T2

[
fS′ |T2 6= fS2 |T2

]
≤ 2ε.

5.2 Local structure

Next we define for every k-dimensional affine subspace K the function gK : Fm
q → Fq. As described above,

for every x ∈ Fm
q , we let gK(x) be the most common value among fS(x) for S that contain both K and x and

agree with PlurK on K. That is,

gK(x) := pluralityS⊇K∪{x}, fS |K=PlurK
{ fS(x)}.

Next we would like to show that for a typical K, gK is close to some codeword hK ∈ C`↗m, and addi-
tionally hK|S = fS for most S containing K. We show these in three steps:
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1. Boosting step (Lemma 5.3): In this step we show that for typical K, x, the plurality in the definition of
gK(x) is obtained with overwhelming probability.

2. LTC step (Lemma 5.4): In this step we use the previous step to show that for a typical gK, for most K′,
gK|K′ agrees with some fS on K′, and therefore is a codeword of C`↗k. By local testability assumption
this implies in turn that such gK is close to being in the code C`↗m, and we denote by hK ∈ C`↗m the
closest codeword to gK.

3. Agreement step (Lemma 5.5): In this step we show that a typical hK agrees with most fS for S ⊇ K.

We start with the boosting step, showing that for typical K, x, the plurality in the definition of gK(x)
is obtained with overwhelming probability. Intuitively, this follows by the assumption that the code has
distance on t-dimensional affine subspaces, together with the fact that k-dimensional affine subspaces sam-
ple well inside t-dimensional affine subspaces, which imply that if a pair of fS agree on K then they must
typically also agree on their whole intersection.

Lemma 5.3 (Boosting step).

EK, x/∈K

[
Pr

S⊇K∪{x}

[
fS(x) 6= gK(x)

∣∣ fS|K = PlurK
]]
≤ O

(
q−k · ε

δ · (1− 4ε)

)
.

Proof. Since the collision probability lower bounds the probability of hitting the most common value, it
suffices to show that

Pr
K, x/∈K, S⊇K∪{x}, S′⊇K∪{x}

[
fS(x) 6= fS′(x) | fS|K = fS′ |K = PlurK

]
≤ O

(
q−k · ε

δ · (1− 4ε)

)
.

Now we have that

Pr
K, x/∈K, S⊇K∪{x}, S′⊇K∪{x}

[
fS(x) 6= fS′(x) | fS|K = fS′ |K = PlurK

]
≤ Pr

K, T⊇K, S⊇T, S′⊇T

[
fS|T 6= fS′ |T | fS|K = fS′ |K = PlurK

]
=

PrT, S⊇T, S′⊇T, K⊆T
[

fS|K = fS′ |K = PlurK | fS|T 6= fS′ |T
]
· PrT, S⊇T, S′⊇T

[
fS|T 6= fS′ |T

]
PrK, T⊇K, S⊇T, S′⊇T

[
fS|K = fS′ |K = PlurK

] ,

where the inequality follows recalling that t = k+ 1, and so K and x span a random t-dimensional subspace.
Next we bound each of the terms above.

By our assumption (3), the right hand term in the numerator is upper bounded by ε. To bound the
denominator note that by Lemma 5.2,

Pr
K, T⊇K, S⊇T, S′⊇T

[ fS|K = fS′ |K = PlurK] ≥ 1− 2 · Pr
K, S⊇K

[ fS|K 6= PlurK] ≥ 1− 4ε. (6)

To bound the left hand term in the numerator note first that since fS, fS′ are both codewords of C`↗s

then fS|T , fS′ |T are distinct codewords in C`↗t, and so dist( fS|T , fS′ |T) ≥ δ. We now apply Lemma 3.8
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on the graph I(T,K), where the ambient space is T, T contains all points in T, and K contains all k-

dimensional subspaces in T. By Lemma 3.8, the graph I(T,K) is a (δ, q−k

δ )-hitting sampler, and so taking

A′ = {x ∈ T | fS(x) 6= fS′(x)} we deduce that at most a q−k

δ -fraction of K can miss A altogether. Thus,

Pr
T, S⊇T, S′⊇T, K⊆T

[
fS|K = fS′ |K

∣∣ fS|T 6= fS′ |T
]
≤ q−k

δ
. (7)

The final bound is obtained by combining the bounds in (3), (6), and (7).

Next we use the assumption on local testability to show that for a typical K, gK is close to being a
codeword of C`↗m.

Lemma 5.4 (LTC step).
EK

[
dist

(
gK, C`↗m)] ≤ O

( ε

α · δ

)
.

Proof. To apply our assumption on local testability we first show that gK|K′ is typically a codeword of C`↗k.
For this, first observe that if gK|K′ is not a codeword of C`↗k then gK|K′ 6= fS|K′ for all S (since fS ∈ C`↗s

and so fS|K′ ∈ C`↗k). Thus we have

EK, K′
[
1gK |K′ /∈C`↗k

]
≤ EK, K′

[
Pr

S⊇K∪K′
[gK|K′ 6= fS|K′ ]

]
≤ EK, K′

[
Pr

S⊇K∪K′

[
gK|K′ 6= fS|K′

∣∣ fS|K = PlurK
]]

+ Pr
K, S⊇K

[ fS|K 6= PlurK]

We claim that the above expression is at most O(ε/δ). To see this note first that by Lemma 5.2 the
right hand term is at most 2ε . To bound the left hand term, note that since each individual point in K′ is
uniformly distributed in Fm

q this term is upper bounded by

qk ·EK, x

[
Pr

S⊇K∪{x}

[
gK(x) 6= fS(x)

∣∣ fS|K = PlurK
]]

,

which is in turn at most O(ε/δ) by Lemma 5.3 (noting that the probability in the above expression is zero
whenever x ∈ K).

Finally, for any k-dimensional affine subspace K, let εK := PrK′
[

gK|K′ /∈ C`↗k
]
. Then on the one hand

EK[εK] = EK, K′
[
1gK |K′ /∈C`↗k

]
≤ O(ε/δ), and on the other hand dist(gK, C`↗m) ≤ εK/α for any K by

assumption that C`↗m is (k, α)-testable. We conclude that

EK

[
dist

(
gK, C`↗m)] ≤ EK

[ εK
α

]
≤ O

( ε

α · δ

)
.

For any k-dimensional affine subspace K, let hK ∈ C`↗m be the codeword that is closest to gK. Then by
the above lemma,

EK
[
dist(gK, hK)

]
≤ O

( ε

α · δ

)
.
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The following lemma says that for a typical K, we have that hK|S = fS for most S containing K, which
follows by the fact that s-dimensional affine subspaces sample well inside Fm

q and by assumption that the
code has distance on s-dimensional affine subspaces.

Lemma 5.5 (Agreement step).

EK

[
Pr

S⊇K

[
hK|S 6= fS

]]
≤ O

( ε

α · δ2

)
.

Proof. We show that for typical S ⊇ K, on the one hand, by Lemma 5.4 and the fact that s-dimensional
affine subspaces sample well inside Fm

q , dist(hK|S, gK|S) is small, and on the other hand, by Lemma 5.3,
dist(gK|S, fS) is small. We then conclude by triangle inequality that dist(hK|S, fS) is small, which implies in
turn that hK|S = fS by assumption that the code has distance on s-dimensional subspaces.

We start by showing that dist(hK|S, gK|S) is typically small. For this note that for a fixed k-dimensional
affine subspace K, and uniform random S containing K, each individual point in S \ K is uniformly dis-
tributed in Fm

q \ K. Thus we have

EK, S⊇K
[
dist(hK|S\K, gK|S\K)

]
≤

EK
[
dist(hK, gK)

]
1− q−(m−k)

≤ O
( ε

α · δ

)
,

where the last inequality follows by Lemma 5.4. Markov’s inequality then implies that dist(hK|S\K, gK|S\K) ≤
δ
4 with probability at least 1−O

(
ε

α·δ2

)
over the choice of K and S ⊇ K. We conclude that with probability

at least 1−O
(

ε
α·δ2

)
over the choice of K and S ⊇ K, it holds that

dist(hK|S, gK|S) ≤
δ

4
+ q−(s−k) ≤ δ

2
, (8)

where the last inequality follows by choice of s ≥ k + logq(4/δ).
Next we show that dist(gK|S, fS) is typically small. For this note that

EK, S⊇K
[
dist(gK|S, fS)

]
≤ Pr

K, S⊇K
[gK|K 6= fS|K] + EK, S⊇K

[
dist(gK|S, fS) | gK|K = fS|K

]
≤ Pr

K, S⊇K
[gK|K 6= fS|K] + EK, S⊇K

[
dist(gK|S\K, fS|S\K) | gK|K = fS|K

]
= Pr

K, S⊇K
[ fS|K 6= PlurK] + EK, x/∈K

[
Pr

S⊇K∪{x}

[
gK(x) 6= fS(x)

∣∣ fS|K = PlurK
]]

≤ O
( ε

δ

)
, (9)

where the last inequality follows by Lemmas 5.2 and 5.3. Markov’s inequality then implies that

dist(gK|S, fS) ≤
δ

4
(10)

with probability at least 1−O
(

ε
δ2

)
over the choice of K and S ⊇ K.

Combining (8) and (9), by a union bound and triangle inequality, we have that dist(hK|S, fS) < δ with
probability at least 1−O

(
ε

α·δ2

)
over the choice of K and S ⊇ K. Finally, since both hK|S and fS are code-
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words of C`↗s and dist(C`↗s) ≥ δ we conclude that hK|S 6= fS with probability at most O
(

ε
α·δ2

)
over the

choice of K and S ⊇ K.

5.3 Global structure

We now complete the proof of Lemma 5.1 by showing that there exists a codeword g ∈ C`↗m that agrees
with most fS. We start by showing that most functions hK are in fact identical, which follows by Lemma 5.5
and the fact that s-dimensional affine subspaces sample well inside Fm

q .

Lemma 5.6. There exists a k-dimensional affine subspace K̂ such that

Pr
K

[
hK 6= hK̂

]
≤ O

( ε

α · δ2

)
.

Proof. By Lemma 5.5,

Pr
K, K′ , S⊇K∪K′

[
hK|S 6= hK′ |S

]
≤ 2 · Pr

K, S⊇K

[
hK|S 6= fS

]
≤ O

( ε

α · δ2

)
,

and so by averaging there exists K̂ such that

Pr
K, S⊇K∪K̂

[
hK|S 6= hK̂|S

]
≤ O

( ε

α · δ2

)
.

Markov’s inequality then implies that

Pr
S⊇K∪K̂

[
hK|S 6= hK̂|S

]
≥ 1

2

with probability at most O
(

ε
α·δ2

)
over the choice of K.

Next we claim that when hK 6= hK̂ then PrS⊇K∪K̂
[
hK|S 6= hK̂|S

]
≥ 1

2 , and so hK 6= hK̂ with probability

at most O
(

ε
α·δ2

)
over the choice of K. To this end, observe that if hK 6= hK̂ then since hK, hK̂ are both

codewords of C`↗m and dist(C`↗m) ≥ δ, it must hold that dist(hK, hK̂) ≥ δ. If hK and hK̂ differ on some
point of K ∪ K̂, then we clearly have that PrS⊇K∪K̂

[
hK|S 6= hK̂|S

]
= 1, and so we are done. Hence, we may

assume that hK agrees with hK̂ on K ∪ K̂, and so dist
(

hK|Fm
q \(K∪K̂), hK̂|Fm

q \(K∪K̂)

)
≥ δ.

We now apply Lemma 3.9 on the graph I(Fm
q \ (K ∪ K̂),S) that connects the points of Fm

q \ (K ∪ K̂) on
the left to the s-dimensional affine subspaces containing K∪ K̂ on the right. By Lemma 3.9, the graph I(Fm

q \

(K∪ K̂),S) is a (δ, 4q−(s−2k−2)

δ )-hitting sampler, and so taking A′ =
{

x ∈ Fm
q \ (K ∪ K̂)

∣∣∣ hK(x) 6= hK̂(x)
}

, we
deduce that

Pr
S⊇K̂∪K

[
hK̂|S 6= hK|S

]
≥ 1− q−(s−2k−2)

δ
≥ 1/2,

where the last inequality follows by assumption that s ≥ 2k + 2 + logq(2/δ).

It now follows that hK 6= hK̂ with probability at most O
(

ε
α·δ2

)
over the choice of K.

We can now complete the proof of Lemma 5.1.
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Proof of Lemma 5.1. Set g ∈ C`↗m to be the function hK̂ guaranteed by Lemma 5.6. By Lemmas 5.5 and 5.6,

Pr
S

[
g|S 6= fS

]
= Pr

K, S⊇K

[
g|S 6= fS

]
≤ Pr

K

[
g 6= hK

]
+ Pr

K, S⊇K

[
hK|S 6= fS

]
≤ O

( ε

α · δ2

)
.

So g satisfies (4) as required.

6 From local testing to robust testing

6.1 Proof of Main Theorem 1.1

We can now combine Lemmas 4.1 and 5.1 to prove our Main Theorem 1.1, restated below, showing a trans-
formation from local testing to robust testing.

Main Theorem 1.1. Let C ⊆ {F`
q → Fq} be an affine-invariant linear code, and m ≥ k ≥ `. Suppose

that C`↗m is locally testable using the k-dimensional test with query complexity qk and soundness α, and let
δ := mink≤r≤m dist(C`↗r). Then C`↗m is robustly testable using the (2k + 2 + logq(4/δ))-dimensional test
with query complexity O(q2k+2/δ) and robust soundness Ω(α · δ3).

Proof of Main Theorem 1.1. By Lemma 5.1 we have that C`↗m is (2k+ 2+ logq(4/δ), k+ 1, Ω(α · δ2))-agreement
testable, and by Lemma 4.1 this implies in turn that C`↗m is (2k + 2 + logq(4/δ), Ω(α · δ3))-robust.

6.2 Proof of Corollary 1.2

We now instantiate our Main Theorem 1.1 with Theorem 3.4 to show that lifted codes are robustly testable.
For this, we first observe that one can amplify the soundness of the tester given by Theorem 3.4 to a constant
(independent of q and `) at the cost of increasing the testing dimension to ≈ 3`.

Proposition 6.1. Let C ⊆ {F`
q → Fq} be an affine-invariant linear code, and m ≥ 3`+ 1 + logq 72. Then C`↗m

is
(

3`+ 1 + logq 72, Ω(1)
)

-testable.

Proof. If the `-dimensional test rejects with probability at least 1
2 · dist( f , C`↗m) then by Part (3) of Proposi-

tion 3.6, the (3`+ logq 4)-dimensional test also rejects with the same probability and we are done. Otherwise,
by Theorem 3.4, the `-dimensional test rejects with probability at least 1

2 · q−2`.
Consider the graph I(S , T ) with left hand side being all `-dimensional affine subspaces of Fm

q and right
hand side being all (3` + 1 + logq 72)-dimensional affine subspaces of Fm

q . Next we apply Corollary 3.13
on the graph I(S , T ) with A′ being the collection of all `-dimensional affine subspaces on which the `-
dimensional test rejects. Noting that the (3`+ 1+ logq 72)-dimensional test will reject on any neighbor of A
we conclude that the (3`+ 1 + logq 72)-dimensional test rejects with probability at least

1− 18q−(2`+logq 72)

q−2`/2
= 1− q−(2`+logq 4)

q−2`/2
=

1
2

.

We now turn to the proof of Corollary 1.2, restated below.
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Corollary 1.2. There exists an absolute constant c > 1 so that the following holds. Let C ⊆ {F`
q → Fq} be an

affine-invariant linear code of relative distance δ, and m ≥ `. Then C`↗m is robustly testable using the (6`+ 4 +

logq(c/δ))-dimensional test with robust soundness Ω(δ3).

Proof. Suppose first that δ < 2q−`. In this case by Theorem 3.4, C`↗m is (`, Ω(q−2`))-testable, and so by
Part (2) of Proposition 3.6, C`↗m is also robustly testable using the `-dimensional test with robust soundness
Ω
(
q−3`) ≥ Ω(δ3). By Part (4) of Proposition 3.6 it follows that the (6`+ 4 + logq(c/δ))-dimensional test

also has robust soundness Ω(δ3).
Next assume that δ ≥ 2q−`. In this case Proposition 3.2 gives that dist(C`↗r) ≥ δ/2 for any ` ≤

r ≤ m, and so we may apply Proposition 6.1 and Main Theorem 1.1 and conclude that C`↗m is (6`+ 4 +

logq(c/δ), Ω(δ3))-robust for an absolute constant c > 1.
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