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Abstract

The best-known lower bounds for the circuit class T C0 are only slightly super-
linear. Similarly, the best-known algorithm for derandomization of this class is an
algorithm for quantified derandomization (i.e., a weak type of derandomization)
of circuits of slightly super-linear size. In this paper we show that even very mild
quantitative improvements of either of the two foregoing results would already
imply super-polynomial lower bounds for T C0. Specifically:

1. If for every c > 1 and sufficiently large d ∈N it holds that n-bit T C0 circuits
of depth d require n1+c−d

wires to compute certain NC1-complete functions,
then T C0 6= NC1. In fact, even lower bounds for T C0 circuits of size n1+c−d

against these functions when c > 1 is fixed and sufficiently small would
yield lower bounds for polynomial-sized circuits. Lower bounds of the form
n1+c−d

against these functions are already known, but for a fixed c ≈ 2.41
that is too large to yield new lower bounds via our results.

2. If there exists a deterministic algorithm that gets as input an n-bit T C0 cir-
cuit of depth d and n1+(1.61)−d

wires, runs in time 2no(1)
, and distinguishes

circuits that accept at most B(n) = 2n1−(1.61)−d
inputs from circuits that reject

at most B(n) inputs, then NEXP 6⊆ T C0. An algorithm for this “quanti-
fied derandomization” task is already known, but it works only when the

number of wires is n1+c−d
, for c > 30, and with a smaller B(n) ≈ 2n1−(30/c)d

.

Intuitively, the “takeaway” message from our work is that the gap between
currently-known results and results that would suffice to get super-polynomial
lower bounds for T C0 boils down to the precise constant c > 1 in the bound n1+c−d

on the number of wires. Our results improve previous results of Allender and
Koucký (2010) and of the second author (2018), respectively, whose hypotheses
referred to circuits with n1+c/d wires (rather than n1+c−d

wires). We also prove
results similar to two results above for other circuit classes (i.e., ACC0 and CC0).
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1 Introduction

The current paper studies the long-standing open problems of proving explicit lower
bounds (i.e., lower bounds against explicit functions) for several classes of non-uniform
families of Boolean circuits of constant depth. In particular, we focus on the circuit
classes T C0, ACC0, and CC0 (for definitions of these classes see Section 3.1).

Our primary focus will be the class T C0, which consists of constant-depth cir-
cuit families with polynomially-many threshold gates (i.e., the gates can compute any
linear threshold function).1 This class is a prominent frontier in the study of circuit
lower bounds. One motivation for studying T C0 is that this class naturally extends,
and strictly contains, the well-studied classes AC0 and AC0[2] of constant-depth cir-
cuits (for definitions of these circuit classes see Sections 3.1). Specifically, recall that
T C0 circuits can compute any symmetric function (because linear threshold gates can
be used to compute the indicator function for any particular Hamming weight of its
input). In particular, T C0 circuits can compute the parity function, which is hard for
AC0 (see [FSS84; Ajt83; Yao85; Hås87]), and the majority function, which is hard for
AC0[q] for any fixed prime power q (see [Raz87; Smo90]). Another motivation for
the study of T C0 circuits is that they can be viewed as a simplistic model of a neural
network with constantly-many hidden layers.

In sharp contrast to the successes in proving lower bounds for AC0 and for AC0[q],
the challenge of proving explicit super-polynomial lower bounds for T C0 has been
a major open problem since the 80’s. In fact, currently it has not even been ruled
out that T C0 circuits of arbitrary polynomial size can decide EXPNP . Following
the recent lower bounds for the class ACC0 [Wil13; MW18], the problem of proving
lower bounds for T C0 was highlighted by several authors as a major current frontier
in complexity theory (see, e.g., the first open problem in [Aar17]). Currently, the
best-known unconditional lower bounds for T C0 of arbitrary constant depth are only
slightly super-linear, and assert that T C0 circuits of depth d require n1+c−d

wires, for
c = 1 +

√
2 ≈ 2.41, to compute the parity function (and other functions in P);2 these

lower bounds were proved by Impagliazzo, Paturi, and Saks [IPS97], and recently
extended to average-case lower bounds by Chen, Santhanam, and Srinivasan [CSS16].3

A partial explanation for the fact that our lower bounds are only slightly super-
linear was given in the work of Allender and Koucký [AK10]. They showed that for
various specific NC1-complete functions (which will be detailed in the next section)
the following holds: To prove that the function cannot be computed by T C0 circuits
of depth d0 and size nk, it suffices to prove that it cannot be computed by T C0 circuits
of depth d� d0 and size n1+c/d (where c > 1 is a constant that depends on d0 and k).
Thus, proving “mild” super-linear lower bounds of the form n1+O(1/d) against specific
functions would already yield lower bounds against these functions for polynomial-
sized T C0 circuits; such a phenomenon has been recently coined “hardness magni-
fication” by Oliveira and Santhanam [OS18]. Nevertheless, proving lower bounds of
the form n1+O(1/d) may already require proofs that are not “natural”, in the sense of
Razborov and Rudich [RR97]; this is because Miles and Viola [MV15] showed a can-
didate pseudorandom function computable in T C0 of depth d with n1+O(1/d) wires.

1An alternative common definition for T C0 allows the gates to only compute the majority function;
see Section 3.1 for details.

2Throughout the paper, the letter n will always denote the number of inputs to the circuit or function.
3Better lower bounds for depth-two circuits (and for depth-three circuits with a top majority gate)

were proved by Kane and Williams [KW16]; these lower bounds are still sub-cubic.
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An appealing approach to circumvent the potential “natural proofs” obstacle is to
use Williams’ algorithmic method [Wil13]; that is, to construct a deterministic circuit-
analysis algorithm for T C0, thereby obtaining T C0 lower bounds. In fact, as shown
in [Tel18], even a “weak” circuit-analysis algorithm for T C0 circuits with only n1+O(1/d)

wires would suffice to get T C0 lower bounds. Specifically, recall that in the classical
derandomization problem (often called the Circuit Acceptance Probability Problem)
we are given as input a description of a Boolean circuit, and want to deterministi-
cally decide whether the circuit accepts all but a third of its inputs or rejects all but a
third of its inputs. The aforementioned “weak” circuit-analysis problem is the quan-
tified derandomization problem, introduced by Goldreich and Wigderson [GW14]; this
is a relaxation of the classical derandomization problem, in which we want to decide
whether the circuit accepts almost all of its inputs or rejects almost all of its inputs:

Definition 1 (quantified derandomization). For a function B : N → N, the quantified
derandomization problem for a circuit class C with B exceptional inputs is the following:
Given an input a description of a circuit C ∈ C over n input bits, deterministically decide
whether C accepts all but B(n) of its inputs, or C rejects all but B(n) of its inputs.

Indeed, for B(n) = 2n/3 the quantified problem coincides with the classical prob-
lem, but we will be interested in values of B(n) � 2n/3, for which the problem may
be easier. In [Tel18] it is shown that if there exists an algorithm with runtime 2no(1)

for quantified derandomization of T C0 circuits of depth d and n1+30/d wires and with
B(n) = 2n1−exp(−d)

exceptional inputs, then there exists an algorithm for classical de-
randomization of all of T C0 (i.e., of arbitrary polynomial size) with runtime 2n1−Ω(1)

;
consequently, using [Wil13; SW13; BV14], it would follow that NEXP 6⊆ T C0. Nev-
ertheless, the best-known algorithm for quantified derandomization of T C0 with such
a B(n) (also from [Tel18]) can only handle circuits with n1+c−d

wires (for some c > 1),
which falls short of the required size.4

To summarize, we currently unconditionally know both lower bounds and algo-
rithms for quantified derandomization for T C0 circuits with depth d and n1+c−d

wires
(for some c > 1). On the other hand, previous results assert that lower bounds against
various specific functions for circuits of size n1+O(1/d), or alternatively quantified de-
randomization of circuits of such size with a sub-exponential B(n), would yield lower
bounds for all of T C0. We call the latter results bootstrapping results, as they assert that
relatively “weak” lower bounds or algorithms for quantified derandomization would
suffice to get super-polynomial lower bounds for T C0.

1.1 Our main contributions

The main contribution of this work is a significant improvement of both of the fore-
going bootstrapping results. Specifically, we prove that lower bounds for T C0 circuits
of size n1+c−d

(for various small values of c > 1) against certain specific functions,
or quantified derandomization of such circuits with a sub-exponential B(n), would
already imply lower bounds for polynomial-sized T C0 circuits.

Indeed, the size of the circuits in our results is “just beyond” the size of circuits
for which we already have unconditional lower bounds and algorithms for quantified
derandomization with a sub-exponential B(n). Thus, loosely speaking, the key take-
away from our work is that the difference between what we unconditionally know

4In this paper we always measure the size of a circuit as its number of wires.
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and what we need in order to get super-polynomial lower bounds for T C0 boils down
to the precise constant c > 1 in the size bound n1+c−d

.

1.1.1 Bootstrapping T C0 lower bounds

Our starting point for the first result is the following known lower bounds. Recall that
T C0 circuits of constant depth d ∈ N require n1+Ω(c−d) wires, where c = 1 +

√
2 ≈

2.41, in order to compute various NC1-complete functions (where NC1-completeness
is under AC0-Karp-reductions). These functions include the Boolean Formula Evalua-
tion problem (BFE), the word problem over S5 (WS5), and s-t connectivity on directed
graphs of width 5 (W5-STCONN); for definitions of these functions see Section 3.2.5

Indeed, since these functions are NC1-complete, a common conjecture is that T C0

circuits require super-polynomial size to compute them. Our first result is that in
order to prove that these functions cannot be computed by T C0 circuits of fixed depth
d0 and polynomial size nk, it suffices to improve the known lower bounds against
these functions to be of the form n1+c−d

where c = c(k, d0) > 1 is sufficiently small:

Theorem 2 (hardness magnification for NC1-complete functions in T C0). Fix any problem
Π ∈ {BFE,WS5 ,W5-STCONN}. Then, for any d0, k ∈ N there exists c > 1 such that the
following holds. If for infinitely many constants d ∈ N the problem Π cannot be solved by
T C0 circuits of depth d and n1+c−d

wires, then the problem Π cannot be solved by T C0 circuits
of depth d0 and nk wires.

Taking one step further, Theorem 2 also implies that lower bounds of the form
n1+exp(−d) against the aforementioned NC1-complete functions would imply super-
polynomial lower bounds for T C0 against these functions. Indeed, such lower bounds
would imply that T C0 6= NC1. 6 Specifically:

Corollary 3 (lower bounds of the form n1+exp(−d) suffice to separate T C0 from NC1). Fix
any problem Π ∈ {BFE,WS5 ,W5-STCONN}. Assume that for every c > 1 there exist
infinitely many d ∈N such that T C0 circuits of depth d need more than n1+c−d

wires to solve
the problem Π. Then, T C0 6= NC1.

Let us elaborate on the precise lower bounds (i.e., values of c > 1) that are needed
in order to deduce stronger lower bounds via Theorem 2 and Corollary 3. Working
out the precise parameters underlying Theorem 2 (see Corollary 21), it turns out that
to resolve long-standing open problems it suffices to prove lower bounds for a fixed
c > 1 that is not so small. For example, to prove cubic lower bounds for depth-two
T C0 circuits (i.e., LTF ◦ LTF circuits7) it suffices to prove lower bounds of the form
n1+c−d

for c ≈ 1.18. Also, turning to Corollary 3, the hypothesis that lower bounds of
the form n1+c−d

hold for every c > 1 might seem puzzling at first (since when c tends
to one the size bound becomes close to quadratic). Note, however, that when using

5The reason that these functions require circuits of size n1+c−d
is that computing parity can be reduced

to computing any of these functions with a linear overhead; see [AK10, Sec. 1.2] for further details.
6These functions are actually in uniform-NC1, so such lower bounds would imply that

uniform-NC1 6⊆ T C0. However, the latter statement is equivalent to T C0 6= NC1 (see Proposition 15).
7Recall that we defined T C0 using linear threshold gates, rather than majority gates. Exponential

lower bounds for MAJ ◦MAJ circuits are known [Haj+93; For+01].
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Corollary 3 we are allowed to first fix c > 1, and then prove a lower bound only when
the depth d is arbitrarily large (such that c−d is arbitrarily small).8

We also show results similar to Theorem 2 and to Corollary 3 for the Boolean
iterated matrix multiplication problem for matrices of size no(1), which is in NL (see
Section 3.2.2, and the discussion after Theorem 24).

Lastly, we mention that the results in this section hold not only for T C0, but for
essentially any constant-depth circuit class (e.g., also for ACC0 and for CC0; see The-
orems 19 and 26). However, we consider the results to be most appealing for T C0,
for which near-matching lower bounds are already known. (The reason that we know
near-matching lower bounds for T C0 but not for, say, ACC0, is that when referring
only to circuits of size n1+c−d

for c > 2 the two classes are incomparable.)

1.1.2 Bootstrapping derandomization algorithms for T C0

Loosely speaking, our second main result is that a quantified derandomization algo-
rithm for T C0 circuits of depth d and size n1+c−d

with a sub-exponential B(n) would
yield a corresponding algorithm for standard derandomization of all T C0, and hence
imply that NEXP 6⊆ T C0. Moreover, the hypothesis in the foregoing statement refers
to a fixed constant c ≈ 1.61; that is, the hypothesis refers to T C0 circuits of a specific
size but nevertheless implies lower bounds for all of T C0.

Being more specific, the size of the circuits that the hypothesis refers to is “just
beyond” the size required to compute the parity function, against which our best-
known T C0 lower bounds hold. Specifically, let φ ≥ 1+

√
5

2 such that for any d ≥ 2,
parity can be computed by T C0 circuits of depth d and size n1+O(φ−d) (the bound on
φ is due to the construction of Paturi and Saks [PS94], following [BBL92]). Then, the
hypothesis in the following theorem refers to T C0 circuits of depth d and n1+c−d

wires,
where c > 1 can be any fixed constant smaller than φ.

Theorem 4 (a bootstrapping result for derandomization of T C0). Let c > 1 be any fixed
constant smaller than φ (e.g., c = 1.61). Assume that for every sufficiently large d ∈ N

there exists an algorithm for quantified derandomization of T C0 circuits with n1+c−d
wires

and with B(n) = 2n1−c−d
that runs in time 2no(1)

. Then, there exists an algorithm for standard
derandomization of T C0 that runs in time 2no(1)

.

Using known results that show that standard derandomization of T C0 implies
lower bounds for T C0 (i.e., Williams’ “algorithmic method”, applied to the special
case of T C0; see [Wil13; SW13; BV14]), we deduce that quantified derandomization as
in the hypothesis of Theorem 4 implies lower bounds for T C0.

Corollary 5 (quantified derandomization of sparse T C0 implies lower bounds for T C0). As-
sume that there exists an algorithm as in the hypothesis of Theorem 4. Then, NEXP 6⊆ T C0.

The currently-known algorithm for quantified derandomization of T C0 works
when both the size of the circuit and the number of exceptional inputs are slightly
smaller than in the hypothesis in Theorem 4 and Corollary 5; specifically, the known
algorithm works for circuits of size n1+c−d

, where c > 30, and with B(n) = 2n1−δ
, where

8Alternatively, any lower bound of the form n1+2− f (d)
where f is a sub-linear function (e.g., the bound

n1+2−d/ log∗ (d)
) also satisfies the hypothesis of Corollary 3.
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δ = (d/30) · (30/c)d (see [Tel18, Thm. 5.1]).9 Nevertheless, the running time of the
known algorithm is npoly log log(n), whereas the running time of the algorithm in the
hypothesis in Corollary 5 may be much larger (i.e., 2no(1)

). Moreover, we can further
relax the requirements from the algorithm in the hypothesis in Corollary 5, relying on
known relaxations of Williams’ algorithmic method (see Corollary 45 for details).

A main technical result that underlies Theorem 4 is a construction of uniform
T C0 circuits of depth d ≥ 7 and size n1+exp(−d) that compute all the outputs of a
seeded extractor on a given input. Specifically, we prove that there exists an extractor
Ext : {0, 1}n × {0, 1}t → {0, 1}m for min-entropy k = n1−exp(−d) with m = nexp(−d)

output bits and seed length t = (1 + exp(−d)) · log(n) such that the mapping of
x ∈ {0, 1}n to {Ext(x, z)}z∈{0,1}t is computable by a uniform depth-d circuit of size
n1+exp(−d) (see Theorem 8). Note that the latter circuit has 2t ·m = n1+exp(−d) output
bits and only n1+exp(−d) wires; thus, the circuit essentially performs an efficient “batch
computation” of all the outputs of the extractor (i.e., the outputs corresponding to all
seeds) on a given input x ∈ {0, 1}n. This construction relies, in turn, on a construction
of uniform T C0 circuits of depth d and size n1+exp(−d) that compute a code with
constant relative distance and a slightly sub-constant rate (see Theorem 10).

Finally, relying on Corollary 5, we suggest a potential path towards super-polynomial
lower bounds for T C0. Loosely speaking, quantified derandomization of a circuit
C : {0, 1}n → {0, 1} with B(n) exceptional inputs reduces to deterministically finding
a representation of a “simple” function that approximates C in a subset S ⊆ {0, 1}n of
size |S| � B(n) (see Section 6 for a precise statement). Thus, Corollary 5 implies that
to prove that NEXP 6⊆ T C0, it suffices to find a representation of a “simple” function
that approximates a T C0 circuit in a subset of subexponential size, when the circuit
is of size that is “just beyond” the size required to compute the parity function. We
discuss this issue more precisely and pose a concrete open problem in Section 6.

1.2 Bootstrapping results for ACC0 and for CC0

Our main results in the previous sections focused proving lower bounds for the class
T C0 against classes such as NC1 and NEXP . In the current section we focus on
the problems of proving separations among potentially weaker classes. Specifically, we
focus on the problems of separating ACC0 from T C0, and of separating CC0 from
ACC0. Similarly to our T C0 results, the hypotheses in the current section refer to
lower bounds or to quantified derandomization for circuits of size n1+Ω(1); however,
in contrast to our T C0 results, the corresponding known lower bounds for the classes
in the current section refer only to circuits of even smaller (super-linear) size.

1.2.1 Bootstrapping lower bounds and derandomization of ACC0

Recall that ACC0 is the class of constant-depth circuit families with polynomially-
many gates that can compute the AND, OR, NOT functions as well as the MODm func-
tion, for any fixed integer m ∈ N (i.e., the Boolean function that evaluates to one if
and only if the sum of its inputs is zero modulo m).

The class ACC0 is a subclass of T C0, and a widely-believed conjecture of Bar-
rington [Bar89, Sec. 7] is that ACC0 6= T C0; that is, the conjecture is that MAJ re-

9The parameters of the known construction can be optimized such that the number 30 will be replaced
by some other constant α > 3. However, even after such an optimization, the parameters of the known
construction will still be weaker than those required in the hypothesis in Corollary 5.
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quires ACC0 circuits of super-polynomial size. Nevertheless, as far as we are aware
of, there are currently no known super-linear lower bounds for computing MAJ by
ACC0 circuits. Analogously to Corollary 3, we show that proving super-linear lower
bounds of the form n1+exp(−d) for computing MAJ by ACC0 circuits would imply
super-polynomial lower bounds for computing MAJ by ACC0 circuits; that is, in order
to prove that ACC0 6= T C0 it suffices to prove lower bounds of the form n1+exp(−d):

Theorem 6 (hardness magnification for MAJ in ACC0). Assume that for every constant
c > 1 there exist infinitely many d ∈N such that MAJ cannot be computed by ACC0 circuits
of depth d with n1+c−d

wires. Then, MAJ /∈ ACC0, and consequently ACC0 6= T C0.

We also consider the problem of derandomization of ACC0 with “one-sided er-
ror”; that is, the problem of deterministically distinguishing ACC0 circuits with ac-
ceptance probability one from ACC0 circuits with acceptance probability at most half.
The best currently-known algorithm for this problem is the satisfiability algorithm of
Williams [Wil11], which runs in time 2n−nΩ(1)

(and distinguishes circuits with accep-
tance probability one from circuits with acceptance probability less than one).

Nevertheless, we do have much faster algorithms for quantified derandomization of
limited subclasses of ACC0. Specifically, we currently have polynomial-time algorithms
for quantified derandomization of “structured subclasses” of AC0[⊕] of depth three
and small super-linear size (e.g., size O(n) or n + nΩ(1)) with a subexponential B(n);
for precise details see [GW13, Sec. 6] and [Tel17a, Sec. 6.2]. We show that improving
these results to quantified derandomization of ACC0 circuits of depth d ≥ 5 and size
n1+γd with a subexponential B(n) ≈ 2n1−γd/8

, where γd > 0 can be any sufficiently
small constant, would imply corresponding algorithms for standard derandomization
of ACC0 with “one-sided error”. See Section 5.4 for further details.

1.2.2 Bootstrapping CC0 lower bounds

Recall that CC0 is the class of constant-depth circuit families with polynomially-many
gates that can compute only the MODm function, for any fixed integer m ∈ N. The
class CC0 is a subclass of ACC0, and a common conjecture is that CC0 6= ACC0;
that is, that CC0 circuits require super-polynomial size to compute the AND func-
tion. Nevertheless, the best-known lower bounds for computing AND by CC0 cir-
cuits, which were proved by Chattopadhyay et al. [Cha+06], are of the form n · fd(n),
where fd(n) is a slowly-growing function that depends on the circuit depth d (i.e.,
ω(1) ≤ fd(n) ≤ log∗(n) for any d ≥ 2). Similarly to Corollary 3 and to Theorem 6, we
show that improving the latter lower bound to be of the form n1+exp(−d) would imply
super-polynomial lower bounds for computing AND in CC0:

Theorem 7 (hardness magnification for AND in CC0). Assume that for every constant c > 1
there exist infinitely many d ∈N such that AND cannot be computed by CC0 circuits of depth
d with n1+c−d

wires. Then, CC0 6= ACC0.

Moreover, similarly to Theorem 2, proving lower bounds for specific and suffi-
ciently small values of c > 1 would yield polynomial lower bounds for computing AND
in CC0; see Corollary 23.
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1.3 Organization

In Section 2 we present high-level overviews of the proofs of our main results. In
Section 3 we review standard definitions of the notions in our paper and state some
well-known results regarding these notions. In Section 4 we prove our “hardness
magnification” results; that is, Theorem 2, Corollary 3, and Theorems 6 and 7. In Sec-
tion 5 we prove our result regarding quantified derandomization; that is, Theorem 4,
Corollary 5, and the result regarding quantified derandomization of ACC0 (that was
mentioned in the end of Section 1.2.1). Finally, in Section 6 we present an open prob-
lem and show that its resolution would imply that NEXP 6⊆ T C0.

2 Proof overviews

As mentioned in the introduction, the results in this paper strengthen the results both
in [AK10] and in [Tel18]. Our high-level proof strategies follow the same strategies
outlined in these papers, and we obtain the stronger results by improving the technical
tools underlying both papers. Specifically, to prove our results we construct uniform
T C0 circuit families of size n1+exp(−d) for solving various computational tasks: Among
those are the tasks of encoding a balanced error-correcting code; of computing the out-
puts of an averaging Boolean sampler (equivalently, a seeded randomness extractor); and
of computing strong self-reductions for natural computational problems (e.g., for the
monoid problem, for BFE, and for BIMM).

2.1 Bootstrapping lower bounds

We first present the proof idea behind our “hardness magnification” results (i.e., the
results in Sections 1.1.1, 1.2.1, and 1.2.2). The main idea here is actually quite simple,
and should be accessible even to readers without specific prior knowledge.

Following Allender and Koucký [AK10], our starting point is the monoid problem:
Given n elements from a monoid Σ of constant size,10 the output is the multiplication
of the n elements over Σ (for a precise definition see Section 3.2). Let us recall the
original proof from [AK10]: For essentially any circuit class and monoid, assuming
that the monoid problem can be solved in size nk and depth d0 = O(1), they show
that for infinitely many d ≥ d0, the problem can also be solved in depth d and size
n1+O(1/d). To do so, for any ε > 0, they partition the n inputs into blocks of size nε/k,
compute the function on each block (which can be done in size nε) and obtain n1−ε/k

inputs; then they partition the latter inputs into blocks of size nε/k and compute the
function on each block, and repeat this process until they end up with a single block
and compute the final output. The point is that this process computes the function
correctly due to the associativity of the monoid operation. The size of this circuit is
dominated by the bottom layer of circuits (i.e., the layer just above the original n
inputs), which is of size nε · n1−ε/k < n1+ε, and the depth of the circuit is (k · d0)/ε.

Let us abstract this construction, and represent it by a tree. The inputs are repre-
sented by n nodes at the bottom, and each sub-circuit (on nε/k inputs) is represented
by an internal node, which is connected to nodes in the layer beneath it.11 Fixing a
cost function c(m) = mk, we define the cost of the tree to be the sum, over all nodes, of

10Recall that a monoid is simply a set with an associative binary operation and an identity element.
11This representation hides the fact that each subcircuit is of depth d0, and just represents it by a single

node. Indeed, this fact does not crucially affect our analysis.
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the cost of the degree of the node; that is, Cost(T) = ∑v∈Nodes(T) c(deg(v)). The con-
struction from [AK10] thus corresponds to a perfect (nε/k)-ary tree of depth d = k/ε,
which has cost O

(
n1+ε

)
. We therefore ask the following question: Given ε > 0, can

we construct a tree with cost O
(
n1+ε

)
that is of depth smaller than k/ε? The answer

to this problem turns out to be positive: The minimum-depth tree for cost O(n1+ε)
has depth only d ≈ k · ln(1/ε), instead of d = k/ε. This tree is constructed by a greedy
strategy: Starting from the top node, at each level of the tree we set the fan-in of all
nodes in the level such that the total cost of the level will be n1+ε.

Let us be more specific, and prove that this yields our claimed improvement. For
i ≥ 0, we denote the number of nodes at level i (i.e., at distance i from the root, which

is the top node) by ni, and set their fan-in to be
(

n(1+ε)/ni

)1/k
, such that the cost of

this level is n1+ε. (Indeed, at the root we have that n0 = 1 and the fan-in is n(1+ε)/k.)

Then, the number of nodes at level i + 1 is ni+1 = ni ·
(

n(1+ε)/ni

)1/k
. Solving this

recursion, we have that ni = nαi , where αi = (1 + ε) ·
(
1− (1− 1/k)i). At the last

(bottom) level d we will have nαd nodes, and we will connect them to n inputs; thus,
their fan-in will be n1−αd , and the cost of level d will be nαd+k·(1−αd) = nk−(k−1)·αd .
Setting d = k · ln

(
(1+ε)·(1−1/k)

ε

)
, we have that αd = 1− ε/(k− 1), and thus the cost of

the last level d is also n1+ε, and we are finished.12

The construction above can be viewed as a generalization of a construction of
Beame, Brisson, and Ladner [BBL92] for computing parity in sparse T C0. They origi-
nally generalized their construction to all symmetric functions, whereas we generalize
the construction to any instance of the monoid problem. (For the special case of parity,
the subsequent optimized construction in [PS94] achieves better parameters.)

We stress that the foregoing proof did not depend on the particular circuit class;
indeed, the proof holds for essentially any constant-depth circuit class. The proofs
of our other hardness magnification results are a bit more involved, and depend on
details of the specific computational problem, but they nevertheless rely on the same
core idea that is represented by the improved tree structure. We refer the reader to the
beginning of Section 4, which includes an index with pointers to these proofs.

2.2 Bootstrapping derandomization of T C0

Towards presenting the proof of our second main result, we say that a circuit family
{Cn : {0, 1}n → {0, 1}}n∈N of constant depth d is extremely sparse if for any sufficiently
large n ∈N, the number of wires in Cn is at most n1+c−d

, for some constant c > 1.
We prove Theorem 4 by showing an efficient reduction of standard derandomiza-

tion of all of T C0 to quantified derandomization of extremely sparse T C0. Specifically,
we construct an algorithm that is given a T C0 circuit C of depth d0 over m input bits,
and outputs an extremely sparse T C0 circuit C′ of depth d > d0 over n = poly(m)
input bits such that if C accepts (resp., rejects) at least 2/3 of its inputs then C′ accepts
(resp., rejects) all but B(n) = 2n1−exp(−d)

of its inputs. The circuit C′ will use its input
in order to sample inputs for C by a seeded extractor (equivalently, by an averaging
sampler), and output the majority of the evaluations of C on these inputs.

12For completeness, in Appendix B we prove that the foregoing greedy solution is optimal. Alterna-
tively, to quickly see that the optimal solution will yield d = O(log(1/ε)), note that parity is a monoid
problem, and recall that computing parity in T C0 of depth d requires n1+exp(−d) wires [IPS97].
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The main technical challenge that underlies this approach is constructing an ex-
tractor Ext : {0, 1}n × {0, 1}t → {0, 1}m such that the mapping of input x ∈ {0, 1}n to
the 2t m-bit outputs of the extractor on all seeds can be computed by uniform extremely
sparse T C0 circuits. This is indeed the technical result that underlies Theorem 4, and
it improves a previous construction from [Tel18], in which the circuit had n1+O(1/d)

wires. As mentioned in the introduction, our circuit has 2t · m = n1+exp(−d) output
bits but it uses only n1+exp(−d) wires, and so to construct it we need to perform an
efficient “batch computation” of the extractor on all seeds.

Theorem 8 (an extractor in extremely sparse T C0). There exists a polynomial-time algorithm
that gets as input 1n and a constant d ≥ 7, and outputs a T C0 circuit C : {0, 1}n →
({0, 1}m)s of depth d and size n1+exp(−d) that satisfies the following: The function Ext(x, i) =
C(x)i is a (k, ε)-extractor for min-entropy k = n1−exp(−d), with output length m = nexp(−d),
seed length t = log(s) = (1 + exp(−d)) · log(n) and error ε = 1/m.

Recall that Theorem 4 asserts that standard derandomization reduces to quantified
derandomization of circuits with n1+c−d

wires, for any c < φ = 1+
√

5
2 . By carefully

accounting for the parameters in our construction, the number of wires in the circuit
from Theorem 8 is indeed n1+c−d

, for any c < φ (see Proposition 43). However, in the
current high-level overview we will not care about the specific constant c.

As a first step, let us describe a non-uniform construction of T C0 circuits as in
Theorem 8; that is, we will first show that such circuits exist, and later show that
they can be constructed uniformly. The underlying extractor will be Trevisan’s ex-
tractor [Tre01]. In order to compute the mapping x 7→ {Ext(x, z)}z∈{0,1}t when Ext is
Trevisan’s extractor, we first need to encode x to a codeword x̄ of a balanced code (i.e.,
every codeword has relative Hamming weight close to 1/2), and then determine the
s = 2t outputs of the extractor as projections of the bits of x̄, according to appropriate
combinatorial designs (in the sense of Nisan and Wigderson [NW94]). Note that, cru-
cially, to compute the all the outputs of the extractor on a given input x ∈ {0, 1}n, we
only need to encode x 7→ x̄ once, and all the outputs are projections of bits of x̄.

Our non-uniform circuit first encodes x ∈ {0, 1}n to a codeword x̂ ∈ {0, 1}O(n) of
a code with constant rate and constant relative distance. Gál et al. [Gál+13] showed that
there exist depth-two circuits with only parity gates that can compute such a code using
only n · poly log(n) wires. To convert such a “parity-gates” circuit into a T C0 circuit,
we replace each parity gate g with fan-in ng in by a T C0 circuit computing parity with

depth d and n1+exp(−d)
g wires, using the constructions of [BBL92; PS94]. The resulting

T C0 circuit has depth 2d, and its number of wires is at most ∑g gate

(
n1+exp(−d)

g

)
<(

∑g ng

)1+exp(−d)
≤ (n · poly log(n))1+exp(−d) = n1+exp(−d).

We now amplify the distance of the code from Ω(1) to approximately 1/2, using
the strategy of Naor and Naor [NN93]. Specifically, we map x̂ to a new codeword
x̄ such that every bit of x̄ corresponds to a walk of an appropriate length ` on an
expander on [|x̂|] = [O(n)], and the bit in x̄ is the parity of the bits of x̂ encountered
during this walk. Trevisan’s extractor requires the distance to be 1/2− δ, where δ ≈
1/m2 = 1/nexp(−d); to get such a distance, it suffices for the walk to be of length
O(log(1/δ)), and thus the length of x̄ is O(n · poly(1/δ)) = n1+exp(−d) (assuming that
n = poly(m) is sufficiently large). Since each bit in x̄ is the parity of O(log(n)) bits in
x̂, we can compute each bit in x̄ by a depth-two circuit with O(log2(n)) wires, and the
resulting circuit will be of depth 2d + 2 and n1+exp(−d) wires.
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Finally, the circuit outputs projections of x̄ according to predetermined combi-
natorial designs. We will use weak designs, introduced by Raz, Reingold, and Vad-
han [RRV02], which suffice for Trevisan’s extractor. Instantiating a construction of
weak designs from [Tel18] to our parameter setting, in which the required min-entropy
is n1−exp(−d), there exist weak designs in a universe of size t = (1 + exp(−d)) · log(n)
(see Lemma 41). Thus we have that s = 2t = n1+exp(−d) as we wanted.

The remaining challenge is to turn the construction above into a uniform construc-
tion. Most parts of the construction are already uniform: The circuits for the distance
amplification step, the T C0 circuits for computing parity, and the weak designs, can all
be constructed in polynomial time. Thus, the only “non-uniform” part is the sparse
“parity-gates” circuit that computes a code with constant relative distance. Indeed,
Gál et al. [Gál+13] posed the construction of a uniform “parity gate” circuit with pa-
rameters matching the ones of their non-uniform construction as an important open
problem, noting that this problem is closely related to the long-standing open prob-
lems of explicitly constructing superconductors and unbalanced lossless expanders.

Fortunately, for our purposes we can afford a mild degradation in the parameters
of the code construction. Specifically, our code does not need to have constant rate,
since rate 1/no(1) also suffices for our purposes (because we map x̂ to x̄ of length
|x̂|1+exp(−d) in the distance amplification step anyway). Also, the “parity gates” circuit
that we start from does not need to have n · poly log(n) wires, and a circuit with
n1+o(1) wires also suffices for our purposes (because we convert each gate g into a
T C0 circuit with n1+exp(−d)

g wires anyway). Indeed, we construct a uniform “parity
gates” circuit of depth two with n · exp(poly log log(n)) wires that computes a code
with rate 1/nexp(poly log log(n)) and constant relative distance (see Proposition 31).

The construction of this code (and circuit) appears in Section 5.1. Let us now
describe this construction, at a high level. Since we will only use parity gates, our
code will be linear; hence, to get constant relative distance, we only need to ensure
that on any non-zero input x ∈ {0, 1}n a constant fraction of the output gates will be
set to one. The basic building-blocks in our construction are range detectors, as defined
in [Gál+13]. Intuitively, these are functions that map any n-bit input with Hamming
weight between w/2 and w (for some w ∈ [n]) to an m-bit output with Hamming
weight between .01m and .99m, using only parity gates. More formally:

Definition 9 (range detectors). An (n, m, w, `, h)-range detector is a function D : {0, 1}n →
{0, 1}m such that every output bit of D is a parity of input bits, and for any x ∈ {0, 1}n with
Hamming weight in [w/2, w] it holds that the Hamming weight of D(x) is in [`, h].

We are interested in constructing, for every w < n, an (n, m, w, .01m, .99m)-range
detector, for some m, that only uses few wires (i.e., it only uses n1+o(1) wires).13

In [Gál+13] it is shown that for every w < n, there exist (n, m, w, .01m, .99m)-range
detectors with m = O(w · log(n)) that can be computed by a layer of parity gates
with only O(n · log(n)) wires (see [Gál+13, Sec. 1.2 and Cor. 19]). For our uni-
form circuit, we need to explicitly construct range detectors; we do this relying on
the explicit construction of unbalanced lossless expanders by Capalbo et al. [Cap+02].
Specifically, in Section 5.1.1 we rely on the latter expanders to explicitly construct
(n, m, w, .01m, .99m)-range detectors with m = O(w · exp(poly log log(n))) that can be
computed by a layer of parity gates with n · exp(poly log log(n)) wires.

13Indeed, for w = Ω(n) this is easy (e.g., for .02n ≤ w ≤ .99n, the identity mapping with n = m yields
a suitable range detector), and the main challenge is to handle smaller values of w.
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In the circuit that encodes our code, the layer above the input gates contains
log(n) range detectors: For each i = 1, ..., log(n) and wi = 2i, the layer contains an
(n, mi, wi, .01mi, .99mi)-range detector with n · exp(poly log log(n)) wires and mi = wi ·
exp(poly log log(n)) outputs. Thus, this layer contributes overall n · exp(poly log log(n))
wires to the circuit. We add to this construction a top layer of n0 = maxi∈[log(n)]{mi} =
exp(poly log log(n)) gates with the following property: If a constant fraction of the
outputs of at least one range detector are set to one, then a constant fraction of the
top gates touch a gate in the middle layer that is set to one.14 To do so, for each range
detector, we split the n0 top gates into mi blocks of n0/mi gates, and connect each
output of the range detector to all top gates in the corresponding block.

Thus, for any non-zero x ∈ {0, 1}n, a constant fraction of the top gates touch a
gate in the middle layer that is set to one. Now, note that each of the top n0 gates
has degree exactly log(n). Using another idea from [Gál+13], we replace each such
gate g with O(log(n)) parity gates that compute a good error-correcting code on the
log(n) gates that fed to g. Hence, if g touched a middle gate that is set to one, then a
constant fraction of the O(log(n)) gates that replaced g are set to one. Thus, on any
non-zero input x ∈ {0, 1}n, a constant fraction of the top gates will be set to one, and
it follows that our linear code has constant relative distance. The number of gates in
the top layer is n̂ = n0 ·O(log(n)) = n · exp(poly log log(n)), and each of them has
degree log(n), yielding overall n · exp(poly log log(n)) wires between the middle layer
and the top layer. Finally, replacing parity gates by T C0 circuits, we get the following:

Proposition 10 (uniform extremely sparse T C0 circuit for encoding an “almost-good” code;
see Proposition 35). For every d ≥ 4 there exists a uniform family of T C0 circuits of depth d
that, for every n ∈N, encode a linear code {0, 1}n → {0, 1}n̂ with constant relative distance,
where n̂ = n · exp(poly log log(n)), using at most n1+exp(−d) wires.

Note that the use of n1+exp(−d) wires in the circuit in Theorem 10 is unavoidable
if we want the code to be linear (since computing even a single parity of Ω(n) bits in
T C0 requires n1+exp(−d) wires).

3 Preliminaries

We denote by exp(n) any function of the form cn for some constant c > 1. We denote
log(x) = log2(x), and ln(x) will be the natural logarithm. We typically denote random
variables by boldface, and uniform random variables over {0, 1}n by un.

3.1 Circuit complexity classes

A circuit family is a collection of circuits {Cn : {0, 1}n → {0, 1}m(n)}, for some function
m : N → N. A circuit class is a collection of circuit families. The size of a circuit is
the number of wires in the circuit, and the size of a circuit family is a function of the
input length that upper-bounds the size of circuits in the family. We will mainly con-
sider classes in which the size of each circuit family is bounded by some polynomial;
however, for a circuit class C, we will sometimes also abuse notation by referring to
C-circuits with various other size bounds. Unless explicitly stated otherwise, the gates
in all circuit classes that we consider have unbounded fan-in.

14This does not yet suffice for the full construction, since a top gate might touch an even number of
gates in the middle layer that are set to one.
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Some circuit classes that we consider cannot compute any function (see, e.g., CC[2]
below). We say that a circuit class is complete if circuits of sufficiently large size from
the class can compute any function. Intuitively, any class whose gates can compute a
complete Boolean basis (e.g., AND, OR, and NOT) is complete.

Definition 11 (the classes CC0[q] and AC0[q]). For an integer q, the function MODq :
{0, 1}∗ → {0, 1} is one if and only if the number of ones in the input is not divisible by q. The
class CC0[q] is the class of constant-depth circuit families with polynomially-many unbounded
fan-in MODq gates. We denote CC0 = ∪q≥2CC0[q]. Extending CC0[q], the class AC0[q] is
the class of constant-depth circuit families consisting of polynomially-many unbounded fan-in
AND, OR and MODq gates, along with unary NOT gates. We denote ACC0 = ∪q≥2AC0[q].

Recall that for any prime power q it holds that CC0[q] is not complete (since a
constant-depth CC0[q] circuit of any size computes a polynomial of degree poly(q) =
O(1) over Fq), whereas if q is composite then CC0[q] is complete (see [BST90]).

Definition 12 (the class T C0). A linear threshold function (LTF) is a function Φ : {0, 1}n →
{0, 1} of the form Φ(x) = sgn(〈x, w〉 − θ), where w ∈ Rn and θ ∈ R and 〈x, w〉 =

∑i∈[n] xi · wi is the standard inner-product over R. 15 The class T C0 is the class of constant-
depth circuit families with polynomially-many LTF gates with unbounded fan-in.

Note that AND, OR, and NOT are specific instances of LTFs, and therefore T C0 is
complete. An equivalent definition for T C0 is as the class of constant-depth circuit
families with polynomially-many majority gates with unbounded fan-in (for proof
that the definitions are equivalent, see [GHR92; GK98]).

Definition 13 (the class NC1). The class NC1 is the class of O(log n)-depth circuit families
consisting of fan-in two AND and OR gates and unary NOT gates.

Many of our results hold for any “typical” circuit class with constant depth and
gates of unbounded fan-in, where by “typical” we mean that no overly-restrictive struc-
tural constraints are imposed (e.g., the class is closed to parallel compositions and
constant depth increase). We will state our results as applying to all typical constant-
depth circuit classes, and to be formal we define this notion as follows:

Definition 14 (typical constant-depth circuit classes). The typical constant-depth circuit
classes are CC0,AC0,ACC0, T C0, and CC0[q],AC0[q] for any q ∈N.

We stress again that our results that are stated as applying to typical constant-
depth circuit classes also apply to classes other than the ones in Definition 14. Finally,
we recall that for any typical constant-depth class C it holds that C 6= NC1 if and only
if C does not contain uniform-NC1. For simplicity, we define uniform-NC1 using the
notion of P-uniformity; that is, a formula family is uniform if there exists a polynomial-
time algorithm that on input 1n outputs the n-bit formula in the family.

Proposition 15 (C = NC1 iff uniform-NC1 ⊆ C). Let C be any typical class of constant-
depth circuits such that circuit families in C can be of arbitrarily large polynomial size. Then,
C = NC1 if and only if uniform-NC1 ⊆ C.

15When dealing with LTFs we can assume, without loss of generality, that 〈w, x〉 6= θ for every x ∈
{0, 1}n (because for every Boolean function over {0, 1}n that is computable by an LTF there exists an LTF
that computes the function such that 〈w, x〉 6= θ for every x ∈ {0, 1}n).
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Proof. We prove that if uniform-NC1 ⊆ C then C = NC1 (the other direction is im-
mediate). Loosely speaking, the proof relies on the fact that there exists a “universal”
uniform-NC1 circuit family, i.e. a uniform family of NC1 formulas that can evaluate
any NC1 formula that is given to them as input.

Specifically, consider the Boolean Formula Value problem, denoted BFV, in which
the input is (Φ, z) such that Φ is a formula and z is an assignment to Φ, and the
output is Φ(z).16 As proved by Buss [Bus87], the problem BFV is in uniform-NC1.
Thus, if C contains uniform-NC1, then there exists a family of C-circuits for BFV,
denoted {Cn}n∈N. Now, fix any S ∈ NC1, and let {Φm : {0, 1}m → {0, 1}}m∈N be a
formula family of polynomial size that decides S. For every m ∈ N, we “hard-wire”
the description of Φm into the inputs of the circuit Cn, where n = |Φm| + m (and
|Φm| is the length of the description of Φm), while leaving the m variables needed to
describe the assignment z alive. After this “hard-wiring”, we obtain a circuit family
that decides S, and since |Φm| ≤ poly(m), the size of Cn after the “hard-wiring” is still
polynomial in its new input length m.

Proposition 15 was stated for uniform-NC1 where the notion of uniformity is P-
uniformity. However, the statement of Proposition 15 also holds if we consider much
more restrictive notions of uniformity; indeed, the statement holds for any notion of
uniformity such that BFV is in uniform-NC1 (for further details see [Bus87]).

3.2 Complete problems for NC1 and NL
Let C be a class of functions {0, 1}∗ → {0, 1}, and let F be a class of functions
{0, 1}∗ → {0, 1}∗. We say that a set A ⊆ {0, 1}∗ is complete for C under F -reductions
if A ∈ C, and for every set B ∈ C there exists a function f ∈ F such that such that for
all x ∈ {0, 1}∗ it holds that x ∈ B if and only if f (x) ∈ A. When we just say that A is
complete for C, without mentioning F , we mean that A is complete for C under AC0

reductions.17 We now recall the definitions of several problems that are complete for
NC1 under AC0 reductions or for NL under NC1 reductions.

3.2.1 The monoid problem

Recall that a monoid Σ is a set with an associative binary operation, which we think
of as multiplication, and with an identity element 1 ∈ Σ. Denoting ` = dlog(|Σ|)e,
fix an encoding Bin : Σ → {0, 1}`. Intuitively, the monoid problem for Σ with encoding
Bin is that of computing the multiplication of n input elements σ1, ..., σn ∈ Σ. More
formally, this is the problem of computing the function f : Σ∗ → Σ such that for every
m ∈ {` · n : n ∈ N}, when the input x can be parsed as x = (Bin(σ1), ..., Bin(σn))
where σi ∈ Σ for all i ∈ [n], then the output is f (x) = Bin(∏i∈[n] σi) (for inputs x that
cannot be parsed in a valid manner, the output is f (x) = 0`).

As proved by Barrington [Bar89], several natural problems that are complete for
NC1 under AC0 reductions are instances of the monoid problem. (The formal pre-
sentation of the monoid problem that makes these problems complete is as a set of
pairs ((σ1, ..., σn), σ) ⊆ {0, 1}∗ such that ∏i∈[n] σi = σ; yet, the complexity of the latter

16We denote this problem by BFV to distinguish it from the problem BFE, in which the formula Φ is
guaranteed to be balanced (see Section 3.2.3).

17In some sources, the function f has to be uniform. In this paper we focus on lower bounds for
non-uniform circuits, and therefore we do not require the reductions to be uniform.
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version of the problem is essentially identical to that of the functional version, which
we work with.) Since the problems remain complete under any injective encoding
Bin, we suppress Bin in our notation.

The word problem over S5 (WS5). In this problem the monoid Σ is the symmetric
group S5 (i.e., the group of all permutations on five elements). The binary operation
on S5 is the composition of the permutations, and its identity element is the identity
permutation. In other words, the input is a sequence of permutations σ1, ..., σn ∈ S5,
and the output is their composition σ1 ◦ ... ◦ σn.

The s-t connectivity problem on directed graphs of width 5 (W5-STCONN). In
this problem the monoid Σ is the set of of 5 × 5 matrices over {0, 1} (i.e., Σ =
{0, 1}5×5). The binary operation is the matrix product of two matrices over the ring
({0, 1}, OR, AND); that is, for any A(1), A(2) ∈ Σ, the product A(1) × A(2) is defined
such that (A(1) × A(2))i,j = ∨k∈[5](Ai,k ∧ Bk,j). The identity element is the identity
matrix. 18

3.2.2 The Boolean iterated matrix multiplication problem

Fix parameters m ≥ ∆ ∈ N. The Boolean Iterated Matrix Multiplication problem),
denoted BIMMm,∆ : {0, 1}m·∆2 → {0, 1}∆2

, is defined as follows. The input is parsed as
m matrices, each of dimension ∆× ∆ and with Boolean entries; and the output is the
iterative multiplication of these matrices over the ring ({0, 1}, OR, AND) (i.e., for two
matrices A(1), A(2) we have that (A(1) × A(2))i,j = ∨k∈[∆](Ai,k ∧ Bk,j)).

The main difference of BIMM from the W5-STCONN problem is that the size of the
matrices in BIMM is a parameter ∆ = ∆(n) that may grow with the input size (instead
of ∆ = 5 as in W5-STCONN). When ∆ = n takes the maximal value, the problem
BIMMn,n is complete for NL under NC1 reductions (see [Coo85]).

3.2.3 The Boolean formula evaluation problem (BFE)

Intuitively, the Boolean Formula Evaluation Problem (BFE) is the problem of evaluat-
ing a given formula, which corresponds to a complete binary tree, at a given assign-
ment. More formally, let Σ = {0, 1,∧,∨,⊕}. 19 For any n ∈N of the form n = 2`+1− 1,
we think of an input x ∈ Σn as consisting of two parts x = (Φ, z) such that Φ ∈ Σ2`−1

and z ∈ Σ2` . The first part Φ represents a formula of depth ` over {∧,∨,⊕} (i.e., a
complete binary tree of depth ` whose nodes are labeled by {∧,∨,⊕}). The second
part z ∈ {0, 1}` represents an assignment to Σ. When the input x can be parsed in this

18To see why this problem is called s-t connectivity on directed graphs of width 5, recall that a directed
graph is of width 5 if its vertices can be partitioned into layers of (at most) five vertices each, such that
the layers are linearly ordered, and every edge goes from vertices of one layer to the vertices of the next
layer. In such a graph, every two consecutive layers form a bipartite graph with five vertices in each side,
which can be represented by a 5× 5 adjacency matrix. Thus, in the s-t connectivity problem we get n
adjacency matrices (corresponding to a graph with n + 1 layers), and output a matrix whose (i, j) entry
is one if and only if there is a path from the ith vertex in the first layer to the jth vertex in the last layer.

19Similarly to [AK10], we define the problem over a basis that includes the ⊕ function in order to
easily deduce a lower bound for it, by reducing from [IPS97; CSS16].
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manner, the output of the problem is Φ(z), i.e. the evaluation of the formula repre-
sented by Φ at the assignment represented by z. When the input x cannot be parsed
in this manner, the output of the problem is 0.

At this point we need to be more specific about the parsing of Φ ∈ Σ2`−1 to a
formula. To define the problem we can use any fixed bijection ϕ between the nodes
in the depth-` complete binary tree and [2` − 1] (e.g., we map the root to 1, and for
any node v mapped to a number id(v), the left and right children of v are mapped
to 2 · id(v) and 2 · id(v) + 1, correspondingly), and letting the label of a node v in the
formula be Φϕ(v) . The crucial point is that the mapping of nodes to symbols is fixed,
which means that if we want to know the labels of a sub-formula of Φ, we only need
to look at fixed locations in the input (rather than parse the input in order to know
which locations are needed). 20 For proof that this formulation of the BFE problem is
NC1-complete under AC0 reductions, see [Bus87] and [BIS90, Proof of Lemma 7.2].

3.3 Seeded extractors and averaging samplers

We recall the standard definitions of seeded extractors and of averaging samplers, and
state the well-known equivalence between the two.

Definition 16 (seeded extractors). A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)-
extractor if for every distribution x on {0, 1}n such that maxx∈{0,1}n [Pr[x = x]] ≤ 2−k it
holds that the distribution Ext(x, ut) is ε-close to the uniform distribution on {0, 1}m in
statistical distance.

Definition 17 (averaging samplers). A function Samp : {0, 1}n × {0, 1}t → {0, 1}m is
an averaging sampler with accuracy ε > 0 and error δ > 0 if it satisfies the following.
For every T ⊆ {0, 1}m, for all but a δ-fraction of the strings x ∈ {0, 1}n it holds that
Prz∈{0,1}t [Samp(x, z) ∈ T] = |T|/2m ± ε.

Proposition 18 (seeded extractors are equivalent to averaging samplers). Let f : {0, 1}n ×
{0, 1}t → {0, 1}m. Then, the following two assertions hold:

1. If f is a (k, ε)-extractor, then f is an averaging sampler with accuracy ε and error
δ = 2k−n.

2. If f is an averaging sampler with accuracy ε and error δ, then f is an (n− log(ε/δ), 2ε)-
extractor.

For a proof of Proposition 18 see, e.g., [Vad12, Cor. 6.24]. In the current paper we
will only use the first item of Proposition 18.

4 Improved hardness magnification results

In this section we present our improved hardness magnification results. The results
in the current section are batched according to the technical tools used in their proofs,
rather than the circuit classes to which they apply:

20This is in contrast to an encoding of Φ that is an arbitrary list of gates and wires, which makes the
problem complete for L; see [Ete97].
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• In Section 4.1 we prove hardness magnification results for any instance of the
monoid problem, and in particular for WS5 , W5-STCONN, and AND; that is,
we prove Theorems 2 and 7. The proofs of these results follow the high-level
description in Section 2.1.

• In Section 4.2 we prove hardness magnification results for MAJ and for BIMM;
that is, we prove the version of Theorem 2 that holds for BIMMn,no(1) , and also
prove Theorem 6. The proofs of these results follow by analyzing problems that
are similar to the monoid problem, but in which the size of the monoid may
grow with the input length.

• Finally, in Section 4.3 we prove our hardness magnification result for BFE; that
is, we prove the version of Theorem 2 that holds for BFE. The main idea in the
proof of this result is similar to the idea presented in Section 2.1, but it requires
an implementation that is specific to the BFE problem.

4.1 Monoid problems: WS5 , W5-STCONN, and AND

Our main theorem in this section is a strong self-reduction for the monoid prob-
lem: For d � d0, we reduce the task of computing the problem in depth d and size
n1+exp(−d) to the task of computing the problem in depth d0 and size nk.

We will first consider the promise problem version of the monoid problem: For a fixed
monoid Σ and encoding Bin : Σ → {0, 1}` (where ` = dlog(|Σ|)e), in this problem
the input is guaranteed to be of the form x = (Bin(σ1), ..., Bin(σm)), and the required
output is f (x) = Bin(∏i∈[m] σi).

Theorem 19 (strong self-reduction for the monoid problem). Fix a monoid Σ and an encoding
Bin : Σ→ {0, 1}`, where ` = dlog(|Σ|)e. Let C be a typical constant-depth circuit class, and
assume that for two integers d0, k ≥ 2, the promise-problem version of the monoid problem for
Σ can be solved by a family of C-circuits of depth d0 and size nk. Then, for infinitely many
constants d, the promise-problem version of the monoid problem for Σ can be solved by a family
of C-circuits of depth d and size n1+2e2·c−d

, where c = e1/(k·d0).

Proof. For n ∈ ` ·N, we say that x ∈ {0, 1}n is valid if x = (Bin(σ1), ..., Bin(σn/`)).
Let { fn : {0, 1}n → {0, 1}`}n∈N be the Boolean function corresponding to the monoid
problem for Σ with encoding Bin, and let C = {Cn}n∈N be a circuit family such that
for every n ∈ N it holds that Cn is a circuit {0, 1}n → {0, 1}` of size nk and depth d0,
and for any valid input x ∈ {0, 1}n it holds that Cn(x) = fn(x). In the proof we will
“round” numbers to the nearest multiple of ` = dlog(|Σ|)e = O(1); for convenience,
we denote the corresponding operations by dxe` = ` · dx/`e and bxc` = ` · bx/`c.

For any ε > 0, let d1 =
⌈

k · ln
(
(1−1/k)·(1+ε)

ε

)⌉
+ 1. For any sufficiently large

n ∈ ` ·N, we construct a circuit for fn of depth d = d1 · d0 whose number of wires is
O
(
n1+ε

)
< n1+2e2·e−d/(k·d0) .

Our circuit consists of d1 layers, where layer i = 1 is the top layer, and layer i = d1
is the bottom layer, which is connected to the inputs. For a sequence 0 = α1 < α2 <
... < αd1 < 1 that we will define in a moment, each layer i ∈ [d1] is of depth d0, and
contains ni = dnαie copies of circuits from C, which get their inputs from disjoint
blocks of bits in the layer beneath it. That is, the bottom layer d1 contains nd1 = dn

αd1 e
copies of circuits from C on dn/nd1e` or bn/nd1c` input bits (i.e., it contains Cdn/nd1e`
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and Cbn/nd1c`
), each of which computes fdn/nd1e`

or fbn/nd1c`
on a corresponding block

of input bits. Then, for i ∈ [d1 − 1], the outputs of layer i + 1 serve as inputs to layer
i, which contains ni = dnαie copies of Cdni+1/nie` and Cbni+1/nic` , each of which gets its
input from a corresponding block. Since α1 = 0, the top layer i = 1 contains a single
circuit from C.

Let us now specify the αi’s, from top to bottom: The top layer i = 1 has a single
circuit, so α1 = 0; and for every i = 2, ..., d1 we set αi =

1+ε
k + (1− 1/k) · αi−1. For

i ≥ 2, this recursion solves to

αi =
1 + ε

k
·

i−2

∑
j=0

(1− 1/k)j = (1 + ε) ·
(

1− (1− 1/k)i−1
)

,

and in particular in layer d1 we have that αd1 ≥ 1− ε/(k− 1).
The foregoing circuit is of depth d1 · d0, and indeed solves the promise-problem

version of the monoid problem for Σ (this is because each layer is connected to all
outputs of the layer beneath it, we only use circuits from the family C, and by the
associativity of the monoid). Thus, it remains to verify that the circuit has O

(
n1+ε

)
wires. To do so, note that for i ∈ [d1− 1], in the ith layer we have dnαie circuits, and the
number of inputs bits of each of them is at most dni+1/nie` < 2 · nαi+1−αi . Thus, the

total number of wires in the ith layer is O
(

nαi+k·(αi+1−αi)
)
= O

(
n1+ε

)
. In layer i = d1,

each circuit has dn/nd1e` < 2 · n1−αd1 input bits, and thus the total number of wires in

layer d is O
(

nαd1
+k·(1−αd1

)
)
≤ O

(
nk−(k−1)·αd1

)
≤ O

(
n1+ε

)
.

The conclusion of Theorem 19 asserts that the monoid problem can be solved by
depth-d circuits for infinitely-many d ∈N. Now we want to extend this conclusion to
hold for almost all depths d. To do so, we note that the gap between the applicable
depths in the proof of Theorem 19 is approximately d0. Therefore, to get a circuit of
an arbitrary depth d, we can use a circuit of depth d′ such that d− d0 < d′ < d, and
the bound on the number of wires will be n1+exp(−d′) < n1+exp(−(d−d0)). Specifically:

Corollary 20 (a self-reduction for the monoid problem for any depth). Let Σ be a monoid, C
be a circuit class, and d0, k ≥ 2 be integers that satisfy the hypothesis of Theorem 19. Then,
for every sufficiently large constant d, the promise-problem version of the monoid problem for
Σ can be solved by a family of C-circuits of depth d and size n1+2e3·c−d

, where c = e1/(k·d0).

Proof. Let d ∈N be sufficiently large. In the proof of Theorem 19, for every ε > 0, we
constructed a circuit for the monoid problem of depth dε =

(⌈
k · ln

(
(1−1/k)·(1+ε)

ε

)⌉
+ 1
)
·

d0 whose number of wires is at most O
(
n1+ε

)
< n1+2e2·e−dε/(k·d0) . Now, for ε > 0 such

that d− d0 ≤ dε < d, 21 we think of the construction of depth dε as a construction of
depth d whose number of wires is at most

n1+2e2·e−dε/(k·d0) ≤ n1+2e2·e−(d−d0)/(k·d0) = n1+2e2+1/k ·e−d/(k·d0) ,

where the inequality relied on the fact that dε ≥ d− d0.

21Specifically, we choose ε > 0 such that ε
1+ε = 1 − 1

1+ε = (1 − 1/k) · e−(d/d0−2)/k (i.e., ε =
1

1−(1−1/k)·e−(d/d0−2)/k − 1 = e(d/d0−2)/k

e(d/d0−2)/k−(1−1/k)
− 1 > 0, where the inequality is by the hypothesis that d

is sufficiently large). It follows that
⌈

k · ln
(
(1−1/k)·(1+ε)

ε

)⌉
+ 1 = dd/d0e − 1, and hence d− d0 ≤ dε < d.
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We now instantiate Corollary 20 for specific monoid problems and circuit classes:
Assuming that some monoid problem can be solved by polynomial-sized circuits from
some class C, we deduce that the problem can be solved by extremely sparse C-circuits.
The main “gap” that needs to be handled is that Corollary 20 only deduces that the
promise problem can be solved by extremely sparse circuits; we will need the circuits
to also verify that the input is a valid encoding of elements from Σ, and output 0`

otherwise. This is easy when the circuit class is complete; moreover, in T C0 this can
be done with essentially no overhead:

Corollary 21 (WS5 and W5-STCONN in T C0). Let Π be either the WS5 problem or the
W5-STCONN problem. Assume that Π can be computed by T C0 circuits of depth d0 and size
nk. Then, for every sufficiently large constant d ∈N it holds that Π can be computed by T C0

circuits of depth d and size n1+2e3·c−d
, where c = e1/(k·d0).

Note that the conclusion of Corollary 21 implies, in particular, that for any c′ <
e1/(k·d0), for every sufficiently large d ∈ N it holds that WS5 can be computed by T C0

circuits of depth d and size n1+(c′)−d
(since (c′)−d > 2e3 · c−d).

Proof of Corollary 21. Our hypothesis now is stronger than the hypothesis required
for instantiating Corollary 20, since we assume that the monoid problem without a
promise can be solved in T C0 (with some depth d0 and size nk). Thus, as our starting
point we can use the construction of the circuit from the proof of Theorem 19.

We add to this construction another circuit V, in parallel to the original circuit,
that is a conjunction of n/` conditions, each condition verifying that the ith block of `
bits in the input indeed represents an element from Σ. Then, we modify each of the
` output gates of the original circuit such that it conjuncts with the output of V. 22

Hence, if the input is not a valid representation of elements from Σ, the output is 0`.
Note that the number of wires in V and between V and the outputs is O`(n); thus, the
number of wires in the entire construction is still O

(
n1+ε

)
.

Similarly, when the circuit class is ACC0 it is easy to verify that an input is a valid
encoding of elements from Σ. We thus get the following corollary:

Corollary 22 (WS5 and W5-STCONN in ACC0). Let Π be either the WS5 problem or the
W5-STCONN problem. Assume that Π can be computed by ACC0 circuits of depth d0 and
size nk. Then, for every sufficiently large constant d ∈ N it holds that Π can be computed by
ACC0 circuits of depth d and size n1+2e3·c−d

, where c = e1/(k·d0).

Proof. Similarly to the proof of Corollary 21, we start from the circuit C of depth
d′ = d − 1 from the proof of Corollary 20 (i.e., the construction from the proof of
Theorem 19), and add to it a linear-sized circuit, denoted V, that verifies that the
input is a valid encoding of elements from the monoid. Since now we cannot modify
the output gates to conjunct with V (since the output gates may be modular gates), we
add a top layer of ` = |Σ gates to the construction, such that each top gate computes
the AND of V and of a corresponding output gate of C. The final circuit is of depth
d = d′ + 1 and size n1+2e2+1/k ·c−(d−1) ≤ n1+2e3·c−d)

.

22That is, assume that an output gate g is an LTF that accepts if and only if the weighted sum of its
inputs is at least θ ∈ R. Denote by M the sum of absolute values of the weights of g. Then, we replace g
by g′ that assigns weight (M + 1)2 to V (and the same weights as in g to the original inputs), and accepts
if and only if the weighted sum of its inputs is at least (M + 1)2 + θ.
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Finally, turning to CC0 and to the AND function, note that when |Σ| is a power of
two, the promise is trivial (since any bit-string of length log(|Σ|) is a valid encoding
of an element from Σ). Thus, we get the following corollary:

Corollary 23 (AND and CC0). If AND can be computed by CC0 circuits of depth d0 and size
nk, then for every sufficiently large constant d ∈ N it holds that AND can be computed by
CC0 circuits of depth d and size n1+2e3·c−d

, where c = e1/(k·d0).

As explained after the statement of Corollary 21, the conclusions of Corollaries 22
and 23 imply that for every sufficiently large d ∈ N, the corresponding function can
be computed by depth-d circuits of size n1+(c′)−d

, where c′ < e1/(k·d0).

4.2 Growing monoids: MAJ and Boolean matrix multiplication

In this section we prove our results regarding computing MAJ in ACC0 (i.e., Theo-
rem 6), and computing the Boolean iterated matrix multiplication problem in constant-
depth circuit classes.

As a starting point we want to extend the self-reduction of the monoid problem
(i.e., Theorem 19) to monoids of size that is growing with the input size. That is, fixing
an associative length-preserving binary operation {× : ({0, 1}r)2 → {0, 1}r}r∈N, for
every two integers m ≥ ` ∈N, the corresponding monoid problem MON×m,` is defined
on input length n = m · ` as follows: An input x ∈ {0, 1}n is parsed as (σ1, ..., σm)
where σi ∈ {0, 1}` for all i ∈ [m], and the `-bit output is f (x) = ∏i∈[m] σi.

We show a strong self-reduction for the foregoing problem: For d � d0, we re-
duce the task of computing MON×m,` in depth d and size (m · `)1+exp(−d) to the task of
computing MON×m′,`, for various values of m′ = mΩ(1), in depth d0 and size (m′ · `)k.

Theorem 24 (strong self-reduction for the monoid problem with monoids of growing size).
Let C be a typical constant-depth circuit class, and let {× : ({0, 1}r)2 → {0, 1}r}r∈N be an
associative operation. Let ` : N → N such that `(m) = mo(1). Assume that there exist
constants d0, k ∈ N such that for every constant ρ > 0 and any sufficiently large m ∈ N it
holds that MON×mρ,`(m)

can be be solved by a family of C-circuits of depth d0 and size nk, where
n = mρ · `(m). Then, for every sufficiently large constant d ∈ N it holds that MON×m,`(m)

can be solved by a family of C-circuits of depth d and size n1+2e3·c−d
, where c = e1/(k·d0) and

n = m · `(m).

In high-level, the proof of Theorem 24 is as follows. In order to compute MON×m,`,
we will use the tree construction from the proof of Theorem 19 to reduce the problem
to the problems of computing MON×mε,` for various small constants ε > 0. Note that
in the problems MON×mε,` in the target of the reductions, the input length is smaller
than the original input length (i.e., the input length is mε instead of m) but the monoid
is still of its same original size ` = `(m). Now, by our hypothesis, there exist fixed
d0, k ∈ N such that for every input length mε, the problem MON×mε,` is solvable by
circuits of depth d0 and size (mε · `)k. The crucial point in the proof is that `(m) =
mo(1), and therefore the size of the latter circuits is less than (2mε)k; thus, the bound
on the overall size of the circuit for MON×m,` remains essentially the same as in the
proof of Theorem 19. We defer the full details to Appendix A.

Recall that the Boolean Iterated Matrix Multiplication problem (BIMM) can be
thought of as an instance of the monoid problem with monoids of growing size (the
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associative operation here is matrix multiplication). Therefore, the version of Theo-
rem 2 for BIMMn,no(1) follows as a corollary of Theorem 24. Also, we can now prove
the following theorem regarding MAJ in ACC0, whose contrapositive is Theorem 6:

Theorem 25 (MAJ ∈ ACC0 iff MAJ is in extremely sparse ACC0). If MAJ ∈ ACC0, then
there exists a constant c > 1 such that for every sufficiently large constant d ∈N it holds that
MAJ can be solved by an ACC0 circuit family with depth d and n1+c−d

wires.

Proof. We first define an instance of the monoid problem with monoids of growing
size, denoted SUMm,`, where the associative operation is summation of m integers,
represented by in binary by ` bits, modulo 2`. Formally, for any m ∈ N and ` ∈ [m],
let SUMm,` : {0, 1}m·` → {0, 1}` be the following function: Interpreting any input
x ∈ {0, 1}m·` as a list a(1), ..., a(m), where each a(i) ∈ {0, 1}` is the binary representation
of an integer σ(i) ∈ {0, ..., 2`− 1}, we define SUMm,`(x) to be the binary representation
of ∑i∈[m] σ(i) mod 2`. It is well-known that SUMm,m ∈ T C0; in fact:

Fact 25.1. There exist k, d0 ∈ N such that for every sufficiently large m ∈ N and every
` ∈ [m] it holds that SUMm,` can be computed by a T C0 circuit of size mk and depth d0.

Proof. As shown by Chandra, Stockmeyer and Vishkin [CSV84], there exist k, d0 ∈ N

such that SUMm,m can be computed in T C0 of size mk and depth d0. 23 We reduce
SUMm,` to SUMm,m by padding each `-bit integer to be of m bits and by truncating the
output to ` bits, while noting that this reduction does not increase the value of m. �

Now, assume that MAJ ∈ ACC0, which implies that ACC0 = T C0. By Fact 25.1,
there exist k, d0 ∈ N such that for every sufficiently large m ∈ N and every ` ∈ [m] it
holds that SUMm,` can be computed by an ACC0 circuit of size mk < (m · `)k and depth
d0. In particular, for every ρ > 0 and sufficiently large m ∈ N and ` = 2 · log(m), we
have that SUMmρ,` can be computed by an ACC0 circuit of size (mρ · `)k and depth d0.
Therefore, by Theorem 24 it holds that for some c0 > 1 (i.e., any 1 < c0 < e1/(k·d0)

suffices) and for infinitely many d ∈ N, the problem SUMm,2 log m can be solved by a

depth-d ACC0 circuit with (2 ·m · log(m))1+c−d
0 wires.

Finally, we reduce MAJ on n input bits to SUMn,2·log(n) as follows. We first pad each
input bit σ ∈ {0, 1} to a binary representation of an integer xσ = 0...0σ ∈ {0, 1}2·log(m).
Then, we compute SUMn,2·log(n) using a circuit with (2 · n · log(n))1+c−d

0 = n1+exp(−d)

wires. Lastly, we output the OR of the log(n) + 1 most important bits of SUMn,2·log(n),
which only adds one more layer to the depth and log(n) + 1 wires.

4.3 The BFE function

We now present a strong self-reduction for the BFE function. Recall that in this func-
tion the input is x = (Φ, z), where Φ ∈ Σ2`−1 is a description of a formula over the
basis Σ = {0, 1,∧,∨,⊕} that is a complete binary tree of depth ` and z ∈ {0, 1}2` is an
assignment to the formula, and the output BFE(x) is the evaluation of Φ at z.

Let us present the proof idea, in high-level. Our goal is to evaluate a given formula
Φ at a given assignment z by a circuit of size n1+ε and depth O(log(1/ε)), under
the assumption that there exists a circuit for BFE over m input symbols of size mk.

23They actually showed that iterated addition of m integers, each represented in binary by m bits, is in
T C0; the statement that SUMm,m ∈ T C0 follows by truncating the result to the last m bits.
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Following [AK10], we will construct a circuit whose structure imitates the formula
structure: Our circuit will consist of O(log(1/ε)) layers such that in layer i there
will be ni circuits, each computing a sub-formula of Φ that takes its inputs from sub-
formulas in layer i+ 1. We abstract this construction as a tree. The top node represents
a sub-circuit that computes the top sub-formula in Φ that has n(1+ε)/k inputs (i.e., the
top sub-formula in Φ of depth 1+ε

k · log(n)). Denoting the latter formula by Φ′, note
that in contrast to the construction in Theorem 19, the circuit corresponding to the top
node now depends not only on the outputs of the n(1+ε)/k nodes in the layer beneath
it, but also on the symbols in the input that represent the labels of Φ′. Nevertheless,
since Φ′ is a formula, the number of inputs to Φ′ is essentially identical to the number
of labels in Φ′. Thus, the input size to the circuit corresponding to the top node is
still O(n(1+ε)/k), and thus the circuit size is O(n1+ε). Continuing on, and using the
same tree structure as in the proof of Theorem 19, at each level i ≥ 2 we need to
compute ni sub-formulas that will serve as inputs to level i− 1, and we compute each
of these sub-formulas by a circuit for BFE that has O((n(1+ε)/ni)

1/k) inputs. We have
that ni = nαi , where αi = (1 + ε) ·

(
1− (1− 1/k)i−1), and thus at level d ≈ k · ln(1/ε)

we can finish the construction.
We now present the formal statements and proofs. Similarly to Section 4.1, we first

consider the promise problem version of BFE: In this promise problem, every input x ∈
{0, 1}4·2`−3 is guaranteed to be of the form x = (Φ, z), where Φ ∈ Σ2`−1 ⊆ {0, 1}3·(2`−1)

is an encoding of a formula and z ∈ {0, 1}2` represents an assignment to the formula.

Theorem 26 (strong self-reduction for BFE). Let C be a typical constant-depth circuit class,
and assume that for two constants d0, k ∈ N, the promise problem version of BFE can be
solved by a family of C-circuits of depth d0 and size nk. Then, for any sufficiently large
constant d ∈ N, the promise problem version of BFE problem can be solved by a family of
C-circuits of depth d and size n1+2e3·c−d

, where c = e1/(k·d0).

Proof. For any m ∈ {4 · 2` − 3 : ` ∈ N}, let Cm : {0, 1}m → {0, 1} be a circuit of size
mk and depth d0 that solves the promise problem version of BFE on inputs of length
m. For any ε > 0, let d1 =

⌈
k · ln

(
(1−1/k)·(1+ε)

ε

)⌉
+ 1. We will construct a circuit

{0, 1}n → {0, 1} for the promise problem version of BFE on inputs of length n with
depth d = d1 · d0 and with O

(
n1+ε

)
< n1+2e2·e−d/(k·d0) wires.

We think of an input x ∈ {0, 1}n, where n = 4 · r − 3 and r = 2`, as x = (Φ, z),
where Φ ∈ {0, 1}3·(r−1) represents the formula and z ∈ {0, 1}r represents the assign-
ment. For `i ∈ {0, ..., `− 1}, denote by Φ`i the set of sub-formulas of Φ of distance `i
from the top node in Φ. Also denote by Φ` the input gates of the formula (at distance
` from the top node). Our goal is to construct a circuit that outputs Φ(z).

As in the proof of Theorem 19, define a sequence 0 = α1 < α2 < ... < αd1 < 1 such
that for i ∈ [d1− 1] it holds that αi+1 = 1+ε

k + (1− 1/k) · αi = (1+ ε) ·
(
1− (1− 1/k)i).

Our circuit consists of d1 layers, where layer i = 1 is the top layer, and layer i = d1
is the bottom layer above the input x. Each layer i ∈ [d1] computes the evaluations
of the sub-formulas in Φ`i at the assignment z, where `i = dαi · `e; note that there
are ri = 2`i < 2 · rαi such sub-formulas. To do so, we use ri copies of Cni , where
ni = 4 · ri+1/ri − 3: Each of the ri copies gets as input the evaluations at z of ri+1/ri
sub-formulas in Φ`i+1 , which are computed by layer i + 1; as well as the descriptions
of the ri+1/ri − 1 symbols in Φ (each of which is represented by three bits) that are
needed to compute the corresponding sub-formula.
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Since each layer i ∈ [d1] computes the evaluations of the sub-formulas in Φ`i at
z, and we have that `1 = 0, the output of the circuit is Φ(z). Now, in each layer i =
{0, ..., d1− 1} there are at most 2 · rαi < 2 · nαi copies of Cni , where ni = 4 · ri+1/ri− 3 <
8 · rαi+1−αi < 8 · nαi+1−αi . Thus, the total number of wires in each layer i = {0, ..., d1− 1}
is at most 2 · nαi · (8 · nαi+1−αi)k = O

(
n1+ε

)
. In layer d1, we have 2 · rαd1 < 2 · nαd1 copies

of Cnd1
where nd1 = 4 · r/rd1 < 4 · n1−αd1 . Since αd1 ≥ 1− ε/(k− 1), the total number

of wires in layer d1 is less than 8 · nαd1
+k·(1−αd!

) = O
(

nk−(k−1)·αd1

)
= O

(
n1+ε

)
.

Finally, the construction above yields a circuit of depth d = d1 · d0 for every ε > 0,
and we can extend this construction to values of d that are not multiples of d0 just as in
the proof of Corollary 20, at the cost of deteriorating the size bound from n1+2e2·e−d/(k·d0)

to n1+2e2+1/k ·e−d/(k·d0) < n1+2e3·e−d/(k·d0) .

As in Section 4.1, to instantiate Theorem 26 for the non-promise version of BFE,
we just need the constructed circuit to also verify that the input is a valid encoding of
a Boolean formula and an assignment. This is indeed easy in T C0:

Corollary 27 (BFE and T C0). If BFE can be computed by T C0 circuits of depth d0 and size
nk, then for every sufficiently large constant d ∈ N it holds that BFE can be computed by
T C0 circuits of depth d and size n1+2e3·c−d

, where c = e1/(k·d0).

Proof. Let Σ = {0, 1, AND, OR, NOT}. Given an input x ∈ {0, 1}n, where n = 3 ·
(2`+1 − 1), we think of the input as x = (Φ, z) where Φ ∈ {0, 1}3·(2`−1) and z ∈
{0, 1}3·2` . We will use the circuit C from the proof of Theorem 26, augmented by two
auxiliary circuits: One circuit V will verify that Φ and z are valid encodings (i.e., Φ
encodes symbols from Σ and z encodes symbols from {0, 1} ⊆ Σ), and another circuit
T will translate z into a {0, 1}-assignment that C can use. Specifically, we invoke the
circuit C on Φ and on T(z), and conjunct the output of C with V.

The circuits V and T can be implemented using O(n) wires. Also, the addition of
T between the inputs layer and C creates an overhead of a single layer in the depth
(i.e., if each translation of an element in Σ into a bit is implemented by a CNF, the top
AND gate of the CNF can be merged into the LTF above it in C). Therefore, the size of
the resulting circuit is O

(
n1+2e2+1/k ·c−(d−1)

)
≤ n1+2e3·c−d

.

Similarly, when the circuit class is ACC0 it is easy to verify that an input is a valid
encoding of a Boolean formula and of an assignment; thus:

Corollary 28 (BFE and ACC0). If BFE can be computed by ACC0 circuits of depth d0 and
size nk, then for every sufficiently large constant d it holds that BFE can be computed byACC0

circuits of depth d and size n1+2e4·c−d
, where c = e1/(k·d0).

Proof. Similarly to the proof of Corollary 27, we start from the circuit C of depth
d′ = d − 3 from the proof of Theorem 26, and add to C a circuit T that translates z
into a {0, 1}-assignment and a circuit V that verifies that Φ and z are valid encodings,
where both T and V have O(n) wires. Adding a top gate that conjuncts the output of
C with the output of V, and a bottom layer of CNFs that implement T, we obtain a
circuit of depth d = d′ + 3 and of size n1+2e2+1/k ·c−(d−3) ≤ n1+2e4·c−d

.

As explained after the statement of Corollary 21, the conclusions in Corollaries 27
and in 28 imply that for every sufficiently large constant d it holds that BFE can be
computed by depth-d circuits of size n1+(c′)−d

, where c′ < e1/(k·d0).
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5 Bootstrapping derandomization of T C0 and ACC0

In this section we prove Theorem 4, and the bootstrapping result for derandomization
of ACC0 (which was mentioned in the end of Section 1.2.1). In Section 5.1 we con-
struct uniform sparse CC0[2] circuits and T C0 circuits that encode balanced codes. In
Section 5.2 we construct uniform sparse CC0[2] circuits and T C0 circuits that compute
averaging samplers. Finally, in we use the averaging samplers to prove Theorem 4 (in
Section 5.3) and the bootstrapping result for derandomization ofACC0 (in Section 5.4).

5.1 A balanced code in uniform sparse CC0[2] and T C0

In Section 5.1.1 we construct uniform sparse CC0[2] circuits that compute range detec-
tors, which are basic building blocks that will be useful in constructing the encoding
circuit. Then, in Section 5.1.2 we use the range detectors to construct uniform sparse
CC0[2] circuits that encode codes with constant relative distance. In Section 5.1.3 we
use the foregoing construction to construct uniform sparse CC0[2] circuits that encode
balanced codes. Finally, in Section 5.1.4 we show how to convert the latter circuits into
uniform extremely sparse T C0 circuits that encode balanced codes.

5.1.1 Range detectors in uniform sparse CC0[2] from lossless expanders

As pointed out in [Gál+13], the task of constructing range detectors reduces to the
task of constructing unbalanced lossless expanders: The latter are bipartite graphs with
n “input” vertices and m “output” vertices such that each input vertex has degree d,
and each set S of input vertices of size at most w has at least (1− ε) · d · |S| distinct
neighbors among the output vertices. In particular, for each set S of size at most w, at
least (1− 2ε) · d · |S| of its neighbors are connected to a single vertex in S. 24

The reason that lossless expanders are useful for constructing range detectors is
the following. Assume that we construct a depth-one circuit C : {0, 1}n → {0, 1}m

of parity gates by wiring according to a lossless expander. Then, for every input
x ∈ {0, 1}n with Hamming weight between w/2 and w, we have that Sx = {i ∈ [n] :
xi = 1} satisfies |Sx| ≤ w. Since the graph is an expander, at least (1− 2ε) · d · |Sx|
output gates are connected to a single coordinate i ∈ [n] such that xi = 1; hence, the
Hamming weight of the output C(x) is at least (1− 2ε) · d · |Sx| = Ω(d · w). Also,
since |Sx| ≤ w, the Hamming weight of C(x) is at most d ·w. Thus, if we use a lossless
expander with m = O(d · w), we obtain an (n, m, w, Ω(m), m/2) range detector.

For our purposes we need a lossless expander with small input-degree d (to get
a sparse circuit) and m = O(d · w). We will use the explicit construction of lossless
expanders by Capalbo et al. [Cap+02]. To be consistent with their notation, we use
uppercase letters instead of lowercase ones (i.e., the number of inputs is N, the number
of outputs is M, and the weight is W). The input-degree that is obtained using their
construction is D = exp(poly log log(N)), which is sufficiently small for our purposes.

Proposition 29 (constructing sparse range detectors using [Cap+02]). There exist two con-
stants η, µ > 0 such that the following holds. There exists a deterministic polynomial-time
algorithm that gets as input 1N , where N is a power of two, and W ≤ η · N, and outputs
the following depth-one circuit that consists of parity gates. The circuit has N input bits and

24This is because (1− ε) · d · |S| edges are needed to obtain (1− ε) · d · |S| distinct neighbors of S, which
leaves only ε · d · |S| edges that can “donate” a second edge to a neighbor of S.
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M = O (W · exp(poly log log(N))) output gates, and N · exp(poly log log(N)) wires, and
the circuit computes an (N, M, W, µ ·M, M/2)-range detector.

Proof. We use the lossless expander construction of [Cap+02, Thm 7.3], instantiated
with the following parameters: n = log(N), and ε = 0.01, and t ∈ N such that
t + α · log3(t/ε) = n − log(W) − β, where α, β ≥ 1 are positive constants that will
be specified later. 25 Their construction yields a lossless expander with the following
parameters:

1. The number of input vertices is N.

2. The number of output vertices is M = 2n−t = 2β ·W · 2α·log3(t/ε).

3. The degree of input vertices is D = 2d = 2γ·log3(t/ε) < exp(poly log log(N))
(where γ > 1 is a universal constant from [Cap+02]).

4. All sets S ⊆ [N] of size at most K = 2kmax have at least 0.99 · D · |S| neighbors,
where K = 2n−t−d−log(1/ε)−δ ≥W (in the calculation, δ > 1 is a universal constant
from [Cap+02], and we choose α = γ and β ≥ log(1/ε) + δ).

The neighbor function E : [N] × [D] → [M] is computable in time poly log(N),
which means that the circuit (with parity gates) corresponding to the expander can be
constructed in time poly(N). By the preceding discussion, to prove that the circuit is
an (N, M, W, Ω(M), M/2)-range detector it remains to verify that M ≥ 2 · D ·W and
M = O(D ·W). The first inequality holds because β ≥ 1, and the second inequality
holds because β is bounded by a universal constant.

Proposition 29 gives range detectors for all weights w up to Ω(n). Constructing
range detectors for weight w = Ω(n) is much simpler: The identity mapping preserves
the constant relative weight, and so we just need to handle the edge case of w > n/2
(recall that we want the output weight to be at most (1−Ω(1)) ·m).26

Proposition 30 (constructing a layer of range detectors). For some universal constant ρ >
0, there exists a deterministic polynomial-time algorithm that gets as input 1n, where n is
a power of two, and outputs the following log(n) depth-one circuits that consist of parity
gates. For i = 1, ..., log(n), the ith circuit computes an (n, m, w, ρ · m, (1− ρ) · m)-range
detector, where w = 2i and m = O(w · exp(poly log log(n)) and the circuit has at most
n · exp(poly log log(n)) wires.

Proof. Let η, µ > 0 be the two constants from Proposition 29. For every i ≤ log(n)−
log(1/η), we use Proposition 29 to get an (n, m, w, η ·m, m/2)-range detector with m =
O(n · exp(poly log log(n)) and n · exp(poly log log(n)) wires. For log(n)− log(1/η) <
i < log(n), we just use the identity mapping to get an (n, m = n, w, η ·m, m/2)-range
detector with n wires.

For i = log(n), we map n input bits to m = (3/2) · n output bits as follows: The
first n output bits are the identity mapping of the input bits, and each of the last n/2

25Specifically, in the proof α will be a specific universal constant, and β will be lower-bounded by
another universal constant. We will thus increase β (by a constant) such that n− log(W)− β will touch
the set {t + α · log3(t/ε)}t∈N. The fact n− log(W)− β ≥ 1 + α · log3(1/ε) follows from the hypothesis
that W ≤ η · N (where η is sufficiently small and depends on α and on the lower bound for β).

26In this paper we will not actually use the fact that the output weight is at most (1−Ω(1)) ·m, but
we nevertheless present this construction for completeness.
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output bits is connected to a consecutive pair of input bits (i.e., for i ∈ [n], the ith

input bit is connected to the ith output bit; and for i ∈ [n/2], the (n + i)th output bit is
connected to input bits 2i− 1 and 2i). Note that for any input x ∈ {0, 1}n of Hamming
weight at least n/2, the Hamming weight of the output is at least n/2 = m/3. Now,
if the Hamming weight of x is at most (3/4) · n, then the Hamming weight of the
output is at most n = (5/6) ·m; and on the other hand, if the Hamming weight of x is
more than (3/4) · n, then Pri∈[n/2][x2i−1 ⊕ x2i = 0] ≥ Pri∈[n/2][x2i−1 = x2i = 1] ≥ 1/2,
which implies that the Hamming weight of the output is at most m− n/4 = (5/6) ·m.
Thus, this yields an (n, m, w = n, m/2, (5/6) · m)-range detector with 2n wires. The
proposition follows by taking ρ = min{µ, η, 1/6}.

5.1.2 A code with constant relative distance in uniform sparse CC0[2]

Our goal now is to use the range detectors to construct an encoding circuit. To do
so, we will put the range detectors as a layer of gates above the inputs, and use an
additional top layer to combine the range detectors into a code. The construction of the
top layer follows the construction in [Gál+13, p. Clm. 34], with different parameters.

Proposition 31 (uniform extremely sparse CC0[2] circuits for encoding an “almost-good”
code). For some universal constant ρ > 0, there exists a deterministic polynomial-time algo-
rithm that gets as input 1n, where n is a power of two, and outputs a depth-two circuit of that
consists of parity gates, and satisfies the following:

1. The circuit computes the encoding function of a linear code {0, 1}n → {0, 1}n̂ with
constant relative distance ρ > 0, where n̂ = n · exp(poly log log(n)).

2. The circuit has n · exp(poly log log(n)) gates and n · exp(poly log log(n)) wires.

Proof. We first use Proposition 30 to obtain log(n) range detectors with parameters
as in the proposition; the middle layer of the circuit consists of these range detectors.
Note that for every non-zero x ∈ {0, 1}n it holds that for some i ∈ [log(n)], the ith

range detector maps x to mi = O(2i · exp(poly log log(n))) outputs such that between
ρ ·mi and (1− ρ) ·mi of the outputs are set to one.

Towards constructing the top layer, we first construct a top layer of n0 gates, where
n0 = n · exp(poly log log(n)) ≥ maxi∈[log(n)]{mi}, that satisfies the following property:
For every non-zero x ∈ {0, 1}n, a constant fraction of the n0 top gates are connected
to a gate in the middle layer that is set to one. This property does not suffice for the
complete construction, since a top gate might touch an even number of gates in the
middle layer that are set to one (i.e., their parity will be zero); later on we will replace
the top n0 gates by n̂ parity gates in a manner that will solve this problem.

For now, imagine a top layer of n0 gates. For i ∈ [log(n)], we connect the ith range
detector to these top gates, while ensuring that if a constant fraction of the outputs
of the range detector are set to one, then a constant fraction of the top gates touch an
output gate of the range detector that is set to one. Specifically, we connect the layers
such that each top gate is connected to exactly one output of the range detector, and
the degree of the outputs of the range detector is at least bn0/mic. 27 Let S be the set of
output gates of the range detector that are set to one. If |S| ≥ ρ ·mi, then the number

27That is, we split the n0 top gates into mi blocks of size either dn0/mie or bn0/mic, and connect each
of the mi gates in the middle to all top gates in a corresponding block.
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of wires outgoing from S is at least ρ ·mi · bn0/mic, which implies that the number of
top gates connected to S is at least ρ ·mi · bn0/mic = Ω(ρ · n0).

After connecting all range detectors to the top layer of n0 gates in this manner, the
degree of each top gate is exactly log(n). To obtain the actual top layer (with n̂ parity
gates instead of n0 gates), we replace each of the n0 gates, denoted g, with O(log(n))
parity gates that compute a good code on the middle gates that feed into g. (This can
be any code with constant rate and constant relative distance, since we do not require
that these sub-circuits over log(n) bits will be sparse.) Thus, if a constant fraction of
the previous n0 top gates were connected to a gate in the middle layer that is set to
one, then a constant fraction of the actual n̂ top parity gates are set to one.

The number of wires between the top layer and the middle layer is at most n̂ ·
log(n) = n0 ·O(log(n)) · log(n) = n · exp(poly log log(n)), and the number of wires
between the middle layer and the inputs layer is also bounded by n · exp(poly log log(n)).
Also, the top layer has more gates than the middle layer, and thus the circuit has
O(n · exp(poly log log(n))) gates.

5.1.3 A balanced code in uniform sparse CC0[2]

In this section we use an additional sparse circuit to amplify the distance of the code in
Proposition 31 from Ω(1) to 1/2− ε. This is done relying on the well-known strategy
of Naor and Naor [NN93], which uses random walks on an expander on the vertex-set
[n̂]. Specifically, we use the following construction:

Proposition 32 (amplifying the distance of a code by a sparse circuit; see [Tel17b, Prop. 6.6]).
For some universal constant r0 > 1, there exists a polynomial-time algorithm that is given as
input 1n̂, a constant ρ > 0, and ε = ε(n̂) > 0, and outputs a circuit C such that:

1. The circuit C maps n̂ input bits to n̄ = n̂ · (1/ε)r0/ρ output bits.

2. For every x̂ ∈ {0, 1}n̂ with relative Hamming weight at least ρ, the relative Hamming
weight of x̄ = C(x̂) is between 1/2− ε and 1/2.

3. The circuit C has depth one, and each output bit of C is a linear function of O(log(1/ε)/ρ)
input bits.28

Combining Propositions 31 and 32, we get the following:

Theorem 33 (a balanced code in superlinear CC0). For some universal constant r1 > 1 there
exists a polynomial-time algorithm that is given as input 1n and ε = ε(n), and outputs a
CC0[2] circuit C such that:

1. The circuit C computes a linear code that maps messages of length n to codewords of
length n̄ = n · exp(poly log log(n)) · (1/ε)r1 such that every codeword has relative
Hamming weight 1/2± ε.

2. The circuit C has depth two and at most n · exp(poly log log(n)) · (1/ε)r1 · log(1/ε)
wires.

28In [Tel17b, Prop. 6.6] the circuit is a depth-two T C0 circuit rather than a depth-one CC0[2] circuit.
However, in the T C0 circuit every output bit is just the parity of O(log(1/ε)/ρ) input bits, so we can
construct an equivalent depth-one CC0[2] circuit.
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Proof. Let ρ > 0 be any sufficiently small constant. We first use the algorithm from
Proposition 31 to construct a depth-two CC0[2] circuit C0 : {0, 1}n → {0, 1}n̂, where
n̂ = n · exp(poly log log(n)), that computes a linear code with relative distance ρ
using n · exp(poly log log(n)) wires. Now, we use the algorithm from Proposition 32
to construct a depth-one CC0[2] circuit C1 : {0, 1}n̂ → {0, 1}n̄, where n̄ = n̂ · (1/ε)r0/ρ,
that maps any x̂ ∈ {0, 1}n̂ of relative weight at least ρ to x̄ ∈ {0, 1}n̄ of relative weight
at least 1/2− ε, using O(n̄ · log(1/ε)) wires.

We now combine C0 and C1. Note that the naive combination has depth three,
but that the top layer has fan-in O(log(1/ε)) and that the middle layer has fan-in
O(log(n)). Thus, we can collapse the two layers, and obtain a depth-two circuit in
which the top layer has fan-in O(log(n) · log(1/ε)). Overall, we obtain a circuit with
at most n · exp(poly log log(n)) · (1/ε)r0/ρ · log(1/ε) wires.

Relying on the Johnson bound (see, e.g., [AB09, Thm. 19.23]), Theorem 33 also
yields a list-decodable code:

Corollary 34 (a list-decodable code in superlinear CC0). For some universal constant r2 > 1,
there exists a polynomial-time algorithm that is given as input 1n and δ = δ(n), and outputs
a CC0[2] circuit C such that:

1. The circuit C computes a linear code that maps messages of length n to codewords of
length n̄ = n · exp(poly log log(n)) · (1/δ)r2 such that in any Hamming ball of radius
1/2− δ in {0, 1}n̄ there exist at most O(1/δ2) codewords.

2. The circuit C has depth two and at most n · exp(poly log log(n)) · (1/δ)r2 · log(1/δ)
wires.

5.1.4 A balanced code in extremely sparse T C0

In this section we convert our construction of uniform CC0[2] circuits into uniform
extremely sparse T C0 circuits. We do this by replacing each parity gate by a T C0

circuit, using the constructions of uniform circuits by [BBL92; PS94], in each of the
constructions in the previous sections. We start with the construction of encoding
circuits for a code with constant relative distnce:

Proposition 35 (uniform extremely sparse T C0 circuits for encoding an “almost-good” code).
For some universal constants ρ > 0 and c0 > 1, there exists a deterministic polynomial-time
algorithm that gets as input 1n, where n is a sufficiently large power of two, and a constant
d ≥ 2, and outputs a T C0 circuit that satisfies the following:

1. The circuit computes the encoding function of a linear code {0, 1}n → {0, 1}n̂ with
constant relative distance ρ > 0, where n̂ = n · exp(poly log log(n)).

2. The circuit has depth d + 2 and at most n1+c0·φ−d+o(1) wires, where φ = 1+
√

5
2 .

Proof. Observe that in the construction in the proof of of Proposition 31, each of
the gates in the middle layer (i.e., the gates that compute the range detectors) may
compute the parity of an arbitrary number of input bits, but each gate in the top layer
only computes the parity of log(n) gates in the middle layer.

We first replace each parity gate in the middle layer by a depth-d T C0 circuit for
parity, using the construction in [PS94, Thm. 1]. For every gate g, denote by ng
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the fan-in of g; then, the T C0 circuit that computes g has n1+c0·φ−d

g wires, for some
c0 > 1. Thus, the overall number of wires that are contributed by the T C0 circuits that
compute the middle layer is at most

∑
g

n1+c0·φ−d

g ≤
(

∑
g

ng

)1+c0·φ−d

≤ (n · exp(poly log log(n)))1+c0·φ−d
,

which is n1+c0·φ−d+o(1).
Now, we replace each gate in the top layer, which computes the parity of log(n)

bits, by a T C0 circuit of depth two with O(log2(n)) wires (using the standard con-
struction with a quadratic number of wires; see, e.g., [BBL92, Sec. 1]). The number of
T C0 circuits that we use (i.e., the number of top gates) is n · exp(poly log log(n)), and
each of them contributes O(log2(n)) wires, so the overall contribution of this layer to
the number of wires is n1+o(1).

In Proposition 32, we amplify the distance of the code from Ω(1) to 1/2− ε by a
single layer of parity gates, each of which has fan-in at most O(log(1/ε)). By convert-
ing each such parity gate to a depth-two T C0 circuit, we obtain the following:

Proposition 36 (amplifying the distance of a code by a sparse T C0 circuit). For some uni-
versal constant r0 > 1, there exists a polynomial-time algorithm that is given as input 1n̂, a
constant ρ > 0, and ε = ε(n̂) > 0, and outputs a T C0 circuit C such that:

1. The circuit C maps n̂ input bits to n̄ = n̂ · (1/ε)r0/ρ output bits.

2. For every x̂ ∈ {0, 1}n̂ with relative Hamming weight at least ρ, the relative Hamming
weight of x̄ = C(x̂) is between 1/2− ε and 1/2.

3. Each output bit of C is a linear function of O(log(1/ε)/ρ) input bits.

4. The circuit C has depth two and O
(

n̂ · (1/ε)r0/ρ · log2(1/ε)
)

wires.

Now, by combining Propositions 35 and 36, we get the following:

Theorem 37 (a balanced code in extremely sparse T C0). For some universal constants c0 > 1
and r1 > 1, there exists a polynomial-time algorithm that is given as input 1n and ε = ε(n)
and a constant d ≥ 2, and outputs a T C0 circuit C such that:

1. The circuit C computes a linear code that maps messages of length n to codewords of
length n̄ = n · exp(poly log log(n)) · (1/ε)r1 such that every codeword has relative
Hamming weight 1/2± ε.

2. The circuit C has depth d + 4 and at most n1+c0·φ−d+o(1) + n · exp(poly log log(n)) ·
(1/ε)r1 · log2(1/ε) wires, where φ = 1+

√
5

2 .

Corollary 38 (a list-decodable code in sparse T C0). For some universal constants c0 > 1 and
r2 > 1, there exists a polynomial-time algorithm that is given as input 1n and δ = δ(n) and a
constant d ≥ 2, and outputs a T C0 circuit C such that:

1. The circuit C computes a linear code that maps messages of length n to codewords of
length n̄ = n · exp(poly log log(n)) · (1/δ)r2 such that in any Hamming ball of radius
1/2− δ in {0, 1}n̄ there exist at most O(1/δ2) codewords.

2. The circuit C has depth d + 4 and at most n1+c0·φ−d+o(1) + n · exp(poly log log(n)) ·
(1/δ)r2 · log2(1/δ) wires, where φ = 1+

√
5

2 .
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5.2 An averaging sampler in uniform sparse CC0[2] and T C0

Let us recall the notion of weak combinatorial designs, which was introduced by Raz,
Reingold, and Vadhan [RRV02], and state their result that Trevisan’s extractor [Tre01]
can be instantiated with weak designs instead of standard combinatorial designs.

Definition 39 (weak designs). For positive integers m, `, t ∈ N and an integer ρ > 1, an
(m, `, t, ρ) weak design is a collection of sets S1, ..., Sm ⊆ [t] such that for every i ∈ [m] it
holds that |Si| = ` and ∑j<i 2|Si∩Sj| < (m− 1) · ρ.

Theorem 40 (extractors from weak designs [RRV02, Prop. 10]). Let m < k < n be
three integers, and let ε > 0. Let ECC : {0, 1}n → {0, 1}n̄ be a code such that in ev-
ery Hamming ball of radius 1/2− δ in {0, 1}n̄ there exist at most 1/δ2 codewords, where
δ = ε/4m. Let S1, ..., Sm ⊆ [t] be an (m, `, t, ρ) weak design with ` = log(n̄) and
ρ = k−3·log(m/ε)−t−3

m . Then, the function Ext : {0, 1}n × {0, 1}t → {0, 1}m that is defined
by Ext(x, z) = (ECC(x)zS1

, ..., ECC(x)zSm
) is a (k, ε)-extractor.

We will need a specific construction of weak designs from [Tel18], in which the
intersection parameter log(ρ) is large, but the universe size t is small (i.e., for sets of
size |Si| = ` we will require that log(ρ) ≈ .99 · ` and t ≈ 1.01 · `).

Lemma 41 (constructing weak designs [Tel17b, Lem. 6.2]). There exists an algorithm that
gets as input m ∈ N and ` ∈ N and ρ ∈ N such that log(ρ) = (1 − α) · `, where
α ∈ (0, 1/4), and satisfies the following. The algorithm runs in time poly(m, 2`) and outputs
an (m, `, t, ρ) weak design, where t = d(1 + 4α) · `e.

We now instantiate Theorem 40 with the code from Corollary 34 and the weak
designs from Lemma 41 in order to construct uniform sparse CC0[2] circuits that com-
putes the following averaging sampler: The sampler gets an input of length n, and
two parameters 0 < γ � β < 1, and constructs a sampler that outputs m = nγ bits
and has accuracy 1/m and error 2nβ−n.

Theorem 42 (an averaging sampler in superlinear CC0). For any sufficiently large constant
r > 1, there exists a polynomial-time algorithm that gets as input 1n and two parameters
β = β(n) > 3/4 and γ = γ(n) < β−3/4

r , and outputs a CC0[2] circuit C that satisfies the
following:

1. The circuit C gets input x ∈ {0, 1}n and outputs 2t < n5−4(β−rγ) · exp(poly log log(n))
strings of length m = nγ.

2. The function Samp : {0, 1}n × {0, 1}t → {0, 1}m such that Samp(x, i) = C(x)i is an
averaging sampler with accuracy ε = 1/m and error 2nβ−n.

3. The depth of C is three and its number of wires is n5−4(β−rγ)+γ · exp(poly log log(n)).

In particular, if β ≥ 1− rγ, then the number of outputs of C is 2t ≤ n1+8r·γ · exp(poly log log(n)),
and its number of wires is at most n1+(8r+1)·γ · exp(poly log log(n)).

Proof. Let r2 > 1 be the constant from Corollary 34, let r3 = 3 · r2, and let r ≥ r3 + 2.
We first use Corollary 34 with the parameter value δ = ε/4m to construct a depth-
two circuit C0 that encodes its input x ∈ {0, 1}n to a codeword x̄ of length n̄ =
n · exp(poly log log(n)) · (1/δ)r2 . Then, we use Lemma 41 to construct an (m, `, t, ρ)
weak design S1, ..., Sm ⊆ [t] with the following parameters: For α = 1− β + r · γ < 1/4
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(the inequality is since β > 3/4 and γ < (β − 3/4)/r), we construct a design with
` = log(n̄) and ρ = 2(1−α)·` and t = d(1 + 4α) · `e. Now, define a function Ext :
{0, 1}n × {0, 1}t → {0, 1}m as in Theorem 40; that is, for x ∈ {0, 1}n and z ∈ {0, 1}t,
the m-bit string Ext(x, z) is the projection of x̄ to the coordinates zS1 , ..., zSm . The circuit
C outputs the 2t strings corresponding to {Ext(x, z)}z∈{0,1}t , where each output string
is a projections of m bits of x̄.

Let k = nβ. By our choice of α, we have that ρ = 2(1−α)·` < k/2m < k−3·log(m/ε)−t−3
m . 29

Thus, relying on Theorem 40, the function Ext is an (nβ, ε = 1/m)-extractor, and
also (by Proposition 18) a sampler with accuracy ε = 1/m and error 2nβ−n. The
number of wires in C0 is at most n · exp(poly log log(n)) · mr3 , and the number of
wires between x̄ and the outputs is 2t · m = 2d(1+4α)·log(n̄)e · nγ ≤ n5−4β+(4r+1)γ ·
exp(poly log log(n)). Hence, the total number of wires in the sampler is at most
n5−4β+(4r+1)γ · exp(poly log log(n)).

We now construct averaging samplers in uniform extremely sparse T C0. Similarly
to Theorem 42, we use Theorem 40 and Lemma 41, but this time with the code con-
struction in T C0 from Corollary 38. The sampler will get an input of length n, and for
two constants 0 < γ� β < 1, the sampler will output m = nγ bits and have accuracy
1/m and error 2nβ−n.

Theorem 43 (an averaging sampler in extremely sparse T C0). For a universal constant
c0 > 1 and any sufficiently large constant r > 1, there exists a polynomial-time algorithm that
gets as input 1n and three constants d ≥ 2 and β > 3/4 and γ < β−3/4

r , and outputs a T C0

circuit C that satisfies the following:

1. The circuit C gets input x ∈ {0, 1}n and outputs 2t < n(1+4r·γ)·(5−4β) strings of length
m = nγ.

2. The function Samp : {0, 1}n × {0, 1}t → {0, 1}m such that Samp(x, i) = C(x)i (i.e.,
Samp(x, i) ∈ {0, 1}m is the ith output string of C(x)) is an averaging sampler with
accuracy ε = 1/m and error 2nβ−n.

3. The depth of C is d+ 5 and its number of wires is n1+c0·φ−d+o(1)+O
(

n(1+r·γ)·(5−4β)+8r·γ
)

,

where φ = 1+
√

5
2 .

In particular, if γ ≤ 1/(24r · φd) and β ≥ 1− φ−d/2, then both the number of outputs of C
(i.e., 2t) and the number of wires in C are bounded by n1+c0·φ−d+o(1).

Proof. The parametrization of the sampler in this proof is similar to that in the proof
of Theorem 42. Specifically, let r2 > 1 and c0 > 1 be the constants from Corollary 38,
let r3 = 3 · r2, and let r ≥ r3 + 2. We use Corollary 38 with δ = ε/4m to construct a
circuit C0 of depth d + 4 that encodes its input x ∈ {0, 1}n to a codeword x̄ of length
n̄ = n · exp(poly log log(n)) · (1/δ)r2 < n1+o(1) ·mr3 . Then, for α = 1− β + r · γ < 1/4,
we use Lemma 41 to construct an (m, `, t, ρ) weak design S1, ..., Sm ⊆ [t] with ` =
log(n̄) and ρ = 2(1−α)·` and t = d(1 + 4α) · `e. Let Ext : {0, 1}n × {0, 1}t → {0, 1}m

29To see that (1− α) · ` < log(k/2m), note the following. Since ` = log(n̄) < (1 + o(1)) · log(n) +
r3 · log(m), we have that (1− α) · ` ≤ (β− r · γ) · ((1 + o(1)) · log(n) + r3 · log(m)) < (β− r · γ + o(1)) ·
log(n) + r3 · log(m). On the other hand, we have that log(k/2m) = β · log(n)− log(2m). Thus, it suffices
to prove that (r · γ− o(1)) · log(n)− r3 · log(m) ≥ log(2m), which holds since n = m1/γ and r− r3 > 1.
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such that for x ∈ {0, 1}n and z ∈ {0, 1}t, the m-bit string Ext(x, z) is the projection of
x̄ to the coordinates zS1 , ..., zSm . The circuit C outputs the 2t strings {Ext(x, z)}z∈{0,1}t .

Let k = nβ, and note that ρ = 2(1−α)·` < k/2m < k−3·log(m/ε)−t−3
m . Relying on Theo-

rem 40 and Proposition 18, the function Ext is a sampler with accuracy ε = 1/m and
error 2nβ−n. The depth of C is d + 5 (since the depth of C0 is d + 4, and the 2t outputs
are projections of x̄). Finally, the number of wires in C0 is at most n1+c0·φ−d+o(1) +

n1+o(1) ·mr3 < n1+c0·φ−d+o(1) + n1+γ·r, and the number of wires between x̄ and the out-
puts is 2t · m = 2d(1+4α)·log(n̄)e · nγ < n(1+r·γ)·(5−4β+4r·γ) < n(1+r·γ)·(5−4β)+8r·γ. Hence,
the total number of wires in the sampler is n1+c0·φ−d+o(1) +O

(
n(1+r·γ)·(5−4β)+8r·γ

)
.

5.3 Bootstrapping derandomization of T C0

Let us now formally state Theorem 4 and prove it using the averaging sampler from
Theorem 43.

Theorem 44 (Theorem 4, restated). For φ = 1+
√

5
2 , there exists a universal constant c0 > 1

such that for any sufficiently large constant r > 1 the following holds.
Let d ∈ N. Assume that for some d′ ≥ d + 7 there exists an algorithm that gets as

input a T C0 circuit C′ : {0, 1}n → {0, 1} with depth d′ and n1+c1·φ−d′
wires, where c1 =

c0 · φd+5 + 1/r, runs in time T(n), and for β = 1− φ−d′ satisfies the following: If C′ rejects
all but at most 2nβ

of its inputs, then the algorithm rejects C′, and if C′ accepts all but at most
2nβ

of its inputs, then the algorithm accepts C′.
Then, there exists an algorithm that for every k ∈ N, when given as input a T C0 circuit

C : {0, 1}m → {0, 1} with depth d and mk wires, runs in time T(m24r·k·φd′
), and satisfies the

following: If C accepts at least 2/3 of its inputs then the algorithm accepts C, and if C rejects
at least 2/3 of its inputs then the algorithm rejects C.

Recall that in Theorem 4 the hypothesis is that for c < φ (e.g., c = 1.61) and every
d′, the quantified derandomization algorithm will be able to handle circuits with depth
d′ and n1+c−d′

wires. This hypothesis is stronger than the hypothesis in Theorem 44,
since for any fixed d ∈N and sufficiently large d′ it holds that c−d′ > c1 · φ−d′ .

Proof of Theorem 44. Let c0 > 1 be the universal constant from Theorem 43, and
assume that r > 1 is sufficiently large to satisfy the hypothesis of Theorem 43. We
construct an algorithm that gets as input a T C0 circuit C : {0, 1}m → {0, 1} with
depth d and mk wires, and acts as follows. For γ = 1/(24r · k · φd′) and n = m1/γ, the
algorithm constructs a circuit C′ : {0, 1}n → {0, 1} of depth d′ with n1+c1·φ−d′

wires
such that the following holds: If C rejects at least a 2/3 fraction of its inputs, then C′

rejects all but at most 2nβ
inputs; and if C accepts at least a 2/3 fraction of its inputs,

then C′ accepts all but 2nβ
of its inputs. Then, the algorithm invokes the quantified

derandomization algorithm for C′, which runs in time T(n) = T
(

m24r·k·φd′
)

, to decide
whether the acceptance probability of C is at least 2/3 or at most 1/3.

To construct C′, let dSamp = d′ − d− 5 ≥ 2; we first use Theorem 43 to construct a
T C0 circuit Samp : {0, 1}n × {0, 1}t → {0, 1}m that is an averaging sampler with the
following properties: The input length is n, the output length is m = nγ, the accuracy
is ε = nΩ(1) < 1/100, and the error is δ = 2nβ−n; the depth of Samp is dSamp + 5, and
by the “in particular” part of Theorem 43 (relying on the facts that β = 1− φ−d′ >
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1 − φ−dSamp /2 and that γ = 1/(24r · k · φd′) < 1/(24r · φdSamp ), the number of wires

in Samp is bounded by n1+c0·φ
−dSamp+o(1). The circuit C′ first computes the sampler

Samp, then evaluates C in parallel on each of the 2t < n1+c0·φ
−dSamp+o(1) outputs of

the sampler, and finally computes the majority of the 2t evaluations of C. That is,
C′(x) = MAJz∈{0,1}t [C(Samp(x, z))]. The circuit C′ is of depth (dSamp + 5) + d + 1, but
the gates in one of its layers (i.e., the output layer of the sampler) are just projections
of the gates in the layer beneath it; therefore, we can collapse one layer, and obtain an
equivalent circuit of depth d′ = dSamp + d + 5. The number of wires in C′ is at most

n1+c0·φ
−dSamp+o(1) + 2t ·mk + 2t < n1+c0·φ

−dSamp+o(1) + n1+c0·φ
−dSamp+1/(24r·φd′ )+o(1)

< n1+(c0·φd+5+1/r)·φ−d′
,

where we relied on the facts that mk = n1/(24r·φd′ ) and that φ−dSamp = φd+5 · φ−d′ .
Finally, note that for any x ∈ {0, 1}n such that Prz∈{0,1}t [C(Samp(x, z)) = 1] ∈

Pr[C(un) = 1] ± ε, we have that C′(x) outputs the most frequent value of C. Since
the error of the sampler is δ = 2nβ−n, the number of inputs x ∈ {0, 1}n such that
Prz∈{0,1}t [C(Samp(x, z)) = 1] /∈ Pr[C(un) = 1]± ε is at most 2nβ

. Thus, the circuit C′

outputs the most frequent value of C on all but at most 2nβ
inputs x ∈ {0, 1}n.

Relying on known relaxations of Williams’ “algorithmic method” (see [Wil13; SW13;
BV14; FS16; MW18]), we obtain the following corollary of Theorem 44:

Corollary 45 (quantified derandomization of sparse T C0 implies lower bounds for T C0).
There exists a constant ε > 0 such that the following holds. Let c > 1 be any fixed constant
smaller than 1+

√
5

2 . Assume that if NEXP ⊆ T C0, then for every d ∈ N there exists a
non-deterministic machine that gets as input a T C0 circuit C : {0, 1}n → {0, 1} with depth
d and n1+c−d

wires, and also nε bits of non-uniform advice, runs in time 2no(1)
, and solves

the following problem: If C accepts all of its inputs, then there exist non-deterministic choices

that cause the machine to accept C; and if C rejects all but B(n) = 2n1−c−d
of its inputs, then

the machine rejects C regardless of the non-determinism. Then, NEXP 6⊆ T C0.

5.4 Bootstrapping derandomization of ACC0

In this section we prove that a algorithm for quantified derandomization of ACC0

circuits with n1+Ω(1) wires and with a subexponential B(n) that runs in time 2no(1)

would yield a corresponding algorithm for standard derandomization of ACC0 with
“one-sided error” that runs in time 2no(1)

.
The proof strategy is similar to that of the proof of Theorem 4. Specifically, we

construct an algorithm that gets as input an ACC0 circuit C : {0, 1}m → {0, 1}, and
outputs an ACC0 circuit C′ : {0, 1}n → {0, 1} such that if C has acceptance probability
one then C′ has acceptance probability one, and if C has acceptance probability at most
half then C′ rejects all but B(n) of its inputs. To do so, the algorithm first constructs
a uniform sparse CC0[⊕] circuit that computes an averaging sampler; this is done
relying on the construction that was presented in Section 5.2. Then, for n = poly(m),
the algorithm constructs C′ : {0, 1}n → {0, 1} that first uses its input to sample inputs
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for C using the foregoing averaging sampler, then evaluates C on the inputs in the
sample, and finally outputs the conjunction of the latter evaluations of C.30

Note that our transformation of C to C′ only involves adding ⊕ gates and a single
AND gate (at the top). Thus, our construction actually works not only for ACC0

circuits, but for essentially any circuit class whose gates can compute the AND and ⊕
functions (e.g., it also works for AC0[⊕]). Specifically:

Theorem 46 (a bootstrapping result for quantified derandomization of ACC0). Let C be any
typical circuit class whose gates can compute the AND and ⊕ functions. Let d ∈ N, and let
γd < 1/4r, where r > 1 is a universal constant. Assume that there exists an algorithm that
gets as input a C-circuit C′ : {0, 1}n → {0, 1} with depth d′ = d + 3 and O

(
n1+(8r+2)·γd

)
·

exp(poly log log(n)) wires, runs in time T(n), and for β = 1− r · γd satisfies the following:
If C′ rejects all but at most 2nβ

of its inputs, then the algorithm rejects C′, and if C′ accepts
all of its inputs, then the algorithm accepts C′. Then, there exists an algorithm that for every
k ∈N, when given as input a C-circuit C : {0, 1}m → {0, 1} with depth d and mk wires, runs
in time T(mk/γd), and satisfies the following: If C accepts all of its inputs then the algorithm
accepts C, and if C rejects at least half of its inputs then the algorithm rejects C.

We comment that Theorem 46 holds also when γd is a sub-constant function of
n (rather than a constant that depends only on d), albeit with a more complicated
expression for the running time of the algorithm for standard derandomization in the
conclusion of the theorem. We defer the discussion of this point until after the proof.

Proof of Theorem 46. Assume that r > 1 is sufficiently large to satisfy the hypothesis
of Theorem 42. Our algorithm gets as input a C-circuit C : {0, 1}m → {0, 1} with depth
d and mk wires, and constructs a corresponding C-circuit C′, as follows.

Let n be the minimal integer such that nγd(n)/k ≥ m. The algorithm first uses
Theorem 42 to construct a depth-three CC0[2] circuit Samp : {0, 1}n×{0, 1}t → {0, 1}m

that is an averaging sampler with the following properties: For γ′ = γd(n) and β′ =
1− r · γ′, the input length is n = mk/γ′ , the output length is m, the accuracy is ε =

nΩ(1) < 1/2, and the error is δ = 2nβ′−n; by the “in particular” part of Theorem 42, the
number of wires in Samp is bounded by n1+(8r+1)·γ′ . Now, the circuit C′ first computes
the sampler Samp, then evaluates C in parallel on each of the 2t < n1+8r·γ′ outputs of
the sampler, and finally computes the conjunction of the 2t evaluations of C. That is,
C′(x) = ANDz∈{0,1}t [C(Samp(x, z))].

The circuit C′ is of depth d + 4, but the gates in one of its layers (i.e., the output
layer of Samp) just compute projections of the layer beneath it, so the algorithm can
collapse this layer to obtain an equivalent circuit of depth d′ = d + 3. The number
of wires in C′ is O

(
n1+(8r+2)·γ′

)
. Also, we only added gates that compute AND and

⊕ functions, and therefore C′ ∈ C. Lastly, if C accepts all of its inputs then C′ also
accepts all of its inputs, and if C rejects at least half of its inputs, then C′ accepts all
but at most 2nβ′

> 2nβ
of its inputs (the inequality is since 2nβ′

= 2n1−r·γ′
> 2n1−r·γd(n) ,

relying again on the fact that γd(n) > γ′). The latter statement is since if C rejects at
least half of its inputs, then for all but δ · 2n = 2nβ′

of the inputs x ∈ {0, 1}n to Samp

30The reason that we use a top AND gate, instead of a sub-circuit for approximate majority, is that the
known constructions for the latter circuit are of polynomial size (i.e., are not super-linear). Indeed, this
is the reason that our result is limited to derandomization with “one-sided error”.
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it holds that Prz∈{0,1}t [C(Samp(x, z)) = 1] ≥ Pr[C(un) = 1] − ε > 0; and for every
x ∈ {0, 1}n such that the latter holds we have that C′(x) = 1.

Therefore, our algorithm can now invoke the quantified derandomization algo-
rithm for C′, which runs in time T(n), to decide whether the acceptance probability
of C is 1 or at most 1/2.

As mentioned after the statement of Theorem 46, the theorem holds also when γd
is a sub-constant function of n, where the only change is that the running time of the
algorithm for standard derandomization (in the conclusion of the theorem) will be
larger. Specifically, given a function γd(n) in the hypothesis, in the proof we set n to
be the minimal integer such that nγd(n)/k ≥ m; then, the running time of the algorithm
for standard derandomization will be T(n) (rather than T(mk/γd) as in Theorem 46).
Note that when γd(n) = o(1), the algorithm in the hypothesis of the theorem only
needs to handle circuits with n1+o(1) wires; in particular, when γd(n) = poly log log(n)

log(n) ,
the algorithm only needs to handle circuits of size n · exp(poly log log(n)).

6 Restrictions for T C0 circuits “just beyond” parity

In this section we present an open problem whose resolution would imply thatNEXP 6⊆
T C0 (relying on Corollary 5). The open problem will focus on finding a representa-
tion of a “simple” function that approximates a given extremely sparse T C0 circuit
C : {0, 1}n → {0, 1} in a large subset S ⊆ {0, 1}n. To properly define the latter notion,
let us first define the notion of a sampling circuit for a set S ⊆ {0, 1}n.

Definition 47 (sampling circuits). A sampling circuit for a set S ⊆ {0, 1}n with error ε > 0
is a circuit US : {0, 1}r → {0, 1}n, where r ≥ log(|S|), such that the output distribution of
US (i.e., US((ur)) is ε-close to the uniform distribution over S, in statistical distance.

Now, consider a circuit C : {0, 1}n → {0, 1}. As mentioned above, we will want to
find a representation of “simple” function Φ : S → {0, 1}, for some large S ⊆ {0, 1}n,
such that Φ approximates C�S. Specifically, our notion of representation includes both
a representation of the function Φ (e.g., a Boolean circuit that computes Φ) and a
representation of the set S (i.e., a sampling circuit for S). And our notion of sufficiently
simple is that there exists an algorithm that, when given Φ : S→ {0, 1} and a sampling
circuit for S, can efficiently approximate the bias of Φ. More formally:

Definition 48 (sufficiently simple functions and sets). Let Γ be a class of pairs (Φn, USn)
where Φn : Sn → {0, 1} and USn is a sampling circuit for Sn ⊆ {0, 1}n with error 1/6.
We say that Γ is sufficiently simple if there exists an algorithm that, when given as input
(Φn, USn) ∈ Γ, runs in time 2no(1)

and approximates the bias of Φn in Sn (i.e., Prx∈Sn [Φn(x) =
1]), up to error 1/6.

Let us now elaborate on the discussion that followed Corollary 5, with more spe-
cific details. Generalizing a high-level idea of Goldreich and Wigderson [GW14], we
claim that quantified derandomization of a circuit C : {0, 1}n → {0, 1} with B(n) ex-
ceptional inputs in time 2no(1)

reduces to finding a pair (Φn, USn) from a sufficiently
simple class Γ such that |Sn| ≥ 6 · B(n) and C�Sn

is (1/6)-approximated by Φn (i.e.,
Prx∈Sn [Φn(x) = C(x)] ≥ 5/6). This is the case because C�Sn

is biased towards the
majority output of C (since C has only B(n) exceptional inputs and |Sn| ≥ 6 · B(n));
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and since, relying on the facts that Γ is sufficiently simple and that Φn is (1/6)-close
to C�Sn

, we can estimate the bias of C�S up to error 1/3 in time 2no(1)
.

We therefore pose the following open problem. Intuitively, the problem asks to
algorithmically find a sufficiently simple pair for a given biased T C0 circuit of size that
is “just beyond” the size required to compute the parity function. More specifically:

Open Problem 49 (restrictions for T C0 circuits of size “just beyond” parity). For c < 1+
√

5
2 ,

and a sufficiently simple class Γ, construct an algorithm for the following task. The algorithm
gets as input d ∈ N, and a T C0 circuit C : {0, 1}n → {0, 1} of depth d with n1+c−d

wires

that either accepts all its inputs or rejects all but 2n1−c−d
of its inputs, runs in time 2no(1)

, and

outputs (Φn, USn) ∈ Γ such that |Sn| ≥ 6 · 2n1−c−d
and C�S is (1/6)-approximated by Φn.

Relying on Corollary 5 and on the discussion above, a solution for Open Prob-
lem 49 would imply that NEXP 6⊆ T C0. Note that for every circuit C there exists a
trivial sufficiently simple pair (Φn, USn) that satisfies the requirements of the problem;
namely, the constant function Φ ≡ σ where σ ∈ {0, 1} is the majority output of C, and
the set Sn = C−1(σ) (the set Sn can be sampled by a circuit USn with complexity sim-
ilar to that of C, i.e. USn samples inputs and verifies that they are indeed in C−1(σ)).
However, Open Problem 49 requires to algorithmically find a suitable sufficiently sim-
ple pair (Φn, USn), while also allowing for less trivial solutions.

Moreover, similarly to Corollary 45, it suffices to solve a relaxed version of Open
Problem 49. In particular, it suffices to construct the algorithm under the hypothesis
that NEXP ⊆ T C0, and the algorithm may use both non-determinism and nε bits of
non-uniform advice (where ε > 0 is a small universal constant from [FS16]).
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Appendix A Proof of Theorem 24

In this appendix we prove Theorem 24, which asserts the existence of a strong self-
reduction for the monoid problem when the size of the monoid grows with the input
size. Recall that in the latter problem we fix an associative length-preserving binary
operation {× : ({0, 1}r)2 → {0, 1}r}r∈N, and for every two integers m ≥ ` ∈ N, the
corresponding problem MON×m,` is defined on input length n = m · ` by MON×m,`(x) =
∏i∈[m] σi, where x = (σ1, ..., σm) ∈ {0, 1}n and σi ∈ {0, 1}` for all i ∈ [m].
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Theorem 50 (strong self-reduction for the monoid problem with monoids of growing size).
Let C be a typical constant-depth circuit class, and let {× : ({0, 1}r)2 → {0, 1}r}r∈N be an
associative operation. Let ` : N → N such that `(m) = mo(1). Assume that there exist
constants d0, k ∈ N such that for every constant ρ > 0 and any sufficiently large m ∈ N it
holds that MON×mρ,`(m)

can be be solved by a family of C-circuits of depth d0 and size nk, where
n = mρ · `(m). Then, for infinitely many constants d it holds that MON×m,`(m)

can be solved

by a family of C-circuits of depth d and size n1+2e2·c−d
, where c = e1/(k·d0) and n = m · `(m).

Proof. For any ε > 0, let d1 =
⌈

k · ln
(
(1−1/k)·(1+ε)

ε

)⌉
+ 1. For any sufficiently large

n ∈ {m · `(m) : m ∈ N}, we denote ` = `(m), and construct a circuit for MON×m,` of

depth d = d1 · d0 whose number of wires is O
(
n1+ε

)
< n1+2e2·e−d/(k·d0) .

As in the proof of Theorem 19, for any x ∈ N we denote dxe` = ` · dx/`e and
bxc` = ` · bx/`c. Let 0 = α1 < α2 < ... < αd1 < 1 such that for every i = 2, ..., d1 it
holds that αi =

1+ε
k + (1− 1/k) · αi−1. Our circuit consists of d1 layers (again, i = 1 is

the top layer and i = d1 is the layer above the inputs) such that each layer i ∈ [d1] is
of depth d0 and contains ni = dnαie circuits. Each circuit in layer i ∈ [d1] has dbie` or
bbic` input bits and ` output bits, where bi = ni+1/ni (and bd1 = n/nd1), and computes
MON×dbie`,`

or MON×bbic`,`
; since bi = nΩ(1), by our hypothesis there exist such circuits of

depth d0 and size at most (dbie`)k. Since α1 = 0, the top layer contains a single circuit;
and since αi = (1+ ε) ·

(
1− (1− 1/k)i−1), in layer d1 we have that αd1 ≥ 1− ε/(k− 1).

The foregoing circuit is of depth d1 · d0. To see that it computes MON×n,`, note that
each layer is connected to all outputs of the layer beneath it, and that the operation
× is associative. To see that the circuit has O

(
n1+ε

)
wires, note that for i ∈ [d1 − 1],

in the ith layer we have dnαie circuits, and the number of inputs bits of each of them
is at most dni+1/nie` < ni+1/ni + ` < 2 · ni+1/ni (in the last inequality we used the
fact that ni+1/ni = nΩ(1) and that ` = `(m) = mo(1) < no(1)). Thus, the total number
of wires in the ith layer is O

(
nαi+k·(αi+1−αi)

)
= O

(
n1+ε

)
. In level i = d1, each circuit

has dn/nd1e` < 2 · n1−αd1 input bits, and thus the total number of wires in level d1 is

O
(

nαd1
+k·(1−αd1

)
)
≤ O

(
nk−(k−1)·αd1

)
≤ O

(
n1+ε

)
.

The conclusion of Theorem 50 can be extended to hold for every sufficiently large
d ∈N (at the expense of a slightly worse bound on the number of wires), precisely as
in the proof of Corollary 20. Thus, we get the following:

Theorem 51 (Theorem 24, restated). Let C,×, `, d0 and k be as in the hypothesis of Theo-
rem 50. Then, for every sufficiently large d ∈ N it holds that MON×m,`(m)

can be solved by a

family of C-circuits of depth d and size n1+2e3·c−d
, where c = e1/(k·d0) and n = m · `(m).

Appendix B Minimal-depth tree with a bounded cost

Recall that in Section 2.1 we presented the following problem, whose solution under-
lies our improved self-reductions for the monoid problem:

Given a cost function c : N → N and a bound function B : N → N, we
want to find a minimal d such that there exists a tree T of depth d over n
inputs such that Cost(T) = ∑v∈Nodes(T) c(deg(v)) ≤ B(n).
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Let us now prove that the solution for this problem when c(m) = mk, which
was described in Section 2.1, is indeed optimal. We conduct the analysis under the
following two simplifying assumptions:

• We will use a tree in which all nodes in the same layer have the same fan-in. This
is since the nodes are connected to disjoint sets of inputs, so any optimization
applied to one node should also be applied to all other nodes.

• All fan-ins in each layer will be of the form nα, for some constant α ∈ (0, 1). This
is because we want a tree with minimal constant depth.

Given the above assumptions, to define a construction we just need to determine
the fan-ins of nodes in each layer. For i = 1, ..., d− 1, denote by nαi the fan-in of nodes
in level i, where i = 1 is the root and i = d− 1 is the next-to-bottom layer; the fan-in
of the bottom layer i = d is determined by the other fan-ins, since the bottom layer
needs to touch all n inputs. Also denote βi = ∑j<i αj. (For convenience we will treat
“empty summations” as the constant 0 and “empty products” as the constant 1.)

We want to determine the minimal d such that there is a setting of α1, ..., αd−1 in
which the total cost of the tree is O(n1+ε). In particular, we require that:

1. The cost of each layer i = 1, ..., d− 1 will be at most n1+ε. The number of nodes
in layer i is nβi , and the cost of each node is nk·αi ; therefore, we require that

∀i ∈ [d− 1], βi + k · αi ≤ 1 + ε . (B.1)

2. The cost of the last layer i = d will be at most n1+ε. The fan-in of the last layer is
n/nβd = n1−βd (since the last layer touches all inputs), so we require that

βd + k · (1− βd) ≤ 1 + ε =⇒ βd ≥ 1− ε

k− 1
. (B.2)

In other words, we want to find the smallest d such that it is possible to disperse
1− ε

k−1 “weight” into d− 1 “buckets” such that for each “bucket” i ∈ [d− 1] it holds
that βi + k · αi ≤ 1 + ε⇒ αi ≤ 1+ε−βi

k . Indeed, the optimal strategy for this problem is
the greedy strategy, which for i = 1, ..., d− 1, sets αi to the maximal allowed value:

Proposition 52 (the greedy strategy is optimal). For every fixed d, the maximal βd is obtained
by setting the value of each αi, for i = 1, ..., d− 1, to be the maximal value allowed by Eq. (B.1),
which is αi =

1+ε−βi
k .

Proof. Fix d ∈ N. We prove by induction on i = d − 1, ..., 1 that for every values
for α1, ..., αi−1, the maximal value of βd is obtained by setting each αj, sequentially for

j = i, ..., d− 1, to the value αj =
1+ε−β j

k .
The base case is i = d− 1, which is immediate: For every fixed βd−1 it holds that

βd = βd−1 + αd−1, so we better take the maximal αd−1 possible. For the induction step,
assume that the induction hypothesis holds for i + 1, ..., d − 1, and let us prove that
it also holds for i. For any fixed βi, we ask what is the maximal value β∗d of βd as a
function of αi. For any value of αi, by the induction hypothesis it holds that β∗d will
be obtained by the greedy strategy; thus, when αi is fixed, for every j ≥ i + 1 define

α∗j =
1+ε−β∗j

k and define β∗j accordingly. It follows that:

β∗d(αi) = βi + αi +
d−1

∑
j=i+1

1 + ε− β∗j
k

= C + αi −
1
k

d−1

∑
j=i+1

β∗j , (B.3)
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where C =
(

βi +
(d−1−i)·(1+ε)

k

)
is independent of αi. Our goal will be to show that β∗d

is monotone in αi, which will complete the proof. To do so, we need to show that the
coefficient of αi in the expression ∑d−1

j=i+1 β∗j is less than k.
By definition, β∗i+1 = βi + αi and for every j ≥ i + 2 we have that β∗j = β∗j−1 +

1+ε−β∗j−1
k , which solves to

β∗j = (1 + ε) ·
(

1−
(

1− 1
k

)j−i−2
)
+

(
1− 1

k

)j−i−1

· (βi + αi)

= C′j + (1− 1/k)j−i−1 · αi ,

where C′j is independent of αi. It follows that

β∗i+1 +
d−1

∑
j=i+2

β∗j = C′′ + αi +
d−i−2

∑
j=1

(1− 1/k)j · αi

= C′′ +
(

1 + k ·
(

1− (1− 1/k)d−i−2
)
· (1− 1/k)

)
· αi , (B.4)

where C′′ is independent of αi. Since the coefficient of αi in Eq. (B.4) is smaller than k,
the coefficient of αi in Eq. (B.3) is positive, and hence β∗d is monotone in αi.
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